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ABSTRACT
Optimistic concurrency control (OCC) protocols validate
whether a transaction has conflicts with other concurrent
transactions after this transaction completes its execution.
In this work, we demonstrate that the validation phase has
a great influence on the performance of modern in-memory
database systems, especially under heterogeneous workloads.
The cost of validating operations in a transaction is deter-
mined by two main factors. The first factor is the opera-
tion type. An OCC protocol would take much less cost on
validating a single-record read operation than validating a
key-range scan operation. The second factor is the work-
load type. Existing schemes in OCC variants for validating
key-range scan perform differently under various workloads.

Although various validation schemes share the same goal
of guaranteeing a transaction schedule to be serializable,
there are remarkable differences between the costs they in-
troduced. These observations motivate us to design an op-
timistic concurrency control which can choose a low-cost
validation scheme at runtime, referred to as adaptive opti-
mistic concurrency control (AOCC). First, at transaction-
level granularity, AOCC can assign a validation method to
a transaction according to the features of its operations.
Furthermore, for each operation in a transaction, the vali-
dation method is selected according to not only the number
of accessed records but also the instant characteristics of
workloads. Experimental results show that AOCC has good
performance and scalability under heterogeneous workloads
mixed with point accesses and predicate queries.
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Concurrency control, as the fundamental technology of
transaction processing, has been a topic of intensive study
for several decades. The overhead of disk IO and buffer man-
agement has disappeared for the main-memory database
systems which are usually deployed on multi-core and big-
memory machines. The concurrency control itself—which
guarantees the isolation property of ACID transactions—
has become the major bottleneck. A great number of stud-
ies are focused on designing and implementing lightweight
pessimistic or optimistic concurrency control protocols to
achieve better scalability with more and more CPU cores [17,
22, 27]. In addition, different concurrency control schemes
are combined to improve the OLTP performance under high-
contention workloads [28].

Recently, a kind of emerging applications (such as on-
line fraud detection and financial risk analysis) requires real-
time analytics on transactional data. A transaction in these
applications may mix OLTP-style operations and analytic
queries, known as hybrid transactional and analytical pro-
cessing (HTAP) [8, 15]. Lightweight concurrency control
protocols mainly optimize conflict detection at the row level
and lack efficient mechanisms to guarantee a serializable
schedule for HTAP transactions. Under heterogeneous work-
loads, the cost introduced by concurrency control schemes
has a significant impact on overall performance, and it has
received surprisingly little attention. In this paper, we demon-
strate that the validation methods should be adaptively se-
lected according to the type of operation in a transaction
and the characteristics of its current workload.

Optimistic concurrency control (OCC) protocol divides
the execution of a transaction into three phases: read, val-
idation and write. A transaction validates its reads and
writes to check whether it breaks the serializable schedule
in the validation phase. From a perspective of which records
are validated, we group the validation mechanisms into two
categories: local read-set validation (LRV) and global write-
set validation (GWV). In LRV, a transaction uses a local
read set to track all read records and their versions. In the
validation phase, the committing transaction only checks
all records in its local read set to find whether their ver-
sions are changed by other concurrent transactions during
the read phase. Instead of keeping read records in the trans-
action context, a transaction using GWV only keeps a set
of predicates with respect to WHERE clauses in all SQL
queries. When a transaction enters the validation phase,
GWV checks whether these predicates are satisfied by the
write sets of other concurrent transactions, which are stored
in a global recently-committed list.
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However, none of these validation mechanisms can be suit-
able for different kinds of workloads. It is clear that the
performance of LRV is sensitive to the size of read-set. For
instance, when executing a long scan query, the transac-
tion needs to keep lots of scanned records in its read-set.
This would increase the validation cost because of re-reading
many tuples. Unlike LRV, the cost of GWV heavily depends
on the characteristics of real-time workloads. With the in-
crease of concurrent transactions and modified tuples, the
cost of validating a predicate grows obviously.

Although OCC scales up nicely on modern hardware, it
sustains high abort rates when the workload contains fre-
quent read-write conflicts. Existing works about adaptive
CC [21, 23] are mainly concentrated on the combination of
OCC and pessimistic two-phase locking (2PL). To exploit
the advantage of 2PL, they look for the hot-spot data raising
conflicts between concurrent transactions, and adopt 2PL-
like methods when a transaction accesses these hot data.
However, they neglect the impact of validation cost in the
OCC protocol.

In this paper, we propose adaptive optimistic concurrency
control (AOCC), which incorporates two validation meth-
ods LRV and GWV. We first give a design of AOCC at
the transaction-level granularity, which assigns the valida-
tion type for a transaction according to the features of its
read queries. Furthermore, for each query in a transaction,
AOCC at the query-level granularity can choose an appro-
priate validation method not only according to the number
of accessed records, but also on the basis of the instant char-
acteristics of workloads. The following is the list of our main
contributions.

• Based on the analysis of validation strategies in ex-
isting OCC variants, we integrate different tracking
mechanisms in the read phase in order to adaptively
choose a validation method in our proposed AOCC.

• For each operation in a transaction, AOCC dynami-
cally estimates and compares these validation costs in-
curred by different validation methods, and then uses
an appropriate tracking mechanism and correspond-
ing low-cost validation method. In essence, AOCC de-
termines the validation scheme according to the char-
acteristics of each operation in a transaction and the
circumstance in which this transaction is running.

• Experimental results show that our approach effec-
tively reduces validation costs and then achieves good
performance under heterogeneous workloads.

2. MOTIVATION
The OCC protocol with fixed validation scheme could

cause performance degradation in two kinds of heteroge-
neous workloads. The first workload allows scan queries for
analytics and operational updates to exist in a single trans-
action, referred to as In-progress HTAP in a recent Gartner
report [2]. The second is a mixture of dynamic workloads
including an OLTP workload, a real-time/batching data in-
gestion workload, or an OLAP workload. In this section,
we highlight the key requirements for OCC protocols, which
aim to adaptively choose validation schemes for transactions
under these heterogeneous workloads.

GWV

LRV

0 1 2 3 4 5
Time (seconds) of executing 10M transactions. 

 Read & Write   Validation   Abort  

(a) 80% reads, 20% writes, low contention (θ = 0.6),
32 worker threads.

GWV

LRV

0 10 20 30 40 50

Time (seconds) of executing 10M transactions. 

(b) 80% reads, 10% writes, 10% scans (length = 800),
high contention (θ = 0.9), 32 worker threads

Figure 1: Performance profile of local read-set vali-
dation (LRV) and global write-set validation (GWV)
under different YCSB workloads.

2.1 HTAP in a single Transaction
Fraud detection is a great example of HTAP for making

real-time business decision. Traditionally, a bank needs to
extract the data from OLTP systems to search for fraudu-
lent activities, which means that a fraudulent activity can
only be detected after several hours or days. In real-time
fraud detection, a payment transaction first finds historical
records as the input of a scoring model to calculate the possi-
bility of fraudulent activity, and confirms this payment only
after successful verification of this detection. In this case,
the query should return strongly consistent records for the
predictive model because the latest committed data have a
significant impact on the predicted results. If someone had
used a lost or stolen credit card one minute before, it’s still
expected that real-time fraud detection should be sensitive
and prevent the fraudulent activity next time.

