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ABSTRACT
Center-based clustering is a fundamental primitive for data
analysis and becomes very challenging for large datasets. In
this paper, we focus on the popular k-center variant which,
given a set S of points from some metric space and a pa-
rameter k < |S|, requires to identify a subset of k centers in
S minimizing the maximum distance of any point of S from
its closest center. A more general formulation, introduced
to deal with noisy datasets, features a further parameter z
and allows up to z points of S (outliers) to be disregarded
when computing the maximum distance from the centers.
We present coreset-based 2-round MapReduce algorithms
for the above two formulations of the problem, and a 1-pass
Streaming algorithm for the case with outliers. For any fixed
ε > 0, the algorithms yield solutions whose approximation
ratios are a mere additive term ε away from those achievable
by the best known polynomial-time sequential algorithms, a
result that substantially improves upon the state of the art.
Our algorithms are rather simple and adapt to the intrinsic
complexity of the dataset, captured by the doubling dimen-
sion D of the metric space. Specifically, our analysis shows
that the algorithms become very space-efficient for the im-
portant case of small (constant) D. These theoretical results
are complemented with a set of experiments on real-world
and synthetic datasets of up to over a billion points, which
show that our algorithms yield better quality solutions over
the state of the art while featuring excellent scalability, and
that they also lend themselves to sequential implementations
much faster than existing ones.
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1. INTRODUCTION
Center-based clustering is a fundamental unsupervised
learning primitive for data management, with applications
in a variety of domains such as database search, bioinformat-
ics, pattern recognition, networking, facility location, and
many more [22]. Its general goal is to partition a set of data
items into groups according to a notion of similarity, cap-
tured by closeness to suitably chosen group representatives,
called centers. There is an ample and well-established liter-
ature on sequential strategies for different instantiations of
center-based clustering [7]. However, the explosive growth
of data that needs to be processed often rules out the use of
these strategies which are efficient on small-sized datasets,
but impractical on large ones. Therefore, it is of paramount
importance to devise efficient clustering strategies tailored
to the typical computational frameworks for big data pro-
cessing, such as MapReduce and Streaming [26].

In this paper, we focus on the k-center problem, formally
defined as follows. Given a set S of points in a metric space
and a positive integer k < |S|, find a subset T ⊆ S of k
points, called centers, so that the maximum distance be-
tween any point of S to its closest center in T is minimized.
(Note that the association of each point to the closest center
naturally defines a clustering of S.) Along with k-median
and k-means, which require to minimize, respectively, the
sum of all distances and all square distances to the closest
centers, k-center is a very popular instantiation of center-
based clustering which has recently proved a pivotal prim-
itive for data and graph analytics [25, 5, 13, 14, 15, 10],
and whose efficient solution in the realm of big data has
attracted a lot of attention in the literature [17, 28, 20, 27].

The k-center problem is NP-hard [21], therefore one has
to settle for approximate solutions. Also, since its objec-
tive function involves a maximum, the solution is at risk of
being severely influenced by a few “distant” points, called
outliers. In fact, the presence of outliers is inherent in many
datasets, since these points are often artifacts of data collec-
tion, or represent noisy measurements, or simply erroneous
information. To cope with this problem, k-center admits a
formulation that takes into account outliers [17]: when com-
puting the objective function, up to z points are allowed to
be discarded, where z is a user-defined input parameter.

A natural approach to compute approximate solutions to
large instances of combinatorial optimization problems en-
tails efficiently extracting a much smaller subset of the input,
dubbed coreset, which contains a good approximation to the
global optimum, and then applying a standard sequential
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approximation algorithm to such a coreset. The benefits of
this approach are evident when the coreset construction is
substantially more efficient than running the (possibly very
expensive) sequential approximation algorithm directly on
the whole input, so that significant performance improve-
ments are attained by confining the execution of such algo-
rithm on a small subset of the data. Using coresets much
smaller than the input, the authors of [27] present MapRe-
duce algorithms for the k-center problem with and without
outliers, whose (constant) approximation factors are, how-
ever, substantially larger than their best sequential counter-
parts. In this work, we further leverage the coreset approach
and unveil interesting tradeoffs between the coreset size and
the approximation quality, showing that better approxima-
tion is achievable through larger coresets. The obtainable
tradeoffs are regulated by the doubling dimension of the
underlying metric space and allow us to obtain improved
MapReduce and Streaming algorithms for the two formula-
tions of the k-center problem, whose approximation ratios
can be made arbitrarily close to the one featured by the
best sequential algorithms. Also, as a by-product, we ob-
tain a sequential algorithm for the case with outliers which
is considerably faster than existing ones.

1.1 Related work
Back in the 80’s, Gonzalez [21] developed a very popular 2-

approximation sequential algorithm for the k-center problem
running in O (k|S|) time, which is referred to as gmm in the
recent literature. In the same paper, the author showed
that it is impossible to achieve an approximation factor 2−
ε, for fixed ε > 0, in general metric spaces, unless P =
NP . To deal with noise in the dataset, Charikar et al. [17]
introduced the k-center problem with z outliers, where the
clustering is allowed to ignore z points of the input. For this
problem, they gave a 3-approximation algorithm which runs
in O

(
k|S|2 log |S|

)
time. Furthermore, they proved that, for

this problem, it is impossible to achieve an approximation
factor 3− ε, for fixed ε > 0, in general metric spaces, unless
P = NP .

With the advent of big data, a lot of attention has been
devoted to the MapReduce model of computation, where
a set of processors with limited-size local memories pro-
cess data in a sequence of parallel rounds [19, 32, 26].
The k-center problem under this model was first studied
by Ene et al. [20], who provided a 10-approximation ran-
domized algorithm. This result was subsequently improved
in [27] with a deterministic 4-approximation algorithm re-

quiring anO
(√
|S|k

)
-size local memory. As for the k-center

problem with z outliers, a deterministic 13-approximation
MapReduce algorithm was presented in [27], requiring an

O
(√
|S|(k + z)

)
-size local memory. We remark that ran-

domized multi-round MapReduce algorithms for the two
formulations of the k-center problem, with approximation
ratios 2 and 4 respectively, have been claimed but not de-
scribed in the short communication [24]. While, theoret-
ically, the MapReduce algorithms proposed in our work
seem competitive with respect to both round complexity
and space requirements with the algorithms announced in
[24], any comparison is clearly subject to the availability of
more details.

As mentioned before, the algorithms in [27] are based on
the use of (composable) coresets, a very useful tool in the

MapReduce setting [4, 25]. For a given objective function,
a coreset is a small subset extracted from the input which
embodies a solution whose cost is close to the cost of the
optimal solution on the whole set. The additional prop-
erty of composability requires that, if coresets are extracted
from distinct subsets of a given partition of the input, their
union embodies a close-to-optimal solution of the whole in-
put. Composable coresets enable the development of par-
allel algorithms, where each processor computes the coreset
relative to one subset of the partition, and the computa-
tion of the final solution is then performed by one processor
that receives the union of the coresets. Composable coresets
have been used for a number of problems, including diversity
maximization [25, 5, 15, 11], submodular maximization [33],
graph matching and vertex cover [6]. In [8] the authors pro-
vide a coreset-based (1 + ε)-approximation sequential algo-
rithm to the k-center problem for d-dimensional Euclidean
spaces, whose time is exponential in k and (1/ε)2 and linear
in d and |S|. However, the coreset construction is rather in-
volved, not easily parallelizable and the resulting algorithm
seems to be mainly of theoretical interest.

Another option when dealing with large amounts of data is
to process the data in a streaming fashion. In the Streaming
model, algorithms use a single processor with limited work-
ing memory and are allowed only a few sequential passes
over the input (ideally just one) [23, 26]. Originally devel-
oped for the external memory setting, this model also cap-
tures the scenario in which data is generated on the fly and
must be analyzed in real-time, for instance in a streamed
DMBS or in a social media platform (e.g., Twitter trends
detection). Under this model, Charikar et al. [16] developed
a 1-pass algorithm for the k-center problem which requires
Θ (k) working memory and computes an 8-approximation,
deterministically, or a 5.43-approximation, probabilistically.
Later, the result was improved in [28] attaining a (2+ε) ap-
proximation, deterministically, needing a working memory
of size Θ

(
kε−1 log(ε−1)

)
. In the same paper, the authors

give a deterministic (4 + ε)-approximation Streaming algo-
rithm for the formulation with z outliers, which requires
O
(
kzε−1

)
working memory.

