
Design, Implementation, and Evaluation of Write-Back
Policy with Cache Augmented Data Stores

Shahram Ghandeharizadeh
University of Southern California

shahram@usc.edu

Hieu Nguyen
University of Southern California

hieun@usc.edu

ABSTRACT
The Cache Augmented Data Store (CADS) architecture ex-
tends a persistent data store with an in-memory cache man-
ager. It is widely deployed to support read-intensive work-
loads. However, its write-around and write-through policies
prevent the caching tier from absorbing write load. This
means the data store layer must scale to process writes even
when the extra capacity is not needed for read load. We ad-
dress this limitation by devising a write-back technique to
enable the caching layer to process both reads and writes.
This technique preserves ACID transactions. We present a
client side implementation of write-back and evaluate it us-
ing the YCSB, BG, and TPC-C benchmarks. In addition,
we compare our write-back with (a) write-back policy of a
data store such as MongoDB and (b) write-back policy of a
host-side cache such as Flashcache.

PVLDB Reference Format:
Shahram Ghandeharizadeh and Hieu Nguyen. Design, Implemen-
tation, and Evaluation of Write-Back Policy with Cache Aug-
mented Data Stores. PVLDB, 12(8): 836-849, 2019.
DOI: https://doi.org/10.14778/3324301.3324302

1. INTRODUCTION
Cache Augmented Data Stores (CADSs) have been widely

adopted for workloads that exhibit a high read to write ra-
tio. Examples include social networking sites such as Face-
book, Twitter and LinkedIn [18, 19, 1, 32]. CADSs extend
a persistent data store with a caching layer using off-the-
shelf commodity servers. Redis and memcached are popular
in-memory key-value stores used as cache managers.

Write-around (invalidation) and write-through (refill) poli-
cies apply a write to the data store synchronously. This pre-
vents the caching tier from absorbing writes, requiring the
data store layer to scale to process writes even when its extra
capacity is not required for read load. This study adapts a
write-back (write-behind) policy to client-side caches to ad-
dress this limitation. The proposed technique buffers writes

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 8
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3324301.3324302

in the cache and applies them to the data store asynch-
ronously.

Write-back enhances both the performance and horizontal
scalability of CADSs significantly. To illustrate, Figure 1
shows the scalability of a CADS configuration consisting of
one MongoDB server as we vary the number of servers in its
caching layer from one to eight. We show results for several
Yahoo! Cloud Serving Benchmark [7] (YCSB) workloads:
the write heavy Workload A and read heavy Workloads B
and S. With write-around and write-through, the caching
layer does not scale because the data store is the bottleneck.
With write-back, the throughput scales almost linearly even
though the data store remains fully utilized. This is because
write-back buffers writes in the caching layer and applies
them to the data store asynchronously, removing the data
store from the critical path of processing requests.

These results explain why caching middleware such as Or-
acle Coherence [33], EhCache [40] and Infinispan [23] sup-
port the write-back (write-behind) policy. They do so by
providing simple interfaces of a key-value store such as get,
put and delete. A developer is responsible for providing an
application specific implementation of these interfaces.

Design and implementation of a write-back policy must
address several challenges. First, how to represent data store
writes (termed buffered writes) as cache entries and how to
prevent them from being evicted by the cache replacement
policy. Second, how to apply the buffered writes from the
cache to the data store efficiently and ensure read-after-write
consistency. Reads must always observe values produced by
the latest writes even when they are buffered in the cache.
Otherwise, they may produce stale results that impact the
correctness of application and pollute the cache. Third, how
to provide durability of writes in the presence of cache fail-
ures. If a write is acknowledged and its buffered writes are
lost due to a cache server failure then the write is no longer
durable. Fourth, how to process a non-idempotent buffered
write such as increment without compromising consistency
in the presence of failures.

This study presents a write-back technique that addresses
the above challenges. Our proposed technique provides:

• Read-after-write consistency. A read is guaran-
teed to observe the latest writes. A read that refer-
ences a cache entry with pending buffered writes is
processed in the context of these writes. We also use
leases to prevent undesirable race conditions.

• High performance and scalability. Our imple-
mentation of write-back scales the system throughput
as we increase the number of cache servers. This is

836

1 2 3 4 6 8

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Number of Cache Servers

Throughput (thousand actions / sec)

Write−around Write−through

Write−back

(a) Workload A

1 2 3 4 6 8

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

Number of Cache Servers

Throughput (thousand actions / sec)

Write−around

Write−through

Write−back

(b) Workload B

1 2 3 4 6 8

200

400

600

800

1,000

1,200

1,400

Number of Cache Servers

Throughput (thousand actions / sec)

Write−around

Write−through

Write−back

(c) Workload S

Figure 1: Throughput of different YCSB workloads with write-around, write-through and write-back policies.

achieved by partitioning buffered writes across cache
servers and using the client component of the caches
to apply these writes to the data store asynchronously.

• Durability. Buffered writes are pinned in memory,
preventing their eviction by the cache replacement pol-
icy. Moreover, we replicate buffered writes across 3 or
more cache servers to tolerate cache server failures.
These replicas may be assigned to servers in different
racks within a data center. To tolerate data center fail-
ure, one may use non-volatile memory such as today’s
NVDIMM-N [36].

We assume correctness of a write is the responsibility of
the application developer. It transitions the database from
one consistent state to another [20]. (Transaction processing
systems [20] make the same assumption.) Key elements of
our design include:

1. To use a write-back policy, an application must provide
a mapping of cache entries to buffered writes. This
enables a cache miss by a read to identify pending
writes (if any) that impact the missing value. Using
these pending writes, the application may compute the
missing value and provide read-after-write consistency.

2. Use leases of Section 2 to provide read-after-write con-
sistency and enhance data availability in the presence
of failures.

3. Store buffered writes and their mappings in the caching
layer by pinning them. With atomic operations (termed
sessions) that impact more than one key-value pair,
we capture their spatial relationship in the buffered
writes. Similarly, we capture the temporal relation-
ship between sessions that impact the same key-value
pairs to apply buffered writes to the data store in the
same order.

4. Differentiate between idempotent and non-idempotent
changes. We present two different techniques to sup-
port non-idempotent writes with NoSQL and SQL sys-
tems.

5. Replicate buffered writes across multiple cache servers
to enhance availability in the presence of failures.

6. Partition buffered writes to balance load across multi-
ple cache servers.

While all caching middleware advocate partitioning of buf-
fered writes for scalability and their replication for high
availability as best practices [33, 40, 23, 22], they lack the
first four aforementioned design elements: mappings, leases,
spatial and temporal relationships of buffered writes, and
support for non-idempotent changes. These differences make
it challenging to compare our technique with the existing
caching middleware, see Section 5.

This paper makes several contributions. First, we intro-
duce the concept of mapping and use of leases to provide
read-after-write consistency with cache misses. Second, we
support non-idempotent changes with both No-SQL and
SQL systems. Third, we present an implementation of these
concepts in two different designs. While Design 1 is appro-
priate for a document (relational) store that provides ACID
properties at the granularity of one document (row), De-
sign 2 supports complex transactions consisting of multiple
statements impacting multiple documents (rows) or cache
entries. Fourth, we provide a comprehensive evaluation of a
client-side implementation of write-back using off-the-shelf
software components with YCSB [7], BG [5], and Trans-
action Processing Performance Council (TPC) Benchmark
C [42] (TPC-C) benchmarks. Obtained results show write-
back enhances performance with all benchmarks as long as
memory is abundant, outperforming both write-through and
write-around polices.

We also evaluate the impact of the following factors on
write-back performance: the number of background threads
(BGTs), maximum amount of pinned memory for buffered
writes, and degree of replication for buffered writes. In-
creasing the number of BGTs reduces the amount of mem-
ory required by write-back. However, it also reduces the
throughput observed by the application.

We compare the write-back policy with those used in
host-side caches [6, 11, 21, 25] and caches of data stores
such as MongoDB, i.e., MongoDB configured with writeCon-
cern set to ACKNOWLEDGED. The alternatives are trans-
parent and block-based. Our adapted write-back is non-
transparent, requiring application software to implement our
design elements, e.g., mappings, buffered writes, and their
pinning in the cache. Our write-back complements its block-
based alternatives, enhancing their performance several folds.