We simulate this kind of In-progress HTAP workloads
by putting scan and update queries in a single transaction.
In Figure 1, we profile the performance of both validation
methods LRV and GWV using YCSB benchmark. We use
a single table with 10 million records. Each transaction
contains five queries, each read/write query accesses a sin-
gle tuple based on a Zipfian distribution with a parameter
θ that controls the contention level, and each scan query
accesses a range of tuples where the first member follows
the same Zipfian distribution. The total execution time of
each experiment is divided into three parts: read&write,
validation and abort. Figure 1(a) shows the results under
a low-contention workload without scan queries. Since the
size of read-set of each transaction is very small for the LRV
method, its validation time accounts for a small part. The
GWV method takes more than 60% of the total execution
time in the validation phase. This is because validating all
writes of the recently committed transactions is costly under
this workload and GWV would suffer from highly concur-
rent updates. Figure 1(b) illustrates the results under a
high-contention workload with scan queries, and each one
accesses 800 tuples. Since it is costly for LRV to track and
to validate a long scan query, LRV takes more time than
GWV not only on the part of read&write but also on the
validation part. What’s worse, as the time of executing a
transaction increases, the abort ratio grows obviously.
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2.2 Mixed Workloads
In practical settings, modern enterprise applications based

on HTAP-enabled DBMS often require database servers to
run dynamically changing mixed workloads. The HTAP
workload and data ingestion may co-exist when a database
periodically loads data from other systems to support real-
time decision making. In this case, if the OCC protocol
takes GWV as its validation scheme, a transaction in the
HTAP workload might take much time to check many writes
generated by the data ingestion tasks. In Section 6.4, we
demonstrate that adaptive OCC can perform better than
conventional methods under mixed HTAP workloads.

3. VALIDATION SCHEMES
Optimistic concurrency control can adopt backward val-

idation or forward validation. The basic idea of commonly
used backward validation is to check the intersections be-
tween read&write sets of a committing transaction and those
of overlapping, committed transactions. Recently proposed
OCC variants are designed to resolve the bottleneck of times-
tamp allocation [22,27], to alleviate high abort rates for con-
tended workloads [8, 23, 24, 28], and to adapt to analytical
workloads [8, 14]. Although these OCC variants focus on
addressing different issues, their validation strategies can be
grouped into two categories.

3.1 LRV
The first kind of validation scheme requires a validating

transaction to re-read tuples to compare their versions with
those in the local read set of the transaction [5,10,11,13,22],
referred to as local read-set validation (LRV). The key prin-
ciple of this approach is to ensure that reads and writes of
a transaction logically occur at the same time point, which
is served as its serialization point. Even in the setting of
main-memory database systems, it has an obviously neg-
ative impact on performance because of intensive memory
accesses for a large number of read tuples. Silo adopted
LRV and optimized it for phantom detection by checking the
version change of B+-Tree nodes which cover the scanned
key-range [22]. However, it still needs to maintain all read
tuples and to re-read them for validation.

3.2 GWV
Another approach, instead of re-reading tuples in local

read set, validates whether the write sets of all other con-
current transactions violate the predicates of the transac-
tion’s read queries [9, 14, 16], referred to as global write-set
validation (GWV). The GWV approach is adopted by Hy-
Per [7, 14], which is designed for HTAP workloads. Com-
pared with LRV, GWV only needs to access a relatively
small number of modified tuples under read-intensive work-
loads. However, in the case of multi-core setting and under
write-intensive workloads, the performance of GWV would
decline because it needs to validate a large set of writes gen-
erated by overlapping transactions.

4. AOCC ON TRANSACTION LEVEL
As the total execution time of a transaction is tightly re-

lated to its queries, the straightforward approach for im-
proving OCC adaptivity is to choose an efficient validation
scheme for each transaction according to the type of its read
queries. We have observed that LRV is appropriate for a

transaction that only contains a set of single point read
queries, and GWV is suitable for that with scan queries.
Thus, an intuitive idea is to assign LRV to a transaction
without scan queries, and GWV to a transaction having
scans. In this section, we present tracking mechanisms used
in the read phase and validation process in an unified OCC
framework combining GWV and LRV on transaction level.

4.1 Tracking Mechanisms
For simplicity, and without loss of generality, we assume

that there is only one table t in the database in this pa-
per. Therefore, unless otherwise specified, all transactions’
queries operate on the same table t.

Recall that LRV and GWV need to keep different tracking
information for the later validation phase. To combine these
validation methods in AOCC, a transaction needs to main-
tain a PredicateSet in addition to a ReadSet and a WriteSet.
Besides, a global data structure gList is required to record
pointers to transaction contexts.

Pointer

NextIndex
% N

Transaction Contextsize: N

64 bits

empty

aborted &
committed

write set:

CommittedIndexCollectedIndex

% N% N

running

obsolete

gList

circular 
array

Figure 2: Design of gList. The transaction whose
gList index is smaller than CommittedIndex is com-
mitted or aborted. In gList, the position with index
smaller than CollectedIndex can be reused.

Specifically, gList is implemented by a lock-free circu-
lar array with fixed size N , which is illustrated in Fig-
ure 2. The space of gList is pre-allocated and can be reused
to avoid the overhead of garbage collection. A transac-
tion requests gList for a NextIndex as its commit times-
tamp by using the atomic compare-and-swap (CAS) instruc-
tion. Therefore, any two transactions have different commit
timestamps. The CollectedIndex is used to track which slots
in gList can be reused. More specific details are out of the
scope of this paper and will be covered in a technical report.

Like other OCC protocols, AOCC adopts the WriteSet
to maintain the uncommitted writes for each transaction.
Each entry in the WriteSet is a quadruple data structure
〈row, column, old, new〉, where row is a pointer to the tar-
get tuple in the database, column is an updated field of the
tuple, old and new represent before and after images of up-
dated column, respectively. When a transaction enters the
validation phase, the pointer of its transaction context that
containing its WriteSet is added to gList. AOCC supports
three tracking mechanisms:

• R (ReadSet): In this method, a transaction uses a
ReadSet to store accessed tuples with their versions.
When entering the validation phase, the transaction
uses LRV to validate the ReadSet.

• Pno readset (a predicate without ReadSet): In this mech-
anism, a transaction maintains a PredicateSet for it-
self. When executing a read query, the transaction
generates a predicate for the query and puts it into
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the PredicateSet. GWV is used to check each entry
from the PredicateSet in the validation phase.

• Preadset (a predicate with ReadSet): Like Pno readset,
a transaction needs to maintain a PredicateSet. When
executing a read query, the transaction not only gen-
erates a predicate for the query itself but also uses a
ReadSet to store accessed tuples. It adds the predi-
cate with its returned ReadSet into the PredicateSet.
In the validation phase, the transaction can use LRV
or GWV to validate each entry in the PredicateSet.

In the first scheme R, in order to check whether an ac-
cessed tuple is modified, we need to record the tuple version.
Therefore, each entry in the ReadSet is structured as a two-
tuple 〈row, ts〉, where row is the pointer to the target tuple
and ts is the timestamp copied from the tuple’s timestamp
field when the transaction accesses the tuple.

In the schemes Pno readset and Preadset, we can store these
two types of predicates in the same PredicateSet. One pred-
icate in this set can be seen as the conjunction of proposi-
tional functions, each function describes the range condi-
tion in one column. In order to achieve this, an entry in
the PredicateSet is structured as a triple 〈type, COLs, set〉,
where type denotes the tracking mechanism type for this
predicate, COLs contains the range conditions of columns
and set is the ReadSet for this query. Note that if a predi-
cate p belongs to Pno readset (i.e., p.type = Pno readset), its
own ReadSet is empty (i.e., p.set = null). Each column in
COLs uses a triple 〈col, start, end〉 to denote the proposi-
tional function ”start ≤ col ≤ end”, where col is the target
column id. Although the WHERE clause of a transaction SE-
LECT statement may be complicated, it can be converted to
an equivalent disjunctive normal form. Therefore, a WHERE
clause can be tracked by multiple predicates in the Predi-
cateSet. For example,

SELECT * FROM t WHERE (CA>=a and CB<=b) or CD=d;

<Pno_readset, {<CA,a,MAX>,<CB,MIN,b>}>, null>

<Pno_readset, {<CD,d,d>}, null>
Pno_readset

The transaction decides to use Pno readset to track the SE-
LECT statement. Since WHERE clause of the statement con-
tains two conjunctive clauses, we add two predicates into the
transaction’s PredicateSet. In this paper, to avoid ambigu-
ity, a read query is always seen as a single conjunctive clause,
which can be represented by a predicate.

