
Certus: An Effective Entity Resolution Approach with
Graph Differential Dependencies (GDDs)

Selasi Kwashie Jixue Liu Jiuyong Li
Lin Liu Markus Stumptner Lujing Yang

School of ITMS, University of South Australia, Adelaide, Australia
selasi.kwashie@mymail.unisa.edu.au, firstname.lastname@unisa.edu.au

ABSTRACT
Entity resolution (ER) is the problem of accurately identi-
fying multiple, differing, and possibly contradicting repre-
sentations of unique real-world entities in data. It is a chal-
lenging and fundamental task in data cleansing and data
integration. In this work, we propose graph differential de-
pendencies (GDDs) as an extension of the recently developed
graph entity dependencies (which are formal constraints for
graph data) to enable approximate matching of values. Fur-
thermore, we investigate a special discovery of GDDs for ER
by designing an algorithm for generating a non-redundant
set of GDDs in labelled data. Then, we develop an effective
ER technique, Certus, that employs the learned GDDs for
improving the accuracy of ER results. We perform exten-
sive empirical evaluation of our proposals on five real-world
ER benchmark datasets and a proprietary database to test
their effectiveness and efficiency. The results from the ex-
periments show the discovery algorithm and Certus are ef-
ficient; and more importantly, GDDs significantly improve
the precision of ER without considerable trade-off of recall.

PVLDB Reference Format:
Selasi Kwashie, Jixue Liu, Jiuyong Li, Lin Liu, Markus Stumpt-
ner, and Lujing Yang. Certus: An Effective Entity Resolution Ap-
proach with Graph Differential Dependencies (GDDs). PVLDB,
12(6): 653-666, 2019.
DOI: https://doi.org/10.14778/3311880.3311883

1. INTRODUCTION
Identifying different records/objects in data that refer to

the same real-world entity is an inherent task in many re-
search fields, particularly, in data cleansing, data integra-
tion, and information retrieval. In data integration for in-
stance, one would like to find different records (with possi-
ble contradictions) in one or multiple databases that refer to
the same person in the real-world; or to detect different cita-
tions that refer to the same research paper. This problem is
well-known in many more research communities, and ironi-
cally studied under different names, viz.: entity resolution,
merge/purge, deduplication, record linkage, etc.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 6
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3311880.3311883

In general, the causes of multiple representations of dis-
tinct real-world entities in data can be categorised into two
groups [38]: (i) the inadvertent creation of multiple records
for a unique entity in the same database; and (ii) the in-
tegration of different representations of the same real-world
entity from different sources into the same database. These
oversights are recurrent in data due to the existence of noise
and inconsistencies. Noise here means ‘small errors’ (e.g.,
a typo ‘Peter’ for ‘Peters’); inconsistency means conflicting
and/or different values for properties/relations of an object.

Since the above-mentioned causes are almost unavoidable,
it is crucial to design techniques capable of detecting dupli-
cates in data. In fact, the need for entity resolution cannot
be overemphasised as its applications are in numerous areas
including law enforcement, e-commerce, and government. In
law enforcement, for example, linking different representa-
tions of entities from different sources like the traditional
structured databases and non-structured sources (e.g., en-
tities mentioned in investigation/complaint reports) can be
invaluable to an officer, and help to apprehend suspects.

A common approach to solving the ER problem in the
database community is through the use of the so-called record-
matching rules. Record-matching rules are constraints that
simply state: “if any two records are similar on certain prop-
erties, then they refer to the same entity”. This strategy is
known as rule-based ER. In data-centric systems, rule-based
ER solutions are often preferable to the non-rule-based coun-
terparts [46], although the latter usually outperform the for-
mer (cf. a recent survey in [14]). A major reason for the
preference of rule-based ER systems is their interpretability,
which permits explicit encoding of domain knowledge [10]
and interactive debugging of results [39].

The rule-based ER approach, however, has the follow-
ing three problems indicated in [53]: (a) it is difficult to
generate record-matching rules; (b) it is challenging to de-
fine the bounds of similarity for approximate-match condi-
tions; and (c) efficient support for approximate-match condi-
tions is non-trivial. To address (a), matching dependencies
(MDs) [17,19] and conditional MDs (CMDs) [54] have been
proposed as new classes of dependencies for ER in relational
data. To resolve (b), the works in [53] and [46] provide opti-
mization techniques based on disjunctive normal forms and
global boolean formulae respectively, whereas dependency
discovery alrigthms are used in [48,50,54]. And to tackle (c),
indexes are used in [7,15] for efficient approximate matching.

In this work, we tackle the problem of ER over both
structured and semi-structured data using the rule-based
approach. Consider the profiles/representations of entities

653

pid: 1
name: John Wil. Smith
sex: male
height: 1.82m
dob: 2/25/87
husband_of: [2]

pid: 3
name: Bill J. Schmidt
eyecolour: blue
born_on: 25021978
tall: 183cm
friends: [4]

pid: 2
name: J GreenSmeeth
gender: f
dob: 3/12/92
wife_of: [1]

pid: 4
name: Jane Green
dob: 3/12/92
eyecolour: brown
nationality: AUS
friends: [3]

Entities from semistructured sources

Entities from structured sources
pid: 5
str. #: 121
str. name: George Rd
city: Adelaide
state: SA
country: Australia
address_of: [8]
address_of: [9]

pid: 7
str. #: 67
str. name: Main Str
city: Sydney
state: NSW
country: Australia

pid: 6
surname: Williams
middle name:
first name: John
dob: 20001218
height: 159
sex: 0

pid: 8
surname: Billy
middle name: Jon
first name: Smythe
dob: 19780225
height: 178
sex: 0
lives_at: [5]
husband_of: [9]

pid: 9
surname: Jennifer
middle name: Mary
first name: Green
dob: 19921203
height: 156
sex: 1
lives_at: [5]
wife_of: [8]

Figure 1: Entity profiles from two sources

in Figure 1 from two sources, for example. The data in the
first source have less regular properties/names and values,
while the data in the second source have regular properties
except for relationships. Our goal is to identify all profile
pairs that refer to the same entities in the real-world, across
both sources, irrespective of structure and with no assumed
schema. In this scenario, current record-matching rules, e.g.,
MDs [17, 19] and CMDs [54], cannot be employed as they
are limited to relational (structured) data.

We adopt a graph model to represent the profiles of enti-
ties which enables formal representation of profiles in even
non-structured sources. Then, we investigate a new class of
dependencies for graph data to allow the generation and use
of rules for ER in graph data. Indeed, we extend the recently
proposed graph entity dependency (GED) [24] to include the
semantics of similarity and matching for use as declarative
matching rules. Next, we developed a discovery algorithm to
learn matching rules in duplicate-labelled graph data, thus,
finding various bounds of similarity for attributes and rela-
tions for linking profiles. Moreover, we design an elaborate
method for using the learned rules for effective ER.

Our contributions in this paper are summarized as follows.
1) We propose a new class of dependencies for graphs, namely
graph differential dependencies (GDDs). GDDs extend GEDs
by incorporating distance and matching functions instead
of equality functions. GDDs subsume GEDs and their rela-
tional counterparts (e.g., MDs, CMDs). We present basic
inference rules for the implication analysis of GDDs.
2) We define the set of non-redundant GDDs and propose an
algorithm for the discovery of a class of GDDs for entity res-
olution, namely Linking GDDs, GDDLs. This discovery prob-
lem is more challenging and complex than previously studied
discovery problems, involving the discovery of graph pat-
terns, distance/matching constraints and constant values.
We design an efficient algorithm to mine a non-redundant
set of GDDLs in graph data with known duplicate labels.
3) We develop a GDD-based ER method, called Certus, to
find different representations of unique entities in graph data.
The approach leverages several pruning strategies to avoid
the computational cost of applying GDDs to all profiles pairs.
Certus allows the use of a low similarity score (for high recall)
and GDDs to eliminate false-positives (for high precision).
4) Finally, we perform and report the experimental evalu-
ations of the GDD discovery and ER algorithms using five
real-world ER benchmark datasets and a proprietary dataset.
The results show the efficiency and scalability of our pro-
posals. More importantly, the results show GDDs improve
precision of ER without significant sacrifice of recall.

The rest of the paper is organised as follows. Section 2:
preliminary concepts and definitions. Section 3: the ER
problem. Section 4: the formal definition, syntax, and se-
mantics of GDDs. Section 5: a special GDD discovery for ER.

Table 1: List of frequently used notations

Symbol Description
G,Q[z̄] entity profiles graph, graph pattern resp.
X,Y sets of attributes/relations

ΦX,ΦY sets of distance functions on X,Y resp.
ER entity resolution

GED graph entity dependency
GDD, GDDL graph differential dependency, linking GDD resp.

Section 6: our GDD-based ER solution. Section 7: evalua-
tion of all proposals. Section 8: a summary of related works
in the literature. Section 9: concluding remarks.

2. PRELIMINARIES
This section presents key definitions. We use A and L

to denote the finite sets of attributes and labels respectively;
and Table 1 lists frequently used notations in this work.

2.1 Entity Profiles, Graphs & Graph Patterns
Entity Profile. An entity profile for a real-world entity
is a tuple p = 〈pid, eid, type, P, R〉 where pid is the identity
of the profile, eid is the identity of the real-world entity
represented by the profile (often unknown/unavailable), type
is the type of the entity (e.g., person or location), P is a list
of attribute A and value c pairs, (A, c), of the entity, and R
is a list of relation-label and pid pairs, (rela, pid ′), describing
the relation rela of p with another entity represented by pid ′.
For any pair (A, c), A ∈ A and c ∈ dom(A) – domain of A.

If two entity profiles p1 and p2 represent the same real-
world entity, then p1.eid = p2.eid.

Example 1 (Profile). Figure 1 presents entity profiles from
two sources (semi-structured and structured) with unknown
eids. The first profile with pid = 1 can be represented as a
tuple p = 〈pid1, eid1, type1, P1, R1〉, where pid1 = 1, eid1 =
unknown, type1 = person, P1 = [(name, ‘John Wil. Smith’),
(sex,male), (height, 1.82m), (dob, ‘2/25/87’)] and R1 =
[(husband of, 2)].

Entity Profiles Graph. The definitions of entity profiles
graph and graph pattern follow those in [24,25].

An entity profiles graph (a profiles graph) is a directed
graph G = (V, E, L, FA), where: (i) V is a finite set of nodes;
(ii) E is a finite set of edges, given by E ⊆ V × V; (iii)
each node v ∈ V (resp. edge e ∈ E) has a label L(v) (resp.
L(e)) drawn from L; (iv) each node v ∈ V has an associated
list FA(v) = [(A1, c1), · · · , (An, cn)] of attribute-value pairs,
where Ai ∈ A, ci ∈ dom(Ai) and Ai 6= Aj if i 6= j. For an
attribute A ∈ A and a node v ∈ V, v.A may not exist.

An entity profile pi = 〈pidi, eidi, typei, Pi = [(A, c), · · ·], Ri
= [(rela, pidj), · · ·]〉 is encoded as a node vi in a profiles graph
G as the following: vi = pidi, L(vi) = typei, FA(vi) = Pi, and
for each (rela, pidj) ∈ Ri, there exists node vj representing
profile pj = 〈pidj, eidj, typej, Pj, Rj〉 and the edge eij = (vi, vj)
exists in E such that rela = L(eij).

Informally, a profiles graph is a collection of entity profiles.