Write-back has two limitations. First, it is more com-
plex to implement than either write-through or write-around
policies, requiring additional software. Second, its perfor-
mance with a limited amount of memory may be inferior

837

AppNode 0

PStore Cache

…

Cache
CMI

PStore

Data Store

...
Data Store

Client

Load Balancer

…

Cache
Client

User Requests

...
...

AppNode N
...

Cache
Client

Data Store
Client

(a) Architecture of a CADS

Data Store

AppNode

CMI

1. Update
2. Delete
(k,v)

(b) Write-around

Data Store

AppNode

CMI

1. Update
2. RMW / incremental
change (k,v)

(c) Write-through

Figure 2: CADS architecture with 2 write policies.

when compared with the other policies. Specifically, we ob-
serve calcification [24] of memory with memcached when
the size of mappings and buffered writes is different. This
prevents write-back from utilizing its maximum allocated
pinned memory.

The rest of this paper is organized as follows. Section 2
provides an overview of the CADS architecture. Sections 3
presents two designs for write-back. Section 4 evaluates the
write-back policy by comparing it with other write policies
and block-based caches. Section 5 describes related work.
Section 6 provides brief conclusions and outlines our future
research directions.

2. ARCHITECTURE OVERVIEW
Figure 2a shows the architecture of a CADS. A load bal-

ancer directs user requests to different application servers.
Each application server consists of one or many AppNode
instances serving user requests. Each AppNode has client
components to communicate with the persistent data store
(e.g., JDBC with SQL systems) and the cache (e.g., Whalin
Client with memcached). The data store may either be a
SQL (e.g., MySQL [31], PostgreSQL [41], OracleDB [34]) or
a NoSQL data store (e.g., MongoDB [30], CouchBase [8]).
Multiple cache manager instances (CMIs) may be deployed
on a cache server. Example CMIs includes an in-memory
key-value store such as memcached [2] or Redis [35]. AppN-
odes communicate with CMIs via message passing. These
cache managers provide simple interfaces such as get, set,
append and delete.

Definition 2.1. A cache entry is represented as a key-value
pair (ki, vi) where ki identifies the entry and vi is the value
of the entry. Both ki and vi are application specific and
authored by a developer.

An AppNode read identifies the key ki and gets its value
vi from the cache. If the value vi exists then the read has

Data Store CMI

2. Apply
buffered
writes 2. Insert

& pin
Buffer writes

AppNode

…

Background Worker
Threads (BGTs)

1. Get
buffered
writes

1. Refill
(k,v)3. Unpin

& Delete
buffered
writes

…

Foreground
Worker Threads

Figure 3: Write-back policy. Solid (dashed) arrows are
performed in the foreground (background).

observed a cache hit and proceeds to consume vi. Otherwise,
with a cache miss, the read queries the data store for the
data item. It may fetch a few rows of a relational database
or a document of a document store to compute the key-value
pair to be inserted in the cache for future reference. Reads
that observe a hit for these key-value pairs benefit because
result look-up from the in-memory cache is much faster than
query processing using the data store [18, 32].

Figure 2 shows the write-around (invalidate) and write-
through (refill) policies. Both update the data store syn-
chronously. While write-around deletes the impacted key-
value pairs, write-through updates them. Write-through
may employ incremental update (e.g., append or increment)
or read-modify-write to update a key-value pair. With write-
back, see Figure 3, a write updates the impacted key-value
pairs similar to write-through. However, it stores one or
more replicas of its changes (termed buffered write) in the
CMI instead of applying it to the data store. The write is
then acknowledged to the user as successful. Background
threads, BGTs, apply the buffered write to the data store
asynchronously. Figure 3 shows these threads are co-located
with AppNode. However, this is not a requirement and a
different process may host these threads.

We make several assumptions about the cache manager
that may not be standard. First, the application may pin
and un-pin a key-value pair when setting it in a CMI. This
means the CMI’s cache replacement technique may not evict
a pinned key-value pair. We pin buffered writes and their
mappings in one or more CMIs. A background thread that
applies a buffered write to the data store un-pins and deletes
them.

Second, we assume the concept of sessions. A session is
an atomic operation with a unique identifier. It reads and
writes one or more cache entries and issues one transaction
to the data store. We use a session to implement a trans-
action of the TPC-C benchmark. A session that reads a
key-value pair must obtain a Shared (S) lease on it prior
to reading it. A session that writes a key-value pair must
obtain an eXclusive (X) lease on it prior to updating1 its
value.

1An update may be in the form of a read-modify-write or
incremental update such as increment, append, etc.

838

Table 1: S and X Lease Compatibility.

Requested Existing Lease
Lease S X

S Grant S lease Abort and Retry
X Grant X and void S lease Abort and Retry

The S and X leases are different than read and write locks
in several ways. First, S and X leases are non-blocking. As
shown in the compatibility Table 1, when a session Tr re-
quests a S lease on a key-value pair with an existing X lease,
it aborts and retries. Second, when a session Tr requests an
X lease on a data item with an existing S lease granted to
session Th, Tr wounds Th by voiding its S lease. At its sub-
sequent request, Th is notified to abort and restart. This
prevents write sessions from starving. Third, they have a fi-
nite lifetime in the order of hundreds of milliseconds. Once
they expire, their referenced key-value pair is deleted. This
is suitable for a distributed environment where an applica-
tion node fails causing its sessions holding leases to be lost.
Leases of these sessions expire after sometime to make their
referenced data items available again.

Prior to committing its data store transaction, a session
validates itself to ensure all its leases are valid. Once a
session is validated, its S leases become golden. This means
they may no longer be voided by an X lease. An X lease
that encounters a golden S lease [3] is forced to abort and
retry. Once the session commits its database transaction, it
commits the session and releases its leases.

Different components of a distributed CADS may imple-
ment the write-back policy and its buffered writes. For ex-
ample, it may be implemented by the application instances,
CMIs, or a middleware between the application instances
and CMIs, or a hybrid of these. This paper describes an im-
plementation using the application instances, see Figure 3.

3. WRITE-BACK: 2 DESIGNS
This section presents two different designs for the write-

back policy. They assume the data store transaction that
constitutes a session has different complexity. Design 1 as-
sumes simple data store transactions that either read or
write a single document (row) of a document (relational)
store such as MongoDB (MySQL). It is suitable for work-
loads modeled by the YCSB benchmark. Design 2 assumes a
session’s data store transaction reads and/or writes multiple
rows of a SQL (or documents of a transactional MongoDB)
data store. It is suitable for complex workloads such as those
modeled by the TPC-C benchmark.

Design 1 maintains changes at the granularity of each doc-
ument. A cache look up that observes a miss is provided
with a mapping that identifies changes that should be used
when computing the missing cache entry. To enable BGTs
to discover and apply changes to the data store asynch-
ronously, it maintains a list of documents with changes,
termed PendingWrites.

Design 2 maintains changes at the granularity of a session.
Its mapping identifies the dependence of a cache entry on
the sessions with pending changes. A cache miss uses this
mapping to identify sessions with pending buffered writes
that should be considered when computing the missing cache
entry. It maintains a queue that specifies the order in which
sessions commit. A BGT uses this queue to discover sessions

with pending writes and applies them to the data store in
the same order as their serial commit.

Design 2 is different than Design 1 in that its queue iden-
tifies temporal dependence of the sessions across multiple
data items in the data store. Design 1 is simpler because it
maintains the order of changes per document by assuming a
session writes only one document. Design 2 is essential for
preserving SQL’s integrity constraints such as foreign key
dependencies between rows of different tables.

Below, we provide a formal definition of a change, a buf-
fered write, and a mapping. Subsequently, we describe Pend-
ingWrites and queues to facilitate discovery of buffered writes
by BGTs. Finally, we present BGTs and how they apply
buffered writes to the data store. Each discussion presents
the two designs in turn.