4.2 Validation Methods
Table 1 summarizes the three tracking mechanisms. The

storage structures of these tracking methods are different
from each other, and they record different information and
adopt different validation methods to detect conflicts be-
tween concurrent transactions. In what follows, we intro-
duce validation methods for each tracking mechanism. The
pseudocode is illustrated in Algorithm 1.

The tracking mechanismR uses one type of LRV method—
which is labeled as LRV1—to validate the ReadSet of a trans-
action. The execution of LRV1 is shown by the function
valLR1. Recall that a transaction records the accessed tu-
ples with their versions into its ReadSet. When validat-
ing the ReadSet, the transaction calls the function valLR1

to check whether the version of each entry in the ReadSet
is modified by other concurrent transactions. If the latest
timestamp in a tuple is not equal to the timestamp when

Algorithm 1: Validation Methods

/* Validation Execution for LRV1 */
1 Function valLR1(readSet)
2 for r in readSet do
3 if r.ts 6= r.tuple.ts ∨ r.tuple.isLocked() then
4 return ABORT;

5 return SUCCESS;

/* Validation Execution for LRV2 */
6 Function valLR2(predicate)
7 tSet = {};
8 tuples = getTuples(predicate);
9 for tuple in tuples do

10 tSet.add(〈tuple, tuple.ts〉);
11 if tSet 6= predicate.set then
12 return ABORT;

13 return SUCCESS;

/* Validation Execution for GWV */
14 Function valGW(predicate, sIndex, eIndex)
15 for i = sIndex to eIndex do
16 txn = gList.get(i);
17 if txn.status == ABORT then
18 continue;

19 for w in txn.writeSet do
20 if predicate ∩ w 6= ∅ then
21 return ABORT;

22 return SUCCESS;

the tuple is accessed, or the tuple is locked by another one,
the result ABORT is returned (lines 3 and 4).

The tracking mechanism Pno readset utilizes GWV to check
whether a predicate conflicts with WriteSets of other con-
current transactions. When validating a predicate, a trans-
action txn calls the function valGW with the range [sIndex,
eIndex] of gList, in which all of its overlapping transactions
can be found. In particular, for each concurrent transaction
in gList, txn checks whether the predicate intersects with
each element in the concurrent transaction’s WriteSet (lines
19–21). If yes, the result ABORT is returned. It should be
noted that if the status of a concurrent transaction in gList
is ABORT, we just skip it (lines 17 and 18).

The tracking mechanism Preadset can choose one of both
validation methods LRV and GWV to verify whether a trans-
action has conflicts with other concurrent transactions. Ob-
viously, Preadset is a flexible mechanism. When validating
a predicate p, the transaction is required to decide which
validation method to use. If the GWV method is chosen,
we can use the function valGW to validate the predicate p. If
LRV is chosen, it should be noted that we use another type
of LRV method, denoted by LRV2. The pseudocode of LRV2

is presented in the function valLR2. Unlike LRV1, LRV2 re-
executes the predicate in order to get the latest ReadSet for
the query (lines 8–10). We compare the new ReadSet with
the old ReadSet stored in the predicate (p.set). If these two
sets are different in size or the elements in the same position
of these two sets are different, valLR2 will return the result
ABORT (lines 11 and 12).

Phantoms. The columns in a table can be classified
into two types: primary key and non-primary key. There-
fore, there are four types of queries: point/range query on
primary/non-primary key column. To simplify the discus-
sion, we use the term single point to indicate the operation
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Table 1: Tracking mechanisms for a read query.
Mechanism Storage Structure Validation Strategy Specified Column Function
R ReadSet LRV1 primary key valLR1

Preadset a predicate with ReadSet LRV2/GWV primary/non-primary key valLR2/valGW
Pno readset a predicate without ReadSet GWV primary/non-primary key valGW

B o 0

Table t

A a 2

C cc 4

id name ts

D d 3

E ee 4

primary key

tracking: R
read set: 

Tx

 {E,      1}
 {F,      1}

row     ts

SELECT * FROM t WHERE id = E;  
SELECT * FROM t WHERE id = F;

tracking: Pno_readset

start timestamp (sts):      4
commit timestamp (cts): 5
predicate set: 

Ty

 <Pno_readset,   {<id, A, C>},   null>

     type             COLs            set

SELECT * FROM t WHERE A <= id <= C;

T1

T2

T3

T4

se
rializatio

n
 o

rd
e

r

global list

{                   }

{                   }

{                   }

write set

{                   }Ename
e->ee

Cname
o->c

Fname
o->f

LRV1

Ename
o->e

Aname
o->a

Dname
o->d

GWV

valGW

Cname
c->cc

F f 1

Figure 3: An example of transactions adopting the tracking mechanisms R and Pno readset at the transaction-
level granularity. Tx, Ty and T4 are concurrent transactions.

using primary keys. The tracking and validation schemes of
Preadset and Pno readset can avoid the phantom anomalies
when handling all types of queries [10, 14].

For a range query on primary key columns, the scheme R
prevents the phantoms in a manner similar to Silo. R needs
to record all scanned B+-tree leaf nodes and their versions.
If a single point query attempts to access an absent tuple,
it adds an virtual entry 〈tuple, ts = 0〉 to the local ReadSet.
Virtual entries denote non-existent tuples in the database.
The schemeR suffers from phantom problem in the case of a
query using non-primary keys. Since a non-primary key can
map to any number of tuples, validating the ReadSet under
the scheme R cannot detect a newly inserted tuple that
satisfies the non-primary key of the executed read query.
Consequently, the scheme R only guarantees no phantom
problem for the queries using primary keys.

4.3 Illustrating Examples
Figure 3 illustrates an example of transaction-level AOCC.

In this picture, we use Ao→n
c to denote an entry 〈A, c, o, n〉 in

the WriteSets in gList. The table t has two columns id and
name, where id is the primary key column. In the table t,
there are six tuples with continuous primary keys. The ini-
tial values of the fields name and ts are o and 0. Note that
the column ts—which is used for concurrency control—is
invisible to database users. In this example, the transac-
tions Tx, Ty and T4 are concurrent and T4 is finished first.
We omit write operations from these transactions for more
clearly demonstrating how AOCC works at the transaction
level. Since Tx has only single point read queries, it is as-
signed the tracking mechanismR. Thus, when executing the
read queries, Tx is required to add 〈E, 1〉 and 〈F, 1〉 into its
private ReadSet. When Tx enters into the validation phase,
it uses LRV1 to detect the conflicts. It calls the function
valLR1 to re-read the tuples E and F and finds that the
filed ts in E has been modified. This indicates that Tx may
conflict with other transactions (i.e., T4). As a result, Tx

should be aborted. On the other hand, the transaction Ty

is assigned Pno readset due to its scan query. Therefore, Ty

records the predicate 〈Pno readset, {〈id, A,C〉}, null〉 of the
query into its private PredicateSet. When entering the vali-
dation phase, Ty calls the function valGW (i.e., the validation
method GWV used by Pno readset). It uses the start times-

tamp (sts = 4) and commit timestamp (cts = 5) to find
the recently-committed concurrent transactions (i.e., T4) in
gList. Then, Ty checks the T4’s WriteSet and finds that the
tuple C modified by T4 is in the range [A,C] of its predicate.
Consequently, we should abort Ty as well.

tracking: Preadset

sts = 4       cts = 5
predicate set: 

Ty

 <Preadset,   {<id, A, C>},     set>

     type           COLs            set

 {A,     2}
 {C,     2}

row     ts

valGW

GWV

LRV2

Figure 4: Alternatively, transaction Ty can adopt
the tracking mechanism Preadset.