1.2 Our contribution
The coreset-based MapReduce algorithms of [27] for k-

center, with and without outliers, use the gmm sequential
approximation algorithm for k-center in a “bootstrapping”
fashion: namely, in a first phase, a set of k centers (k + z
centers in the case with z outliers) is determined in each sub-
set of an arbitrary partition of the input dataset, and then
the final solution is computed on the coreset provided by
the union of these centers, using a sequential approximation
algorithm for the specific problem formulation. Our work
is motivated by the following natural question: what if we
select more centers from each subset of the partition in the
first phase? Intuitively, we should get a better solution than
if we just selected k (resp., k + z) centers. In fact, selecting
more and more centers from each subset should yield a so-
lution progressively closer to the one returned by the best
sequential algorithm on the whole input, at the expense of
larger space requirements.

This paper provides a thorough characterization of the
space-accuracy tradeoffs achievable by exploiting the afore-
mentioned idea for both formulations of the k-center prob-
lem (with and without outliers). We present improved
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MapReduce and Streaming algorithms which leverage a ju-
dicious selection of larger (composable) coresets to boost the
quality of the solution embodied in the (union of the) core-
sets. We analyze the memory requirements of our algorithms
in terms of the desired approximation quality, captured by
a precision parameter ε, and of the doubling dimension D
of the underlying metric space, a parameter that generalizes
the dimensionality of Euclidean spaces to arbitrary metric
spaces and is thus related to the difficulty of spotting good
clusterings. We remark that this kind of parametrized anal-
ysis is particularly relevant in the realm of big data, where
distortions introduced to account for worst-case scenarios
may be too extreme to provide meaningful insights on ac-
tual algorithm’s performance, and it has been employed in
a variety of contexts including diversity maximization, clus-
tering, nearest neighbour search, routing, machine learning,
and graph analytics (see [15] and references therein).

Our specific results are the following:

• A deterministic 2-round, (2 + ε)-approximation
MapReduce algorithm for the k-center problem, which

requires O
(√
|S|k(4/ε)D

)
local memory.

• A deterministic 2-round, (3 + ε)-approximation
MapReduce algorithm for the k-center problem with

z outliers, which requires O
(√
|S|(k + z)(24/ε)D

)
lo-

cal memory.

• A randomized 2-round, (3+ε)-approximation MapRe-
duce algorithm for the k-center problem with z out-
liers, which reduces the local memory requirements to

O
((√

|S|(k + log |S|) + z
)

(24/ε)D
)

.

• A deterministic 1-pass, (3 + ε)-approximation Stream-
ing algorithm for the k-center problem with z outliers,
which requires O

(
(k + z)(96/ε)D

)
working memory.

Using our coreset constructions we can also attain a (2 + ε)-
approximation Streaming algorithm for k-center without
outliers, which however would not improve on the state-of-
the-art algorithm [28]. Nonetheless, for the sake of complete-
ness, we will compare these two algorithms experimentally
in Section 5.

Observe that for both formulations of the problem, our
algorithms feature approximation guarantees which are a
mere additive term ε larger than the best achievable sequen-
tial guarantee, and yield substantial quality improvements
over the state-of-the-art [27, 28]. Moreover, the randomized
MapReduce algorithm for the formulation with outliers fea-
tures smaller coresets, thus attaining a reduction in the local
memory requirements which becomes substantial in plausi-
ble scenarios where the number of outliers z (e.g., due to
noise) is considerably larger than the target number k of
clusters, although much smaller than the input size.

While our algorithms are applicable to general metric
spaces, on spaces of constant doubling dimension D and
for constant ε, their local space/working memory require-
ments are polynomially sublinear in the dataset size, in the
MapReduce setting, and independent of the dataset size, in
the Streaming setting. Moreover, a very desirable feature of
our MapReduce algorithms is that they are oblivious to D,
in the sense that the value D (which may be not known in
advance and hard to evaluate) is not used explicitly in the

algorithms but only in their analysis. In contrast, the 1-pass
Streaming algorithm makes explicit use of D, although we
will show that it can be made oblivious to D at the expense
of one extra pass on the input stream.

As a further important result, the MapReduce algorithm
for the case with outliers admits a direct sequential im-
plementation which substantially improves the time perfor-
mance of the state-of-the-art algorithm by [17] while essen-
tially preserving the approximation quality.

We also provide experimental evidence of the competitive-
ness of our algorithms on real-world and synthetic datasets
of up to over a billion points, comparing with baselines set by
the algorithms in [27] for MapReduce, and [28] for Stream-
ing. In the MapReduce setting, the experiments show that
tighter approximations over the algorithms in [27] are indeed
achievable with larger coresets. In fact, while our theoreti-
cal bounds on the space requirements embody large constant
factors, the improvements in the approximation quality are
already noticeable with a modest increase of the coreset size.
In the Streaming setting, for k-center without outliers we
show that the (2+ε)-approximation algorithm based on our
techniques is comparable to [28], whereas for k-center with
outliers we obtain solutions of better quality using signifi-
cantly less memory and time. The experiments also show
that the Streaming algorithms feature high-throughput, and
that the MapReduce algorithms exhibit high scalability. Fi-
nally, we show that, indeed, implementing our coreset strat-
egy sequentially yields a substantial running time improve-
ment with respect to the state-of-the art algorithm [17],
while preserving the approximation quality.

Organization of the paper The rest of the paper is orga-
nized as follows. Section 2 contains a number of preliminary
concepts. Section 3 and Section 4 present, respectively, our
MapReduce and Streaming algorithms. The experimental
results are reported in Section 5. Finally, Section 6 offers
some concluding remarks.

2. PRELIMINARIES
Consider a metric space S with distance function d(·, ·).

For a point u ∈ S, the ball of radius r centered at u is the
set of points at distance at most r from u. The doubling
dimension of S is the smallest D such that for any radius
r and point u ∈ S, all points in the ball of radius r cen-
tered at u are included in the union of at most 2D balls
of radius r/2 centered at suitable points. It immediately
follows that, for any 0 < ε ≤ 1, a ball of radius r can be
covered by at most (1/ε)D balls of radius εr. Notable exam-
ples of metric spaces with bounded doubling dimension are
Euclidean spaces and spaces induced by shortest-path dis-
tances in mildly-expanding topologies. Also, the notion of
doubling dimension can be defined for an individual dataset
and it may turn out much lower than the one of the un-
derlying metric space (e.g., a set of collinear points in <2).
In fact, the space-accuracy tradeoffs of our algorithms only
depend on the doubling dimension of the input dataset.

Define the distance between a point s ∈ S and a set X ⊆ S
as d(s,X) = minx∈X d(s, x). Consider now a dataset S ⊆ S
and a subset T ⊆ S. We define the radius of S with respect
to T as

rT (S) = max
s∈S

d(s, T ).
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The k-center problem requires to find a subset T ⊆ S of
size k such that rT (S) is minimized. We define r∗k(S) as
the radius achieved by the optimal solution to the problem.
Note that T induces immediately a partition of S into k
clusters by assigning each point to its closest center, and we
say that rT (S) is the radius of such a clustering.

In Section 1.1 we mentioned the gmm algorithm [21],
which provides a sequential 2-approximation to the k-center
problem. Here we briefly review how gmm works. Given a
set S, gmm builds a set of centers T incrementally in k iter-
ations. An arbitrary point of S is selected as the first center
and is added to T . Then, the algorithm iteratively selects
the next center as the point with maximum distance from
T , and adds it to T , until T contains k centers. Note that,
rather than setting k a priori, gmm can be used to grow the
set T until a target radius is achieved. In fact, the radius of
S with respect to the set of centers T incrementally built by
gmm is a non-increasing function of the iteration number.
In this paper, we will make use of the following property of
gmm which bounds its accuracy when run on a subset of the
data.

Lemma 1. Let X ⊆ S. For a given k, let TX be the output
of gmm when run on X. We have rTX (X) ≤ 2 · r∗k(S).