A Change: A change is created by a write session. It may
be idempotent or non-idempotent. Both designs must ap-
ply a non-idempotent write to the data store once. This is
specially true with arbitrary failures of AppNodes. The def-
inition of a change is specific to the data store’s data model.
It is different for the document data model (NoSQL) of De-
sign 1 when compared with the relational data model (SQL)
of Design 2. Below, we describe these in turn. Subsequently,
we describe how each design supports non-idempotent
changes.

With Design 1, a change by a write may be represented
in a JSON-like format that is similar to MongoDB’s update
command. Table 2 shows examples of how these changes are
represented. In this table, $set is idempotent, while $inc

is non-idempotent. A change that adds a value or an object
to a set while guaranteeing uniqueness (e.g., $addToSet of
MongoDB) is idempotent since it does not allow duplicates.
However, a similar operation without uniqueness property
(MongoDB’s $push) is non-idempotent.

With Design 2, a change may be a SQL DML command:
insert, delete, update. The command may impact multiple
rows. Design 2 may represent the change as a string repre-
sentation of the DML command issued by the application or
a compact representation of it. In our TPC-C implementa-
tion, we use the latter to enhance utilization of both memory
space and network bandwidth.

Designs 1 and 2 process non-idempotent changes in differ-
ent ways to tolerate arbitrary failures of BGTs that apply
these changes. Design 1 requires developers to provide addi-
tional software to convert non-idempotent changes to idem-
potent ones. BGTs replace a non-idempotent change with
its equivalent idempotent change prior to applying it to the
data store. Design 2 uses the transactional property of its
data stores to apply non-idempotent changes only once. Its
BGTs stores the id of a session applied to the data store in
a special table/collection, AppliedSessions, as a part of the
transaction that applies this session’s changes to the data
store. Prior to applying changes of a session to the data
store, a BGT looks up the session id in the AppliedSessions
table. If found then it discards the session and its buffered
writes. Otherwise, it constructs a transaction consisting of
the session’s changes (SQL DML commands) along with the
command that appends the id of the session to the Applied-
Sessions table. Next it executes this transaction and deletes
the session object from the cache. Periodically, a BGT com-
pacts the AppliedSessions table by deleting those session
rows with no session objects in the CMI.

839

Table 2: Example of write actions and the representation of their changes.

Document D Write action applied to D
Idem-

Representation of change
After applying

potent? the write to D

{ field: “val” } Set value of field to newval 3 { “$set”: { field: “newVal” } } { field: “newVal” }
{ field: “val” } Remove a field 3 { “$unset”: { field: “” } } { }
{ field: i } Increment value of field by x 7 { “$inc”: { field: x } } { field: i+x }
{ field: [“a”] } Add to value of field 3 { “$addToSet”: { field: “b” } } { field: [“a”, “b”] }
{ field: [“a”] } Add to value of field 7 { “$push”: { field: “a” } } { field: [“a”, “a”] }
{ field: [“a”, “b”] } Remove from value of field 7 { “$pull”: { field: a } } { field: [“b”] }

Buffered writes: A buffered write is a sequence of changes.
With Design 1, atomicity is at the granularity of a docu-
ment [29]. Hence, a buffered write represents a sequence of
changes to one document. Each is a represented as a pinned
cache entry, i.e., a key-value pair in a CMI. Buffered writes
are partitioned across CMIs.

Definition 3.1. With Design 1, a buffered write for a docu-
ment Di is represented as a key-value pair (kbwi , vbwi) where
kbwi identifies a buffered write and vbwi stores either the final
value of Di or the pending changes to Di. With the latter,
the sequence of changes in vbwi represents the serial order of
writes to Di.

The key kbwi may be constructed by concatenating “BW”
with DocID where DocID is a unique identifier (or primary
key) of the impacted document.

There are two approaches to buffer a change to vbwi : Ap-
pend and Read-Modify-Write (RMW). Both acquire an X
lease on the key kbwi . While Append requires the AppNode
to append its changes to vbwi , RMW requires the AppNode
to read vbwi , update vbwi with the change, and write vbwi back
to the cache. An efficient design of RMW grants an X lease
as a part of read that fetches vbwi . RMW may compact vbwi
by eliminating changes that nullify one another. Below, we
present an example to illustrate these concepts.

Example 3.1. Alice’s document is impacted by two write
actions: i) Bob invites Alice to be friend and ii) Alice ac-
cepts Bob’s invitation. Representation of changes for i) is
{ “$addToSet”: { pendingfriends: “Bob” } }, i.e., add Bob
to Alice’s pending friends. Representation of changes for ii)
is { “$pull”: { pendingfriends: “Bob” }, “$addToSet”: {
friends: “Bob” } }, i.e., remove Bob from pending friend
list and add Bob to Alice’s friend list. With Append, the
buffered write is merely the JSON array that includes the
two representations. With RMW, the buffered write becomes
{ “$addToSet”: { friends: “Bob” } } since $pull cancels
$addToSet of Bob to pendingfriends of Alice. �

In Example 3.1, both write actions make small changes
to Alice’s document. With append, the changes reflect the
serial order of writes. The RMW performs a compaction to
remove a redundant change.

Design 2 must support sessions that produce changes
impacting rows of multiple tables. Thus, a buffered write
represents a sequence of changes performed by a session. It
is associated with a session object.

Definition 3.2. With Design 2, a buffered write for a ses-
sion Ti is represented as a key-value pair (kbwi , vbwi) where
kbwi identifies the session Ti and vbwi stores either the raw
SQL DML commands issued by that session or their compact
representation. The sequence of changes in vbwi represents
the serial order of SQL DML commands by session Ti.

With both designs, buffered writes may be replicated across
multiple CMIs to enhance their availability in the presence
of CMI failures. These replicas are un-pinned and deleted
after they are applied to the data store.

Mapping: A mapping implements a detective technique
that provides read-after-write consistency when the appli-
cation encounters misses for cache entries with pending buf-
fered writes. It enables a cache miss to discover writes that
must be used to compute the missing value.

An alternative to the detective approach of using map-
pings is to prevent cache misses for entries with pending
buffered writes. The idea is to require a write session to
generate the missing cache entry prior to generating a buf-
fered write (to prevent a future cache miss). This solution
must pin these cache entries to prevent their eviction until
their buffered writes are applied to the data store. The chal-
lenge with this design is that it may pin entries that may
not be referenced in the near future, reducing the cache hit
rate of the application. Due to this limitation, we discard
this preventive technique and assume use of mappings for
the rest of this paper.

There are two ways to use a mapping. First, apply buf-
fered writes prior to evicting a cache entry that depends
on them. We term this the cache-server side (CSS) solu-
tion. Second, require the reads that observe a cache miss
to look up the mapping to identify buffered writes and use
them to compute the missing value. We term this technique
the application-side solution (APS). APS may compute the
missing value in different ways. In its simplest, it may ap-
ply the buffered writes to the data store first, and query the
data store to compute the missing value. Alternatively, if
a buffered write provides sufficient information for the ap-
plication to compute the missing value then it may do so,
leaving the buffered write to be applied by a BGT.

With both APS and CSS, it is the responsibility of the
developer to author software to specify mappings.

Definition 3.3. A mapping inputs the key ki for a cache
entry to compute keys of its buffered writes, {kbwi }. With De-
sign 1, these keys identify the documents with buffered writes
that are used to compute the missing entry. With Design
2, these keys identify the session ids with pending buffered
writes. A mapping may be a developer provided function or
represented as a key-value pair (kMi , vMi).

When a mapping is represented as a pinned key-value pair
(kMi , vMi), kMi identifies mapping i uniquely. With Design 1
(2), its value vMi is the keys of those buffered writes (session
objects) that impact ki. A write that generates buffered
writes must also generate a mapping. A read that observes
a cache miss must always look-up {kMi } in the cache and
apply its identified buffered writes to the data store prior

840

to querying it for the missing value. Many mappings for
different cache entries may reside in a CMI.

Algorithm 1: Process a cache miss (Design 1).