Alternatively, AOCC can assign the tracking mechanism
Preadset to the transaction Ty, which is illustrated in Fig-
ure 4. It should be noted that the members type and set in
the predicate are different from those in the Ty’s predicate
in Figure 3. When entering the validation phase, Ty chooses
one validation scheme from LRV2 and GWV to detect the
conflicts with other concurrent transactions.

4.4 Implementation Rules
LRV and GWV can co-exist for one OCC protocol if the

tracking mechanisms of LRV and GWV are maintained si-
multaneously. Therefore, the transaction-level AOCC would
be relatively easy to implement. We briefly summarize im-
plementation rules to combine the tracking mechanisms R
and Pno readset for validating read queries as follows.

Rule 1: Each tuple in the database contains a timestamp
(ts) field, which is invisible to the clients and is the commit
timestamp (cts) of the last transaction updating the tuple.

Rule 2: A global data structure gList is required to store
transactions that are being validated or finished. Since the
logical index of the last added transaction is unique and
monotonically increasing, we use the index to be the cts for
the transaction in the corresponding position of gList.

Rule 3: Before a transaction is executed, it has to be as-
signed a validation type. If the transaction only contains sin-
gle point queries, it is an LRV type using the tracking scheme
R; otherwise, it is a GWV transaction using Pno readset.
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Rule 4: In the read phase, the LRV transaction adds each
read tuple with the corresponding ts into its ReadSet, and
the GWV transaction adds the predicate of each query into
its PredicateSet. Before executing the first read query, the
GWV transaction needs to get the CommittedIndex from
gList as its start timestamp (sts).

Rule 5: When a transaction enters the validation phase,
it is added to gList. Then it checks its ReadSet if it is an
LRV transaction; otherwise, it validates its PredicateSet.

4.5 Limitations
It may not be optimal for choosing a single validation

method for a transaction. For instance, a transaction con-
tains two key-range scan queries. One is a very short scan
that only acquires three or fewer tuples, and another query
scans a very large key range containing thousands of keys.
It is obvious that LRV would be an efficient method for this
short scan and GWV might be the best choice for this large
range query. In addition, we summarize two limitations of
transaction-level AOCC as follows.

• AOCC on transaction level is only useful in one-shot
transaction execution model, where the database sys-
tem knows the entire logic of a transaction before it
starts to execute. In other words, transaction-level
AOCC is not suitable for an interactive transaction
execution model based on JDBC or ODBC API. This
is because it is uncertain about whether a scan query
exists at the beginning of a new transaction.

• Choosing a validation method for a transaction does
not take the characteristics of real-time workload into
consideration. In the case of write-intensive work-
load, the transaction-level AOCC is possible to per-
form worse than the OCC with LRV. The reason is
that the cost of GWV grows rapidly with the increase
of concurrent update transactions. On the other hand,
the performance of LRV is not sensitive to how many
update transactions execute concurrently.

5. AOCC ON QUERY LEVEL
In this section, we propose the query-level AOCC, which

allows a transaction to choose a tracking mechanism and its
corresponding validation method for each query. The key
intuition is that a transaction can cherry-pick a validation
strategy for each query to reduce its total validation cost.

5.1 Protocol Specification

5.1.1 Read phase
In the read phase of a transaction, the execution of a write

is similar to other OCC protocols, i.e., each modified tuple
is added to its own WriteSet. Thus, we focus on the execu-
tion of a read query in our query-level AOCC protocol. We
first acquire present tuples from the dataset according to the
query’s predicate. Then we choose an appropriate tracking
mechanism for the query according to the query’s type and
the feature of real-time workloads. We present the details
of choosing a tracking and validation mechanism for a query
in Section 5.2. In the following, we assume that the transac-
tion has chosen a tracking method and then starts to record
tracking information. Similar to AOCC on transaction level,
there are three cases as follows:

Algorithm 2: Validate Execution

1 Function validate(txn)
2 txn.writeSet.sort();
3 for w in txn.writeSet do
4 w.tuple.lock(txn);

5 index = gList.put(txn);
6 txn.cts = index;
7 if ABORT == valLR1(txn.readSet) then
8 txn.status = ABORT;
9 return ABORT;

10 for p in txn.predicateSet do
11 if p.type == Pno readset then
12 if ABORT == valGW(p, txn.sts, txn.cts-1)

then
13 txn.status = ABORT;
14 return ABORT;

15 else if Clrv2(p) < Cgwv(p) then
/* Choose LRV2 for Preadset */;

16 if ABORT == valLR2(p) then
17 txn.status = ABORT;
18 return ABORT;

19 else
/* Choose GWV for Preadset */;

20 if ABORT == valGW(p, txn.sts, txn.cts-1)
then

21 txn.status = ABORT;
22 return ABORT;

23 return SUCCESS;

Case 1 (R): This case indicates that the query is on
primary key columns. For each accessed tuple, we get its
pointer tuple, generate a read version 〈tuple, tuple.ts〉 and
add it to the transaction’s ReadSet. To avoid phantoms, R
needs to record the version of B+-tree leaf nodes overlapping
with the key range if the query is a range scan.

Case 2 (Pno readset): The transaction generates a predi-
cate with type Pno readset for the query. Since it is not re-
quired to store the version of each accessed tuple, the mem-
ber variable set of the predicate is set to null.

Case 3 (Preadset): Besides generating a predicate with
type Preadset, the transaction needs to record the version of
each accessed tuple. Specifically, it adds the 〈tuple, tuple.ts〉
of each accessed tuple to the predicate’s ReadSet.

Note that if the tracking type is Preadset or Pno readset

and the transaction’s PredicateSet is empty, the transaction
needs to get the CommittedIndex from gList as its start
timestamp (sts). After the predicate is generated success-
fully, it is added to the PredicateSet of the transaction.

5.1.2 Validation phase
After a transaction executes all of its operations, it enters

the validation phase, where the transaction needs to deter-
mine its serialization point and to check whether it conflicts
with other concurrent transactions before its serialization
point. The pseudocode of the validation execution is illus-
trated in Algorithm 2.

The first step is to lock all tuples in the transaction’s
WriteSet (lines 3 and 4). To avoid deadlocks, these tuples
are locked according to the order of their primary keys. This
approach is also used in Silo [22] and TicToc [27].

After all write locks are acquired, the transaction puts
itself to the NextIndex of gList and then gets its position
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in the list. Note that the index of this position in gList is
unique and monotonically increasing. Therefore, we use it
as the transaction’s commit timestamp, which also serves as
its serialization point in all transactions.

AOCC first validates the queries adopting the tracking
mechanism R. Recall that all R queries of a transaction
use the same ReadSet to record tracking information and
R utilizes the method LRV1. Therefore, AOCC calls the
function valLR1 to validate the ReadSet (lines 7–9). If the
function returns the result ABORT, the transaction sets its
status to ABORT and returns.

If the validation for the ReadSet is passed successfully,
then we validate the transaction’s PredicateSet. Recall that
we use one PredicateSet to record the tracking information
of queries adopting Preadset or Pno readset for a transaction.
Therefore, for each entry p in the PredicateSet, AOCC first
checks the tracking type of the predicate p. If p.type =
Pno readset, we use GWV method to validate the predicate
(lines 11–14). Specifically, the transaction calls the func-
tion valGW with the parameters p, t.sts and t.cts− 1, where
[t.sts, t.cts− 1] denotes the index range of concurrent trans-
actions in gList. If the function valGW returns ABORT, the
status of the transaction is set to ABORT.