Proof. We prove this lemma by rephrasing the proof by
Gonzalez [21] in terms of subsets. We need to prove that,
∀x ∈ X, d(x, TX) ≤ 2 · r∗k(S). Assume by contradiction
that this is not the case. Then, for some y ∈ X it holds
that d(y, TX) > 2 · r∗k(S). By the greedy choice of gmm,
we have that for any pair t1, t2 ∈ TX , d(t1, t2) ≥ d(y, TX),
otherwise y would have been included in TX . So we have
that d(t1, t2) > 2·r∗k(S). Therefore, the set {y}∪TX consists
of k + 1 points at distance > 2 · r∗k(S) from each other.
Consider now the optimal solution to k-center on the set S.
Since ({y}∪TX) ⊆ S, two of the k+1 points of {y}∪TX , say
x1 and x2, must be closest to the same optimal center o∗.
By the triangle inequality we have 2 · r∗k(S) < d(x1, x2) ≤
d(x1, o

∗) + d(o∗, x2) ≤ 2 · r∗k(S), a contradiction.

For a given set S ⊆ S, the k-center problem with z outliers
requires to identify a set T of k centers which minimizes

rT,ZT (S) = max
s∈S\ZT

d(s, T ),

where ZT is the set of z points in S with largest distance
from T (ties broken arbitrarily). In other words, the problem
allows to discard up the z farthest points when computing
the radius of the set of centers, hence of its associated clus-
tering. For given S, k, and z, we denote the radius of the
optimal solution of this problem by r∗k,z(S). It is straight-
forward to argue that the optimal solution of the problem
without outliers with k+z centers has a smaller radius than
the optimal solution of the problem with k centers and z
outliers, that is

r∗k+z(S) ≤ r∗k,z(S). (1)

2.1 Computational frameworks
A MapReduce algorithm [19, 32, 26] executes in a sequence

of parallel rounds. In a round, a multiset X of key-value
pairs is first transformed into a new multiset X ′ of key-
value pairs by applying a given map function (simply called
mapper) to each individual pair, and then into a final mul-
tiset Y of pairs by applying a given reduce function (simply

called reducer) independently to each subset of pairs of X ′

having the same key. The model features two parameters,
ML, the local memory available to each mapper/reducer,
and MA, the aggregate memory across all mappers/reducers.
In our algorithms, mappers are straightforward constant-
space transformations, thus the memory requirements will
be related to the reducers. We remark that the MapReduce
algorithms presented in this paper also afford an immediate
implementation and similar analysis in the Massively Paral-
lel Computation (MPC) model [9], which is popular in the
database community.

In the Streaming framework [23, 26] the computation is
performed by a single processor with a small working mem-
ory, and the input is provided as a continuous stream of
items which is usually too large to fit in the working mem-
ory. Multiple passes on the input stream may be allowed.
Key performance indicators are the size of the working mem-
ory and the number of passes.

The holy grail of big data algorithmics is the development
of MapReduce (resp., Streaming) algorithms which work in
as few rounds (resp., passes) as possible and require sub-
stantially sublinear local memory (resp., working memory)
and linear aggregate memory.

3. MAPREDUCE ALGORITHMS
The following subsections present our MapReduce algo-

rithms for the k-center problem (Subsection 3.1) and the
k-center problem with z outliers (Subsection 3.2). The al-
gorithms are based on the use of composable coresets, which
were reviewed in the introduction, and can be viewed as im-
proved variants of those by [27]. The main novelty of our
algorithms is their leveraging a judiciously increased coreset
size to attain approximation qualities that are arbitrarily
close to the ones featured by the best known sequential al-
gorithms. Also, in the analysis, we relate the required core-
set size to the doubling dimension of the underlying metric
space (whose explicit knowledge, however, is not required
by the algorithms) showing that coreset sizes stay small for
spaces of bounded doubling dimension.

3.1 MapReduce algorithm for k-center
Consider an instance S of the k-center problem and fix a

precision parameter ε ∈ (0, 1], which will be used to regulate
the approximation ratio. The MapReduce algorithm works
in two rounds. In the first round, S is partitioned into `
subsets Si of equal size, for 1 ≤ i ≤ `. In parallel, on
each Si we run gmm incrementally and call T ji the set of
j centers selected in the first j iterations of the algorithm.
Let rTki

(Si) denote the radius of the set Si with respect to

the first k centers. We continue to run gmm until the first
iteration τi ≥ k such that rTτii

(Si) ≤ ε/2 · rTki (Si), and

define the coreset Ti = T τii . In the second round, the union

of the coresets T =
⋃`
i=1 Ti is gathered into a single reducer

and gmm is run on T to compute the final set of k centers. In
what follows, we show that these centers are a good solution
to the k-center problem on S.

The analysis relies on the following two lemmas which
state that each input point has a close-by representative in
T and that T has small size. We define a proxy function
p : S → T that maps each s ∈ Si into the closest point in
Ti, for every 1 ≤ i ≤ `. The following lemma is an easy
consequence of Lemma 1.
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Lemma 2. For each s ∈ S, d(s, p(s)) ≤ ε · r∗k(S).

Proof. Fix i ∈ [1, `], and consider Si ⊆ S, and the set
T ki computed by the first k iterations of gmm. Since Si is a
subset of S, by Lemma 1 we have that rTki

(Si) ≤ 2 · r∗k(S).

By construction, we have that rTi(Si) ≤ ε/2 ·rTki (Si), hence

rTi(Si) ≤ εr∗k(S). Consider now the proxy function p. For
every 1 ≤ i ≤ ` and s ∈ Si, it holds that d(s, p(s)) ≤
rTi(Si) ≤ εr∗k(S).

We can conveniently bound the size of T , the union of
the coresets, as a function of the doubling dimension of the
underlying metric space.

Lemma 3. If S belongs to a metric space of doubling di-
mension D, then

|T | ≤ ` · k ·
(

4

ε

)D
.

Proof. Fix an i ∈ [1, `]. We prove an upper bound on the
number τi of iterations of gmm needed to obtain rTτii

(Si) ≤
(ε/2)rTki

(Si), which in turn bounds the size of Ti. Consider

the k-center clustering of Si induced by the k centers in T ki ,
with radius rTki

(Si). By the doubling dimension property,

we have that each of the k clusters can be covered using at
most (4/ε)D balls of radius ≤ (ε/4)·rTki (Si), for a total of at

most h = k(4/ε)D such balls. Consider now the execution of
h iterations of the gmm algorithm on Si. Let Thi be the set
of returned centers and let x ∈ Si be the farthest point of Si
from Thi . The center selection process of the gmm algorithm
ensures that any two points in Thi ∪ {x} are at distance at
least rThi

(Si) from one another. Thus, since two of these

points must fall into one of the h aforementioned balls of
radius ≤ (ε/4) · rTki (Si), this implies immediately (by the

triangle inequality) that

rThi
(Si) ≤ 2(ε/4) · rTki (Si) = (ε/2) · rTki (Si).

Hence, after h iterations we are guaranteed that gmm finds
a set Thi which meets the stopping condition. Therefore,
|Ti| = τi ≤ h = k(4/ε)D, for every i ∈ [1, `], and the lemma
follows.

We now state the main result of this subsection.

Theorem 1. Let 0 < ε ≤ 1. If the points of S be-
long to a metric space of doubling dimension D, then the
above 2-round MapReduce algorithm computes a (2 + ε)-
approximation for the k-center problem with local memory
ML = O

(
|S|/`+ ` · k · (4/ε)D

)
and linear aggregate mem-

ory.

Proof. Let X be the solution found by gmm on T . Since
T ⊆ S, from Lemma 1 it follows that rX(T ) ≤ 2 · r∗k(S).
Consider an arbitrary point s ∈ S, along with its proxy
p(s) ∈ T , as defined before. By Lemma 2 we know that
d(s, p(s)) ≤ ε·r∗k(S). Let x ∈ X be the center closest to p(s).
It holds that d(x, p(s)) ≤ 2 · r∗k(S). By applying the triangle
inequality, we have that d(x, s) ≤ d(x, p(s)) + d(p(s), s) ≤
2 · r∗k(S) + ε · r∗k(S) = (2 + ε)r∗k(S). The bound on ML fol-
lows since in the first round each processor needs to store
|S|/` points of the input and computes a coreset of size
O
(
k · (4/ε)D

)
, as per Lemma 3, while in the second round,

one processor needs enough memory to store ` such core-
sets. Finally, it is immediate to see that aggregate memory
proportional to the input size suffices.

By setting ` = Θ
(√
|S|/k

)
in the above theorem we obtain:

Corollary 1. Our 2-round MapReduce algorithm com-
putes a (2 + ε)-approximation for the k-center problem with

local memory ML = O
(√
|S|k(4/ε)D

)
and linear aggregate

memory. For constant ε and D, the local memory bound

becomes ML = O
(√
|S|k

)
.