1 function Process Cache Miss(ki):
// Use mapping to compute key of the

buffered write

2 kbwi ← mapping(ki);

3 if kbwi is null then
4 return; // Cache miss, no buffered write

5 Apply Buffered Write(kbwi);
6 Un-pin and delete explicit mappings (if any);
7 vi ← Result of a function that queries the data store;
8 Insert (ki, vi) in CMI[hash(ki)];

With APS, a read that observes a cache miss uses output
of a mapping to look up the buffered write(s) in the CMI,
see 2 of Algorithm 1. If there is no mapping then it returns
a cache miss so that the application may query the data
store for the missing value 3 - 4 . Otherwise, it applies the
buffered writes to the data store prior to computing the
missing cache entry 5 .

Algorithm 2 applies a buffered write as an atomic ses-
sion because, with Design 1, it must convert non-idempotent
changes into idempotent ones. Algorithm 2’s read of a buf-
fered write for RMW obtains an X lease and fetches the
buffered write 3 . Next, it compacts the changes in this
buffered write 4 . If the buffered write contains one or more
non-idempotent changes, it converts these changes to idem-
potent ones, writing a revised buffered write with idempo-
tent changes only, 5 - 8 . It calls itself recursively 9 to apply
the idempotent writes to the data store, unpins and deletes

the buffered write, and commits to release its X lease, 11 -

13 .

Algorithm 2: Apply buffered write (Design 1).

1 function Apply Buffered Write(kbwi):
// Look up buffered write

2 sessionId ← Generate a unique token;

3 vbwi ← Read(kbwi , sessionId); // Obtain a X lease
on the buffered write

4 Compact vbwi and remove redundant changes;

5 if vbwi contains one non-idempotent change then
6 vbwi ← Idempotent equivalent of vbwi ;

// Replace value of buffered write with
its idempotent equivalent

7 Set kbwi to vbwi ;
8 Commit(sessionId); // Release X lease

9 Apply Buffered Write(kbwi);

10 else
11 Apply vbwi to document Di in the data store;

// Delete the buffered write

12 Un-pin and delete kbwi ;
13 Commit(sessionId);

Similarly, CSS uses the output of the same mapping to
locate buffered writes for a key that is being evicted, ap-
plies them (if any) to the data store per Algorithm 2. This
technique incurs the overhead of an extra cache look up for
every cache miss with APS and cache eviction with CSS.

APS and CSS are different in when and how they look
up the mappings and process them. CSS uses the mappings
when evicting a cache entry. APS uses the mappings when
a read observes a cache miss. APS and CSS look up the
mappings at the same rate with a workload that has the
same rate of cache misses and evictions. If the cache re-
placement technique favors maintaining small sized cache
entries by evicting large ones [16] then its rate of cache evic-
tions would be lower than its cache misses. In this case
CSS would do fewer look ups of mappings and processing of
buffered writes.

There is also the complexity of implementing APS and
CSS in a distributed manner. With an off-the-shelf cache
manager such as memcached, it may be easier to implement
APS instead of CSS. Without loss of generality, we assume
APS for the rest of this paper.

Both Designs 1 and 2 may generate a Query Result Change,
QRC [14]. As suggested by its name, a QRC impacts the
results of a query. A write that generates a buffered write
may also generate a QRC. A read that observes a cache
miss (1) queries the data store to obtain a result set, (2)
applies the relevant QRCs to the result set to obtain the
latest value, and (3) inserts the obtained value in the cache
for future lookup. A BGT that applies a buffered write to
the data store deletes the QRCs identified by this buffered
write. See [17] for additional details.

Discovery of buffered writes using PendingWrites
and Queues: With both designs, a BGT must discover
buffered writes and apply them to the data store. With
Design 1, a special key termed PendingWrites identifies the
buffered writes for different documents. A write session ob-
tains an X lease on PendingWrites and appends its buffered
write key (kbwi) to its value. To minimize contention among
concurrent writes, we represent PendingWrites as α pinned
sub-keys. Keys of the buffered writes (kbwi s) are hash parti-
tioned across them. The value of α is typically a multiple of
the number of concurrent writes (threads) and background
threads, whichever is greater.

With Design 2, a queue maintains the serial order in which
buffered writes of different sessions must be applied to the
data store. It is represented as a key-value pair. The key
identifies a queue known to a BGT and its value is a tempo-
ral order of session objects to be applied to the data store.
(Each session object identifies a buffered write.) An appli-
cation may maintain multiple queues. For example, with
TPC-C, there is one queue per warehouse. When TPC-C is
configured with W warehouses, it maintains W queues.

Background Threads, BGTs: BGTs are threads that
implement the asynchronous application of buffered writes
to the data store. With Design 1, a BGT checks for dirty
documents by looking up partitions of PendingWrites peri-
odically. It processes each buffered write per Algorithm 2.
This algorithm was presented in the context of processing a
cache miss using a mapping.

With Design 2, a BGT uses a queue to discover sessions
with pending buffered writes. Moreover, it maintains an Ap-
pliedSessions table to support non-idempotent writes. Due
to lack of space, we refer the reader to [17] for details.

Durability: Both designs pin their buffered writes, map-
pings, PendingWrites/Queues in a CMI to prevent its re-

841

placement technique from evicting them. Moreover, with
multiple CMIs, both designs replicate these entries to en-
hance their availability in the presence of CMI failures.

4. EVALUATION
This section evaluates the write-back policy using YCSB [7],

BG [5], and TPC-C [42] benchmarks. All experiments use
IQTwemcached [19] that implements S and X leases. With
YCSB and BG, we use Design 1. TPC-C uses Design 2.
While BG uses MongoDB [30] version 3.4.10 as its data
store, both YCSB and TPC-C use MySQL version 5.7.23
as their data store. We chose MongoDB and MySQL to
highlight applicability of the write-back policy to both SQL
and NoSQL data stores. Moreover, BG highlights the ap-
plicability of Design 1 to SQL when the workload is simple
interactive social networking actions.

With all benchmarks, we quantify maximum memory used
by the write-back policy assuming a sustained high system
load. These maximums are unrealistic as a typical workload
is diurnal consisting of both a low and a high load, e.g.,
see Facebook’s load [4]. At the same time, it is useful to
establish the worst case scenario.

Our experiments were conducted on a cluster of emu-
lab[43] nodes. Each node has two 2.4 GHz 64-bit 8-Core
(32 virtual cores) E5-2630 Haswell processors, 8.0 GT/s bus
speed, 20 MB cache, 64 GB of RAM, connects to the net-
work using 10 Gigabits networking card and runs Ubuntu
OS version 16.04 (kernel 4.10.0). Unless stated otherwise,
each experiment starts with a warm cache (100% cache hit
rate) and runs for 10 minutes.

Obtained results highlight the following lessons:

1. Write-back enhances performance with all benchmarks
as long as memory is abundant. It also enhances hori-
zontal scalability as a function of the number of nodes
in the caching layer. See Sections 4.1, 4.2, and 4.3.

2. With write-back, there is a tradeoff between the amount
of required memory, the number of BGTs applying
buffered writes to the data store, and the throughput
observed by the application (foreground tasks). In-
creasing the number of BGTs reduces the amount of
memory required by write-back. However, it also re-
duces the throughput observed by the application. See
Sections 4.1 and 4.2.

3. Limited memory diminishes the performance gains pro-
vided by write-back. This is because it must pin buf-
fered writes, mappings, PendingWrites/Queues in mem-
ory. These entries may reduce the cache hit rate ob-
served by the application. One approach to mitigate
this is to limit the amount of pinned memory allocated
to write-back, forcing it to switch to write-through
once this memory is exhausted. We observe mem-
cached memory to become calcified [24], preventing
write-back from using its assigned memory. See Sec-
tion 4.4.1.

4. The overhead of replicating buffered writes, mappings,
PendingWrites/Queues of write-back is in the form of
network bandwidth. This overhead becomes negligi-
ble when writes are infrequent and the application’s
cache entries are much larger than these entries. More-
over, an increase in the number of nodes in the caching

Table 3: YCSB Workloads.

Workload Actions

Workload A 50% Read, 50% Update
Workload B 95% Read, 5% Update
Workload C 100% Read
Workload S 95% Scan, 5% Update

layer increases the available network bandwidth. This
reduces the overall impact of replication. In our ex-
periments, constructing 3 replicas with 4 cache servers
reduces observed throughput with 1 replica by 19%.
Experiments conducted with 8 cache servers observes
a 6% decrease in throughput. See Section 4.4.2.