Example 2 (Profiles Graph). Figure 2(a) shows an entity
profiles graph, G, for the 9 (i.e., 7 person, 2 location) pro-
files and their relationships from Figure 1. A node in the
graph represents a profile and edges from a node are rela-
tionships of the profile. For instance, nodes {6, 7} have no
relationship; nodes {1, 2, 3, 4} have one relationship each; and
nodes {5, 8, 9} have 2 relationships each.

Next, we define the concept of graph pattern: a constraint
that aims to select/match a sub-graph from/to a graph.

654

Graph Pattern. A graph pattern is a directed graph
Q[z̄, C] = (VQ, EQ, LQ), where: (i) VQ (resp. EQ) is a fi-
nite set of pattern nodes (resp. pattern edges); (ii) LQ is a
function that assigns a label to each node v ∈ VQ and to
each edge e ∈ EQ; (iii) z̄ is all the nodes, called (pattern)
variables, in VQ; and (iv) C is a list of conditions on VQ
and EQ, often omitted when the conditions are presented
with a diagram. All labels are drawn from L, including the
wildcard, ‘*’, as a special label.

Two labels l1, l2 ∈ L are said to match, denoted by l1 �
l2, iff: (a) l1 = l2, or (b) l1 = ‘∗’, or (c) l2 = ‘∗’.

A match of pattern Q[z̄] in graph G is a homomorphism
h from Q to G such that: (i) for each node v ∈ VQ, LQ(v) �
L(h(v)); and (ii) for each edge e1 = (u, v) in Q, there exists
an edge e2 = (h(u), h(v)) in G such that L(e1) � L(e2).
Example 3 (Graph Pattern). Figure 2(b) is an illustration
of four graph patterns Q1, Q2, Q3 and Q4 specified over en-
tity profiles. The matches of these patterns in the profiles
graph G (i.e., Figure 2(a)) are described below. Q1 aims to
match any pair of entities to z1, z2 without type restriction,
because of ‘*’, and no requirement on relations. Q2 seeks to
match two person entities without requirement on relations.
Q3 aims to match two pairs of person entities if each pair
has the relation l1 between them. Q4 seeks to match any
two person entities and a location entity if the two person

entities have the relation l2 with the location entity. In
Figure 2(a), any two nodes match Q1. Any pair of person
nodes are a match of Q2. A match for Q3 is {(1, 2, 8, 9)} if
l1 � lh. The only match for Q4 is {(8, 5, 9)} if l2 � ll.

2.2 Graph Entity Dependencies (GEDs)
A new class of dependencies for graphs, namely, graph

entity dependencies (GEDs) was proposed in [24] recently,
which subsumes graph functional dependencies (GFDs) [25]
and graph keys (GKeys) [18], with useful applications in
capturing inconsistencies and errors in graph data.

In this section, we recall the definition of GEDs, and in
Section 4, extend them for use in entity resolution.

GEDs. [24] A GED ψ is a pair (Q[z̄], X→ Y), where Q[z̄] is
a graph pattern, and X and Y are two (possibly empty) sets
of constraints on z̄. Q[z̄] and X → Y are referred to as the
pattern and FD of ψ, respectively. A constraint on z̄ in X and
Y is one of: {x.A = c, x.A1 = x ′.A2, x.eid = x ′.eid}, where
x, x ′ ∈ z̄ are pattern variables, A,A1, A2 ∈ A are attributes.

Given a GED ψ = (Q[z̄], X → Y) and a match h(z̄) of
Q[z̄] in a graph G, h(z̄) satisfies a constraint w ∈ X, denoted
by h � w, iff for x, x ′ ∈ z̄: (i) when w is x.A = c, then
the attribute h(x).A exists, and h(x).A = c; (ii) when w is
x.A1 = x

′.A2, then the attributes h(x).A1 and h(x ′).A2 exist
and have the same value; and (iii) when w is x.eid = x ′.eid,
then h(x).eid = h(x ′).eid.

A match h(z̄) satisfies X if h(z̄) satisfies every w ∈ X. In
the same way, h(z̄) � Y is defined.

A match h(z̄) satisfies X → Y, denoted by h(z̄) � X → Y,
if h(z̄) � X implies h(z̄) � Y.

Let H(z̄) be all the matches of Q[z̄] in G. H(z̄) satisfies ψ,
denoted by H(z̄) � ψ, if for every h(z̄) ∈ H(z̄), h(z̄) � X→ Y.
If H(z̄) � ψ, then G � ψ. G satisfies a set Ψ of GEDs if G
satisfies every ψ ∈ Ψ.

Example 4 (GEDs). Consider the patterns defined in Fig-
ure 2(b). The GED ψ1 = (Q2[x1, x2], X1 → Y1) where
X1 = {x1.name = x2.name, x1.dob = x2.dob, · · · } and Y1 =

Legend: lw wife_of, lh husband_of,
lf friend, la address_of, ll lives_at

x1
person

person
x2

(a) (b)

x6
person

person
x7

Q3 l1

x8
person

person
x9

l1

z1
*

*
z2
Q1 Q2

x4
person

person
x5

Q4

l2

location
y3

l2

lh

person
1

person
2

person
3

person
4

location
5

person
6

location
7

person
8

person
9

lw

lh
lwlf

la

ll

la

ll

lf

Figure 2: Profiles graph G - (a), Graph patterns Q[z̄] - (b)

{x1.eid = x2.eid} states the constraint that for any pair of
person profiles (i.e., Q2[x1, x2]), if they have the same values
on attributes name, dob, etc., they must have the same eid,
implying that they refer to the same real-world person.

GED Limitations. GEDs subsume some dependencies as
special cases. For instance, GFDs [25], GKeys [18], and
even relational FDs [4], CFDs [21] and equality-generating
dependencies [9] can be expressed by GEDs.

However, GEDs employ exact matching of values and can-
not capture the semantics of approximate matches in data.
In many applications, data values have typos and variations.
GEDs are therefore not suitable in such situations.

The need for dependencies to express approximate
matches in data for data quality applications is well-known
(cf. [19, 20, 49]). Examples of such dependencies in the re-
lational data include matching [19] and differential [49] de-
pendencies. These are useful in many applications in data
quality management and data cleansing, in particular, entity
resolution. In Section 4, we propose Graph Differential De-
pendencies (GDDs) which are extended from GEDs. GDDs
capture similarity based matches in data and can serve our
entity linking task in graph data.

3. PROBLEM FORMULATION
This section presents the ER problem as well as the mo-

tivation and overview of our solution.
The problem of entity resolution is to find all the maximal

clusters, called linked clusters, of nodes in a given graph of
entity profiles such that all the profiles in each cluster refer
to the same real-world entity. That is, for any two profiles
p1 and p2 in a cluster, p1.eid = p2.eid.

An algorithm for finding linked clusters is called a linking
algorithm. Unfortunately, a linking algorithm does not work
perfectly, resulting in some incorrect outcomes. When the
algorithm concludes that two profiles satisfy p1.eid = p2.eid,
the conclusion may be true (true-positive, TP) if the equiv-
alence is confirmed by fact. The conclusion may also be
false (false-positive, FP). Furthermore, the algorithm may
fail to find some clusters and/or some profiles that should be-
long to a cluster. The missed ones are called false-negatives
(FN). A good algorithm aims to achieve high precision
(TP/(TP+FP)) and high recall (TP/(TP+FN)). Our aim
is to find a good algorithm for ER in graph data.

Attaining both high precision and high recall is a chal-
lenging task for a linking algorithm. For instance, a link-
ing algorithm can achieve a higher precision by using exact
match of attribute values. However, because of noise in data
(like spelling differences/errors) and missing attributes, the

655

recall of linking in this case will be low. On the other hand,
if approximate match of attribute values are used, the recall
may be high, but the precision will diminish.

To overcome this struggle between precision and recall,
we propose a solution that does not require a user to de-
fine specific thresholds for various value matches, but set
a single reasonably low overall threshold of similarity, to
ensure a high recall. Then, our solution uses GDDs to op-
timize and balance the precision and recall. More specifi-
cally, our linking algorithm relies on the discovery of GDDs
to learn critical attributes, relations and best thresholds
for approximate matches in ER. Formally, we will learn
GDDs of the form (Q[{x, x ′}], {δAiAj(x.Ai, x

′.Aj) ≤ tAiAj } →
δ≡(x.eid, x ′.eid) = 0) – see next section for explanation to no-
tations – including the learning of the attributes Ai, Aj and
their distance threshold tAiAj from an eid-labelled graph in
Section 5. Then, we apply the learned GDDs to find linked
clusters in entity profiles graph with unknown eid-labels.

4. GDD - AN EXTENSION OF GED
We now extend GEDs to capture the semantics of

distance-based match as graph differential dependency.

4.1 Graph Differential Dependencies (GDDs)
GDD. A GDD σ is a pair (Q[z̄], ΦX → ΦY), where: Q[z̄]
is a graph pattern called the scope, ΦX → ΦY is called the
dependency, ΦX and ΦY are two (possibly empty) sets of
distance constraints on the pattern variables z̄. A distance
constraint in ΦX and ΦY on z̄ is one of the following:

δA(x.A, c) ≤ tA; δA1A2(x.A1, x
′.A2) ≤ tA1A2 ;

δ≡(x.eid, ce) = 0; δ≡(x.eid, x ′.eid) = 0;

δ≡(x.rela, cr) = 0; δ≡(x.rela, x ′.rela) = 0;

where x, x ′ ∈ z̄, A,A1, A2 are attributes in A, c is a value
of A, δAiAj(x.Ai, x

′.Aj) (or δAi(x, x
′) if Ai = Aj) is a user

specified distance function for values of (Ai, Aj), tA1A2 is
a threshold for (Ai, Aj), δ≡(·, ·) are functions on eid and
relations and they return 0 or 1. δ≡(x.eid, ce) = 0 if the eid
value of x is ce, δ≡(x.eid, x ′.eid) = 0 if both x and x ′ have the
same eid value, δ≡(x.rela, cr) = 0 if x has a relation named
rela and ended with the profile/node cr, δ≡(x.rela, x ′.rela) =
0 if both x and x ′ have the relation named rela and ended
with the same profile/node.

The user-specified distance function δA1A2(x.A1, x
′.A2) is

dependent on the types of A1 and A2. It can be an arith-
metic operation of interval values, an edit distance of string
values or the distance of two categorical values in a taxon-
omy, etc. The functions handle the wildcard value ‘*’ for
any domain by returning the 0 distance.

We call ΦX and ΦY the LHS and the RHS functions of the
dependency respectively.

GDD satisfaction. (i) Given a GDD σ = (Q[z̄], ΦX → ΦY)
and a match h of Q[z̄] in a graph G, h satisfies ΦX, denoted
by h � ΦX, if h satisfies every distance constraint in ΦX.
h � ΦY is defined in the same way. (ii) Let H(z̄) be all the
matches of Q[z̄] in a graph G. H(z̄) � σ if h � ΦY is true for
every h ∈ H(z̄) that h � ΦX. (iii) The graph G satisfies σ,
denoted by G � σ if H(z̄) � σ. 2

A GDD is a constraint on graph data and can be used
to enforce consistency. It can also be used to represent la-
tent knowledge in data from a discovery point of view. In
addition, it can be used to infer properties and relations of

entities. This last point will be used in later sections for the
inference of entity matches (in entity resolution).

Below are some cases where GDDs can be used to enforce
consistency. A GDD requires that for a match h of Q[z̄] in
a graph G, if h satisfies ΦX, it should also satisfies ΦY .