3.2 MapReduce algorithm for k-center with z

outliers
Consider an instance S of the k-center problem with z

outliers and fix a precision parameter ε̂ ∈ (0, 1] intended, as
before, to regulate the approximation ratio. We propose the
following 2-round MapReduce algorithm for the problem. In
the first round, S is partitioned into ` equally-sized subsets
Si, with 1 ≤ i ≤ `, and for each Si, in parallel, gmm is
run incrementally. Let T ji be the set of the first j selected
centers. We continue to run gmm until the first iteration
τi ≥ k + z such that rTτii

(Si) ≤ ε̂/2 · r
Tk+zi

(Si). Define

the coreset Ti = T τii . As before, for each point s ∈ Si we
define its proxy p(s) to be the point of Ti closest to s, but,
furthermore, we attach to each t ∈ Ti a weight wt ≥ 1, which
is the number of points of Si with proxy t.

In the second round, the union of the weighted coresets
T = ∪`i=1Ti is gathered into a single reducer. Before describ-
ing the details of this second round, we need to introduce a
sequential algorithm, dubbed OutliersCluster (see pseu-
docode below), for solving a weighted variant of the k-center
problem with outliers which is a modification of the one pre-
sented in [27] (in turn, based on the unweighted algorithm
of [17]).

Algorithm 1: OutliersCluster(T, k, r, ε̂)

T ′ ← T
X ← ∅
while ((|X| < k) and (T ′ 6= ∅)) do

for (t ∈ T ) do Bt ←
{v : v ∈ T ′ ∧ d(v, t) ≤ (1 + 2ε̂) · r}
x ← arg maxt∈T

∑
v∈Bt wv

X ← X ∪ {x}
Ex ← {v : v ∈ T ′ ∧ d(v, x) ≤ (3 + 4ε̂) · r}
T ′ ← T ′ \ Ex

return X,T ′

OutliersCluster (T, k, r, ε̂) returns two subsets X,T ′ ⊆ T
such that X is a set of (at most) k centers, and T ′ is a set
of points referred to as uncovered points. The algorithm
starts with T ′ = T and builds X incrementally in |X| ≤ k
iterations as follows. In each iteration, the next center x
is chosen as the point maximizing the aggregate weight of
uncovered points in its ball of radius (1 + 2ε̂) · r (note that
x needs not be an uncovered point). Then, all uncovered
points at distance at most (3 + 4ε̂) · r from x are removed
from T ′. The algorithm terminates when either |X| = k or
T ′ = ∅. By construction, the final T ′ consists of all points
at distance greater than (3 + 4ε̂) · r from X.

Let us return to the second round of our MapRe-
duce algorithm. The reducer that gathered T runs
OutliersCluster(T, k, r, ε̂) multiple times to estimate
the minimum value rmin such that the aggregate
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weight of the points in the set T ′ returned by
OutliersCluster(T, k, rmin, ε̂) is at most z. More specif-
ically, the computed estimate, say r̃min, is within a mul-
tiplicative tolerance (1 + δ) from the true rmin, with δ =
ε̂/(3 + 4ε̂), and it is obtained through a binary search over
all possible O

(
|T |2

)
distances between points of T combined

with a geometric search with step (1 + δ). To avoid storing
all O

(
|T |2

)
distances, the value of r at each iteration of the

binary search can be determined in space linear in T by the
median-finding Streaming algorithm in [31]. The output of
the MapReduce algorithm is the set of centers computed by
OutliersCluster(T, k, r̃min, ε̂).

We now analyze our 2-round MapReduce algorithm. The
following lemma bounds the distance between a point and
its proxy.

Lemma 4. For each s ∈ S, d(s, p(s)) ≤ ε̂ · r∗k,z(S).

Proof. Consider any subset Si of the partition S1, . . . , S`
of S. By construction, we have that for each s ∈ Si,
d(s, p(s)) ≤ (ε̂/2) · r

Tk+zi
(Si). Since Si is a subset of

S, Lemma 1 ensures that r
Tk+zi

(Si) ≤ 2r∗k+z(S). Hence,

d(s, p(s)) ≤ ε̂r∗k+z(S). Since r∗k+z(S) ≤ r∗k,z(S), as observed
before in Eq. 1, we have d(x, p(x)) ≤ ε̂ · r∗k,z(S).

Next, we characterize the quality of the solution returned
by OutliersCluster when run on T , the union of the
weighted coresets, and with a radius r ≥ r∗k,z(S).

Lemma 5. For r ≥ r∗k,z(S), let X,T ′ ⊆ T be the sets
returned by OutliersCluster (T, k, r, ε̂), and define ST ′ =
{s ∈ S : p(s) ∈ T ′}. Then,

d(t,X) ≤ (3 + 4ε̂) · r ∀t ∈ T \ T ′

and |ST ′ | ≤ z.

Proof. The proof uses an argument akin to the one used
for the analysis of the sequential algorithm by [17] and later
adapted by [27] to the weighted coreset setting. The first
claim follows immediately from the workings of the algo-
rithm, since each point in T − T ′ belongs to some Ex, with
x ∈ X. We are left to show that |ST ′ | ≤ z. Suppose first
that |X| < k. In this case, it must be T ′ = ∅, hence
|ST ′ | = 0, and the proof follows. We now concentrate on
the case |X| = k. Consider the i-th iteration of the while
loop of OutliersCluster (T, k, r, ε̂) and define xi as the
center of X selected in the iteration, and T ′i as the set T ′ of
uncovered points at the beginning of the iteration. Recall
that xi is the point of T which maximizes the cumulative
weight of the set Bxi of uncovered points in T ′i at distance
at most (1 + 2ε̂) · r from xi, and that the set Exi of all
uncovered points at distance at most (3 + 4ε̂) · r from xi is
removed from T ′i at the end of the iteration. We now show
that

k∑
i=1

∑
t∈Exi

wt ≥ |S| − z, (2)

which will immediately imply that |ST ′ | ≤ z. For this pur-
pose, let O be an optimal set of k centers for the problem
instance under consideration, and let Z be the set of at most
z outliers at distance greater than r∗k,z(S) from O. For each
o ∈ O, define Co ⊆ S \ Z as the set of nonoutlier points
which are closer to o than to any other center of O, with

ties broken arbitrarily. To prove (2), it is sufficient to ex-
hibit an ordering o1, o2, . . . , ok of the centers in O so that,
for every 1 ≤ i ≤ k, it holds

i∑
j=1

∑
t∈Exj

wt ≥ |Co1 ∪ · · · ∪ Coi |.

The proof uses an inductive charging argument to assign
each point in

⋃i
j=1 Coj to a point in

⋃i
j=1Exj , where each

t in the latter set will be in charge of at most wt points. We
define two charging rules. A point can be either charged to
its own proxy (Rule 1 ) or to another point of T (Rule 2 ).

Fix some arbitrary i, with 1 ≤ i ≤ k, and assume, induc-
tively, that the points in Co1 ∪· · ·∪Coi−1 have been charged

to points in
⋃i−1
j=1Ej for some choice of distinct optimal cen-

ters o1, o2, . . . , oi−1. We have two cases.
Case 1. There exists an optimal center o still unchosen
such that there is a point v ∈ Co with p(v) ∈ Bxj , for
some 1 ≤ j ≤ i. We choose oi as one such center. Hence
d(xj , p(v)) ≤ (1+2ε̂)·r. By repeatedly applying the triangle
inequality we have that for each u ∈ Coi
d(xj , p(u)) ≤ d(xj , p(v)) + d(p(v), v) + d(v, oi) + d(oi, u)+

+ d(u, p(u)) ≤ (3 + 4ε̂) · r

hence, p(u) ∈ Exj . Therefore we can charge each point
u ∈ Coi to its proxy, by Rule 1.
Case 2. For each unchosen optimal center o and each v ∈
Co, p(v) 6∈

⋃i
j=1Bxj . We choose oi to be the unchosen

optimal center which maximizes the cardinality of {p(u) :
u ∈ Coi} ∩ T ′i . We distinguish between points u ∈ Coi with

p(u) /∈ T ′i , hence p(u) ∈
⋃i−1
j=1 Exj , and those with p(u) ∈ T ′i .