5. Our proposed write-back technique complements the
write-back technique of both a data store such as Mon-
goDB and a host-side cache such as Flashcache. Its en-
hances their performance more than 2x with workloads
that exhibit a high read-write ratio. See Section 4.4.3.

Below, we present results in support of these lessons in turn.

4.1 YCSB: Design 1 with MySQL
The YCSB database consists of 10 million records. Each

record has 10 fields, each field is 100 bytes in size. A read
or an update action reads or updates all fields of a record.
A scan action (Workload S) retrieves 5 records (cardinality
5). When all data fits in IQTwemcached, the cache size for
Workloads A, B and C is 14 GB. It is 55 GB with Workload
S. We drop Workload C from further consideration because
it is 100% read and a choice of a write-policy does not im-
pact its performance. Unless stated otherwise, we assume a
uniform access pattern. Details of the YCSB workloads are
shown in Table 3.
Response time: The cache with all 3 write policies is
faster than MySQL by itself for YCSB read action: 3x faster
with read and 2x faster with scan. YCSB update is 25%
faster with write-back when compared with MySQL. Write-
back is more than two times faster than write-around/write-
through. They incur the overhead of deleting/updating the
cache entry and MySQL processing of update. See [17] for
details.
Throughput: Figure 1 used as motivation in Section 1
shows the throughput with the alternative YCSB workloads
using write-back, write-around, and write through as a func-
tion of cache servers. In these experiments, we prevent the
global LRU lock of IQTwemcached from limiting perfor-
mance by launching 8 CMIs per server. Each CMI is as-
signed 8 GB of memory. We increase the number of servers
(CMIs) from 1 (8) to 8 (64). Obtained results show that
write-back outperforms its alternatives2 by a wide margin.

Figure 4 shows scalability of Workloads A, B, and S. These
correspond to the throughput numbers of Figure 1. Scal-
ability of Workloads A and B is computed relative to 1
cache server. Write-around and write-through do not scale
because either the data store’s CPU or its disk/SSD be-
comes the bottleneck. Write-back scales linearly by buffer-
ing writes and eliminating the data store from the process-
ing path. The bottleneck resource is CPU (network) with
Workload A (B and S).

2Throughput of MySQL by itself is 17,523, 111,156, and
91,499 for Workloads A, B, and S, respectively.

842

1 2 3 4 6 8

1

2

3

4

5

6

7

8

Number of Cache Servers

Scalability

Write−around/through

Write−back

Linear

(a) Workload A

1 2 3 4 6 8

1

2

3

4

5

6

7

8

Number of Cache Servers

Scalability

Write−around/through

Write−back

Linear

(b) Workload B

2 3 4 6 8
0

2

4

6

8

Number of Cache Servers

Scalability

Write−around

Write−through

Write−back

Linear

(c) Workload S

Figure 4: Scalability with different YCSB workloads. Write-back scales linearly with Workload S.

With Workload S, we show scalability relative to the con-
figuration consisting of 2 cache servers. Its larger cache en-
tries prevent it from observing a 100% cache hit with 1 cache
server (and observes a 100% cache hit with 2 or more cache
servers). Using 1 cache server as the basis results in a super-
linear scaleup. Using 2 servers as the basis of the scalability
graph provides for a more subjective evaluation.

4.1.1 Required Memory
The rate at which a system applies buffered writes to the

data store is a tradeoff between the cache memory space
and decrease in rate of processing (throughput) observed by
the foreground requests. The foreground requests are im-
pacted for two reasons. First, background threads compete
with foreground threads that observe cache misses for us-
ing the data store. These foreground threads must apply
their changes to the data store and query it to compute
the missing cache entries. Second, application of buffered
writes requires network bandwidth for (background threads
of) AppNodes to fetch the buffered writes from CMIs. At
the same time, an aggressive application of buffered writes
deletes both the buffered writes and their mappings from
CMIs faster, minimizing the amount of memory required by
write-back.

We demonstrate the tradeoff with an experiment that con-
sists of 63 instances of AppNodes hosted on 21 servers (3
AppNode instance per server), and 64 CMIs hosted on 8
servers (8 CMIs per server). We vary the number of back-
ground threads (BGTs) from 1 per AppNode instance to 5,
10, 20, 30, and 40. Each BGT applies buffered writes to the
data store as fast as possible.

Figure 5a shows the normalized throughput observed with
different number of BGTs relative to 1 BGT per AppNode
instance (63 BGTs). The x-axis of this figure is the total
number of BGTs. Increasing the number of BGTs decreases
throughput of write-heavy workload A (47% drop with 2,520
BGTs) followed by read-heavy Workload B (30% drop with
2,520 BGTs). Workload S observes a negligible decrease
in its throughput even though it is a read-heavy workload
similar to B. Moreover, the size of buffered writes with both
B and S are identical. S is different because it consists of
scans with cache entries that are 5 times larger than those
of B. The network bandwidth becomes the bottleneck with
S to render the overhead of additional BGTs negligible.

Figure 5b shows the percentage of changes applied by the
background threads to the data store at the end of an ex-

periment. Workload A has the lowest percentage because it
is write-heavy. However, this percentage increases modestly
(< 20%) as we increase the number of BGTs. This explains
why Workload A has the highest amount of pinned memory
in Figure 5c.

Figure 5 shows Workload S benefits the most from an
increase in the number of BGTs. This is because its nor-
malized throughput is comparable to having 63 BGTs while
its percentage of applied writes to the data store increases
dramatically. This in turn reduces its pinned memory size
by almost 2x.

4.2 BG: Design 1 with MongoDB
BG [5] is a benchmark that emulates interactive social net-

working actions. It quantifies Social Action Rating (SoAR)
defined as the highest throughput that satisfies a pre-specified
service level agreement (SLA). The SLA used in our exper-
iments is 95% of actions processed in 100 milliseconds or
faster. In our evaluation, we use a social graph consisting
of 10 million users with 100 friends per user. We considered
three workloads as shown in Table 4. List friends (or list
pending friends) action only returns 10 out of 100 friends
(or pending friends) of the requested user.

Table 4: BG Workloads.

BG Social Actions
90% 99% 99.9%
reads reads reads

View Profile 80% 89% 89.9%
List Friends 5% 5% 5%
List Pending Friends 5% 5% 5%
Invite Friend 4% 0.4% 0.04%
Reject Friend 2% 0.2% 0.02%
Accept Friend 2% 0.2% 0.02%
Thaw Friendship 2% 0.2% 0.02%

Response time: Write-back is faster than MongoDB by
itself and the other two write policies for all workloads of
Figure 4. The precise percentage depends on the config-
uration of MongoDB to perform the write in journaled or
acknowledged mode. Due to lack of space, we refer to [17]
for details.
Throughput: Write-back provides a higher SoAR when
compared with other policies, see Table 5. Its SoAR is dic-
tated by the network bandwidth of the cache server. More-
over, it enables all BG workloads to scale linearly as a func-
tion of cache servers. Write-around and write-through scale
sub-linearly by no more than a factor of 6 with 8 cache

843

63 315 630 1,260 1,890 2,520
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of background worker threads

Normalized throughput

Workload A

Workload B

Workload S

(a) Throughput relative to 63 BGTs

63 315 630 1,260 1,890 2,520
0

10

20

30

40

50

60

70

Number of background worker threads

% applied updates

Workload A

Workload B

Workload S

(b) % Applied updates

63 315 630 1,260 1,890 2,520
7

8

9

10

11

12

13

14

Number of background worker threads

Pinned memory size (GB)

Workload A

Workload B

Workload S

(c) Pinned memory size

Figure 5: Impact of the number of background workers on throughput, percentage of updates applied to the data store, and
the total amount of pinned memory (YCSB workloads).

Table 5: SoAR of MongoDB by itself and with 1 cache
server.

Workload
SoAR (actions/sec)

MongoDB Write-back Write-through

90% read 27,518 355,769 111,548
99% read 48,365 693,816 488,593
99.9% read 76,068 711,659 678,665

servers. Scalability is lowest with 90% reads because the
CPU of MongoDB becomes fully utilized processing writes.
Scalability improves with 99% and 99.9% reads as the load
on MongoDB is reduced and the network card of the cache
servers becomes fully utilized.

