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ABSTRACT

Uncertain, or probabilistic, graphs have been increasingly used to

represent noisy linked data in many emerging applications, and

have recently attracted the attention of the database research com-

munity. A fundamental problem on uncertain graphs is the s-t reli-

ability, which measures the probability that a target node t is reach-

able from a source node s in a probabilistic (or uncertain) graph,

i.e., a graph where every edge is assigned a probability of existence.

Due to the inherent complexity of the s-t reliability estimation

problem (#P-hard), various sampling and indexing based efficient

algorithms were proposed in the literature. However, since they

have not been thoroughly compared with each other, it is not clear

whether the later algorithm outperforms the earlier ones. More im-

portantly, the comparison framework, datasets, and metrics were

often not consistent (e.g., different convergence criteria were em-

ployed to find the optimal number of samples) across these works.

We address this serious concern by re-implementing six state-of-

the-art s-t reliability estimation methods in a common system and

code base, using several medium and large-scale, real-world graph

datasets, identical evaluation metrics, and query workloads.

Through our systematic and in-depth analysis of experimental

results, we report surprising findings, such as many follow-up al-

gorithms can actually be several orders of magnitude inefficient,

less accurate, and more memory intensive compared to the ones

that were proposed earlier. We conclude by discussing our recom-

mendations on the road ahead.
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1. INTRODUCTION
Uncertain graphs, i.e., graphs whose edges are assigned a prob-

ability of existence, have attracted a great deal of attention [23,24],

due to their rich expressiveness and given that uncertainty is in-

herent in the data in a wide range of applications, including noisy

measurements [2], inference and prediction models [1], and explicit

manipulation, e.g., for privacy purposes [5]. A fundamental prob-

lem in uncertain graphs is the so-called reliability, which asks to
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Figure 1: State-of-the-art reliability estimation algorithms in uncer-

tain graphs: A directed arrow depicts reported superiority in prior

works. All algorithms have not been thoroughly compared with each

other. Moreover, previous works did not employ identical frameworks,

datasets, and metrics for comparison. Thus, it is critical to investigate

their trade-offs and superiority over each other.

measure the probability that two given nodes are reachable [3]. Re-

liability has been well-studied in the context of device networks,

i.e., networks whose nodes are electronic devices and the (physi-

cal) links between such devices have a probability of failure [3].

Recently, the attention has been shifted to other types of networks

that can be represented as uncertain graphs, such as social and bi-

ological networks [18, 31]. Specific problem formulations in this

class ask to measure the probability that a certain reliability event

occurs, e.g., what is the probability that two given nodes are con-

nected (two-terminal reliability [3]), all nodes in the network are

pairwise connected (all-terminal reliability [33]), or all nodes in a

given subset are pairwise connected (k-terminal reliability [16]).

In this work, we shall investigate two-terminal reliability: The

probability that a target node t is reachable from a source node s

in an uncertain graph, also denoted as the s-t reliability. This s-t

reliability estimation has been used in many applications such as

measuring the quality of connections between two terminals in a

sensor network [15], finding other proteins that are highly probable

to be connected with a specific protein in a protein-protein interac-

tion (PPI) network [18], identifying highly reliable peers containing

some file to transfer in a peer-to-peer (P2P) network, probabilistic

path queries in a road network [17], and evaluating information dif-

fusions in a social influence network [22].

Due to the inherent complexity of the problem (#P-hard) [4],

although the exact reliability detection has received attention in the

past [3], the focus nowadays has mainly been on approximate and

heuristic solutions over large-scale graphs [23]. The large spec-

trum of the reliability problem is categorized in Figure 2. In this

paper, we shall focus on sequential algorithms for the fundamen-

tal s-t reliability query. Notice that we would not consider dis-

tributed algorithms [9, 42], other simplified versions of the s-t reli-

ability problem [8, 25, 30, 34], neither the reduction of uncertainty
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Figure 2: The broad spectrum of reliability problem over uncertain graphs

of a graph (e.g., by crowdsourcing) before s-t reliability estima-

tion [12–14, 28] 1. If a method was designed for a specific kind of

reliability query (e.g. distance-constrained [18]), it can be gener-

alized to the fundamental s-t reliability query, thus we include the

algorithm in our study [18,41]. In particular, various sampling and

indexing-based efficient algorithms were proposed in the literature.