1. Consider an example where h has two location (loc)
profiles x1 and x2, ΦX requires an approximate match on
suburb, subb, allowing one-character difference, and ΦY re-
quires an exact zip-code (zip) match. Then the GDD for
the example is: (Q[{x1, x2}, L(x1) = loc, L(x2) = loc], ΦX =
{δsubb(x1, x2) ≤ 1} → ΦY = {δzip(x1, x2) = 0}). If a graph
does not satisfy these requirements, the graph is not valid.

2. Another GDD relating to Q4 in Figure 2 is σ4 =
(Q4[{x4, x5, y3}], ΦX → ΦY), where ΦX = {∅} and ΦY =
{δ≡(x4.friend, x5.pid) = 0, δ≡(x5.friend, x4.pid) = 0}. σ4 spec-
ifies a constraint that for any match of Q4, two mutual
‘friend’ relations between x4 and x5 must exist. This means,
if two persons live at same location, they must be friends.
Otherwise, the constraint is violated. Note that if we ex-
change ΦX and ΦY in σ4, the rule loses its power.

Example 5 (GDDs in ER). Consider the entity profiles
graph G, the graph pattern Q2 in Figure 2, and a GDD σ1 =
(Q2[{x1, x2}], ΦX1 → ΦY1), where ΦX1 = {δname(x1, x2) ≤
2, δdob(x1, x2) ≤ 2}, and ΦY1 = {δ≡(x1.eid, x2.eid) = 0}. This
GDD states that for any pair of person profiles, if their name
and dob values are similar, then they refer to the same real-
world person.

GDDs & other Dependencies. The introduction of dis-
tance semantics in GDDs is non-trivial as it allows supe-
rior expressivity and wider application, with consequences
of more challenging axiomatization and reasoning problems.
Thus, the inference axioms and reasoning results of GEDs
do not directly hold for GDDs and require full investigation.

The major difference between our proposed GDDs and
GEDs in [24] is twofold. First, the constraints in our defi-
nition allow errors in value matching. This opens up GDDs’
suitability to many real-world applications where data is
noisy. In contrast, GEDs use exact match. Secondly, our
GDDs unlike GEDs allow constraints on relations within
the LHS and RHS functions of the dependency. Note that
both GDDs and GEDs allow relations in the scope pattern
Q[z̄(C)]. However, having constraints like δ≡(x.rela, cr) = 0
and δ≡(x.rela, x ′.rela) = 0 in the dependency ΦX → ΦY is
different from having them in the pattern Q[z̄]. This is be-
cause, having more constraints in Q[z̄(C)] restricts the scope
to which dependencies apply; and not all matches of a pat-
tern need to satisfy a dependency. These flexibilities make
GDDs much more expressive and useful in more applications.

GDDs subsume dis/similarity-based dependencies in rela-
tional data, e.g., differential dependencies (DDs) [49], con-
ditional DDs [33], matching dependencies (MDs) [19] and
conditional MDs [54]. In fact, unlike the distance-based de-
pendencies (in relational data), GDDs are capable of express-
ing and enforcing constraints on relationships in data, and
can be used in both structured and semi-structured data.

4.2 Inferring GDDs
In the following, we discuss some implication results of

GDDs and introduce the concept of irreducible GDDs.
First, we define an order relation, namely subjugation, for

distance constraints. This relation indicates which distance
constraints are more restrictive.

656

Table 2: Inference rules for GDDs

I1 If ΦY < ΦX, then G � (Q[z̄], ΦX → ΦY), for any G.
I2 If G � (Q[z̄], ΦX → ΦY), then G � (Q[z̄], ΦX ∪ ΦZ →

ΦY ∪ΦZ), for any non-empty set of constraints, ΦZ.
I3 If G � (Q[z̄], ΦX → ΦZ1), G � (Q[z̄], ΦZ2 → ΦY), and

ΦZ2 < ΦZ1 , then G � (Q[z̄], ΦX → ΦY) holds.

Subjugation. Given two sets, ΦX1 and ΦX2 , of distance
constraints on the same set of pattern variables z̄ in Q[z̄],
ΦX1 subjugates ΦX2 , denoted by ΦX1 < ΦX2 iff (i) for every

constraint δAiAj(x.Ai, y.Aj) ≤ t
(1)
AiAj

∈ ΦX1 , there exists

δAiAj(x.Ai, y.Aj) ≤ t
(2)
AiAj

∈ ΦX2 and t
(1)
AiAj

≥ t(2)AiAj . Other

forms of distance constraints with a threshold are defined in
the same way. (ii) for every match constraint δ≡(·, ·) = 0 in
ΦX1 , it must also be in ΦX2 .

The intuition of subjugation is that if a match satisfies
ΦX2 , then it also satisfies ΦX1 . That is, ΦX2 has more and
tighter constraints while ΦX1 has less and looser constraints.
For example, ΦX1 < ΦX2 is true if ΦX1 = {δage(x, x

′) < 2}
and ΦX2 = {δage(x, x

′) < 1, δheight(x, x
′) < 5}.

Implication of GDD. A GDD σ implies another GDD σ ′ if
any match satisfying σ also satisfies σ ′. If σ = (Q[z̄], ΦX1 →
ΦY1) implies σ ′ = (Q[z̄], ΦX2 → ΦY2), then ΦX1 < ΦX2 and
ΦY2 < ΦY1 . That is, σ has a looser LHS ΦX1 but a tighter
RHS ΦY1 compared to those of σ ′. For example, σ implies
σ ′ if ΦX1 = {δage(x, x

′) < 2} and ΦY1 = {δweight(x, x
′) < 3}

while ΦX2 = {δage(x, x
′) < 1, δheight(x, x

′) < 5} and ΦY2 =
{δweight(x, x

′) < 5}.

Inference of GDDs. The general implication problem aims
to investigate whether a given set Σ of GDDs implies a single
GDD σ. A full investigation of the implication problem is
out of the scope of this paper. We only present the results
needed for the ER context. In Table 2, we derive three sound
inference rules for GDD implication over a given patern Q[z̄],
along the same lines as Armstrong’s Axioms [8] for FDs.

The rules in Table 2 allow the pruning of implied depen-
dencies during GDD discovery. The proofs of soundness of
I1, I2, I3 are straight-forward following the properties of re-
flexivity, augmentation and transitivity respectively, using
the subjugation order. We omit the proofs for lack of space.

Irreducible GDD. Given a set Σ of GDDs, a GDD σ =
(Q[z̄], ΦX → ΦY) ∈ Σ is irreducible if and only if there does
not exist another GDD σ1 = (Q[z̄], ΦX1 → ΦY1) ∈ Σ such
that: (i) ΦX1 < ΦX and (ii) ΦY < ΦY2 . A set Σ of GDDs is
non-redundant if every GDD σ ∈ Σ is irreducible.

Irreducible GDDs are the important ones, and they are
those to be discovered in data later on.

Example 6 (Implied GDDs). Let σ2, σ3 be two GDDs de-
fined over the pattern Q3[x6, · · · , x9] in Figure 2 as: σ2 =
(Q3[z̄], ΦX2 → δ≡(x7.eid, x9.eid) = 0), σ3 = (Q3[z̄], ΦX3 →
δ≡(x7.eid, x9.eid) = 0) where ΦX2 = {δname(x7, x9) ≤ 3} and
ΦX3 = {δname(x7, x9) ≤ 2, δ(x7.sex, f) < 1, δ(x9.sex, f) < 1}.
Then, σ3 is not irreducible if Σ = {σ2}, since ΦX2 < ΦX3
and ΦY3 < ΦY2 are true, (here, ΦY3 , ΦY2 are same). And,
σ2 implies σ3, and can be proven by using I1, I3.

5. DISCOVERY OF GDDS
For GDDs to be useful in any data quality/management

application, (e.g., for ER in Section 6), there is the need
for techniques that can learn GDDs from data automati-
cally. This is because, although dependencies can be spec-
ified by domain experts, relying on experts is often infea-

sible/unrealistic as the process can be manually-complex,
tedious and expensive [22,33,45,54].

In this section, we investigate the discovery of a special
category of GDDs, called Linking GDD, denoted by GDDL. A
GDDL is a special GDD of the form σ = (Q[{x, x ′}, x.type =
x ′.type], ΦX → Φeid), where Φeid = {δ≡(x.eid, x ′.eid) = 0} is
a constraint requiring an eid match.

A GDDL can be interpreted as: for any profiles that match
the graph pattern Q[z̄], if they agree on ΦX, then they must
agree on Φeid (meaning they must have the same eid) imply-
ing that they refer to the same real-world entity.

We present a technique for finding valid GDDLs in an eid-
labelled profiles graph. A profiles graph is eid-labelled, if
for every node v in the graph, v.eid exists and has a value.
The discovery work here is in the same direction as the dis-
covery of MDs [48,50,51] and CMDs [54] in relational data.

5.1 GDDL Discovery Problem
In practice, the set of all valid dependencies in data can

be very large. Dependency discovery is to find a cover set of
dependencies that imply all other valid dependencies. We
seek frequent irreducible GDDLs. A GDDL σ is frequent if
the number |HX(z̄)| of matches satisfying both sides of the
dependency of σ is more than a minimal support parameter
k. When k = 1, all frequent irreducible GDDLs form a cover
set. The minimal support parameter helps to control the
number of GDDLs we find. |HX(z̄)| is called the support of
σ and is denoted by sup(σ).

Definition 1 (GDDL Discovery). Given an eid-labelled en-
tity profiles graph G, and a minimum support threshold k,
the discovery problem is to find a set Σ of GDDLs such that
∀ σ = (Q[{x, x ′}, x.type = x ′.type], ΦX → Φeid) ∈ Σ, G � σ,
σ is irreducible, and sup(σ) ≥ k.

From the eid-labelled profiles graph G, we can derive the
satisfaction set for the RHS Φeid = {δ≡(x, eid, x ′.eid) = 0}.
The satisfaction set of Φeid, sat(Φeid), is the set of all node
pairs such that every pair of nodes have the same eid. That
is, sat(Φeid) = {∀(v1, v2) ∈ G | v1.eid = v2.eid}.

The strategy of our discovery method is to find a LHS ΦX
such that its satisfaction set sat(ΦX), also a set of all node
pairs that agree onΦX, is a subset of the RHS satisfaction set
sat(Φeid). More specifically, let sat(ΦX) be the satisfaction
set of ΦX, our aim is to find all LHS ΦX such that every pair
of node (vi, vj) ∈ sat(ΦX) is in sat(Φeid). The condition for a
dependency over a given pattern Q[z̄] is given in Property 1.

Property 1. If sat(ΦX) ⊆ sat(Φeid), then ΦX → Φeid.

Our discovery method uses the Apriori [5] lattice to model
the search space of LHSs. We now define a concept called
an itemset that can be uniquely mapped onto a LHS ΦX.

Definition 2 (Itemset & Itemset satisfaction set). Let
an item-name be an attribute or a relation, denoted by
ρ. An item is a (item-name ρ, threshold τ) pair denoted
by ρ[τ]. An itemset is a set of such items, denoted by
L = {· · · , ρi[τij], · · · } where every item-name is distinct.

The satisfaction set of an itemset L, denoted by sat(L), is
a set of all node pairs sat(L) = {· · · , (v1, v2), · · · } such that
every pair of nodes has values whose distance is within the
threshold τij on the item-name ρi, for all ρi[τij] ∈ L.