4.2.1 Required Memory
Similar to YCSB results, the amount of memory required

for buffered writes with BG is a function of their produc-
tion rate by the foreground threads and application to the
data store by BGTs. Obtained results are shown in Fig-
ure 6. A key difference is that with its read-heavy (99.9%)
workload, the BGTs apply buffered writes to the data store
at the same rate at which writes produce them. The mea-
sured SOAR is impacted by the overhead of BGTs checking
for buffered writes to find none. This is because the net-
work is the bottleneck. Hence, increasing the number of
BGTs reduces throughput without providing a benefit, see
Figure 6a.

4.3 TPC-C: Design 2 with MySQL
TPC Benchmark C [42] is an on-line transaction process-

ing (OLTP) benchmark. TPC-C models a supplier oper-
ating out of several warehouses and their associated sales
districts. It quantifies transactions per minute (tpmC) rat-
ing of a solution. We use the standard setting of TPC-
C with 1 warehouse consisting of ten districts per ware-
house, each district serving three thousand customers, and
100,000 items per warehouse. These results are obtained
using OLTP-Bench [12] implementation of TPC-C extended
with leases for strong consistency. The deployment consists
of 2 emulab nodes. One hosting the OLTP-Bench workload
generator and the other hosting (a) MySQL by itself and
(b) MySQL and 8 instances of IQTwemcached using either
write-through or write-back policies.

We analyze MySQL configured with either solid state drive
(SSD) or hard disk drive (HDD). Write-back improves per-
formance throughput of MySQL with SSD by more than two
folds. Moreover, its performance is not sensitive to whether
MySQL is configured with either SSD or HDD because TPC-
C’s database is small, causing cache to observe a 100% hit
rate 3.

Response time: The frequency of New-Order, Payment,
Order-Status, Delivery, and Stock-Level transactions are
45%, 43%, 4%, 4%, and 4%. The weighted response time
with MySQL is 5.56 milliseconds. Write-back is faster at
3.10 milliseconds, providing a 44% enhancement. Write-
through is 33% slower than MySQL because the overhead of
writes outweighs the benefits observed by the reads that con-
stitute 8% of the workload. See [17] for response time of each
transaction using MySQL, write-back and write-through.

Throughput: Figure 7a shows the write-through policy is
inferior to MySQL by itself because 92% of TPC-C trans-
actions are writes. Write-through must apply these writes
to both MySQL and IQ-Twemcached synchronously. The
overhead of writing to IQ-Twemcached outweighs benefits
provided by its cache hits.

In Figure 7a, tpmC of write-back levels off with 5 and
more threads due to contention for leases between the fore-
ground threads. These foreground threads also contend with
the background thread for an X lease on the queue of ses-
sions. The same applies to MySQL with its lock manager
blocking transactions to wait for one another.

Figure 7b shows scalability of TPC-C with MySQL and
write-back as we increase the number of warehouses from
1 to 100 with 1 thread issuing transactions to one ware-
house. MySQL’s SSD becomes fully utilized with more than
20 threads (warehouses), limiting its scalability. Write-back
scales linearly with network bandwidth of the caching tier
dictating its scalability.

4.3.1 Required Memory
Figure 7c shows the amount of required memory with

write-through and write-back policies with one warehouse.
These results highlights the amount of memory required

3MySQL with HDD slows down the rate at which BGTs
apply buffered writes, requiring more memory than MySQL
with SSD.

844

48 240 480 960 1,440 1,920
0.8

0.85

0.9

0.95

1

Number of background worker threads

Normalized SoAR

90% reads

99% reads

99.9% reads

(a) SoAR relative to 48 BGTs

48 240 480 960 1,440 1,920
0

10

20

30

40

50

60

70

80

90

100

Number of background worker threads

% applied updates

90% reads

99% reads

99.9% reads

(b) % Applied updates

48 240 480 960 1,440 1,920
0

50

100

150

200

250

300

350

400

Number of background worker threads

Pinned memory size (MB)

90% reads

99% reads

99.9% reads

(c) Pinned memory size

Figure 6: Impact of the number of background workers on SoAR, percentage of updates applied to the data store, and the
total amount of pinned memory (BG workloads).

1 5 10
0

2000

4,000

6,000

8,000

10,000

12,000

14,000

Number of threads processing requests

tpmC (transactions per minute)

MySQL SSD

MySQL SSD/HDD + Write−back

MySQL SSD + Write−through

MySQL HDD

(a) tpmC of MySQL by itself and with
IQTwemcached configured with write-back
and write-through.

1 10 20 30 40 50 60 70 80 90 100
1

10

20

30

40

50

60

70

80

90

100

Number of warehouses

tpmC Scalability

MySQL SSD

MySQL IQTwemcahed
(Write−back)

Linear

(b) tpmC Scalability.

10 100 200 300 400 500 600
100

200

300

400

500

600

700

800

Time (Seconds)

Cache Size (Megabytes)

Write−through

Write−back

(c) Memory size of IQTwemcached with
write-back and write-through, 5 TPC-C
threads, 1 warehouse.

Figure 7: tpmC of MySQL by itself and with IQTwemcached configured with write-back and write-through.

by the cache entries for TPC-C. Its increase with write-
through as a function of time highlights the growing size of
database (new orders) and its corresponding cache entries.
These entries are included in the memory size reported for
write-back. Moreover, write-back includes buffered writes,
mappings, and queues. The difference between write-back
and write-through highlights (a) the extra memory required
by write-back for buffered writes and (b) faster processing
of new orders increases both database size and cache size
at a faster rate. Write-back requires a significantly higher
amount of memory than write-through.

4.4 Discussion
This section discusses impact of limited memory on write-

back, overhead of replicating buffered writes for durability,
and tradeoffs associated with deploying write-back at differ-
ent software layers.

4.4.1 Limited Memory and Slab Calcification
Reported performance numbers assume abundant amount

of memory. Write-back performance degrades considerably
with limited memory because (a) buffered writes compete
with cache entries for memory to increase the cache miss
rate observed by the application, (b) cache misses require
buffered writes to be applied to the data store in a syn-
chronous manner that diminishes the performance of write-

back to be comparable to write-though4, (c) cache managers
such as memcached may suffer from slab calcification when
memory is limited. In [17], we present experimental results
demonstrating these lessons using YCSB.

4.4.2 Replication of Buffered Writes
Replication of buffered writes enhances their availability

in the presence of cache server failures. At the same time,
it consumes network bandwidth to transmit these redun-
dant replicas to CMIs and the additional memory required
to store them. While only one replica is fetched by a BGT
to apply to the data store, the BGT must delete all repli-
cas. This overhead impacts system throughput. This sec-
tion quantifies this overhead by comparing the throughput
of the write-back configured with 1 and 3 replicas for buf-
fered writes, their mappings, and PendingWrites/Queues.

Obtained results highlight the following lesson. The over-
head of constructing 3 replicas becomes less significant as
we 1) increase the size of the caching layer, 2) reduce the
frequency of writes and 3) have workloads with cache entries
much larger than the buffered writes and their mappings.

Figure 8 highlights the above lessons by showing the
throughput of YCSB workload B with 4 and 8 cache servers
using Design 1. (Each cache server hosts 8 CMIs.) The over-
head of constructing 3 replicas with 4 cache servers lowers

4Figure 7a shows write-through to be inferior to MySQL by
itself with TPC-C.

845

4 cache servers 8 cache servers
2,000

3,000

4,000

5,000

6,000
Throughput (thousand actions / sec)

3 Replicas

1 Replica

Figure 8: Impact of replicating buffered writes on through-
put of YCSB Workload B.

throughput by 19%. It is reduced to 6% with 8 cache servers.
The larger configuration has a higher network bandwidth,
reducing the overhead of replication more than three folds.

With Workload S, the impact of replicating buffered writes
is not noticeable with both configurations. This is because
writes are 5% of the workload and the size of buffered writes
and their mappings is insignificant relative to cache entry
sizes. The network bandwidth limits the throughput of this
workload with both 1 and 3 replicas.