Estimation of reliability in uncertain graphs has its beginnings with

the usage of Monte Carlo (MC) sampling [11]. Subsequently, more

advanced sampling methods were proposed in the form of recursive

samplings [18,26] and shared possible worlds [41], as well as other

indexing methods [29]. With the wide range of algorithms avail-

able for estimating the s-t reliability over uncertain graphs, there

is an urgent need to realize their trade-offs, and to employ the best

algorithm for a given scenario.

As depicted in Figure 1, we find serious concerns in the existing

experimental comparisons of state-of-the-art reliability estimation

algorithms over uncertain graphs. (1) There is no prior work that

compared all state-of-the-art methods with each other. It is, there-

fore, difficult to draw a general conclusion on the superiority and

trade-offs of different methods. (2) As shown in Figure 1, except

for [27], the experimental studies in [18, 26, 29, 41] either consid-

ered a fixed number of samples (e.g., 1 000), or the maximum num-

ber of samples was limited by 2 000. However, we observe in our

experiments that the number of samples necessary for the conver-

gence of reliability estimation varies a lot depending on the specific

algorithm used (e.g., for Recursive Stratified Sampling [26], #sam-

ples required for convergence is 250∼1 000, while for Lazy Prop-

agation [27], it is 500∼1 500), and also on the underlying char-

acteristics of the uncertain graph dataset. Therefore, the running

time necessary to achieve convergence (and hence, good-quality re-

sults) should be reported differently, as opposed to using the same

number of samples in all experiments. (3) The metrics used for

empirically comparing these techniques were not consistent in the

past literature, thereby making them apple-to-orange comparisons

in the larger context. For example, [26] measured relative variance

of different estimators and their running times for the same number

of samples (2 000). In both [29, 41], the authors reported accuracy

(with respect to baseline MC sampling) and running times of dif-

ferent algorithms using a maximum of 1 000 samples. On the other

hand, [18] compared relative variance, accuracy, and running times

of various estimators by considering a fixed (1 000) number of sam-

ples. In addition, surprisingly none of these studies reported the

online memory usage which, according to our experiments, varied

a great extent. (4) Last but not least, we find certain errors and fur-

ther optimization scopes in past algorithms (e.g., accuracy of [27],

time complexity analysis of [41]), and by correcting (or, updating)

them we significantly improve their performance.

Our contribution and roadmap. Our contributions can be sum-

marized as follows.

1
For details about other related work, we refer to our extended version [19].

• We investigate the s-t reliability estimation problem and sum-

marize six state-of-the-art sequential algorithms in Section 2,

together with their time complexity and sampling variance.

• We correct certain issues in past algorithms (e.g., accuracy of

[27], time complexity analysis of [41]), which significantly

improve their performance (Section 2).

• We implemented five state-of-the-art algorithms [11, 18, 26,

27, 41] in C++, and obtained C++ source code of [29] from

respective authors. We compare them in a common environ-

ment, using same convergence criteria, and present empiri-

cal comparisons of six s-t reliability estimation algorithms

over six real-world, uncertain graph datasets in Section 3.

Our datasets and source code are available at: https:

//github.com/5555lan/RelComp

• We report the accuracy, efficiency, and memory usage of

six referred methods both at convergence and at #samples=

1 000, summarize their trade-offs, and provide guidelines for

researchers and practitioners (Sections 3 and 4).

2. RELIABILITY ESTIMATION METHODS
2.1 st Reliability in Uncertain Graphs

An uncertain graph G is a triple (V,E, P ), where V is a set of n

nodes, E ⊆ V ×V is a set of m directed edges, and P : E → (0, 1]
is a probability function that assigns a probability of existence to

each edge in E.