Property 2. An item ρ[τj] can be uniquely mapped to a
distance constraint δρ(x, x

′) ≤ τj, where (x, x ′) is a pair of
pattern nodes of Q[z̄].

657

A:L1

L2

L3

a2 a3a1 b1 b2 c1 c2 c3

b1c3 b1c2 a1b1 a1b2 a2b1 b1c1 a2c3 a2c2 a2c1 a1c3 a1c2 a1c1 a3b2 a3b1 a2b2 a3c3 a3c2 a3c1 b2c3 b2c2 b2c1

a1b1c1 a1b1c2 a1b1c3 a1b2c1 a1b2c2 a1b2c3 a2b1c1 a2b1c2 a2b1c3 a2b2c1 a2b2c2 a2b2c3 a3b1c1 a3b1c2 a3b1c3 a3b2c1 a3b2c2 a3b2c3

completed, implied

noncompleted

completed, irreducible

B: C:

AC:AB: BC:

ABC:

Figure 3: Itemsets Lattice Construction & Pruning

Property 2 implies that if we find an itemset, L, whose
satisfaction set, sat(L), meets the stipulation of Property 1,
we find a dependency ΦX → Φeid over Q[z̄], where ΦX maps
onto L. In the following, we present our approach for the
discovery of irreducible GDDLs via frequent itemsets mining.

5.2 The Proposed GDDL Discovery Method
The key steps of our GDDL discovery technique are: first

level itemsets generation, itemset generation for higher lev-
els, and detection of GDDLs. We discuss these steps, then
present the overall description of the discovery algorithm.

Construct Level 1 Itemsets. We start by construct-
ing single itemsets: each itemset containing only one (item-
name, threshold) pair. The main task is to determine pos-
sible and meaningful threshold levels [τ1, ..., τh] for an at-
tribute ρ. These threshold levels are application-specific and
are determined by users. For example, in policing applica-
tions, a difference of 5yrs can be a good scale for suspects’
age. That is, the thresholds could be [0, 5, 10, 15, 20]; and
comparing two profiles with age difference more than 20
years may not make sense. In the same way, the thresholds
for the name differences of two people can be [0, 1, 2, 3, 4]. If
two names have more than 5 character differences, they are
hardly the same except for prefix (e.g., John for Jonathan)
and synonym (e.g., Dick for Richard) cases which are resolved
by special processes. The threshold for any relation is 0.

The next step is to compute the satisfaction sets of item-
sets. For each distinct item-name, ρ, we compute the sat-
isfaction set of every itemset on ρ with different thresholds,
e.g., name[0], · · · , name[4]. Given an item-name ρi with its
list of possible thresholds [τi1, ..., τih] in ascending order,
we first derive the set Sρi = {(a1, v1), ..., (an, vn)} of all (ρ-
value, node-pid) pairs in the graph G. For any two elements
(a1, v1), (a2, v2) ∈ Sρi , let δρi(a1, a2) = d

i
12. We add (v1, v2)

into every sat(ρi[τij]) for all τij ≥ di12. In this way, we con-
struct all single items ρi[τi1], · · · , ρi[τih] for the item-name
ρi and their corresponding satisfaction sets. Each single
item becomes a Level-1 itemset in the lattice.

To aid the calculation of the distances of itemsets sat(ρ[τ])
(τ = t0, t1, ..., tk; t0 = 0 < t1 < · · · < tk) at this level, we
create an index for ρ: idx(ρ) = {· · · , (val : V̄), · · · } where V̄
is a set of nodes whose ρ exists and its value is val. For any
two index entries (val1 : V̄1) and (val2 : V̄2) (the two entries
can be the same), let δρ(val1, val2) = d. We add the set of
node pairs in V̄1 × V̄2 to all sat(ρ[tj])(i ≤ j ≤ k) if tj ≥ d.

Derive Itemsets for Higher Levels. We further de-
rive the itemsets and their satisfaction sets for the second
level. A second level itemset is of the form {ρ1[τ1j], ρ2[τ2l]}
where ρ1 6= ρ2; and its satisfaction set is derived from the
satisfaction sets of the corresponding first level itemsets as
sat({ρ1[τ1j], ρ2[τ2l]}) = sat(ρ1[τ1j]) ∩ sat(ρ2[τ2l]). This step
does not need the calculation of distances; and because the
satisfaction sets are sorted, this step is efficient.

Table 3: Example graph data for discovery

pid attributes & relations eid
v1 name:john, sex:m, height:1.7, weight:80 e1
v2 name:john, sex:m, height:1.7 e1
v3 name:peter, sex:f, height:1.7 e2
v4 name:peter, sex:f, height:1.5, race:asian e2
v5 name:peter, sex:f, weight:80, friend:v4 e3
v6 name:peter, weight:75, friend:v4 e3
v7 name:rob, birthdate:1998 e4
v8 name:rob, birthdate:1998 e4

The lattice search space develops to higher levels following
the same procedure above. Itemsets for Level-(i + 1) are
derived from itemsets of Level-i. A Level-(i + 1) itemset
must contain (i + 1) and only (i + 1) distinct items.

Detect GDDLs. Let L be an itemset in the lattice search
space. We say L is completed if sat(L) ⊆ sat(Φeid), i.e.,
Property 1 is met. When an itemset L is completed, it does
not appear in any other itemset L ′ at higher levels. That
is, no super itermset should contain a completed itemset.

When an itemset L is completed, we derive the GDDL

(Q[{x, x ′}, x.type = x ′.type], ΦX → Φeid) where Lmaps to ΦX
according to Properties 1 and 2. The lattice stops developing
(the discovery ends) if no more than one itemset with non-
empty satisfaction set exists, or the last level is complete.

Figure 3 is an exemplar diagram of the lattice for the
item-names A,B,C and their respective distance thresholds
[a1, a2, a3], [b1, b2], and [c1, c2, c3]. For brevity, due to space
limits, an itemset, e.g., {A[a1], B[b1]} is shown as AB : a1b1;
and edges are shown from only one itemset for each attribute
set at every level. The diagram illustrates how completed
and irreducible itemsets at a level can be used to prune
implied itemsets at the current and subsequent levels based
on the inference rules in Table 2.

Example 7 (Discovery Approach). We now show how the
discovery method works with an example. Consider the eid-
labelled graph described in Table 3. The RHS sat(Φeid) =
{(v1, v2), (v3, v4), (v5, v6), (v7, v8)}. Thus, any LHS ΦX whose
satisfaction set sat(ΦX) is completely contained in sat(Φeid)
derives a dependency over the graph pattern Q[{x, x ′}].

We use compact notations: nm for name; ht for height;
wt for weight; frd for friend; bd for birthdate. At the
same time, to save space, we use nm[0]sex[0][v1v2, v3v4] to
mean the itemset {name[0], sex[0]} with the satisfaction set
{(v1, v2), (v3, v4)} as established in Definition 2. The item-
sets with empty satisfaction set are omitted. We also omit
the type constraint in the pattern, Q[{x, x ′}, x.type = x ′type].
The Level-1 itemsets are the following.
Level 1: nm[0][v1v2, v3v4, v3v5, v3v6, v4v5, v4v6, v5v6, v7v8],

sex[0][v1v2, v3v4, v3v5, v4v5], ht[0][v1v2, v1v3, v2v3],
ht[0.2][v1v2, v1v3, v1v4, v2v3, v2v4, v3v4],
wt[10][v5v6], frd[0][v5v6], bd[0][v7v8]

Up to this point, the itemsets wt[10], frd[0], bd[0] are com-
pleted because their satisfaction sets is fully contained in
sat(Φeid). For example, sat(wt[10]) = {(v5, v6)} ⊂ sat(Φeid).

658

From the three completed nodes, we discover the following
GDDLs each with a support of 1:

σ1=(Q[{x, x ′}], {δwt(x, x
′) ≤ 10} → Φeid);

σ2=(Q[{x, x ′}], {δfrd(x, x
′) = 0} → Φeid);

σ3=(Q[{x, x ′}], {δbd(x, x
′) = 0} → Φeid).

Level 2: nm[0]sex[0][v1v2, v3v4, v3v5, v4v5], nm[0]ht[0][v1v2],
nm[0]ht[0.2][v1v2, v3v4], sex[0]ht[0][v1v2],
sex[0]ht[0.2][v1v2, v3v4]

The itemsets nm[0]ht[0], nm[0]ht[0.2], sex[0]ht[0], and
sex[0]ht[0.2] are completed at this level. The following GDDLs
are therefore discovered:
σ4=(Q[{x, x ′}], {δnm(x, x

′) ≤ 0, δht(x, x ′) ≤ 0} → Φeid)
σ5=(Q[{x, x ′}], {δnm(x, x

′) ≤ 0, δht(x, x ′) ≤ 0.2} → Φeid)
σ6=(Q[{x, x ′}], {δsex(x, x

′) ≤ 0, δht(x, x ′) ≤ 0} → Φeid)
σ7=(Q[{x, x ′}], {δsex(x, x

′) ≤ 0, δht(x, x ′) ≤ 0.2} → Φeid)
However, comparing σ4 and σ5, we see that sex[0]ht[0.2] <
sex[0]ht[0], so σ4 is implied (Sec 4.2, Implication) and not ir-
reducible. Similarly, σ6 is also implied and not irreducible.
Level 3: No itemset is possible. The discovery finishes. In
conclusion, we find GDDLs σ1, σ2, σ3, σ5, and σ7 from this
training dataset; and sup(σ1) = 1, sup(σ2) = 1, sup(σ3) =
1, sup(σ5) = 2, sup(σ7) = 2.

Description of Algorithm. The algorithm of our GDDL

discovery method is shown in Algorithm 1. The input
is an eid-labelled profiles graph G = (V, E, L, FA), a mini-
mal support k for found GDDLs to control the number of
GDDLs to be discovered, the item-names (ρ’s) and pos-
sible thresholds (τ’s) for each item-name in the form of
Θ = {ρ1 : [τ11, ..., τ1k], ρ2 : [τ21, ..., τ2k], · · · }. Let A ′ be
the set of all attributes A and relations in Θ.

For every entity type et (e.g., person, location, etc.,)
in G, the algorithm, firstly, retrieves the set Het(z̄) of all
matches of the graph pattern Q[{x, x ′}, x.type = x ′.type = et]
in G. Let Get = (Vet, Eet, L, FA) be a subgraph of G, where
Vet contains all et-typed/labelled nodes or the nodes that are
directly connected to the et-nodes. Eet contains a subset of
edges of E and the edges in the subset originate from nodes
in Vet. L and FA are as defined for G. The set Het(z̄) can
easily be derived from Get as the set of all et-node pairs in
Vet. The algorithm then calls Function 1, to find GDDLs in
the set Het(z̄) of matches of Q[x, x ′] for the entity type et.

The processes in Function 1 are almost self-explanatory.
The generation of itemsets and detection of GDDLs at Level-
1 are performed in lines 3 and 4 respectively. In lines 6 to 8,
valid itemsets are built for higher Levels, i.e., i ≥ 2. Line 9
derives the satisfaction set of a valid itemset; and line 10
prunes itemsets with a smaller-than-k support. The detec-
tion of completed itemsets at higher levels is in line 12. The
function toGDD() in Line 14 converts completed itemsets to
distance constraints (following Property 2). Function 1 ter-
minates if the current level has only one itemset left (line 13)
or tests all itemsets of the last level in the lattice.