We charge each u ∈ Coi with p(u) /∈ T ′i to its own proxy by
Rule 1. As for the other points, we now show that we can
charge them to the points of Bxi . To this purpose, we first
observe that Bp(oi) contains {p(u) : u ∈ Coi} ∩ T ′i , since for
each u ∈ Coi

d(p(oi), p(u)) ≤ d(p(oi), oi) + d(oi, u) + d(u, p(u))

≤ (1 + 2ε̂) · r∗k,z(S) ≤ (1 + 2ε̂) · r.

Therefore the aggregate weight of Bp(oi) is at least
|{u ∈ Coi : p(u) ∈ T ′i}|. Since Iteration i selects xi as the
center such that Bxi has maximum aggregate weight, we
have that∑

t∈Bxi

wt ≥
∑

z∈Bp(oi)

wz ≥
∣∣{u ∈ Coi : p(u) ∈ T ′i

}∣∣ ,
hence, the points in Bxi have enough weight to be charged
with each point u ∈ Coi with p(u) ∈ T ′i . Figure 1 illustrates
the charging under Case 2. Note that the points of Bxi did
not receive any charging by Rule 1 in previous iterations,
since they are uncovered at the beginning of Iteration i, and
will not receive chargings by Rule 1 in subsequent iterations,
since Bxi does not intersect the set Co of any optimal center
o yet to be chosen. Also, no further charging to points of Bxi
by Rule 2 will happen in subsequent iterations, since Rule
2 will only target sets Bxh with h > i. These observations
ensure that any point of T receives charges through either
Rule 1 or Rule 2, but not both, and never in excess of its
weight, and the proof follows.

The following lemma bounds the size of T , the union of
the weighted coresets.
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oi

xi

points with their
proxy not covered
are charged to Bxi
by Rule 2

points with their
proxy covered by
Exj , for some j < i,
are charged to their
proxy by Rule 1

Exj

Bxi

Coi

Figure 1: Application of charging rules in case 2 of
the proof. Round points are points of S, whereas
star-shaped points are proxy points in T . Arrows
represent charging.

Lemma 6. If S belongs to a metric space of doubling di-
mension D, then

|T | ≤ ` · (k + z) ·
(

4

ε̂

)D
Proof. The proof proceeds similarly to the one of

Lemma 3, with the understanding that the definition of dou-
bling dimension is applied to each of the (k + z) clusters
induced by the points of T k+zi on Si.

Finally, we state the main result of this subsection.

Theorem 2. Let 0 < ε ≤ 1. If the points of S belong to a
metric space of doubling dimension D, then, when run with
ε̂ = ε/6, the above 2-round MapReduce algorithm computes a
(3+ε)-approximation for the k-center problem with z outliers
with local memory ML = O

(
|S|/`+ ` · (k + z) · (24/ε)D

)
and linear aggregate memory.

Proof. The result of Lemma 5 combined with the stipu-
lated tolerance of the search performed in the second round
of the algorithm implies that the radius discovered by the
search is r̃min ≤ r∗k,z(S)(1 + δ) with δ = ε̂/(3 + 4ε̂). Also,
by the triangle inequality, the distance between each non-
outlier point in S and its closest center will be at most
ε̂r∗k,z(S) + (3 + 4ε̂)r∗k,z(S)(1 + δ) ≤ (3 + 6ε̂)r∗k,z(S) ≤
(3 + ε)r∗k,z(S), which proves the approximation bound. The
bound on ML follows since in the first round each reducer
needs enough memory to store |S|/` points of the input,
while in the second round the reducer computing the final
solution requires enough memory to store the union of the `
coresets, which, by Lemma 6, has size O

(
(k + z)(4/ε̂)D

)
=

O
(
(k + z)(24/ε)D

)
each. Also, globally, the reducers need

only sufficient memory to store the input, hence MA =
O (|S|).

By setting ` = Θ
(√
|S|/(k + z)

)
in the above theorem

we obtain:

Corollary 2. Our 2-round MapReduce algo-
rithm computes a (3 + ε)-approximation for the k-
center problem with z outliers, with local memory

ML = O
(√
|S|(k + z)(24/ε)D)

)
and linear aggregate

memory. For constant ε and D, the local memory bound

becomes ML = O
(√
|S|(k + z)

)
.

Improved sequential algorithm. A simple analysis im-
plies that, by setting ` = 1, our MapReduce strategy for the
k-center problem with z outliers yields an efficient sequen-
tial (3 + ε)-approximation algorithm whose running time is
O
(
|S||T |+ k|T |2 log |T |

)
, where |T | = (k + z)(24/ε)D, is

the coreset size. For a wide range of values of k, z, ε and
D this yields a substantially improved performance over the
O
(
k|S|2 log |S|

)
-time state-of-the-art algorithm of [17], at

the expense of a negligibly worse approximation.

3.2.1 Higher space efficiency through randomization
The analysis of very noisy datasets might require setting

the number z of outliers much larger than k, while still
o(|S|). In this circumstance, the size of the union of the

coresets T is proportional to
√
|S|z, and may turn out too

large for practical purposes, due to the large local memory
requirements and to the running time of the cubic sequen-
tial approximation algorithm run on T in the second round,
which may become the real performance bottleneck of the
entire algorithm. In this subsection, we show that this draw-
back can be significantly ameliorated by simply partitioning
the pointset at random in the first round, at the only ex-
pense of probabilistic rather than deterministic guarantees
on the resulting space and approximation guarantees. We
say that an event related to a dataset S occurs with high
probability p if p ≥ 1− 1/|S|c, for some constant c ≥ 1.

The randomized variant of the algorithm works as fol-
lows. In the first round, the input set S is partitioned into
` subsets Si, with 1 ≤ i ≤ `, by assigning each point to a
random subset chosen uniformly and independently of the
other points. Let z′ = 6((z/`) + log2 |S|) and observe that,
for large z and `, we have that z′ � z. Then, in parallel
on each partition Si, gmm is run to yield a set T τii of τi
centers, where τi ≥ k + z′ is the smallest value such that
rTτii

(Si) ≤ (ε̂/2) · r
Tk+z

′
i

(Si). Define the coreset Ti = T τii

and, again, for each point s ∈ Si define its proxy p(s) to
be the point of Ti closest to s. The rest of the algorithm is
exactly as before using these new Ti’s.

The analysis proceeds as follows. Consider an optimal
solution of the k-center problem with z outliers for S, and
let O = {o1, o2, . . . , ok} be the set of k centers and ZO the
set of z outliers, that is the z points of S most distant from
O. Recall that any point of S \ ZO is at distance at most
r∗k,z(S) from O. The following lemma states that the outliers
(set ZO) are well distributed among the Si’s.

Lemma 7. With high probability, each Si contains no
more than z′ = 6((z/`) + log2 |S|) points of ZO.

Proof. The result follows by applying Chernoff bound
(4.3) of [30] and the union bound, which yield that the stated
event occurs with probability at least 1− 1/|S|5.

The rest of the analysis mimics the one of the determin-
istic version.

Lemma 8. The statements of both Lemmas 4 and 5 hold
with high probability.

Proof. We first prove that, with high probability, for
each for each s ∈ S, d(s, p(s)) ≤ ε̂ · r∗k,z(S) (same as
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Lemma 4). Consider O and ZO. We condition on the event
that each Si contains at most z′ points of ZO, which, by
Lemma 7, occurs with high probability. Focus on an ar-
bitrary subset Si. For 1 ≤ j ≤ `, let Cj be the set of
points of S \ ZO whose closest optimal center is oj , and let

Cj(i) = Cj ∩ Si. Consider the set T k+z
′

i of centers deter-
mined by the first k+z′ iterations of the gmm algorithm and

let x ∈ Si be the farthest point of Si from T k+z
′

i . By argu-
ing as in the proof of Lemma 3, it can be shown that any

two points in T k+z
′

i ∪{x} are at distance at least r
Tk+z

′
i

(Si)

from one another and since two of these points must belong
to the same Cj(i) for some j, by the triangle inequality we
have that

r
Tk+z

′
i

(Si) ≤ 2r∗k,z(S).

Recall that the gmm algorithm on Si is stopped at the first
iteration τi such that rTτii

(Si) ≤ (ε̂/2) · r
Tk+z

′
i

(Si), hence

rTτii
(Si) ≤ (ε̂/2) · r

Tk+z
′

i

(Si) ≤ (ε̂/2) · 2r∗k,z(S) = ε̂ · r∗k,z(S).