The bulk of the literature on uncertain graphs and device net-

works reliability assumes the existence of the edges in the graph

independent from one another, and interprets uncertain graphs ac-

cording to the well-known possible-world semantics [6, 7, 16, 18,

31–33, 40]: an uncertain graph G with m edges yields 2m possible

deterministic graphs, which are derived by sampling independently

each edge e ∈ E with probability P (e). More precisely, a possible

graph G ⊑ G is a pair (V,EG), where EG ⊆ E, and its sampling

probability is:

Pr(G) =
∏

e∈EG

P (e)
∏

e∈E\EG

(1− P (e)) (1)

For a possible deterministic graph G, we define an indicator func-

tion IG(s, t) to be 1 if there is a path in G from a source node s ∈ V

to a target node t ∈ V , and 0 otherwise. The probability that t is

reachable from s in the uncertain graph G, denoted by R(s, t), is

computed as:

R(s, t) =
∑

G⊑G

IG(s, t)Pr(G) (2)

The number of possible worlds G ⊑ G is exponential in the number

of edges, which makes the exact computation of R(s, t) infeasible

even for modestly-sized networks. In fact, the s-t reliability com-

putation is a prototypical #P-complete problem [4, 36].
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Due to intrinsic hardness, we tackle the reliability estimation

problem from approximation and heuristic viewpoints. In partic-

ular, we shall examine six sampling and indexing-based efficient

algorithms that were proposed in recent literature as follows: (1)

Monte Carlo (MC) sampling [11]; (2) Indexing via BFS sharing

[41]; (3) Recursive sampling [18]; (4) Recursive stratified sam-

pling [26]; (5) Lazy propagation sampling [27]; and (6) Indexing

via probabilistic trees [29]. 2

2.2 MC Sampling
In the basic Monte Carlo (MC) sampling, we first sample K pos-

sible worlds G1, G2, . . . , GK of the uncertain graph G according

to independent edge probabilities. We then compute the reacha-

bility in each sampled graph Gi, and define IGi(s, t) = 1 if t is

reachable from s in Gi, and 0 otherwise. Given this, we have the

MC sampling estimator:

R(s, t) ≈ R̂(s, t) =
1

K

K
∑

i=1

IGi(s, t) (3)

This is also known as the hit-and-miss Monte Carlo. The basic sam-

pling estimator R̂(s, t) is an unbiased estimator of the s-t reliabil-

ity, i.e., E(R̂(s, t)) = R(s, t), and its variance can be determined

due to Binomial distribution ∼ B(K,R(s, t)) [11, 18].

V ar
(

R̂(s, t)
)

=
1

K
·R(s, t) · (1−R(s, t))

≈
1

K
· R̂(s, t) ·

(

1− R̂(s, t)
)

(4)

It is possible to derive bounds on the number of MC samples needed

to provide a good estimate for the s-t reliability problem. It was

shown in [31] by applying the Chernoff bound that with number of

samples K ≥ 3
ǫ2R(s,t)

ln
(

2
λ

)

, we can ensure the following.

Pr
(
∣

∣

∣
R̂(s, t)−R(s, t)

∣

∣

∣
≥ ǫR(s, t)

)

≤ λ (5)

The time complexity to generate K possible worlds is O(mK).
In each possible world, the reachability can be determined by per-

forming a breadth-first search (BFS) from the source node. Each

BFS requiresO(m+n) time. Therefore, the overall time complex-

ity of MC sampling based reliability estimation is O(K(m + n)).
In essence, one may combine MC sampling with BFS from the

source node for improved efficiency [18,21]. It means that an edge

in the current possible world is sampled only upon request. This

avoids sampling of many edges in parts of the graph that are not

reached with the current BFS, thus increasing the chance of an early

termination.

In practise, MC sampling can be inefficient over large-scale net-

works due to two reasons.
• For each s-t reliability query, we need to generate K possi-

ble worlds via sampling. Based on empirical evidences from

state-of-the-art works [18,20,31] as well as according to our

own experimental results, K can be in the order of thou-

sands to achieve a reasonable accuracy. However, as cor-

rectly pointed out in [30, 41], this sampling procedure does

not contribute to the reliability estimation process directly.