Function 2 composes Level-1 itemsets and their satisfac-
tion sets. The itemsets with a lower-than-k support are
ignored (Line 5).

Function 3 detects whether an itemset L is completed. If
L is completed, it is removed from the search space (Line 3).
Then, the GDD inference rules (in Table 2) are used to check
implication of L w.r.t. the set Ω of completed itemsets: L is
ignored if implied by Ω (Line 4), and any completed itemset
L ′ ∈ Ω is removed (Line 5) if it is implied by L.

Time Complexity. Given an eid-labelled profiles graph

Algorithm 1 MineGDDLs

Input: eid-labelled graph G; minimum support k; thresholds Θ
Output: set Σ of GDDLs discovered from G
1. Σ = ∅
2. for each entity type et in graph G do
3. retrieve subgraph Get from G & get matches Het of Q
4. Σet = findDep(Het, k, Θ) // a set of GDDLs for type et.
5. Σ.add(Σet)
6. return Σ

Function 1 findDep(Het, k, Θ)

1. satr = sat(Φeid) // text following Def. 1
2. Ω = ∅ // to store completed itemsets
3. build 1st level itemsets L(1) = singleItems(Het, k, Θ)
4. (Ω,L(1)) = detectComplete(Ω,L(1), satr)
5. for i = 2 to i = |A ′| do
6. for itemsets (L1,L2) in L(i − 1)× L(i − 1) do
7. L = L1 ∪ L2
8. if |L| 6= i or item-names in L repeat: continue
9. sat(L) = sat(L1) ∩ sat(L2)

10. if |sat(L)| < k: continue
11. add (L, sat(L)) to L(i).
12. (Ω,L(i)) = detectComplete(Ω,L(i), satr)
13. if |L(i)| = 1: break;
14. return toGDD(Ω)

Function 2 singleItems(Het, k, Θ)

1. L(1) = ∅
2. for each (ρ : th) in Θ (where th=[τ0, ..., τk]) do
3. build index idx(ρ) = {..., val : V̄, ...} for et-nodes in Het
4. calculate sat(ρ[τi]) (i = 0, · · · , k)
5. L(1).add((ρ[τi], sat(ρ[τi]))) if |sat(ρ[τi])| ≥ k.
6. return L(1)

Function 3 detectComplete(Ω,L(i), satr)
1. for (L, sat(L)) in L(i) do
2. if sat(L) ⊆ satr: then
3. remove (L, sat(L)) from L(i)
4. next loop if ∃ L ′ ∈ Ω s.t L ′ < L
5. remove ∀ L ′ ∈ Ω if L < L ′
6. Ω.add(L)
7. return (Ω,L(i))

G, let m be the number of entity types in G; and q, n, s
be the averages of the number of: profiles (nodes), at-
tributes/relations, and distance thresholds per attribute, re-
spectively, in all m subgraphs Get of G.

The retrieval of matches for the pattern Q[{x, x ′}, x.type =
x ′.type], for all m node-types in the worst case is O(|G|). For
a given subgraph Get, the size of all possible LHSs (itemsets)
is (1+ s)n, and generating all (L, sat(L)) pairs in the worst
case isO(q2·(1+s)n). The detection of completed itemsets is
inO(f), where f is the total number of itemsets tested. Thus,
the complexity Algorithm 1 in the worst-case all together is
O(|G|)+O

(
m · (q2 · (1 + s)n + f)

)
≈ O

(
q2 · (1 + s)n + |G|

)
.

6. ENTITY RESOLUTION WITH GDDS
This section presents our procedure for applying the dis-

covered GDDLs to find profiles that refer to the same real-
world entities (linked clusters) in a given profiles graph G
with unknown eids. A näıve approach would be to compute
the distances of attribute/relation values of every pair of
profiles. If the distances satisfy all the distance constraints
of any discovered GDDL, then the two profiles are linked.

The näıve process is, however, expensive due to its ex-
tremely high number of pairwise comparisons. One million

659

Table 4: Blocks for Figure 1(2a)

(ρ, τρ) Blocks
(sex, 0) B11 = {1, 6, 8}, B12 = {2, 9}
(dob, 2) B21 = {1, 3, 8}, B22 = {2, 4, 9}

(height, 0.2) B31 = {1, 3, 8}, B32 = {6, 9}
B41 = {1, 2, 3, 4, 6, 8},

(name, 4) B42 = {1, 3, 6, 8}, B43 = {2, 4, 9}
B44 = {1, 2, 3, 8}

entities are enough to make the calculation last for days and
a real-world application often has much more entities.

To speed up the computation, we design an elaborate
method. Our technique improves the performance using
three pruning strategies. The first, called blocking, groups
profiles into blocks so that linking of profiles across different
blocks is not meaningful. The second tactic involves the use
of blocking graph. This method uses profile pair popularity
in blocks and block sizes as a pruning principle. The third
strategy, called aggregated similarity pruning, relies on the
frequencies and similarities of values.

We highlight the details of each pruning process, show how
GDDLs are used for ER, and then, present our ER algorithm.

Blocking. We group profiles in G into blocks, a block for
each value of an attribute/relation ρ. The blocks are formed
using an index idx(ρ) which is built to support searches
with a 2-gram threshold. For string values, the maximum
distance threshold τρ translates to γ ∈ [τρ+1, 2×τρ] number
of 2-gram differences. Date attributes are handled as strings
and numeric attributes are handled efficiently with sorting.

For a distinct value a of ρ, the block for ρ = a is a set,
Bρ(a) = {v1, · · · , vk}, of profile/node-ids, where for any two
profiles vi and vj in G, the difference between vi.A and vj.A
is no more than (2×τρ) number of 2-grams. The distances of
some profile pairs in Bρ(a) may exceed τρ and these pairs will
be pruned as we go. The blocks of ρ produced in this way
may overlap; and blocks with a single profile are ignored.

By blocking, pairwise comparisons over the whole graph
G have become pairwise comparisons within each block,
and this produces a huge performance gain. As an exam-
ple, consider the (attribute, max-distance-threshold) pairs
of (name, 4), (sex, 0), (dob, 2), and (height, 0.2) for the graph
in Figure 2(a). The resulting blocks are shown in Table 4.

We denote all blocks of every attribute/relation ρi and its
values by B = {Bρi(aij), · · · }.
Pruning with blocking graph. We present our sec-
ond way of improving computation performance: building a
blocking graph [40]. This further reduces the number of can-
didate profile pairs in the graph. A blocking graph of a set of
blocks B is a weighted undirected graph GB = (VB, EB,WB),
where the node set VB is the set of all profiles in B, the undi-
rected edge set EB contains edges (v, v ′) if v and v ′ co-occur
in a block B ∈ B, and WB is a weighting function that as-
signs a weight to every edge in EB. That is:

VB = ∪B∈BB; EB = {(v, v ′) | ∃ B ∈ B s.t. v ∈ B ∧ v ′ ∈ B}. (1)

The weight is the core of pruning with a blocking graph.

Weighting Edges. The weight of an edge (profile pair) is de-
rived from two components: the popularity of the edge in
the number of blocks Cbs, and the sizes of the blocks Arcs
containing the edge. The weight is a combination of the two
components proposed in [40], as the harmonic mean:

W(v, v ′) = 2 · Arcs · Cbs
Arcs + Cbs

, (2)

where v and v ′ are two nodes/profiles. Let Bvv ′ be the set
of all blocks containing (v, v ′), and B ∈ Bvv ′ . Following [40],

1

2

3

46

8

9

0.286
0.727

0.125

0.383

1.0

0.286

0.5

0.1250.286

0.583

0.1250.286

0.816

0.125

0.125

0.363

0.474

0.214

(a) Blocking Graph, GB

1

2

3

46

8

9

(b) Dotted edges pruned
for low weighting, G'B

1

2

3

46

8

9

(c) Dotted edges pruned
by low aggSim, G''B

1

2

3

46

8

9

(d) GDDLs: link thick egdes,
prune dotted edges

Figure 4: Running Example

Arcs = 1/Z1
∑
B∈Bvv ′

1
|B|

represents the intuition that v and

v ′ in small-sized blocks are more likely to be for the same
entity, and Cbs = |Bvv ′ |/Z2 suggests profiles pairs with high
co-occurrence have higher chance of being for the same en-
tity. Z1 and Z2 normalizes the values Arcs, Cbs into [0, 1].

We calculate the weight of every edge in GB and compute
the harmonic mean of all edge weights as the average avW.

Pruning. We prune edges instead of nodes in GB for better
recall as the latter is more impeding of high recall [40,41].

With the calculated average avW, for any edge (v, v ′) ∈
EB, if W(v, v ′) < avW, (v, v ′) is deleted from EB. This is
because: “Experimental evidence with real-world data sets
suggests that the average edge weight provides an efficient
(i.e., requires just one iteration over all edges) as well as
reliable (i.e., low impact on effectiveness) estimation . . . ,
regardless of the underlying weighting scheme” [40].

The blocking graph after this step is denoted by G ′B.

Example 8 (Blocking Graph). Given the list of blocks in
Table 4, the resulting blocking graph is as shown in Fig-
ure 4(a). As an example, the weight of edge (1, 2) is
computed as follows. Arcs(1, 2) = 1

|B41|
+ 1

|B44|
= 1/6 +

1/4;Cbs(1, 2) = |{B41, B44}| = 2; normalized to Arcs(1, 2) =
0.417/1.667 = 0.25;Cbs(1, 2) = 2/6 = 0.333 with their
respective maximum values: 1.667 and 6. ∴ W(1, 2) =
2×0.25×0.333
0.25+0.333

= 0.286. Edges with weight less than the har-
monic mean of all edges (avW = 0.245) are pruned, shown
by dotted lines in Figure 4(b) for the running example.

Pruning with aggregated similarity. The frequencies
of values in a profiles graph G plays an important role in
ER [34]. For example, given the first-names John and Selasi,
the probability of two profiles belonging to the same person
when they share John is lower than when they share Selasi.
This is because, John is a much more commonly used first-
name than Selasi. This pruning method computes an aggre-
gated similarity (with consideration of value-frequency) of
all attributes/relations values for edges (profile pairs) in the
block graph G ′B. The aim is to delete more edges if their
aggregated similarity is less than a threshold.

660

Consider the edge (v, v ′) in G ′B. The aggregated similarity,
denoted by aggSim(v, v ′) ∈ [0,∞], of (v, v ′) is defined as:

aggSim(v, v ′) =
∑
ρ∈P

ðρ(v, v ′) · ℘ρ(v, v ′), (3)

where P is the set of common attributes and relations of
v and v ′, ðρ(v, v ′) is a similarity metric on ρ: ðρ(v, v ′) =
τρ−δρ(v,v

′)
τρ

, where τρ is the maximal distance threshold of

ρ and δρ(v, v
′) returns the distance of (v, v ′) on ρ as defined

before; and ℘ρ(v, v
′) = 1

2
(pr(v.ρ) + pr(v ′.ρ)) is the average

of the probabilities of the values of (v, v ′) on ρ.
The probability pr(v.ρ) of a ρ-value v.ρ is modelled by

a variation of the Sigmoid function using the frequency
k ∈ N (calculated via the index idx(ρ)) of the value. Specifi-
cally, pr(v.ρ) = 1/(1 + exp(a · k − b)), where a, b control the
steepness of the decay curve and its mid-point respectively.
Our empirical results (omitted due to page limit) show (a, b)
taking values (0.1, 60) respectively gives the best estimates
for our application. For example, pr(k = 10) = 0.993,
pr(k = 60) = 0.5 and pr(k = 100) = 0.018.