4.4.3 Comparison with Alternative Write-Back Caches
With CADS architecture, one may apply the write-back

policy in different software layers. For example, MongoDB
implements write-back by acknowledging a write as soon
as it is stored in its buffers (writeConcern is set to AC-
KNOWLEDGED). It flushes buffered writes to disk every
60 seconds. These buffered writes are not durable and if
MongoDB crashes then they are lost.

Host-side caches stage disk pages referenced by a data
store such as MongoDB in SSD to enhance performance.
They are transparent using a storage stack middleware or
the operating system [9, 11, 37, 28, 6, 38, 21, 26, 25]. Ex-
amples include Flashcache [28] and bcache [37]. One may
configure a host-side cache with alternative write-policies.

While these caches complement the client-side cache [1]
and its write-back policy, a key question is how do they
compare with one another? This section shows write-back
using the client-side cache outperforms the other alternative
by several orders of magnitude with both YCSB and BG.
This is true even when the other two types of caches are
combined together. Below, we present results using YCSB.
BG provides similar observations.

Figure 9 compares the performance of four cache con-
figurations using four YCSB workloads. The alternative
configurations include: MongoDB, MongoDB with Flash-
cache, MongoDB with Flashcache and IQTwemcached us-
ing write-through, and MongoDB with IQTwemcached us-
ing write-back. In all configurations, MongoDB is config-
ured with writeConcern set to ACKNOWLEDGED. The
four YCSB workloads are shown in Table 3. Results are
obtained using 1 server for MongoDB and its Flashcache, 1

100

200

300

400

500

600

700

800

900

1,000

MongoDB MongoDB
Flashcache

MongoDB
Flashcache

IQTwemcached
(Write−through)

MongoDB
IQTwemcached

(Write−back)

Throughput (thousands of actions / sec)

Workload A

Workload B

Workload C

Workload S

Figure 9: Alternative write-back caches with YCSB.

server for IQTwemcached, and 8 AppNode servers generat-
ing requests. Consider results of each workload in turn.

YCSB Workload C is 100% read and Figure 9 highlights
the benefits of using a client-side cache when compared with
MongoDB either by itself or Flashcache. Client-side cache
enhances throughput more than 3 folds regardless of the
write-policy. The cache provides for result look up instead
of MongoDB processing a query, improving throughput dra-
matically.

Workload B benefits from the client-side cache because
95% of its requests are identical to Workload C. The remain-
ing 5% are writes that benefit from the write-back policy,
enabling it to outperform write-through almost 2x.

YCSB Workload A is write-heavy with 50% update. Mon-
goDB performance with Flashcache is enhanced 2 folds be-
cause writes with SSD are faster than HDD. Using Linux
fio benchmark, we observe the SSD IOPS for 4K block size
to be 1.14x higher than HDD for sequential reads, 1.17x for
sequential writes, 150x for random reads, and 50x for ran-
dom writes. Every time MongoDB flushes pending writes
to disk using fsync, it blocks write operations until fsync
completes. Using SSD instead of HDD expedites fsync to
improve performance.

Workload A does not benefit from a client-side cache con-
figured with the write-through policy. However, its through-
put is improved more than 5x with the write-back policy
because writes are buffered in IQTwemcached and applied
to MongoDB asynchronously.

Workload S utilizes network bandwidth of the cache server
fully with both write-through and write-back policies. The
improvement it observes from using write-back is 30% be-
cause 5% of its requests are writes. It is interesting to
note that MongoDB with Flashcache provides a comparable
throughput to the write-through policy, rendering the client-
side cache ineffective for this workload. The explanation for
this is that the network bandwidth of MongoDB with Flash-
cache becomes fully utilized with Workload S, enabling it to
provide a comparable throughput.

5. RELATED WORK
Write-back policy has been studied extensively in the con-

text of host-side caches that stage disk blocks onto flash to

846

enhance system performance [6, 11, 21, 25]. They are differ-
ent than the client-side caches in several ways. First, client-
side caches use DRAM that is both faster and provides lower
capacities than NAND Flash assumed by host-side caches.
Second, while host-side caches are transparent, client-side
caches are non-transparent. The latter requires custom code
by a software developer to cache arbitrary sized objects (not
fix-sized blocks of data), represent changes by a write, gener-
ate mappings, and maintain PendingWrites/Queues. Third,
client-side caches have no concept of a dirty block that must
be written to disk prior to being evicted. Hence, we pin buf-
fered writes to prevent their eviction. Finally, while writes
with host-side caches are idempotent, writes with client-side
caches may either be idempotent or non-idempotent.

Write-back is a common feature of distributed caches and
caching middleware such as EhCache [40], Oracle Coher-
ence [33], Infinispan [23] or IBM WebSphere eXtreme Scale
[22]. Coherence, Ignite, and EhCache are similar5 and we
describe them collectively using Coherence’s terminology.
Subsequently, we present IBM WebSphere Scale.

Coherence provides a simple “put(key,value)” method that
(1) inserts the key-value pair in the cache, overwriting it if
it exists, and (2) places the key-value pair in a CacheStore
queue before returning success. Coherence is data store ag-
nostic by requiring the developer to implement the “store()”
interface of CacheStore. After a configurable time interval, a
background thread invokes store() to persist the (key,value)
pair to the data store. A read, issued using get(key), ei-
ther observes the latest value from the cache or requires the
cache to load the missing cache entry. This is realized by
requiring the developer to implement the “load()” interface
that queries the data store for the missing key-value pair.
While the Coherence documentation is not specific about
the details of how cache misses are processed, we specu-
late their processing considers the queued writes to provide
read-after-write consistency.

WebSphere eXtreme Scale cache implements maps. A
map is a collection of cache entries comparable to a CMI
instance. An application may configure a loader (similar to
CacheStore interfaces of Coherence) for a map. With write-
back, it creates a thread to process delegating requests com-
ing to a loader. When a write inserts, updates or deletes
an entry from a map, a LogElement object is generated and
queued. Each LogElement object records the operation type
(insert, update or delete) and the new and old values. Each
map has its own queue. A write-behind thread is initialized
to periodically remove a queue element and apply it to the
data store. LogElement objects are similar to our idempo-
tent buffered writes using Append approach. However, the
application of these writes to a SQL data store may vio-
late referential integrity constraints. This is because data
updated to different maps in one session are applied to the
data store as different transactions. If there is a foreign
key dependency between them, it is possible for an out of
order write that violates this dependency. WebSphere rec-
ommends the data store to not have such constraints and
allow out of order application of writes.

5There are subtle differences between these caches. For ex-
ample, in a cluster deployment, EhCache may not apply
pending writes in the order written to the cache. Infinispan,
Coherence, and Ignite use a queue similar to our Design 2 to
apply data store writes of different sessions based on their
commit time.

Our proposed write-back is novel in several ways. First,
it supports non-idempotent changes. Coherence specifies
changes must be idempotent. Same is true with a LogEle-
ment of WebSphere with the new and old values. Second,
both Design 1 and 2 require mappings to implement read-
after-write consistency in the presence of cache misses. All
other caches lack this concept. Third, with Design 2, a ses-
sion’s changes to the data store are maintained in a session
object. These changes are applied as a transaction to the
data store, preserving the referential integrity constraints
that exists between updates of a single session. Design 2’s
queue ensures sessions are applied to the data store in the
same serial order as their commit order using S and X leases.
Finally, there are minor architectural differences. For ex-
ample, WebSphere assumes the background threads are co-
located with maps (CMIs) and execute independently. We
assume these threads are co-located with AppNodes and use
the concept of session with leases to prevent undesirable race
conditions.

Systems such as Everest [13] or TARDIS [15] use “partial
write-back”. They buffer writes under special conditions.
Everest improves the performance of overloaded volumes.
Each Everest client has a base volume and a store set. When
the base volume is overloaded, the client off-loads the writes
to the idle stores. When the base volume load fall below
a threshold, the client uses background threads to apply
writes to base volume. TARDIS buffers writes in the cache
when the data store is unavailable (either because the data
store server has failed or a network partition prevents the
application server from communicating with the data store).
Subsequently, when the data store is available, TARDIS en-
ters the recovery mode. During this mode, the application
server retrieves the buffered writes from the cache and ap-
plies them to the data store. With our write-back design,
background worker threads apply the buffered writes ev-
ery time they are present in the cache. This is different
than partial write-back technique where worker threads ap-
ply buffered writes during recovery mode only.