For example, one can pre-compute these K possible worlds

in an offline manner to further improve the efficiency of on-

line s-t reliability estimation.

• There could be a significant overlap in structures of different

possible worlds [18, 40, 41]. Unfortunately, the reliability

estimation via basic MC sampling performs a separate BFS

over each possible world, therefore it cannot take advantage

of the common substructure across various possible worlds.

2
Due to lack of space, we provide pseudocode for all algorithms (except Lazy

propagation sampling [27]) in our extended version [19]. For the lazy propagation, we

present its pseudocode in this paper, as it is essential to fix an error therein.
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Figure 3: Compact structure with five possible worlds: BFS sharing

2.3 Indexing via BFS Sharing
Zhu et al. [41] developed an offline sampling method to gener-

ate K possible worlds: G1, G2, . . . , GK . In order to minimize the

storage overhead, they proposed a bit-vector based compact struc-

ture, as depicted in Figure 3. It essentially stores only one graph

G = (V,E) with the same set of nodes and edges as the input

uncertain graph G. However, each edge e in G has a bit-vector of

size K — its i-th bit represents whether the edge e is present in the

sampled graph Gi or not.

Given an s-t reliability query, [41] performs BFS over this com-

pact graph structure, which is equivalent to doing BFS traversals in

parallel across the pre-computed possible worlds. We attach an ad-

ditional bit vector Iv with each node v that keeps track of the possi-

ble worlds in which v is reachable from s. Initially, Is = [1 1 . . . 1]
and Iv = [0 0 . . . 0] for all v 6= s. Let us also denote by U the set

of visited nodes based on BFS. Initially U = {s}. At each step,

when we find an unexplored node v that is an out-neighbor of at

least one node u in U , we insert v into U . We update the bit vector

Iv to include the possible worlds where all such v’s are reachable

from s. Before proceeding to the next step of BFS, one may note

that if v has some out-neighbor w that is already in U , we may

need to update Iw. Specifically, let Gi be a possible world that is

currently in Iv , but not in Iw. Then, we should also include Gi

in Iw. Such changes in Iw may in turn affect Iz , where z is an

out-neighbor of w, and z is also in U . In general, we proceed to

the next step of BFS only after finishing these cascading updates.

Finally, the number of 1’s in It, divided by K, provides the MC

estimation of s-t reliability.

Clearly, BFS sharing has the same variance as the basic MC.

However, by generating the K possible worlds in an offline man-

ner, [41] reduces the online s-t reliability estimation time. On the

other hand, unlike the MC sampling approach, in this case no early

termination of BFS is possible, even when the target node t is

reached earlier. This is due to performing the required cascading

updates in this method. It often makes BFS Sharing even more time

consuming than MC, which is evident in our experimental results.

Note that the original algorithm in [41] was developed to identify

the top-k target nodes having the maximum reliability from a given

source node. However, as we discussed above, one can trivially

update their technique to estimate the reliability of a given s-t pair.

Our correction in complexity analysis. The offline index build-

ing time complexity isO(Km), and index storage space isO(n+
Km), where O(Km) is the storage due to edge bit vectors. We

load all edge bit vectors in memory during online query processing

to improve efficiency. Besides, n node bit vectors of size O(Kn)
are created during online query processing. BFS sharing method

has online reliability estimation time complexity O(K(m + n)):
Due to cascading updates, each node and edge can be visited at

most K times. Notice that in the original paper [41], it was stated

that the online query time is independent of K. As we reasoned,

however, the running time increases linearly with K due to cascad-

ing updates. This is also confirmed by our empirical results (e.g.,

notice in Tables 8, 9, 10, the running times of BFS sharing increases

for larger K over the same dataset).

2.4 Recursive Sampling
Recursive sampling, which was proposed in [18], improves on

MC sampling by considering the two following factors.
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• When some edges are missing in a possible world, the pres-

ence of other edges might no longer be relevant with respect

to certain s-t reliability queries. Hence, those edges can be

skipped from sampling and query evaluation process.

• Many possible worlds share a significant portion of exist-

ing or missing edges. Hence, the reachability checking cost

could be shared among them.