The aggregated similarity aggSim(v, v ′) is calculated for
all edges in the reduced blocking graph G ′B. At the same
time, the calculated distance δρ(v, v

′) is stored in a hash
table T(key, δρ(v, v

′)) where key = v.ρ+‘–’+v ′.ρ. T will be
used in applying GDDLs to find linked clusters later on.

We define the minimum aggSim(v, v ′) threshold, ϑ = 1:
reflecting the intuition that two profiles are for the same
entity if and only if their aggSim is equivalent to at least
one fully matching value on some attributes/relationships.

Any edge (v, v ′) with aggSim(v, v ′) < ϑ is pruned from
G ′B. We denote the updated blocking graph after this step
by G ′′B . Figure 4(c) shows the edges pruned by minimum ag-
gregated similarity in dotted lines for our running example.

Linking with GDDLs. This is a crucial and the last step
in our ER solution: classifying profile pairs as linked or not-
linked. The link decision is determined by a set Σ of GDDLs
learned from eid-labelled graph in Section 5.

Algorithm 2 Certus

Input: Profiles graph G without eid’s, set Σ of GDDLs, aggSim
threshold ϑ

Output: Linked entity profiles graph EG.
1. EG := ∅, hash table T = ∅
2. construct indexes idx(ρ) (∀ρ)
3. construct block set B = {Bρ(a)} (∀ρ and ∀a ∈ dom(ρ))

4. construct blocking graph GB = (VB, EB,WB) (Eq 1,2)
5. compute harmonic mean avW of all edges EB as average
6. prune edge e ∈ EB if W(e) < avW
7. for each edge e = (v, v ′) ∈ EB do
8. compute d = δρ(v, v ′) (∀ρ)
9. add to T(v.ρ+‘–’+v ′.ρ, d)

10. compute sim = aggSim(v, v ′) (Eq 3)
11. if sim < ϑ: delete e from EB, goto Line 7;
12. for each σ ∈ Σ do
13. for each constraint ρ[τ] ∈ σ.ΦX do
14. if (T(v.ρ+‘–’+v ′.ρ) > τ): goto Line 7
15. add (v, v ′) to EG
16. return EG

A profile pair with edge (v, v ′) in G ′′B is linked if it satisfies
a GDDL σ ∈ Σ. For a GDDL σ = (Q[x, x ′], ΦX → Φeid) ∈ Σ,
the satisfaction test of the distance constraint δρ(x, x

′) ≤ τ
in ΦX is instant because the distance δρ(v, v

′) can be re-
trieved from the hash table T . If (v, v ′) satisfies all distance
constraints in ΦX of σ, the pair is linked and is added to

Table 5: Summary of Datasets

DS #A #P #TM #PP %N

A

Cora 12 1,875 17,184 296,089 58%
Rest 4 864 112 3,693 0%
DBAC 4 4,510 2,224 344,198 12%
DBSc 4 66,879 5,347 680,542 11%
PLR 112 1,028,762 4,071 21,041,359 25%

Cora 9 1,875 14,499 184,987 50%

B
AmGo 4 4,589 1,300 97,009 23%
DBSc 4 66,879 5,347 112,839 11%

DS: dataset; A: attributes; P: profiles; TM: true matching pairs;

PP: profile pairs; N: avg. NULLs per attribute; Rest: Restaurant;

DBSc: DBLP-Scholar; DBAC: DBLP-ACM; AmGo: Amazon-Google.

the output. Figure 4(d) shows the linked (thick lines) and
unlinked (dotted lines) profile pairs in our running example.

The ER Algorithm. Our ER algorithm, called Certus, is
presented in Algorithm 2. Lines 2 & 3 construct the blocks
following the ‘blocking’ subsection; lines 4–6 generate and
prune the blocking graph; and lines 7–11 cover aggregated
similarity pruning. In line 9, the calculated distance is stored
in the hash table T . In line 14, the hash table is retrieved for
GDDL σ test. If the loop in line 13 completes, then a profile
pair (v, v ′) satisfies σ and stored in EG as linked pair.

Time Complexity. The time complexity of Algorithm 2
is O(|EB | · c · |Σ|): |EB | is the number of edges in the blocking
graph; c is the average number of distance constraints in a
GDDL and |Σ| is the number of GDDLs. |EB | is much larger
than c and |Σ|. Let k = max(|B| ∀B ∈ B). Then |EB | can be
estimated as |EB | ≈ k× k× (|VB |/k).

7. EMPIRICAL EVALUATION
This section covers the evaluation of the proposed GDDL

discovery algorithm and the GDDL-based ER technique Cer-
tus, in subsections 7.1 and 7.2 respectively. All proposed
algorithms in this work are implemented in Java; and the
experiments were run on a 2.5GHz Intel Core i7 processor
computer with 16GB of memory running macOS H. Sierra.

Datasets. We employ real-world ER benchmark datasets
with different sizes and features captured in Table 5 for the
experiments. All the datasets except PLR are open-source.
The PLR dataset is a graph-modelled data consisting of entity
profiles from a proprietary relational database and extracts
of mentioned entities and their relations from textual doc-
uments. The Rest [3] dataset consists of records of restau-
rants information. Cora [1], DBAC [2] and DBSc [2] datasets
are collections of citation references to scientific research pa-
pers from different on-line bibliographic portals; and AmGo [2]
is a collection of products information from two online shops.

The datasets in Table 5 are in two groups: A & B. Group
A datasets are used for evaluating our proposals, whereas
those in B are specially generated following the descriptions
in [46, 53] for a comparison to the rule-based ER solutions
in [46, 53]. #TM represents the number of true matches
recorded in the ground truth; and #PP represents the num-
ber of edges (profile pairs) in our initial blocking graphs
(added by us, not part of the descriptions of the datasets).

Similarity Functions. In principle, any similarity and/or
distance metric (e.g., edit distance, cosine similarity, q-
grams [27], etc.) can be employed. However, we remark that
the choices of functions for evaluating the closeness of values
should be based on both the domain of attributes/relations
and the application. For example, the PLR dataset is from
law enforcement application domain. Thus, to adequately

661

0

20

40

60

80

100

0 2000 4000 6000 8000

Ti
m

e
(s

)

Number of tuple pairs (x1,000)

Time vrs. No. of tuples

DBLP-ACM DBLP-Scholar

Figure 5: No. of Pairs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

2 3 4 5 6

Ti
m

e
(s

)

Number of Attributes

Time vrs. No. of Attributes (Cora)

1 DF 2 DFs 3 DFs

Figure 6: Cora §(A)

0
1
2
3
4
5
6
7
8
9
10
11

2 3 4 5 6

Ti
m

e
(s

)

Number of Attributes

Time vrs. No. of Attributes (PLR)

1 DF 2 DFs 3 DFs

Figure 7: PLR §(A)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 GDDs

A
cc

ur
ac

y

Similarity Threshold / GDDs

Restaurant

Precision Recall Fscore

Figure 8: Rest Acc.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 GDDs

A
cc

ur
ac

y

Similarity Threshold / GDDs

Cora

Precision Recall Fscore

Figure 9: Cora Acc.

compute the similarity for person entity profiles, it is crucial
to design custom metrics capable of capturing the closeness
of various disparate presentation of names that may arise
both unintentionally (e.g., due to errors, natural variations,
etc.) and intentionally (e.g., for fraudulent purposes).

7.1 GDD Discovery Evaluation
The discovery of GDDLs requires the existence of labelled

data, and we sampled from the ground truth of each of the
open-source datasets to learn their respective rules. In the
absence of labelled data, (e.g., the case of the PLR dataset),
we generate eid-labels using mass power (crowd-sourcing) by
providing experts profile pairs with various ranges of aggre-
gated similarity for labelling.

In the following, we perform experiments to examine
the performance of the discovery algorithm w.r.t.: (a) the
size of eid-labelled data (Exp-1a); and (b) number of at-
tributes/relations and distance functions (Exp-1b). Then,
we show examples of GDDLs discovered in the datasets.

Exp-1a. In this experiment, we test the time performance
of the GDDL discovery algorithm on varying instance sizes
of eid-labelled data. We sample up to 4, 000 entity profiles
(i.e., ≈ 8 million possible pairs) from both DBAC and DBSc

datasets for this experiment. Figure 5 captures the results
of how long it takes the discovery algorithm to find a non-
redundant set of GDDLs: the time (in seconds) is presented
on the vertical axis against varying sample sizes of profiles
on the horizontal axis. The results show linear performance
over the range of instance sizes tested. This reflects the
effectiveness of the pruning rules designed in Section 4.2.

Exp-1b. In this set of experiments, we examine the perfor-
mance of the discovery algorithm w.r.t. the number of at-
tributes and distance functions. The search space of possible
GDDLs depends on both the number of attributes and dis-
tance constraints. More precisely, the relation between the
search space §(A ′) of possible GDDLs for a sample dataset
with n attributes/relations, each with an average of s distant
constraints is given by: §(A ′) = (1 + s)n.

We sample a projection of 2 ≤ n ≤ 6 attributes from the
Cora and the PLR datasets with a fixed sample size of 100
profiles for this test. The results are presented in Figures 6
and 7 for Cora and PLR respectively. Time (in seconds) is
on the y-axes and the number of attributes are on the x-
axes. The plots show characteristics for s = [1, 2, 3] distance
function per attribute. The time performance character-
istics of the GDDL discovery algorithm, although efficient,
follows the exponential search space relation in the §(A ′)-
Equation above as expected. This reveals the extra com-
plexity of GDDL discovery as opposed to other discoveries,
e.g., FDs [43], CFDs [22] and GFDs [23] which involve only
the equality function (i.e., s = 1).

Examples of discovered GDDLs. We present an example
of GDDLs discovered in each of the datasets in Table 6. For

Table 6: Sample GDDLs Found
Data Itemset of ΦX of GDDL

PLR {name[1], dob[2], lives at[0]}
Rest {name[2], address[2]}
Cora {author[2], venue[0], pages[2]}
DBAC {title[1], year[0]}
DBSc {title[2]}
AmGo {title[2], desc[2],manu[2], price[0]}

brevity, we show
only itemset
mappings of
the LHSs. The
example PLR

GDDL states that
for any person

profile pair, if
their name, dob differences are within 1, 2 respectively,
and the profile pair has the lives at relation with the same
location profile (i.e., lives at[0]) then, they refer to the
same person in the real-world. Note that this dependency
can be specified with pattern Q4[x4, x5, y3] in Figure 2(b)
where l2 = lives at using the LHS ΦX = {name[1], dob[2]}.

7.2 Evaluation of GDDs in ER
Goals & Takeaways. The objectives of these sets of ex-
periments are to investigate: (a) the accuracy performance
of our ER technique Certus versus merely using aggregate
similarity thresholds (Exp-2a); (b) the impact of the num-
ber of GDDLs on the accuracy results (Exp-2b); (c) the time
efficiency of Certus w.r.t. increasing number of GDDLs (Exp-
2c); and lastly, (d) the performance of Certus as compared to
existing state-of-the-art rule-based ER methods (Exp-2d).

A summary of the takeaways in the order of the above
objectives are as follow. First, the use of GDDLs in Certus
improve the precision of ER results without significant sacri-
fice of recall. Second, the accuracy of Certus’ results increase
with the number of GDDLs employed. Certus is efficient and
scales well with both increasing data size and GDDLs. Last
and not least, Certus consistently outperforms the rule-based
ER method in [53], and performs generally better than all 3
methods of the current best rule-based ER system in [46].