The desired bound on d(s, p(s)) immediately follows. Condi-
tioning on this bound, the proof of Lemma 5 can be repeated
identically, hence the stated property holds.

By repeating the same argument used in Lemma 6, one can
easily argue that, if S belongs to a metric space of doubling
dimension D, then the size of the weighted coreset T is

|T | ≤ ` · (k + z′) ·
(

4

ε̂

)D
.

This bound, together with the results of the preced-
ing lemma, immediately implies the analogous of Theo-
rem 2 stating that, with high probability, the random-
ized algorithm computes a (3 + ε)-approximation for the
k-center problem with z outliers with local memory ML =
O
(
|S|/`+ ` · (k + z′) · (24/ε)D

)
and linear aggregate mem-

ory. Observe that z is now replaced by (the much smaller)
z′ in the local memory bound.

By choosing ` = Θ
(√
|S|/(k + log |S|)

)
we obtain:

Corollary 3. With high probability, our 2-round
MapReduce algorithm computes a (3 + ε)-approximation
for the k-center problem with z outliers, with local memory

ML = O
((√

|S|(k + log |S|) + z
)

(24/ε)D
)

and linear

aggregate memory. For constant ε and D, the local memory

bound becomes ML = O
(√
|S|(k + log |S|) + z

)
With respect to the deterministic version, for large values
of z a substantial improvement in the local memory require-
ments is achieved.

Remark. Thanks to the incremental nature of gmm, our
coreset-based MapReduce algorithms for the k-center prob-
lem, both without and with outliers, need not know the dou-
bling dimension D of the underlying metric space in order
to attain the claimed performance bounds. This is a very
desirable property, since, in general, D may not be known
in advance. Moreover, if D were known, a factor

√
(c/ε)D

in local memory (where c = 4 for k-center, and c = 24 for
k-center with z outliers) could be saved by setting ` to be a

factor Θ
(√

(c/ε)D
)

smaller.

4. STREAMING ALGORITHM FOR K-
CENTER WITH Z OUTLIERS

As mentioned in the introduction, in the Streaming set-
ting we will only consider the k-center problem with z out-
liers. Consider an instance S of the problem and fix a pre-
cision parameter ε̂ ∈ (0, 1]. Suppose that the points of S
belong to a metric space of known doubling dimension D.
Our Streaming algorithm also adopts a coreset-based ap-
proach. Specifically, in a pass over the stream of points of
S a suitable weighted coreset T is selected and stored in the
working memory. Then, at the end of the pass, the final
set of centers is determined through multiple runs of Out-
liersCluster on T as was done in the second round of the
MapReduce algorithm described in Subsection 3.2. Below,
we will focus on the coreset construction.

The algorithm computes a coreset T of τ ≥ k + z centers
which represent a good approximate solution to the τ -center
problem on S (without outliers). The value of τ , which will
be fixed later, depends on ε̂ and D. The main difference
with the MapReduce algorithm is the fact that we cannot
exploit the incremental approach provided by gmm, since no
efficient implementation of gmm in the Streaming setting is
known. Hence, for the computation of T we resort to a novel
weighted variant of the doubling algorithm by Charikar et
al. [16] which is described below.

For a given stream of points S and a target number of cen-
ters τ , the algorithm maintains a weighted set T of centers
selected among the points of S processed so far, and a lower
bound φ on r∗τ (S). T is initialized with the first τ + 1 points
of S, with each t ∈ T assigned weight wt = 1, while φ is
initialized to half the minimum distance between the points
of T . For the sake of the analysis, we will define a proxy
function p : S → T which, however, will not be explicitly
stored by the algorithm. Initially, each point of T is proxy
for itself. The remaining points of S are processed one at a
time maintaining the following invariants:

(a) T contains at most τ centers.

(b) ∀t1, t2 ∈ T we have d(t1, t2) > 4φ

(c) ∀s ∈ S processed so far, d(s, p(s)) ≤ 8φ.

(d) ∀t ∈ T , wt = |{s ∈ S processed so far : p(s) = t}|.
(e) φ ≤ r∗τ (S).

The following two rules are applied to process each new point
s ∈ S. The update rule checks if d(s, T ) ≤ 8φ. If this is the
case, the center t ∈ T closest to s is identified and wt is
incremented by one, defining p(s) = t. If instead d(s, T ) >
8φ, then s is added as a new center to T , setting ws to 1
and defining p(s) = s. Note that in this latter case, the
size of T may exceed τ , thus violating invariant (a). When
this happens, the following merge rule is invoked repeatedly
until invariant (a) is re-established. Each invocation of this
rule first sets φ to 2φ, which, in turn, may lead to a violation
of invariant (b). If this is the case, for each pair of points
u, v ∈ T violating invariant (b), we discard u and set wv ←
wv + wu. Conceptually, this corresponds to the update of
the proxy function which redefines p(x) = v, for each point
x for which p(x) was equal to u.

Observe that, at the end of the initialization, invariants
(a) and (b) do not hold, while invariants (c)÷(e) do hold.
Thus, we prescribe that the merge rule and the reinforce-
ment of invariant (b) are applied at the end of the initial-
ization before any new point is processed. This will ensure
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that all invariants hold before the (τ+2)nd point of S is pro-
cessed. The following lemma shows the above rules maintain
all invariants.

Lemma 9. After the initialization, at the end of the pro-
cessing of each point s ∈ S, all invariants hold.

Proof. As explained above, all invariants are enforced
at the end of the initialization. Consider the processing of a
new point s. It is straightforward to see that the combina-
tion of update and merge rules maintain invariants (a)-(d).
We now show that invariant (e) is also maintained. After
the update rule is applied, only invariant (a) can be violated.
Suppose that this is the case, hence |T | = τ + 1. Each pair
of centers in T are at distance at least 4φ from one another
(invariant (b)). Let φ′ be the new value of φ resulting af-
ter the required applications of the merging rule. It is easy
to see that until the penultimate application of the merge
rule, T still contains τ + 1 points. Therefore each pair of
these points must be at distance at least 4(φ′/2) = 2φ′ from
one another. This implies, that φ′ is still a lower bound to
r∗τ (S).

As an immediate corollary of the previous lemma, we have
that after all points of S have been processed, d(s, p(s)) ≤
8 · r∗τ (S) for every s ∈ S. Moreover, it is immediate to see
that the working memory required by the algorithm has size
Θ (τ). Fix now τ = (k+z)(16/ε̂)D and let T be the weighted
coreset T of size τ returned by the above algorithm. The
following lemma (whose proof can be found in [12]) is the
counterpart of Lemma 4 in the Streaming setting.

Lemma 10. For every s ∈ S, d(s, p(s)) ≤ ε̂ · r∗k,z(S).

The following theorem states the main result of this section.

Theorem 3. Let 0 < ε ≤ 1. If the points of S belong to a
metric space of doubling dimension D, then, when run with
ε̂ = ε/6, the above 1-pass Streaming algorithm computes a
(3+ε)-approximation for the k-center problem with z outliers
with working memory of size O

(
(k + z)(96/ε)D

)
.

Proof. Given the result of Lemma 10, the approxima-
tion factor can be established in exactly the same way
as done for the MapReduce algorithm (refer to Lemma 5
and Theorem 2), while the bound on the working mem-
ory size follows directly from the choice of ε̂, the fact that
|T | = τ = (k + z)(16/ε̂)D, and the fact that the Streaming
algorithm needs memory proportional |T |.

Corollary 4. For constant ε and D, the above Stream-
ing algorithm computes a (3 + ε)-approximation for the k-
center problem with z outliers with working memory of size
O ((k + z)), independent of |S|.

A few remarks are in order. For simplicity, to com-
pute the weighted coreset T we preferred to adapt the
8-approximation algorithm by [16] rather than the more
complex (2 + ε)-approximation algorithm by [28], since this
choice does not affect the approximation guarantee of our
algorithm but comes only at the expense of a slight increase
in the coreset size. Also, by applying similar techniques, we
can obtain a Streaming algorithm for the k-center problem
without outliers which uses O

(
k(1/ε)D

)
space and features

the same (2 + ε)-approximation as [28]. In Section 5 we
compare the two algorithms experimentally.