The basic approach, which follows a divide-and-conquer technique,

is given below. A very similar algorithm, called the Dynamic MC

sampling, was developed in [40].

We start from the source node s, and say that s is already reached.

An edge e is expandable if it starts from a reached node. We ran-

domly pick an extendable edge e, then sample the existence of e

for K iterations. The next step is to divide the samples into two

groups: one group with e existing and another group with e not

existing. In the first group, we may reach a new node w via e, and

in that case, more edges become expandable. For both groups, we

repeat the process of picking a random expandable edge, sampling

its existence, and dividing the group into smaller batches.

Formally, assume that E1 ⊆ E be the set of included edges and

E2 ⊆ E be the set of not-included edges in one group (referred to

as a prefix group in [18]) at some intermediate stage of our method.

Let us denote this group by G(E1, E2), i.e., the set of possible

worlds of G = (V,E, p) which contains all edges in E1, and no

edges in E2. Clearly, E1 ∪ E2 ⊆ E and E1 ∩ E2 = φ. The

generating probability of the group G(E1, E2) can be defined as:

Pr (G(E1, E2)) =
∏

e∈E1

P (e)
∏

e′∈E2

(1− P (e′)) (6)

The s-t reliability of a group G(E1, E2) is defined as the proba-

bility that t is reachable from s conditioned on the existence of the

group G(E1, E2), i.e.,

RG(E1,E2)(s, t) =
∑

G⊑G(E1,E2)

IG(s, t)×
Pr(G)

Pr(G(E1, E2))
(7)

Next, one may verify that the following holds.

R(s, t) = RG(φ,φ)(s, t) (8)

Also, for any edge e ∈ E \ (E1 ∪ E2),

RG(E1,E2)(s, t)

= P (e)RG(E1∪{e},E2)(s, t) + (1− P (e))RG(E1,E2∪{e})(s, t)

(9)

We terminate aforementioned recursive procedure when either

E1 contains an s-t path with RG(E1,E2)(s, t) = 1, or E2 contains

an s-t cut with RG(E1,E2)(s, t) = 0.

The efficiency can further be improved by selecting the “best”

expendable edge (i.e., edge e in Equation 9) at each iteration. In

particular, by following the experimentally optimal strategy in [18],

we employ depth-first search (DFS) for the next edge expansion.

We also find that this strategy works well in our experiments. Start-

ing from the source node s, we start to explore its first neighbor (its

next neighbor is explored only if there is no path to t which can be

found going through the earlier ones), and then recursively visit the

neighbors of this neighbor.

The aforementioned recursive sampling process has the same

variance as the basic MC sampling. The variance can be reduced

by eliminating the “uncertainty” of the existence of edge e in Equa-

tion 9. Let π = RG(E1,E2)(s, t), π1 = RG(E1∪{e},E2)(s, t),
and π2 = RG(E1,E2∪{e})(s, t). Now, instead of directly sam-

pling both the children nodes from the root (as suggested in Equa-

tion 9), we consider to estimate both π1 and π2 independently, and

Table 1: Stratum design for recursive stratified sampling
Stratum e1 e2 e3 . . . er er+1 . . . em Prob space

Stratum 0 0 0 0 . . . 0 * . . . * Ω0

Stratum 1 1 * * . . . * * . . . * Ω1

Stratum 2 0 1 * . . . * * . . . * Ω2

. . . . . . . . .

Stratum r 0 0 0 . . . 1 * . . . * Ωr

then combine them together to estimate π. Specifically, for K to-

tal samples in the root, we deterministically allocate K1 of them

to the left subtree (prefix group that includes edge e), and K2 of

them to the right subtree (prefix group that excludes edge e). It

was shown in [18] that when the sample size allocation is pro-

portional to the edge inclusion probability, i.e., K1 = P (e) · K
and K2 = (1 − P (e)) · K, the variance of the earlier recursive

estimator can be reduced. Moreover, when a prefix group size

K is below a pre-defined threshold, we use a non-recursive sam-

pling method, such as the basic Monte Carlo or more sophisticated

Hansen-Hurwitz estimator to sample the remaining edges [18].