Accuracy Metrics. We utilize the traditional metric of
precision (P), recall (R), and f-measure (F1) to evaluate the
correctness, completeness, and the overall accuracy of the
ER results respectively. The definitions of the metrics are as
follow: P = |TP|/|FM|, R = |TP|/|TM| and F1 = 2PR/(P + R),
where |TP| is the total number of correct matches; |FM| is
the total number of matches found; and |TM| is the total
number of true matches in the data.

Exp-2a. In this set of experiments, we investigate the ben-
efit of including GDDLs in the ER match decision criteria
(as in Certus) over just setting strict similarity thresholds.

For each dataset, we perform two sets of experiments:
(a) using a minimum aggregated similarity threshold (ϑ ∈
[1, 5]) as the matching decision criterion; and (b) using our
approach, Certus, which employs GDDLs as matching rules.
We randomly sample up to 100 eid-labelled profiles from

662

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 GDDs

A
cc

ur
ac

y

Similarity Threshold / GDDs

DBLP-ACM

Precision Recall Fscore

Figure 10: DBAC Acc.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 GDDs

A
cc

ur
ac

y

Similarity Threshold / GDDs

DBLP-Scholar

Precision Recall Fscore

Figure 11: DBSc Acc.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 GDDs

A
cc

ur
ac

y

Similarity Threshold / GDDs

PLR

Precision Recall Fscore

Figure 12: PLR Acc.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
cc

ur
ac

y

Number of GDDs

Accuracy vs. No. of GDDs
(DBLP-ACM)

Precision Recall Fscore

Figure 13: DBAC Imp.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
cc

ur
ac

y

Number of GDDs

Accuracy vs. No. of GDDs
(DBLP-Scholar)

Precision Recall Fscore

Figure 14: DBSc Imp.

each dataset for GDDL discovery for Certus; and use no more
than 3 of the discovered GDDLs as record-matching rules.

Figures 8 – 12 present bar charts showing the accuracy
evaluations for the Rest, Cora, DBAC, DBSc, and PLR datasets
respectively. In each plot, the x-axes represent the two sce-
narios above: values 1− 5 correspond to case (a) and GDDs
correspond to (b). The plots show the values of P, R and
F1 for the two cases for the datasets, and case (b) which is
Certus involving GDDLs (last group of bars in each plot) is
consistently better for all the datasets on all three metrics.

For each bar chart in Figures 8 – 12, it can be seen that, in-
creasing the minimum aggregated similarity threshold from
1 to 5 improves precision (dark-shaded bars) at a significant
cost of recall (non-shaded bars). It is however noteworthy
that, Certus (i.e., the GDD group of bars) achieves the high-
est precision without any significant compromise of recall in
each plot. Indeed, the recall of Certus for each dataset is
comparable to the best of case (a) when aggregated similar-
ity is 1, yet with a considerably higher precision.

Missing attributes or null-values affect recall. This is be-
cause, attributes with missing values do not form GDDLs
during discovery, and consequently, some true matching pro-
file pairs may not be resolved due to absence of rules to
confirm their match. For instance, the Cora dataset has the
highest null-values in Table 5, hence, records the lowest re-
call (cf. Figure 9). The performance of Certus is, however,
consistent on both semi-structured data (in Figure 12) and
structured data (in Figures 8 –11).

The DBAC dataset deviates from the other datasets in two
ways as Figure 10 shows. First, the effect of increasing sim-
ilarity threshold has a lower pay-off than in other datasets.
Second and more important, the use of GDDLs is not as effec-
tive as seen in the other datasets (i.e., it is the only dataset
upon which Certus records precision below 85%).

We therefore probe into DBAC to unearth the reasons for
the above-mentioned anomalies by examining its ground-
truth, which has one-to-one mappings of duplicates. The
citation reference ‘journals/sigmod/SnodgrassGIMSU98’, for
example, is from the DBLP-portion of the dataset, and
its one and only correct match is the ACM citation refer-
ence ‘290599’ shown in Figure 15 (a) and (b) respectively.
However, Certus finds two more matches in addition to the
only documented true match: ‘journals/sigmod/Snodgrass-
GIMSU98a’ and ‘390004’, shown in Figure 15 (c) and (d).

A cross-check of these results in the real DBLP and ACM
on-line catalogues prove that the ground truth is correct.
Nonetheless, there is missing information that helps to dis-
ambiguate these four citation references in the real-world:
page numbers. Since the DBAC dataset does not include
the page numbers of the citations, it is impossible for even
human experts to resolve these ambiguities (e.g., in Fig-
ure 15). Interestingly, this incident abounds in the DBAC

ID
TITLE
AUTHORS
VENUE
YEAR

journals/sigmod/SnodgrassGIMSU98
Chair's Message
Richard T. Snodgrass
SIGMOD Record
1998

290599
Reminiscences on influential papers
Richard Snodgrass
ACM SIGMOD Record
1998

journals/sigmod/SnodgrassGIMSU98a
Reminiscences on influential papers
Richard T. Snodgrass
SIGMOD Record
1998

390004
Reminiscences in influential papers
Richard Snodgrass
ACM SIGMOD Record
1998

ID
TITLE
AUTHORS
VENUE
YEAR

DBLP ACM

(a) (b)

(c) (d)

Figure 15: Some interesting ‘false-positves’ in DBAC dataset

dataset, hence, the relatively ‘poor’ precision of Certus on
this dataset. In other words, we follow the ground truth to
the letter, labelling all matches outside it as false-positives.

Exp-2b. In this experiment, we investigate the impact of
the number of GDDLs used by Certus on the three accuracy
metrics. For this evaluation, we report the empirical results
for only the ‘worse-performing’ dataset DBAC and its coun-
terpart DBSc, due to limits on number of pages, to show
how their accuracies improve with more GDDLs. The results
of these experiments are shown in Figures 13 & 14. On
the vertical axes are the accuracy values, and the increasing
number of GDDLs are on the horizontal axes. It is distinctly
clear from the plots that more GDDLs indeed improve the
values of all three accuracy metrics for both datasets. How-
ever, for the DBAC results in Figure 13, in particular, given
the discussed phenomenon, Certus finds multiple matches
like those in Figure 15 which adversely impacts precision,
although it improves with the number of GDDLs used. The
recall, on the other hand, is near perfect from 3 GDDLs on-
wards, since each duplicate has only one true match which
are almost always found, albeit in addition to few others.

Exp-2c. We test the efficiency of our ER solution and exam-
ine the computational overhead involved with using GDDLs

0

60

120

180

240

300

1 201 401 601 801 1001

ER
 T

im
e

(m
in

)

Number of Entity Profiles (x1,000)

Time vrs. No. of Entity Profiles

ST 2GDDs

4GDDs 8GDDs

Figure 16: ER Time

as part of the matching deci-
sion. For this test, we use the
PLR dataset, as it is the largest,
using up to the full database of
a million profiles; and vary the
number of GDDLs used in the
match decision of Certus. Our
findings for this evaluation are
in Figure 16, showing four case:
the baseline with no GDDLs;
and when 2, 4 and 8 GDDLs are
used. The ER time (in min-

utes) is given on the vertical axis versus an increasing num-
ber of entity profiles from 1K to 1M. We observe a linear
time performance and low extra-cost of using GDDLs.

Exp-2d. Here, we compare the performance of Certus to
the state-of-the-art rule-based ER methods; and present the
results in Table 7. The current best rule-based ER solutions

663

Table 7: Comparison to published results

Data
F1(%)

SIFI [53] RS1 [46] RS2 [46] RS-Cons. [46] Certus
Cora 61.50 82.89 86.40 92.23 92.31
DBSc 89.50 88.21 90.83 92.58 91.90
AmGo 61.90 56.70 61.45 63.78 65.81

in the literature are SIFI [53] and RS-Consensus [46]. Given
a user/expert-provided Disjunctive Normal Forms (DNF),
SIFI attempts to find the best similarity functions and their
associated thresholds of similarity for ER. RS-Consensus, on
the other hand, employs the program synthesis tool for au-
tomatically learning matching rules in the form of General
Boolean Formulae (GBF). The advantages of the latter ap-
proach over the former are: GBFs are more expressive than
DNFs, and there is no need for users to specify DNFs.

In contrast to these approaches, we define, mine and uti-
lize a new class of data dependencies, i.e. GDDLs, to per-
form ER. GDDLs by definition are more expressive and able
to capture the semantics of both GBFs and NDFs used in
RS-Consensus and SIFI respectively. Furthermore, Certus is
schema-agnostic and can be used in both structured and
semi-structured data.

For a fair comparison of the accuracy of Certus to those
of the above-mentioned works, we generate comparable
datasets following the procedures described in [46, 53], i.e.,
group B datasets in Table 5. Furthermore, we follow the
status quo in [46] and perform a 5-fold cross-validation. We
divided each dataset into five equal portions/folds randomly,
and performed five experiments. At every instance of the
five experiments, four folds were used for GDDL discovery
while the remaining one of the five folds is set aside as the
test set. Moreover, we calibrate Certus to match the settings
of the second method of [46] (i.e., RS2 in Table 7) by ensur-
ing that the set of GDDLs used by Certus for each dataset has
no more than a total of 15 distinct distance constraints—we
refer interested readers to [46] for details.

The average of all the F1 scores in the five experiments are
reported alongside the published results in [46] in Table 7.
It is noteworthy that our ER method, Certus, with settings
equivalent to RS2 consistently outperforms SIFI and 2 (RS1,
RS2) of the 3 techniques proposed in [46]; and performs
generally better than the best method, RS-Consensus, in [46].

We remark that, a direct comparison of Certus to non-
rule-based ER methods is not useful. However, it suffices
to state the performance of Certus on DBSc, for example, is
close to that reported by the current best non-rule-based
ER solution [37] in the literature (i.e., 94.7). The ER tech-
nique in [37] uses deep learning (DL). DL methods require
strenuous training of models, involving complex tuning of
parameters. Moreover, it is difficult to interpret DL models
and/or encode domain knowledge in them.

8. RELATED WORK
Our work is at the cutting-edge of different research fields:

graph constraints R1, learning constraints R2, and ER R3.

R1. The design of formal constraints for graph data is gain-
ing increasing research attention in recent years. Some of
the pioneering works, e.g., [35, 57], focus on the definition
of FDs and CFDs for RDF graphs for data transformation
and anomaly detection. More related graph constraints to
GDDs are GKeys [18], GFDs [25], and GEDs [24]. GKeys
are a class of keys for graphs based on isomorphic graph
properties for identifying unique entities in graphs; whereas

GFDs impose attribute-value dependencies (like FDs and
CFDs) upon topological structures in graphs. GEDs unify
and subsume the semantics of both GFDs and GKeys. In
this work, we extend GEDs as GDDs with distance functions
and introduce a new type of constraints on relation labels.

R2. The discovery of data dependencies is a well-studied
problem in the relational data. The discovery of FDs has,
particularly, received significant resarch attention over last
few decades with a plethora of solutions proposed in the lit-
erature (cf. [36] and [43] for a recent review and comparison
of approaches, respectively). Notable works on the discov-
ery of CFDs and other extensions of FDs can be found in a
new survey in [11]. The discovery of matching rules studied
in [48, 51, 54] are the closest to the GDDL discovery prob-
lem. However, all previous works are in the relational data
only; and do not include the discovery of graph patterns,
distance/similarity constraints, and relationships. The exis-
tence of labelled data is the centrepiece for all matching rule
learners. In the absence of good labelled data, active learn-
ing [28] and crowd-sourcing [26,52] methods can be used to
generate them. This, however, is a different line of work.