A 2-pass Streaming algorithm oblivious to D. As
explained before, thanks to its incremental nature, the
MapReduce coreset construction does not require explicit
knowledge of the doubling dimension D of the metric space.
However, this is not the case for the 1-pass Streaming algo-
rithm described above, which requires the apriori knowledge
of D to determine the proper value of τ . While in practice
one can set τ to exercise suitable tradeoffs between running
time, working memory space and approximation quality, it
is of theoretical interest to observe that a simple-two pass
algorithm oblivious to D with roughly the same bounds on
the size of the working memory can be obtained by “simu-
lating” the 2-round MapReduce algorithm for ` = 1.

In the first pass, we run the doubling algorithm of [16]
for the (k+z)-center problem, thus obtaining a radius value
r̂ ≤ 8r∗k+z ≤ 8r∗k,z. Using r̂ as an estimate for r∗k,z, in the
second pass we determine a maximal weighted coreset T
of points whose mutual distances are greater than (ε/48)r̂.
During the pass, each point s ∈ S−T is virtually assigned to
a proxy in T at distance at most (ε/48)r̂, and for every x ∈ T
a weight is computed as the number of points for which x is
proxy. Finally, our weighted variant of the algorithm of [17]
is run on T . It is easy to see that |T | ≤ (k + z)(96/ε)D and
that each point of S is at distance at most ε/6 from its proxy.
This immediately implies this two-pass strategy returns a
(3 + ε)-approximate solution to the k-center problem with
z outliers with the same working memory bounds as those
stated in Theorem 3 and Corollary 4.

5. EXPERIMENTS
In order to demonstrate the practical appeal of our ap-

proach, we designed a suite of experiments with the following
objectives: (a) to assess the impact of coreset size on solu-
tion quality in our MapReduce and Streaming algorithms
and to compare them to the state-of-the-art algorithms for
k-center with and without outliers (Subsections 5.1 and 5.2,
respectively); (b) to assess the scalability of our MapRe-
duce algorithms (Subsection 5.3); and (c) to show that the
MapReduce algorithm for k-center without outliers yields a
much faster sequential algorithm for the problem (Subsec-
tion 5.4).

Experimental setting. The experiments were run on a
cluster of 16 machines, each equipped with a 18GB RAM
and a 4-core Intel I7 processor, connected by a 10GBit
Ethernet network, using Spark [34] for implementing the
MapReduce algorithms, and a sequential simulation for the
Streaming setting. We exercised our algorithms on two low-
dimensional real-world datasets used in [27], to facilitate
the comparison with that work, and on a higher-dimensional
dataset as a stress test for our dimension-sensitive strategies.
The first dataset, Higgs [2], contains 11 million points used
to train learning algorithms for high-energy Physics exper-
iments. The second dataset, Power [3], contains 2,075,259
points which are measurements of electric power consump-
tions in a house over four years. The Higgs dataset features
28 attributes, where 7 of them are a function of the other
21. In [27] only the 7 derived attributes were used: we do
the same for the sake of comparison. The Power dataset has
7 numeric attributes (we ignore the two non numeric fea-
tures). The third higher-dimensional dataset was obtained
from a dump of the English Wikipedia (dated December
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Figure 2: Approximation ratio attained by the
MapReduce algorithm for k-center using coresets of
size µk, with µ = 1, 2, 4, 8, and parallelism ` = 2, 4, 8, 16.

2017) using the word2vec [29] model with 50 dimensions.
This dataset, which we call Wiki, comprises 5,512,693 vec-
tors. To test the scalability of our algorithms, we also gener-
ated artificially-inflated instances of the Higgs, Power, and
Wiki datasets (see details in Subsection 5.3). For all datasets
we used the Euclidean distance. All numerical figures have
been obtained as averages over at least 10 runs and are re-
ported in the graphs together with 95% confidence intervals.
The solution quality is expressed in terms of the approxima-
tion ratio, estimated empirically as the ratio between the
radius of the returned clustering and the best radius ever
found across all experiments with the same dataset and pa-
rameter configuration. (Note that the hardness of the prob-
lems makes computing the actual optimal solution unfeasi-
ble.) The source code of our algorithms is publicly available
at https://github.com/Cecca/coreset-clustering.

5.1 k-center
We first evaluated the MapReduce algorithm for the k-

center problem, presented in Subsection 3.1, aiming at as-
sessing the impact of the coreset size on the quality of the
returned solution. For simplicity, rather than varying the
precision parameter ε, we varied the size of the coreset Ti
extracted from each partition Si, setting it to the same value
τ = µk for all i, with µ = 1, 2, 4, 8. Note that for µ = 1 the
algorithm corresponds to the one in [27]. We fixed k = 50
for the Higgs dataset, k = 100 for the Power dataset, and
k = 60 for the Wiki dataset. These values of k, determined
through a number of experiments (omitted for brevity) have
been chosen as reasonable values marking the beginning of
a plateau in the radius of the clustering induced by the re-
turned centers. The plot in Figure 2 reports the approxima-
tion ratio attained by the algorithm for different coreset sizes
and degrees of parallelism. As implied by the theory, the so-
lution quality improves noticeably as the size of the coreset
(regulated by µ) increases. Moreover, the experiments show
that, with respect to the algorithm by [27] (blue bar in the
plot), even a moderate increase in the coreset size yields a
sensibly better solution. This behavior is observed also on
the Wiki dataset, which, given its high dimensionality, is
a difficult input for our algorithm. In these experiments,
the running times, not reported for brevity, exhibited es-
sentially a linear behavior in τ , for fixed parallelism, but
remained tolerable (under one minute) even for τ = 8k and
parallelism ` = 2. Considering also the scalability of the
algorithm, which will be assessed in Subsection 5.3, we can
conclude that using larger coresets can yield better solution
quality at a tolerable performance penalty. From the fig-
ure, we finally observe that increasing the parallelism ` also
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Figure 3: Approximation ratio (top) and running
time (bottom) attained by the deterministic and
randomized MapReduce algorithms for the k-center
with z outliers problem, using coresets of size µ(k+z)
and µ(k + 6 · z/`), respectively, with µ = 1, 2, 4, 8, and
fixed parallelism ` = 16.

leads to better solutions, which is due to the fact that the
size ` · τ of the aggregated coreset T on which gmm is run
in the second round, increases.

For what concerns the Streaming setting, as observed in
Subsection 1.2 and Section 4, our coreset approach would
yield an algorithm matching the approximation quality of
the state-of-the-art (2+ε)-approximation algorithm by [28].
Nonetheless, we performed a number of experiments to com-
pare the practical performance of the two algorithms. The
results, omitted for brevity but reported in [12], show that
the algorithm by [28] makes slightly better use of the avail-
able space, although our approach often exhibits higher
throughput while yielding similar approximation quality.

5.2 k-center with outliers
To evaluate our algorithms for the k-center problem with

z outliers, we artificially injected outliers into the datasets
as follows. For each dataset, we first determined radius
rMEB and center cMEB of its Minimum Enclosing Ball (MEB).
Then, we added z = 200 points at distance 100 · rMEB from
the cMEB in random directions. By doing so, each added
point is at distance ≥ 99·rMEB from any point in the dataset.
Furthermore, we verified that the minimum distance be-
tween any two added points is ≥ 10 · rMEB, making these
points true outliers.

A first set of experiments was run to compare the deter-
ministic and randomized versions of our algorithm presented
in Subsection 3.2 against each other and against the algo-
rithm in [27]. We set k = 20 and z = 200 for both datasets
and fixed the parallelism to ` = 16. Also, we partitioned the
data adversarially, placing all outliers in the same partition
so to better test the benefits of randomization. As before,
rather than regulating the size of each coreset Ti through
the precision parameter, we fixed it equal to τ for each i,
setting τ = µ(k + z) for the deterministic algorithm, and
τ = µ(k+6 ·z/`) for the randomized one, with µ = 1, 2, 4, 8.
Again, the deterministic algorithm with µ = 1 coincides
with the algorithm by [27]. Based on Lemma 7, the term
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orange) and BaseOutliers (in green). CoresetOut-
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Outliers requires space m(k · z), with m = 1, 2, 4, 8, 16
(µ and m increase from left to right in each plot).
Space and throughput are in logarithmic scale.

6·z/` in the value of τ for the randomized algorithm is meant
to upper bound the number of outliers included in each par-
tition (ignoring the logarithmic factor which is needed to
ensure high probability only when z ' `).