The time complexity of recursive sampling estimator is O(na),
where a is the average recursion depth, and is bounded by the diam-

eter of the graph. Note that in the original paper by Jin et al. [18],

recursive sampling was proposed to estimate distance-constrained

reliability, that is, the probability that s is reachable to t within an

input distance d. In this work, we adapted the proposed approach

to compute the s-t reliability without any distance constraint.

2.5 Recursive Stratified Sampling
Li et al. [26] developed an alternative divide-and-conquer ap-

proach to measure reliability, called the recursive stratified sam-

pling (RSS). By using a stratification method that partitions the

probability space Ω into r+1 non-overlapping subspaces (Ω0, . . . ,

Ωr) via selecting r edges, they proceed to fix the states for certain

edges in each stratum. For example, as seen in Table 1, in stratum

0, we set the status of r selected edges as 0, while leaving the rest

of edges as undetermined. Subsequently, in stratum i (1 ≤ i ≤ r),

we set the status of edge i to 1, the status of those before it as 0,

and those after it as undetermined.

Let T be the set of selected r edges via BFS from the source

node s, and Xi,j be the corresponding status vector of the j-th

(1 ≤ j ≤ r) selected edge in stratum i. Then, the probability of a

possible graph in stratum i is given by:

πi = Pr [GP ∈ Ωi]

=
∏

ej∈T
∧

Xi,j=1

P (ej)
∏

ej∈T
∧

Xi,j=0

(1− P (ej)) (10)

We then set the sample size of stratum i to Ki = (πi ·K), where

K being the total sample size. The algorithm recursively applies

the sample size to each stratum and simplifies the graph. It ter-

minates when the sample size of a stratum is smaller than a given

threshold. Reliability is then calculated by finding the sum of the

reliabilities in all subspaces. The pseudocode is presented in our

extended version [19].

It was shown in [26] that the time complexity of recursive strati-

fied sampling is same as that of the MC sampling, i.e., O(K(m +
n)), while the variance of the estimator is significantly reduced.

2.6 Lazy Propagation Sampling
Li et al. proposed the lazy propagation sampling [27] that aims

to bypass MC sampling’s requirement of probing a large number of

edges. In particular, if an edge has a low probability, it will remain

un-activated in most of the samples; and therefore, those probings

could be “unnecessary”. In contrast, lazy propagation sampling

estimates reliability by avoiding unnecessary probing of edges as

867



Algorithm 1 Lazy Propagation Sampling

Input: source node s, target node t in uncertain graph G =
(V,E, P ), K = #samples

Output: reliability R(s, t)
1: r ← 0, set all nodes not initialized

2: for i = 1 to K do

3: if s == t then

4: r ← r + 1
5: goto line 29

6: end if

7: h← φ, set all nodes not visited

8: h← {s} /* set of visited nodes */

9: mark s visited

10: while h 6= ∅ do

11: v ← h.pop()
12: if v is not initialized then

13: cv ← 0, hv ← ∅, mark v initialized

14: for nbr ∈ v’s neighbor sets do

15: X(nbr)← geometric r.v. instance

16: hv ← hv ∪ {〈nbr,X(nbr) + cv〉}
17: end for

18: end if

19: while hv.top() == cv do

20: 〈nbr,X(nbr)〉 ← hv.pop()
21: h← h ∪ {nbr} if nbr is not visited

22: mark nbr visited

23: X ′(nbr)← geometric r.v. instance

24: hv ← hv ∪ {〈nbr,X
′(nbr) + cv+1〉} /* our cor-

rection in bold */

25: if nbr == t then

26: r ← r + 1
27: goto line 29

28: end if

29: end while

30: cv ← cv + 1;

31: end while

32: end for

33: return r
K

much as possible. To achieve this, the algorithm employs a geo-

metric distribution per edge, and probes an edge only when it will

be activated. The geometric random instance determines, based

on the original edge probability, the number of sampling instances

before the edge is activated. This means that the algorithm will

predict how many k worlds are sampled before an edge exists. In

doing so, the number of times an edge is probed is reduced by a

factor of 1
p(e)

in expectation. It was proved in [27] that there is no

statistical difference between using lazy sampling and the classic

MC sampling. In other words, lazy sampling has the same variance

as that of MC sampling, while improving on the efficiency.