R3. Entity resolution is a well-known database problem that
has attracted large volumes of contributions in the litera-
ture (cf. [38] for a comprehensive lecture on the topic). In
general, works on ER can be broadly categorised as: (a)
techniques that improve efficiency of ER (see [42] for a com-
parison of these approaches); (b) works that focus on accu-
racy of the ER results (cf. [32] for a thorough evaluation of
methods); and (c) those that trade-off between (a) and (b),
e.g., [6, 13, 44, 55]. This work belongs to group (b) above.
In this category, some techniques exploit diverse metrics to
compute similarity of profile pairs based on their attributes-
values, e.g., [29,46,53]; others exploit the inherent relation-
ships amongst entity pairs, e.g., [12, 16, 30, 31]; and some
rely on probabilistics models [47, 56]. Our work employs
both the attribute and relational similarities to match pro-
file pairs through the use of GDDs. In fact, the graphs pat-
terns and distance constraints of GDDs respectively encode
the relation and attribute similarity among profile pairs.

9. CONCLUSION
In this work, we presented a new effective solution to ER

in graph data. This involves the proposal of a novel class
of dependencies, GDDs, which are more expressive and sub-
sume GEDs, relational MDs and CMDs. We studied the dis-
covery of GDDs in duplicate-labelled graph and developed
an algorithm for mining a non-redundant set of GDDs. Moti-
vated by the challenge of setting the right bounds of similar-
ity for rule-based ER methods, we showed how GDDs can im-
prove the precision of ER results without significant compro-
mise of recall. We performed experiments on five real-world
benchmark datasets and a proprietary dataset to demon-
strate the effectiveness, and efficiency of both the GDD dis-
covery algorithm and the ER solution, Certus. The empirical
results showed accuracy gains of Certus, and revealed some
interesting and previously unreported phenomenon in the
ground truth of one of the benchmark datasets. Further-
more, the results showed that Certus attains accuracy per-
formances comparable to the current best ER techniques.

Acknowledgments. This work is supported by Data to
Decisions CRC—ILE/ELR Project DC160031—funded by
the Australian Government’s CRC Programme.

664

10. REFERENCES
[1] Cora dataset. http://www.cs.umass.edu/~mccallum/

data/cora-refs.tar.gz. Last accessed in June 2018.

[2] Dblp-acm & dblp-scholar datasets.
https://dbs.uni-leipzig.de/de/research/

projects/object_matching/fever/benchmark_

datasets_for_entity_resolution. Last accessed in
June 2018.

[3] Restaurant dataset.
http://www.cs.utexas.edu/users/ml/riddle/data.
Last accessed in June 2018.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[6] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra.
Progressive approach to relational entity resolution.
PVLDB, 7(11):999–1010, 2014.

[7] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
Seoul, Korea, September 12-15, 2006, pages 918–929,
2006.

[8] W. W. Armstrong and C. Deobel. Decompositions and
functional dependencies in relations. ACM Trans.
Database Syst., 5(4):404–430, Dec. 1980.

[9] C. Beeri and M. Y. Vardi. The implication problem
for data dependencies. In Automata, Languages and
Programming, 8th Colloquium, Acre (Akko), Israel,
July 13-17, 1981, Proceedings, pages 73–85, 1981.

[10] P. S. G. C., C. Sun, K. G. K., H. Zhang, F. Yang,
N. Rampalli, S. Prasad, E. Arcaute, G. Krishnan,
R. Deep, V. Raghavendra, and A. Doan. Why big
data industrial systems need rules and what we can do
about it. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 265–276, 2015.

[11] L. Caruccio, V. Deufemia, and G. Polese. Relaxed
functional dependencies - A survey of approaches.
IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016.

[12] Z. Chen, D. V. Kalashnikov, and S. Mehrotra.
Exploiting context analysis for combining multiple
entity resolution systems. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2009, Providence, Rhode Island,
USA, June 29 - July 2, 2009, pages 207–218, 2009.

[13] R. Cheng, E. Lo, X. S. Yang, M. Luk, X. Li, and
X. Xie. Explore or exploit? effective strategies for
disambiguating large databases. PVLDB,
3(1):815–825, 2010.

[14] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based
information extraction is dead! long live rule-based
information extraction systems! In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 827–832, 2013.

[15] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
PVLDB, 9(4):360–371, 2015.

[16] X. Dong, A. Y. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore,
Maryland, USA, June 14-16, 2005, pages 85–96, 2005.

[17] W. Fan. Dependencies revisited for improving data
quality. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2008, June 9-11, 2008,
Vancouver, BC, Canada, pages 159–170, 2008.

[18] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for
graphs. PVLDB, 8(12):1590–1601, 2015.

[19] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic
constraints for record matching. VLDB J.,
20(4):495–520, 2011.

[20] W. Fan and F. Geerts. Foundations of Data Quality
Management. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2012.

[21] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing
data inconsistencies. ACM Trans. Database Syst.,
33(2):6:1–6:48, 2008.

[22] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Trans. on
Knowl. and Data Eng., 23(5):683–698, May 2011.

[23] W. Fan, C. Hu, X. Liu, and P. Lu. Discovering graph
functional dependencies. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 427–439, 2018.

[24] W. Fan and P. Lu. Dependencies for graphs. In
Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2017, Chicago, IL, USA,
May 14-19, 2017, pages 403–416, 2017.

[25] W. Fan, Y. Wu, and J. Xu. Functional dependencies
for graphs. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1843–1857, 2016.

[26] D. Firmani, B. Saha, and D. Srivastava. Online entity
resolution using an oracle. PVLDB, 9(5):384–395,
2016.

[27] C. Giannella and E. Robertson. On approximation
measures for functional dependencies. Information
Systems, 29(6):483 – 507, 2004. ADBIS 2002:
Advances in Databases and Information Systems.

[28] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone:
hands-off crowdsourcing for entity matching. In
International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 601–612, 2014.

[29] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May
22-25, 1995., pages 127–138, 1995.

665

[30] D. V. Kalashnikov and S. Mehrotra.
Domain-independent data cleaning via analysis of
entity-relationship graph. ACM Trans. Database Syst.,
31(2):716–767, 2006.

[31] D. V. Kalashnikov, S. Mehrotra, and Z. Chen.
Exploiting relationships for domain-independent data
cleaning. In Proceedings of the 2005 SIAM
International Conference on Data Mining, SDM 2005,
Newport Beach, CA, USA, April 21-23, 2005, pages
262–273, 2005.

[32] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB, 3(1):484–493, 2010.

[33] S. Kwashie, J. Liu, J. Li, and F. Ye. Conditional
differential dependencies (cdds). In Advances in
Databases and Information Systems - 19th East
European Conference, ADBIS 2015, Poitiers, France,
September 8-11, 2015, Proceedings, pages 3–17, 2015.

[34] D. Lange and F. Naumann. Frequency-aware
similarity measures: why arnold schwarzenegger is
always a duplicate. In Proceedings of the 20th ACM
Conference on Information and Knowledge
Management, CIKM 2011, Glasgow, United Kingdom,
October 24-28, 2011, pages 243–248, 2011.

[35] G. Lausen, M. Meier, and M. Schmidt. Sparqling
constraints for RDF. In EDBT 2008, pages 499–509,
2008.

[36] J. Liu, J. Li, C. Liu, and Y. Chen. Discover
dependencies from data - A review. IEEE Trans.
Knowl. Data Eng., 24(2):251–264, 2012.

[37] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and
V. Raghavendra. Deep learning for entity matching: A
design space exploration. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 19–34, 2018.

[38] F. Naumann and M. Herschel. An Introduction to
Duplicate Detection. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

[39] F. Panahi, W. Wu, A. Doan, and J. F. Naughton.
Towards interactive debugging of rule-based entity
matching. In Proceedings of the 20th International
Conference on Extending Database Technology, EDBT
2017, Venice, Italy, March 21-24, 2017., pages
354–365, 2017.

[40] G. Papadakis, G. Koutrika, T. Palpanas, and
W. Nejdl. Meta-blocking: Taking entity resolutionto
the next level. IEEE Trans. Knowl. Data Eng.,
26(8):1946–1960, 2014.

[41] G. Papadakis, G. Papastefanatos, T. Palpanas, and
M. Koubarakis. Scaling entity resolution to large,
heterogeneous data with enhanced meta-blocking. In
Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016,
Bordeaux, France, March 15-16, 2016, Bordeaux,
France, March 15-16, 2016., pages 221–232, 2016.

[42] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas.
Comparative analysis of approximate blocking
techniques for entity resolution. PVLDB,
9(9):684–695, 2016.

[43] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. PVLDB,
8(10):1082–1093, 2015.

[44] T. Papenbrock, A. Heise, and F. Naumann.
Progressive duplicate detection. IEEE Trans. Knowl.
Data Eng., 27(5):1316–1329, 2015.

[45] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In Proceedings of
the 2016 International Conference on Management of
Data, SIGMOD ’16, pages 821–833, New York, NY,
USA, 2016. ACM.

[46] R. Singh, V. V. Meduri, A. K. Elmagarmid,
S. Madden, P. Papotti, J. Quiané-Ruiz,
A. Solar-Lezama, and N. Tang. Synthesizing entity
matching rules by examples. PVLDB, 11(2):189–202,
2017.

[47] P. Singla and P. M. Domingos. Entity resolution with
markov logic. In Proceedings of the 6th IEEE
International Conference on Data Mining (ICDM
2006), 18-22 December 2006, Hong Kong, China,
pages 572–582, 2006.

[48] S. Song and L. Chen. Discovering matching
dependencies. In Proceedings of the 18th ACM
Conference on Information and Knowledge
Management, CIKM ’09, pages 1421–1424, New York,
NY, USA, 2009. ACM.

[49] S. Song and L. Chen. Differential dependencies:
Reasoning and discovery. ACM Trans. Database Syst.,
36(3):16:1–16:41, Aug. 2011.

[50] S. Song and L. Chen. Efficient discovery of similarity
constraints for matching dependencies. Data Knowl.
Eng., 87:146–166, 2013.

[51] S. Song, L. Chen, and H. Cheng. On concise set of
relative candidate keys. PVLDB, 7(12):1179–1190,
2014.

[52] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: Crowdsourcing entity resolution. PVLDB,
5(11):1483–1494, 2012.

[53] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity
matching: How similar is similar. PVLDB,
4(10):622–633, 2011.

[54] Y. Wang, S. Song, L. Chen, J. X. Yu, and H. Cheng.
Discovering conditional matching rules. ACM Trans.
Knowl. Discov. Data, 11(4):46:1–46:38, June 2017.

[55] S. E. Whang, D. Marmaros, and H. Garcia-Molina.
Pay-as-you-go entity resolution. IEEE Trans. Knowl.
Data Eng., 25(5):1111–1124, 2013.

[56] T. Ye and H. W. Lauw. Structural constraints for
multipartite entity resolution with markov logic
network. In Proceedings of the 24th ACM International
Conference on Information and Knowledge
Management, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015, pages 1691–1694, 2015.

[57] Y. Yu and J. Heflin. Extending functional dependency
to detect abnormal data in RDF graphs. In The
Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part I, pages 794–809, 2011.

666