If p.type = Preadset, we first pick a validation method
from LRV2 and GWV for the predicate. In order to reduce
the validation cost, we compare both methods and choose
one that costs less. In Section 5.2, we introduce the analysis
of validation cost and how to choose a validation strategy.
If LRV2 is chosen, we call the function valLR2 to validate
this predicate; otherwise, valGW is called (lines 15–22). If
the function returns ABORT, the transaction sets its status
to ABORT and then aborts itself. For the method GWV, it
should be noted that the status of a transaction in gList may
not be ABORT or COMMITTED. This case indicates that the
transaction in gList is in the validation phase. In this case,
AOCC can wait until its status is refreshed. Alternatively,
we can validate the predicate p along with the WriteSet of
the unfinished transaction in gList directly.

Lastly, if all validations are passed successfully, the trans-
action returns SUCCESS result.

5.1.3 Write phase
If the validation of a transaction is passed successfully,

the transaction will enter the write phase, where it updates
and unlocks each tuple in its WriteSet. It should be noted
that the lock of a tuple is not released until the tuple’s data
are refreshed and timestamp field is set to the transaction’s
commit timestamp. Finally, the transaction sets its status
to COMMITTED.

5.2 Adaptive Strategy
There are two unsolved issues in AOCC on query level:
Issue 1: How to choose a tracking mechanism type for a

read query in the read phase.
Issue 2: How to choose a validation method for the track-

ing mechanism Preadset in the validation phase.
In the following sections, we first present a simplified and

formal cost analysis for each validation scheme.

5.2.1 Cost analysis
For the validation scheme LRV1, we use S1 to denote the

number of tuples stored in the ReadSet for a query han-
dled by R, and let cr1 represent the cost of checking version
change of a tuple in the ReadSet by LRV1. We use the cost

of maintaining and checking the ReadSet of a read query as
its validation cost. Therefore, if R serves a read query q,
the cost of LRV1 for the query is estimated as follows:

Clrv1(q) = S1 · cr1 (1)

Similarly, we use S2 and cr2 to represent the number of
tuples stored by Preadset and the cost of verifying one tuple
for LRV2, respectively. Usually, cr2 is greater than cr1. This
is because LRV2 is required to re-execute the predicate to
generate a new ReadSet in addition to checking each tuple
from the predicate’s ReadSet. When Preadset uses LRV2 to
detect the violation of serialization, the estimated cost of
LRV2 for a query q tracked by Preadset is as follows:

Clrv2(q) = S2 · cr2 (2)

The tracking mechanisms Preadset and Pno readset can uti-
lize the validation method GWV to detect a conflict between
a transaction and its concurrent transactions. For each
query of a transaction, the GWV cost is related to two as-
pects: the number of its overlapping transactions and the av-
erage size of WriteSet of each overlapping transaction, which
are denoted by N and W, respectively. Let cp represent
the cost of checking whether an entry from the WriteSets
of other transactions satisfies the predicate. Therefore, the
cost of GWV for a query q is estimated as follows:

Cgwv(q) = N ·W · cp (3)

To calculate the costs Clrv1, Clrv2 and Cgwv for a query,
we need to know the values of those parameters on the right
hand of above equations. The factors of cr1, cr2 and cp can
be regarded as configurable parameters. We demonstrate
how to avoid configuring these parameters in Section 5.2.3.
The values of parameters N and W can be estimated ac-
cording to the statistics on the information of committed
transactions for a recent period of time. In our implemen-
tation and experiments, AOCC does not calculate N and
W for each computation of Cgwv. Instead, AOCC takes N
and W as global parameters which are updated in a pre-
configured time interval. For example, we can compute and
refresh N and W according to the transactions registered
in gList every one second. As a result, Cgwv can be esti-
mated for each query without introducing extra overheads.
However, we still lack the values of S1 and S2 for estimating
Clrv1 and Clrv2, respectively.

Recall from Issue 1 that we have to choose the tracking
mechanism type for a read query in the transaction’s read
phase. For the parameter S1, we know that it only serves
a query on primary key columns. Since R needs to record
B+-tree leaf nodes covering the query range, the value of S1
for the query is equal to the sum of the size of result set and
the number of the corresponding leaf nodes.

For the parameter S2, it is used to calculate the LRV2

cost Clrv2. Recall from Section 4 that Preadset—which gen-
erates a predicate to track a query on primary/non-primary
columns—only needs to record the present tuples into the
predicate’s ReadSet. Thus, S2 is equal to the number of
present tuples matching the predicate in the database. Since
we can first get the present tuples before the tracking mech-
anism is chosen for the query in the read phase, Clrv1 and
Clrv2 can be accurately estimated, which helps the decision
of which tracking mechanism is selected.

5.2.2 The choice of validation scheme
Before a read query starts to execute, the straightforward

method is to assign it a validation scheme with minimal
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Algorithm 3: Adaptive Strategy

1 Function getTrackingType(query)
2 if isPredictable(query) then
3 if Clrv1(query) < min(Clrv2(query), Cgwv(query))

then
4 return R;
5 else if

Clrv2(query) < min(Clrv1(query), Cgwv(query))
then

6 return Preadset;

7 else
8 return Pno readset;

9 else
10 return Preadset;

cost. Although the cost of each validation scheme can be
estimated in the read phase, it would be better to defer the
cost estimation until the validation phase in some cases. For
example, a read query of a long-running transaction is ex-
ecuting under a workload with sudden variation, where the
cost Cgwv is also changing dramatically. This leads to a re-
sult that the tracking mechanism chosen in the read phase
may not have the minimal cost. To this end, we classify the
read queries into two categories: predictable queries and
non-predictable queries. For instance, a read query in auto-
commit mode can be regarded as a predictable one, since it
enters the validation phase once the query is done.

In Algorithm 3, we illustrate how to choose the tracking
mechanism for a read query.

• For a predictable query q, if Clrv1(q) has the mini-
mal cost, we choose the tracking mechanism R; if
Clrv2(q) costs the least, Preadset is chosen; otherwise,
Pno readset is chosen (lines 3–8). Since R can not serve
the query using non-primary keys, Clrv1(q) is set to the
max value (i.e., always greater than Clrv2 and Cgwv) if
the query q is on a non-primary key column.

• For a non-predictable query, it is not necessary to com-
pare the validation costs (line 10), and we use Preadset

to track. This is because Preadset can be validated by
both methods LRV2 and GWV, and AOCC chooses one
of them with minimal cost in the validation phase.

R adopts the validation method LRV1, and Pno readset

uses GWV. Recall from Issue 2 that in the validation phase,
we need to choose a validation method for each Preadset

predicate. In most cases, a predicate represents a query.
Therefore, for the same validation method, the cost of vali-
dating a query is equal to that of validating its corresponding
predicate. According to Equation 2 and Equation 3 shown
above, we calculate both costs Clrv2 and Cgwv for the Preadset

predicate, and choose the validation method with minimal
cost. As these costs are calculated in the validation phase,
AOCC can give reasonably accurate estimates for selecting
the best validation method.