Figure 3 reports the results of these experiments. As be-
fore, we note that the quality of the solution improves no-
ticeably with the coreset size (regulated by µ) and even a
moderate increase in the coreset size yields a significant im-
provement with respect to the baseline of [27], represented
by the blue column (µ = 1, deterministic). In particular,
when µ = 1 the coreset extracted from the partition con-
taining all outliers is forced to include the outliers, hence few
other centers can be selected to account for the non-outlier
points in the partition, which are thus underrepresented. In
this case, the randomized algorithm, where the number of
outliers per partition is smaller and slightly overestimated
by the constant 6, attains a better solution quality. As the
coreset size increases, there is a sharper improvement of the
quality of the solution found by the deterministic algorithm,
since there are now enough centers to well represent the non-
outlier points, even in the partition containing all outliers,
while in the randomized algorithm, the effect of the coreset
size on the quality of the solution is much smoother. Never-
theless, for µ > 1, the randomized algorithm finds solutions
of comparable quality to the ones found by the deterministic
algorithm, using much smaller coresets. For what concerns
the running time, the bottom plots of Figure 3 clearly show
that the reduction in the coreset size featured by the ran-
domized algorithm yields high gains in performance, pro-
viding evidence that this algorithm can attain much better
solutions than [27] with a comparable running time.

In a second set of experiments, we studied the impact
of the coreset size on the quality of the solution computed
by the Streaming algorithm presented in Section 4 (dubbed
CoresetOutliers) and compared its performance with the
state-of-the-art algorithm of [28] (dubbed BaseOutliers)
which essentially runs a number m of parallel instances of a
(k · z)-space Streaming algorithm, where m depends on the

desired approximation target. We used the same datasets
and the same input parameters (k = 20 and z = 200) as
in the previous experiment. The points are shuffled before
being streamed to the algorithms. Since the two algorithms
feature different parameters, we compare their performance
as a function of the amount of space used, which is µ(k+ z)
(i.e., the coreset size) for CoresetOutliers, and m(k · z)
for BaseOutliers. The results are reported in Figure 4.
We observe that for Higgs and Power CoresetOutliers
yields better approximation ratios than BaseOutliers us-
ing considerably less space, which is coherent with the better
theoretical quality featured by the former algorithm. For
both algorithms, using more resources (i.e., larger values
of µ and m, respectively) leads to better quality solutions,
with CoresetOutliers approaching the best quality ever
attained (approximation ratio almost 1). As for Wiki, we
note that both algorithms already yield very good solutions
with minimum space, which implies that for this dataset
larger space does not provide significant quality improve-
ments. This is probably an effect of the high dimensionality
of the dataset. To assess efficiency, we considered through-
put, i.e., the number of points processed per second by the
algorithm ignoring the cost of streaming data from memory.
As expected, for both CoresetOutliers and BaseOut-
liers throughput is inversely proportional to the space used.
However, by comparing the top and bottom graphs for each
dataset, it can be immediately seen that for a fixed approx-
imation ratio, CoresetOutliers uses less space and ex-
hibits a throughput substantially higher (always more than
1 order of magnitude). Thanks to its high throughout, even
for large values of µ, CoresetOutliers is able to keep up
with real-world streaming pipelines (e.g., in 2013 Twitter
peaked at 143,199 tweets/s [1]).

5.3 Scalability of the MapReduce algorithms
For brevity, we focus on the randomized MapReduce al-

gorithm for the k-center problem with z outliers, since the
results for the other cases are similar. A first set of exper-
iments was run to assess the scalability with respect to the
input size. To this end, we generated synthetic instances of
the Higgs, Power, and Wiki datasets, h times larger than
the original datasets, with h = 25, 50 and 100. We used
the following generation process. Starting with the orig-
inal dataset, a random point is sampled, and each of its
coordinates is modified through the addition of a Gaussian
noise term with mean 0 and standard deviation which is 10%
of the difference between the maximum and the minimum
value of that coordinate across the original dataset. This
perturbed point is then added to the synthetic dataset until
the desired size is reached. The rationale behind this con-
struction is to build a (much larger) synthetic dataset with
the same clustered structure as the original one, similarly to
the SMOTE technique used in machine learning to combat
class imbalance [18]. Also, outliers have been added to each
generated instance, as detailed in the previous subsection.
On each instance of the datasets we ran the randomized
MapReduce algorithm with k = 20, z = 200, using maxi-
mum parallelism (` = 16) and setting the size of each coreset
Ti to 8∗ (k+6 ·z/`). Figure 5 plots the running times (aver-
ages of 10 runs) and shows that the algorithm scales linearly
with the input size.

We ran a second set of experiments to assess the scalability
of the algorithm with respect to the number of processors.
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For these experiments, we used the original datasets with
added outliers, setting k = 20 and z = 200, as before. In or-
der to target the same solution quality over all runs, we fixed
the size of the union of the coresets, from which Outlier-
sCluster extracts the final solution, equal to 8(16k + 6z),
which corresponds to the case µ = 8 and ` = 16 of Fig-
ure 3. Then, we ran the algorithm varying the parallelism
` between 1 and 16, setting, for each value of `, the size of
each Ti to τ` = 8(16k + 6z)/`, so to obtain the desired size
for the union. Figure 6 plots the running times distinguish-
ing between the time required by the coresets construction
(orange area) and the time required by OutliersCluster
(blue area). While the latter time is clearly constant, core-
set construction time, which dominates the running time for
small `, scales superlinearly with the number of processors.
In fact, doubling the parallelism results in about a 4-fold
improvement of the running time up to 8 processors, since
each processor performs work proportional to τ` · |S|/`, and
τ` embodies an extra factor ` in the denominator. This ef-
fect is milder going from 8 to 16 processors because of the
overhead of initial random shuffle of the data.

5.4 Improved sequential performance
As we discussed in Section 3, for the k-center problem

with z outliers we can improve on the superquadratic com-
plexity of the state of the art algorithm in [17], which we
dub CharikarEtAl in the following, by running our de-
terministic MapReduce algorithm sequentially, at the ex-
pense of a slightly worse approximation guarantee. (In fact,
the CharikarEtAl algorithm amounts to O (log |S|) ex-
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Figure 7: Running time (top, in logarithmic scale)
and radius (bottom) of different sequential algo-
rithms on a sample of 10 thousands points of Higgs,
Power, and Wiki.

ecutions of our OutliersCluster with ε̂ = 0 and unit
weights on the entire input S.) To quantify the achievable
gains, we took a sample of 10000 points from each dataset
(so to keep CharikarEtAl’s running time within feasible
bounds). As before, we injected 200 outliers, using the same
procedure outlined above, and set k = 20 and z = 200. We
ran our MapReduce algorithm with ` = 1 (indeed, for ` = 1,
the algorithm is sequential) and µ = 1, 2, 4, 8. Figure 7 re-
ports, for the three datasets, the running times (top plots)
and the radii of the returned clusterings (bottom plot) for
CharikarEtAl and our algorithm for varying µ. Measures
are averages over 10 runs, with the input dataset shuffled be-
fore each run. Note that the case µ = 1 corresponds to the
algorithm in [27], therefore we label it as MalkomesEtAl
From the figure it is clear that building a coreset before run-
ning OutliersCluster is highly beneficial for the running
time, which improves by one order of magnitude. However,
the solution quality for MalkomesEtAl (i.e., µ = 1) is
much worse than the one featured by CharikarEtAl. In
contrast, the bars for µ > 1 show that a substantial per-
formance improvement over the one of CharikarEtAl can
be attained, while keeping the approximation quality essen-
tially unchanged. Observe that, in some cases, our algorithm
returns better radii than CharikarEtAl, even if from the
theory one would expect a slightly worse behavior. This
is probably due to the fact that while CharikarEtAl is
essentially insensitive to shufflings of the data, our coreset
construction, based on gmm, introduces an element of ar-
bitrariness with the choice of the initial center, which may
result in different coresets for different shuffles, potentially
leading to a better average solution quality.

6. CONCLUSIONS
We presented MapReduce and Streaming algorithms for

the k-center problem (with and without outliers) based on
flexible coreset constructions. These constructions yield a
wide spectrum of space-accuracy tradeoffs regulated by the
doubling dimension D of the underlying space. The theo-
retical analysis of the algorithms is complemented by exper-
imental evidence of their practicality.

Future avenues of research include further improvements
of the local memory requirements of the MapReduce algo-
rithms, the development of a 1-pass Streaming algorithm
oblivious to D, and the extension of our approach to other
(center-based) clustering problems.
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