6. FUTURE RESEARCH
Our future research directions are as follows. First, we

are analyzing the impact of a skewed pattern and its rele-
vant load balancing techniques on write-back. Second, we
are investigating persistent caches that use SSD [10, 39] to
minimize cost of storing buffered writes. Third, we are devel-
oping models to quantify dollar benefits of using write-back
instead of scaling the data store layer. These models cap-
ture cost of memory required by write-back and savings in
the form of fewer servers, smaller rack-space footprint, and
energy efficiency. Fourth, we are investigating auto-tuning
algorithms that detect when memory is limited to switch
from write-back to write-through and vice-versa. Finally,
we are analyzing whether write-back caches enhance perfor-
mance of in-memory data stores [27].

7. ACKNOWLEDGMENTS
We gratefully acknowledge use of Utah Emulab network

testbed [43] (“Emulab”) for all experimental results pre-
sented in this paper. We thank anonymous VLDB 2019
reviewers for their valuable comments.

847

8. REFERENCES
[1] Y. Alabdulkarim, M. Almaymoni, Z. Cao,

S. Ghandeharizadeh, H. Nguyen, and L. Song. A
Comparison of Flashcache with IQ-Twemcached. In
IEEE CloudDM, 2016.

[2] S. Apart. Memcached Specification,
http://code.sixapart.com/svn/memcached/trunk/server
/doc/protocol.txt.

[3] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. Gray, P. P. Griffiths, W. F. K. III,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R.
Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational Approach to Database
Management. ACM Trans. Database Syst.,
1(2):97–137, 1976.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale
Key-value Store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. ACM.

[5] S. Barahmand and S. Ghandeharizadeh. BG: A
Benchmark to Evaluate Interactive Social Networking
Actions. CIDR, January 2013.

[6] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict,
J. Kimmel, S. Kleiman, C. Small, and M. Storer.
Mercury: Host-side Flash Caching for the Data
Center. In IEEE Symposium on Mass Storage Systems
and Technologies (MSST), 2012.

[7] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Cloud Computing,
2010.

[8] Couchbase. Couchbase 2.0 Beta,
http://www.couchbase.com/.

[9] S. Daniel and S. Jafri. Using NetApp Flash Cache
(PAM II) in Online Transaction Processing. NetApp
White Paper, 2009.

[10] B. Debnath, S. Sengupta, and J. Li. FlashStore: High
Throughput Persistent Key-value Store. PVLDB,
3(1-2):1414–1425, 2010.

[11] DELL. Dell Fluid Cache for Storage Area Networks,
http://www.dell.com/learn/us/en/04/solutions/fluid-
cache-san,
2014.

[12] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudré-Mauroux. OLTP-Bench: An Extensible
Testbed for Benchmarking Relational Databases.
PVLDB, 7(4):277–288, 2013.

[13] R. Draves and R. van Renesse, editors. 8th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings. USENIX
Association, 2008.

[14] S. Ghandeharizadeh, H. Huang, and H. Nguyen.
Boosting OLTP Performance using Client-Side
Caches, USC Database Laboratory Technical Report
Number 2019-03,
http://dblab.usc.edu/Users/papers/boosting.pdf.

[15] S. Ghandeharizadeh, H. Huang, and H. Nguyen.
Teleporting Failed Writes with Cache Augmented
Data Stores. In Cloud, 2018.

[16] S. Ghandeharizadeh, S. Irani, J. Lam, and J. Yap.
CAMP: A Cost Adaptive Multi-Queue Eviction Policy
for Key-Value Stores. Middleware, 2014.

[17] S. Ghandeharizadeh and H. Nguyen. Design,
Implementation, and Evaluation of Write-Back Policy
with Cache Augmented Data Stores, USC Database
Laboratory Technical Report Number 2018-07,
http://dblab.usc.edu/Users/papers/writeback.pdf.

[18] S. Ghandeharizadeh and J. Yap. Cache Augmented
Database Management Systems. In ACM SIGMOD
DBSocial Workshop, June 2013.

[19] S. Ghandeharizadeh, J. Yap, and H. Nguyen.
IQ-Twemcached. http://dblab.usc.edu/users/IQ/.

[20] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques, pages 677–680. Morgan
Kaufmann, 1993.

[21] D. A. Holland, E. L. Angelino, G. Wald, and M. I.
Seltzer. Flash Caching on the Storage Client. In
USENIX ATC’13 Proceedings of the 2013 USENIX
conference on Annual Technical Conference. USENIX
Association, 2013.

[22] IBM. WebSphere eXtreme Scale,
https://goo.gl/smgC3W.

[23] Infinispan. Infinispan, http://infinispan.org/.

[24] S. Irani, J. Lam, and S. Ghandeharizadeh. Cache
Replacement with Memory Allocation. ALENEX,
2015.

[25] H. Kim, I. Koltsidas, N. Ioannou, S. Seshadri,
P. Muench, C. Dickey, and L. Chiu. Flash-Conscious
Cache Population for Enterprise Database Workloads.
In Fifth International Workshop on Accelerating Data
Management Systems Using Modern Processor and
Storage Architectures, 2014.

[26] D. Liu, N. Mi, J. Tai, X. Zhu, and J. Lo. VFRM:
Flash Resource Manager in VMWare ESX Server. In
Network Operations and Management Symposium
(NOMS), 2014 IEEE, pages 1–7. IEEE, 2014.

[27] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory OLTP
recovery. In IEEE 30th International Conference on
Data Engineering, Chicago, ICDE 2014, IL, USA,
March 31 - April 4, 2014, pages 604–615, 2014.

[28] D. Mituzas. Flashcache at Facebook: From 2010 to
2013 and Beyond,
https://www.facebook.com/notes/facebook-
engineering/flashcache-at-facebook-from-2010-to-2013-
and-beyond/10151725297413920,
2010.

[29] Mongo Inc. Mongo Atomicity and Transactions,
https://docs.mongodb.com/manual/core/write-
operations-atomicity/.

[30] MongoDB Inc. MongoDB,
https://www.mongodb.com/.

[31] MySQL. Designing and Implementing Scalable
Applications with Memcached and MySQL, A MySQL
White Paper, June 2008,
http://www.mysql.com/why-mysql/memcached/.

[32] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling

848

Memcache at Facebook. In NSDI, pages 385–398,
Berkeley, CA, 2013. USENIX.

[33] Oracle. Oracle Coherence,
http://www.oracle.com/technetwork/middleware/coherence.

[34] Oracle Corporation. Oracle Database 18c,
https://docs.oracle.com/en/database/oracle/oracle-
database/18/index.html.

[35] RedisLabs. Redis, https://redis.io/.

[36] A. Sainio. NVDIMM: Changes are Here So Whats
Next. In-Memory Computing Summit, 2016.

[37] W. Stearns and K. Overstreet. Bcache: Caching
Beyond Just RAM. https://lwn.net/Articles/394672/,
2010.

[38] STEC. EnhanceIO SSD Caching Software,
https://github.com/stec-inc/EnhanceIO, 2012.

[39] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
RIPQ: Advanced Photo Caching on Flash for
Facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386,
Santa Clara, CA, 2015.

[40] Terracotta. Ehcache, http://ehcache.org.

[41] The PostgreSQL Global Development Group.
PostgreSQL, https://www.postgresql.org/.

[42] TPC Corp. TPC-C Benchmark,
http://www.tpc.org/tpcc/.

[43] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proceedings
of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), pages 255–270, Dec.
2002.

849

	Introduction
	Architecture Overview
	Write-back: 2 Designs
	Evaluation
	YCSB: Design 1 with MySQL
	Required Memory

	BG: Design 1 with MongoDB
	Required Memory

	TPC-C: Design 2 with MySQL
	Required Memory

	Discussion
	Limited Memory and Slab Calcification
	Replication of Buffered Writes
	Comparison with Alternative Write-Back Caches

	Related Work
	Future Research
	Acknowledgments
	References