5.2.3 Reducing adaption overhead
It is obvious that computing these costs Clrv1, Clrv2 and
Cgwv for each query can consume enormous quantities of sys-
tem resources, which may decrease the system performance.
Therefore, we need an efficient mechanism, which does not
estimate the costs for a query every time. cr1, cr2 and cp
can be regarded as constants. Let cr2 = a·cr1. Thus, we can

replace cr2 with cr1 to calculate the cost of LRV2 for a query,
i.e., Clrv2 = S2 · a · cr1. Next, we introduce a new constant
c, and set it to (cp/cr1). Then we define a threshold T :

T = N ·W · c (4)

The threshold T is a global variable, which is refreshed by
transactions periodically. Specifically, when a transaction
accesses T and finds that T is not updated in a fixed period
of time, the transaction gets N and W according to the
transactions registered in gList within the last period of time
and updates T according to Equation 4. The transaction
directly utilizes S1, S2 and T to pick an appropriate tracking
mechanism for a predictable query instead of computing and
comparing different validation costs:

Case 1 (S1 < min(S2 · a, T )): R is chosen.
Case 2 (S2 · a < min(S1, T )): Preadset is chosen.
Case 3 (T ≤ min(S1,S2 · a)): Pno readset is chosen.
As a consequence, this optimization basically takes a few

comparisons for the choice of a validation method for each
query, and thus reduces the overhead of computation on
validation costs.

5.3 Correctness Analysis
Now we analyze the correctness of AOCC, i.e., the seri-

alizability of transactions. Recall that a transaction gets a
unique index from gList as its serialization point. In other
words, the unique index, a monotonically increasing num-
ber, is used as the commit timestamp of the transaction.
Owing to the centralized gList, any two transactions must
have different commit timestamps.

Theorem 1. Any schedule in AOCC is equivalent to the
serial order according to the transactions’ commit times-
tamps.

Proof. Essentially, a transaction is serializable if all its
reads and writes occur at its serialization point.

Since a transaction first locks all items in its WriteSet and
then gets a monotonically increasing commit timestamp in
the validation phase, our protocol ensures that all writes of
the transaction can occur at the commit timestamp point.

Next, for a committed transaction, we show our protocol
can also ensure that the execution of all its read queries
is equivalent to the occurrence of these read queries at its
commit timestamp point. In other words, a read operation
from a committed transaction returns the values of the latest
writes at the point in time of generating the transaction’s
commit timestamp. Specifically, a transaction Ta writes a
tuple A and commits first with commit timestamp t1. If a
following committed transaction Tc with t3 reads A written
by Ta, there is no transaction Tb writing A and committed
at the point t2, such that t1 < t2 < t3.

This can be proved by contradiction. Assuming that there
exists the committed transaction Tb with t2 such that t1 <
t2 < t3 in the above paragraph.

If the tuple A is tracked by R, then the tuple A with its
version t1 must be added to the ReadSet of T3. When T3

enters the validation phase, T2 is committed or being vali-
dated. In other words, the tuple A has been updated to the
new version t2 or it is being locked. Therefore, Tc must be
aborted by the function valLR1 introduced in Section 4.2.
This is a contradiction to the assumption that Tc is a com-
mitted transaction.

If the tuple A is tracked by Pno readset, then the corre-
sponding predicate p must be stored by Tc. Since t1 < t2,
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Tb must not be committed before Tc accesses A, i.e., Tc.sts ≤
t2. In addition to t2 < t3, Tb must be in the range [Tc.sts, t3)
in gList. Since A is in the WriteSet of Tb, it is covered by
Tc’s predicate p. Therefore, Tc must be aborted by the func-
tion GWV, which is a contradiction to the assumption that
Tc is a committed transaction.

If the tuple A is tracked by Preadset, the corresponding
predicate p with ReadSet must be stored. In the validation
phase, if GWV is chosen for checking A, we have proven
this in the above case. If LRV2 is chosen, we re-execute the
predicate p to get A. Since the new ReadSet containing A
written by Tb is not equal to the original ReadSet stored by
Tc, Tc must be aborted by the function valLR2, which is a
contradiction to the assumption that Tc is committed.

Our tracking mechanisms and validation methods can en-
sure that the read queries of a transaction behave as if they
were executed at the point in time of getting the transac-
tion’s commit timestamp. Hence, the theorem follows.

5.4 Discussion
Secondary indexes: All of our discussion above as-

sumes that there is always a secondary index on the non-
primary key column. Therefore, we avoid traversing the
whole table when a query is on a non-primary key. In real
systems, it is common that we may not create a secondary
index for a column. In this case, the cost of LRV2 may be
not simply equal to the size of ReadSet in the corresponding
predicate. The reason is that the transaction is required to
scan the whole table when validating the Preadset predicate.
Its validation cost grows with the increase of the table’s size.
Therefore, if a read query is on the non-primary key column
without secondary index, we directly use the tracking mech-
anism Pno readset for this query.

Overhead: AOCC can choose the appropriate tracking
mechanism for a query according to costs of different vali-
dation methods. However, to achieve the adaptive choice,
AOCC incurs additional expenses over the system. Com-
pared with the traditional LRV method, AOCC has to main-
tain an additional data structure: the global list (i.e., gList)
to store the WriteSets of transactions that are finished or
being validated. Recall from Section 4.1 that we adopt a
lock-free circular array to implement gList which is cache-
friendly by allocating a contiguous area of memory. In the
aspect of memory footprint of gList, assuming that the size
of each transaction’s WriteSet is about 1KB and the ca-
pacity of gList is 1,000. Then AOCC consumes about at
most 1MB more than the traditional LRV method in mem-
ory space. Thus, the extra memory consumption of AOCC
is very small. Another concern is that the centralized gList
may be the bottleneck of the system. To alleviate this prob-
lem, gList is operated in a lock-free manner and the read-
only transactions do not have any burden on gList. The
results of scalability experiment in Section 6.2 show that
AOCC scales up nicely as the worker threads increases.

6. EVALUATION
In this section, we present our evaluation of the AOCC

scheme, which is implemented in the DBx1000 codebase de-
veloped by Yu et al. [26, 27]. DBx1000 is an in-memory
DBMS prototype [1] that stores all dataset in main memory
in a row-oriented manner. It provides a pluggable frame-
work to integrate different concurrency control protocols

(e.g., Silo, Hekaton, 2PL, etc.) for performance compari-
son. Therefore, we compare the performance of AOCC with
other OCC schemes in DBx1000:

• AOCC. This is our AOCC scheme on query level, which
adopts adaptive strategy to choose an appropriate track-
ing mechanism and validation method for a read query.

• AOCC-TXN. This is AOCC on transaction level, which
chooses a tracking and validation method for each trans-
action. In this scheme, we assume that for each trans-
action, its execution logic is known before it starts.

• LRV-OCC. This OCC scheme adopts the tracking mech-
anisms R and Preadset. Since gList is not required to
be implemented in this scheme, we use LRV1 and LRV2

to validate queries assigned R and queries assigned
Preadset, respectively. Since these validation methods
LRV1 and LRV2 are used in Hekaton and Silo, we use
this scheme to represent these OCC systems.

• GWV-OCC. This OCC scheme adopts the tracking mech-
anism Pno readset and the validation method GWV. Since
it checks the WriteSets from all other concurrent trans-
actions for validating a transaction, we need to main-
tain gList, which is similar to the recentlyCommitted
list in HyPer. Therefore, we use the performance of
this scheme to denote the results of HyPer.

All experiments are executed on a 2-socket single machine
with 160GB main memory and two Intel Xeon Silver 4100
processors (each with 8 physical cores) while running Cen-
tOS 7.4 64bit. With hyper-threading, there are a total of 32
logical cores at the operating system level. This hardware
configuration is very common in modern data centers.

6.1 Workloads
YCSB. The Yahoo! Cloud Serving Benchmark (YCSB)

is representative of large-scale online services [4]. The work-
load E of YCSB benchmark contains read, write and scan
queries. The degree of workload skew is tuned by changing
the parameter (θ) of Zipfian distribution. The key of each
read/write query is selected according to the predefined Zip-
fian distribution. For each scan operation, the start key of
its range is also selected by the same Zipfian distribution.

By default, we run YCSB workloads in the low-contention
scenario (θ = 0.6). Each transaction contains five queries,
each one follows the same access distribution. The YCSB
dataset is a single table, which is initialized to 10 million
records. Each tuple has a single primary key column and 10
additional columns.

Hybrid TPC-C. TPC-C is the most widely used OLTP
benchmark, which is a mixture of read-only and update-
intensive transactions. According to the requirement of prac-
tical applications, we create a new transaction, named Re-
ward. To achieve an incentive, a Reward transaction first
finds the top shopper who spent the most in the past pe-
riod of time in a randomly specified district. Then, the top
shopper is rewarded with a bonus to his/her balance. Thus,
in our hybrid TPC-C workload, the Reward transaction con-
tains four queries, where one is a scan operation randomly
accessing a range of the customer table, and the others are
three update operations in the customer, district and ware-
house tables, respectively.
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(b) Validation time of each
transaction.

Figure 5: YCSB (Query length) – The performance
of different OCC schemes under the YCSB work-
loads with different upper bounds of query length.

By default, the number of TPC-C warehouses is set to 4.
We adopt the access model of the original TPC-C, i.e., the
probabilities of accessing local warehouse and remote ware-
houses are 85% and 15%, respectively. Note that all Reward
transactions only scan the local warehouse. Therefore, each
Reward transaction may conflict with the cross-warehouse
Payment transactions. Since Payment and NewOrder make
up 88% of the original TPC-C, our hybrid workload is a
mixture of 45% Payment transactions, 45% NewOrder trans-
actions, 10% Reward transactions.

6.2 YCSB Results
A heterogeneous workload usually mixes read, write and

scan operations in a transaction. Among these operations,
a scan often takes much time on execution and validation.
Query length is used to indicate how many records might be
accessed by the scan query. By default, the percentages of
reads, scans and writes are 80%, 10% and 10%, respectively.
Next, we first analyze the performance of all OCC schemes
under the YCSB workloads with various query lengths.

Query length. To investigate the effect of query length
on different OCC schemes, we introduce a new variable: the
upper bound of query length Q. For each scan operation, its
query length is randomly set to a number from [1, Q]. We
vary the variableQ to measure the performance of each OCC
scheme under a low-contention workload, i.e., the parameter
θ of Zipfian distribution is set to 0.6. In this experiment, we
fix the number of worker threads to 32.

Figure 5 shows the performance of different OCC schemes
in this experiment. When the query length is short (e.g.,
Q < 400), LRV-OCC outperforms GWV-OCC. In this scenario,
it can be seen that LRV-OCC provides higher throughput
and GWV-OCC spends more time in its validation phase of
a transaction. This is because GWV-OCC needs to check the
WriteSets of all concurrent transactions in gList for a read
query, even if the query length is 1. On the other hand,
when the query length is long (e.g., Q > 400), GWV-OCC

has better performance than LRV-OCC. Recall from Section
5.2 that the cost of LRV is linearly proportional to the num-
ber of accessed tuples. Therefore, the validation time of a
transaction in LRV-OCC grows linearly as the parameter Q
increases, which is illustrated in Figure 5(b).

AOCC-TXN chooses GWV for a transaction containing scan
queries, even if the result size of these queries is very small.
Thus, AOCC-TXN does not perform well when Q is short. As
Q increases, GWV starts showing its advantages. Therefore,
AOCC-TXN can achieve good performance for workloads with
large upper bound of query length Q.
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Figure 6: YCSB (Contention) – The performance of
different OCC schemes under the YCSB workloads
with various contention rates (Q = 800).

Owing to the adaptive strategy on query level, AOCC al-
ways has the best performance regardless of the query length
in this experiment. In other words, AOCC always chooses the
validation method with minimal cost for a read query. As
Q increases, the cost of the LRV method for a scan query
becomes higher. Therefore, a scan with large query length
is likely assigned GWV by AOCC.

Contention. Next, we use YCSB to compare AOCC and
other OCC schemes under different contentions by varying
the parameter θ of Zipfian distribution from 0 to 1. Note
that the access distribution is uniform when θ = 0 and the
contention is extremely high when θ = 1. The number of
worker threads is fixed to 32. We set the upper bound of
query length Q to 800 in this experiment, and similar results
were observed in other Q values.

Figure 6 illustrates the throughput and abort ratio of each
OCC scheme. When θ is small (≤ 0.6), the contention of the
workload is at a low or medium level. In this case, the abort
ratio of each OCC scheme is close to zero (< 0.005), and thus
the throughput of each method keeps stable. This reflects
that when Q < 800 and θ < 0.6, the abort ratio of each
method would also be kept at a very low level. Therefore,
AOCC would have adaptation behavior similar to that in
Figure 5 when the workload is less contended.

Once the parameter θ exceeds 0.6, the abort ratio of each
OCC scheme increases, especially for LRV-OCC. Since LRV-

OCC takes more time on executing and validating a transac-
tion when the query length is large, its throughput signifi-
cantly drops due to massive aborts: as many as 35% transac-
tions are aborted at the highest conflict level (θ = 1). AOCC

and AOCC-TXN choose the GWV method for a long scan
query, and they provide performance similar to GWV-OCC

in this experiment. As a consequence, LRV-OCC is more
sensitive to the high-contention workload containing scan
queries with wide range. At runtime, AOCC can choose a
validation method to reduce the time of validating a trans-
action. Therefore, it’s able to achieve the best performance
under different values of parameter θ.

Scalability. To investigate the scalability of different
OCC schemes, we measure the throughput by varying the
number of worker threads. The experimental results are pre-
sented in Figure 7. GWV-OCC does not scale well when the
query length is short (Q = 100). As the number of workers
increases, more transactions are running concurrently. It
leads to increased validation cost of GWV-OCC as a trans-
action has to check more concurrent transactions in gList.
When the query length is long (Q = 800), LRV-OCC does
not scale well because of its high cost on validating a long
scan query. AOCC-TXN is unable to scale well when trans-
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Figure 7: YCSB (Scalability) – The throughput
of different OCC schemes with different number of
worker threads under the YCSB workloads.
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Figure 8: TPC-C – The performance of different
OCC schemes under the hybrid TPC-C workloads
with different upper bounds of query length Q.

actions in a workload have short scan queries (Q = 100).
In this case, fine-grained adaptation mechanism is required
to choose a validation method for each read query. Hence,
AOCC has better scalability than other OCC methods.

6.3 TPC-C results
We now compare AOCC with other OCC schemes under

hybrid TPC-C workloads. In this experiment, the number
of worker threads is fixed to 32. Since we add a new Reward
transaction that contains a scan query, we measure the per-
formance of each OCC scheme by varying the upper bound
of query length of the Reward’s scan operation.

Figure 8 shows the performance of each OCC scheme in
this experiment. Note that the results in Figure 8(b) are cal-
culated by all finished transactions including aborted ones.

Like the results in the experiments under the YCSB work-
loads, LRV-OCC performs better than GWV-OCC when the
query length of a scan operation is short (e.g., Q < 400),
and GWV-OCC provides better performance when the query
length is long (e.g., Q > 400). Again, this confirms that
each validation method has its own advantages. As illus-
trated in Figure 8(b), the validation time of a transaction in
LRV-OCC increases as Q grows, which explains that the long
scan query has a great impact on LRV-OCC.

AOCC still performs the best among the four OCC schemes
we tested in this experiment, due to its adaptive strategy.
For each transaction in AOCC, its validation time is the least.
Since transactions are more complex than those in the YCSB
workload, the scan query can not dominate the execution
time even the query length is long. It can be seen that
AOCC achieves 1.9× better throughput than GWV-OCC even
though the upper bound is set to 1600.

Since Payment and NewOrder do not contain any scan
query, AOCC-TXN chooses LRV for these two types of trans-
actions. On the other hand, it would assign GWV to a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100k

1M

Phase 4

Mixed HTAP

Q = 100

Phase 3

Mixed HTAP

Q = 800

Phase 2

In-progress HTAP

Q = 800

T
h
ro

u
g
h
p
u
t 

(T
P

S
)

Time (seconds)

 LRV-OCC  GWV-OCC 

 AOCC-TXN  AOCC

Phase 1

In-progress HTAP

Q = 100

Figure 9: Performance of different OCC schemes in
a dynamically changing workload mixture.
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Reward transaction. Since the GWV method is more suit-
able for a scan with large query length, AOCC-TXN performs
closer to AOCC with the increase of Q.

6.4 Workload-Aware Adaption
In the practical applications, the running workloads are

often dynamically changed and mixed. For instances such
as real-time fraud detection, customer marketing and risk
management, these In-progress HTAP applications require
database systems to scan both latest committed records
and historical trading data for aggregation. On the other
hand, database systems often need to ingest data from other
sources for immediate business decision-making. Thus, we
now examine the ability of AOCC to adapt workload at run-
time and compare it against other schemes.

In this experiment, we run a sequence of workloads with
changing properties. To mimic the dynamic and time-varying
character of the heterogeneous workloads, and to clearly
demonstrate the impact of the validation schemes on the
different workload cases, the workload sequence is divided
into 4 consecutive phases. All phases use 16 specified worker
threads to run the YCSB transactions with 80% reads, 10%
scans and 10% writes. We set Q = 100 in the first and
last phases and Q = 800 in the middle two phases. Phases
1 and 2 are to simulate In-progress HTAP workloads. The
workloads in the last two phases are mixed with a data inges-
tion task, referred to as mixed HTAP. We use additional 16
worker threads to run the data ingestion transactions, where
each one contains 10 write queries. Each phase takes 5 sec-
onds to run a particular workload type, and then switches to
another workload type in the next phase. We measure the
throughput of workload in each phase for LRV-OCC, GWV-

OCC, AOCC-TXN, and AOCC. It should be noted that the
throughput is measured on the 16 YCSB worker threads in
order to observe how the data ingestion tasks impact the
performance of In-progress HTAP.
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Figure 9 shows the performance of different OCC schemes
in this experiment. In Phase 1, owing to the short scan
queries, LRV-OCC performs better than GWV-OCC. Once the
scan length becomes large in Phase 2, GWV-OCC has better
performance. These results conform to our previous analy-
sis. In Phase 3, AOCC has minimal performance reduction
incurred by data ingestion tasks (AOCC ↓ 12%, AOCC-TXN

↓ 29%, GWV-OCC ↓ 32% and LRV-OCC ↓ 44%). Once the
query length of an In-progress HTAP transaction becomes
short in Phase 4, the data ingestion tasks have a very small
impact on LRV-OCC. Since data ingestion can increase the
validation cost of GWV, GWV-OCC performs worse in Phase
3/4 than Phase 2/1.

As workloads or transaction operations change, AOCC will
react and adaptively choose validation schemes, and thus it
achieves the best performance. Figure 10 presents the com-
putation of validation costs for selecting the appropriate val-
idation schemes. Clrv1, Clrv2, and Cgwv are normalized by
cr1. We show the change of the threshold T (i.e., normal-
ized Cgwv by Equation 4) and the estimated LRV costs of
randomly selected 40 scan queries in each phase. It should
be noted that y-coordinates represent the max(Clrv1, Clrv2)
when a square is under the line of T , otherwise y-coordinates
denote the min(Clrv1, Clrv2). Therefore, the green squares
represent queries using LRV as validation method, and red
ones represent queries using GWV. We observe that T is sta-
ble in Phases 1 and 2, and AOCC switches validation schemes
for most of queries since their result sets have become large
(i.e., Q is changed from 100 to 800). Once the workload
is mixed with data ingestion tasks in Phase 3, the thresh-
old T becomes large. As workload features change, AOCC

re-selects the LRV method for some queries.

6.5 Summary
Our experiments confirm that the LRV method is not

suitable for validating a large-range scan query and GWV
does not perform well when the workload is write-intensive.
AOCC-TXN chooses GWV for a transaction containing scan
queries without considering the size of result set returned
by the scan query and the workload characteristics. Thus,
AOCC-TXN does not have good performance under the work-
load where the query length is small. However, experimen-
tal results show that AOCC-TXN can work well once the scan
queries dominate the performance (e.g., Q > 800). Owing
to the adaptive strategy on query level, AOCC always has
the best performance under various workloads.

7. RELATED WORK
Optimistic Concurrency Control. Optimistic con-

currency control (OCC) was first proposed by Kung and
Robinson in 1981 [9]. In a multi-core setting, it suffers from
scalability bottlenecks due to the serial validation. Silo [22]
adopted periodically-updated epochs with the commit pro-
tocol to avoid bottlenecks of centralized serialization protec-
tion. TicToc [27] proposed a data-driven timestamp alloca-
tion method to further enhance the scalability of OCC. Yuan
et al. [28] presented the balanced concurrency control (BCC)
method to reduce false aborts by detecting data dependency
patterns with low overhead. Since transaction healing [24]
avoids blindly aborting a transaction once it fails in valida-
tion, it scales the conventional OCC towards dozens of cores
under high-contention workloads.

Multiversion concurrency control (MVCC) improves the
performance of analytical processing systems since read-only
transactions are never blocked or aborted. Therefore, the
multiversion scheme is widely used in the HTAP-friendly
database systems, such as Hekaton [10], HyPer [7, 14], SAP
HANA [18], etc. To ensure correctness, Hekaton re-executes
each range query to detect serializability violation and to
prevent phantoms for optimistic transactions. HyPer uses a
variation of precision locking technique [6] to test discrete
writes of recently committed transactions against predicate-
oriented reads of the committing transaction.

Mixed Concurrency Control. A recent work claims
that there is no single concurrency control that is ideal for
all workloads [21]. Hence, it proposed an adaptive concur-
rency control (ACC) protocol for the partition-based in-
memory database systems. CormCC [20], the successive
work of ACC, is a general mixed concurrency control frame-
work without coordination overhead across candidate proto-
cols while supporting the ability to change a protocol online
with minimal overhead. Callas [25] and its successive work
Tebaldi [19] provided a modular concurrency control mecha-
nism to group stored procedures and provided an optimized
concurrency control protocol for each group based on offline
workload analysis. Cao et al. [3] proposed a hybrid tracking
method for choosing one from OCC and pessimistic CC to
handle different conflict accesses. To optimize the perfor-
mance of OCC protocol under high-contention workloads,
the mostly-optimistic concurrency control (MOCC) [23] com-
bines pessimistic locking schemes with OCC to avoid having
to frequently abort a transaction accessing hot data. Lin et
al. [12] proposed an adaptive and speculative optimistic con-
currency control (ASOCC) protocol for effective transaction
processing under dynamic workloads.

All the mixed concurrency control protocols are mainly
concentrated on exploiting the benefits of pessimistic method
under high-contention workloads and optimistic mechanism
under low-contention workloads. However, even under het-
erogeneous workloads with low contentions, the validation
scheme used by an OCC protocol has a significant impact
on the performance. AOCC aims to choose a low-cost vali-
dation scheme at runtime.

8. CONCLUSION
In this work, we introduce a simple yet effective OCC

framework to integrate two widely used validation meth-
ods. According to the number of records read by a query
and the size of write sets from concurrent update trans-
actions, AOCC adaptively chooses an appropriate tracking
mechanism and validation method to reduce the validation
cost for this query. Our evaluation results demonstrate that
AOCC can achieve good performance for a broad spectrum
of heterogeneous workloads without sacrificing serializability
guarantee.
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