As the original algorithm [27] was developed for personalized

social influential tags exploration, we adapt it to measure reliability

over uncertain graphs. We show the complete procedure in Algo-

rithm 1. It initializes a heap hv for every visited node v, and pushes

v’s each out-neighbor nbr with a geometric random instance, i.e.,

〈nbr,X(nbr)〉 into hv (lines 12-18). It also maintains a counter cv
to keep track of the number of times v has been visited. Once a ran-

dom instance in hv is equal to cv , the corresponding neighbor will

be probed, and then a new random instance is generated to decide

the next time to probe the neighbor (lines 19-29).
Our correction in the algorithm. In the original paper [27], it

is hv ← hv ∪ {〈nbr,X
′(nbr) + cv〉} at line 24, which, in fact,
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Figure 5: Reliability estimated by MC,

Lazy Propagation (LP), and Lazy Prop-

agation+ (LP+) at convergence. Reliabil-

ity is reported as the average over 100 s-t

pairs. For experimental setting, see Sec. 3.

incurs error in reliability estimation 3. This is because node nbr is

probed in the current round (since hv.top() == cv was true at line

19), and now line 23 aims at assigning a new geometric random

instance X ′(nbr) with nbr. This new geometric random instance

X ′(nbr) indicates that after how many times of failure, nbr will

be visited again following node v, starting from the next round.

Therefore, at line 24, the value of counter cv shall be that of the

next round, i.e., one needs to add cv+1 with X ′(nbr) (as opposed

to adding only cv specified in the original paper [27]).

We shall demonstrate the error in [27] and our correction with

the following example.

EXAMPLE 1. Considering the graph in Figure 4: Node 1 is the

source node, and node 3 the target node. In the first round, c1 = 0
and we initialize node 1, push its neighbor node 2 into h1. Suppose

that the geometric random instance X(2) for 2 is generated as 0.

Then, node 2 exists in the first possible world (i.e., the condition in

line 19 holds true for node 2), and the algorithm proceeds to line

20-24. Now, if we follow hv ← hv∪{〈nbr,X
′(nbr)+cv〉} at line

24 as in the original paper [27], we shall encounter at least one of

the two following errors.

(1) Assume that at line 24, the new geometric random instance

X ′(2) > 0, e.g., X ′(2) = 1. It indicates that in the next possi-

ble world, edge 1 → 2 must not exist. However, when following

the original algorithm as in [27], 〈Node 2, 1〉 will be stored in

h1, since c1 = 0 at present. When sampling the next possible

world, c1 = 1 and node 2 will be probed again, which is incor-

rect. Clearly, this is an overestimation, and it will result in higher

estimated reliability from source to target.

(2) In the other case, when the new geometric random instance

X ′(2) = 0 at line 24, it means that in the next possible world, edge

1 → 2 must exist. By following the original algorithm as in [27],

〈Node 2, 0〉 will be pushed in the heap h1 and would be placed at

the top. However, when sampling all subsequent possible worlds,

c1 ≥ 1 and 〈Node 2, 0〉 at the top of h1 will always stop the

algorithm to enter lines 20-24, which makes node 1 not expandable

anymore, and thus incurs an underestimation error.

In practice, the first type of error, i.e., overestimation happens in

most cases, and the original method in [27] estimates much higher

reliability. Thus, we update the algorithm at line 24, as shown in

Algorithm 1 to avoid such errors. We denote it as LP+, and the

original one as LP. Our experimental results in Figure 5 confirms

that LP indeed estimates much higher reliability than Monte Carlo

(MC), whereas LP+ estimation is close to that of MC.

2.7 Indexing via Probabilistic Trees
Maniu et al. [29] proposed ProbTree index to improve the effi-

ciency of s-t reliability queries. The method builds a tree index

structure, called ProbTree, from the input uncertain graph G. Next,

given an s-t reliability query q, an equivalent graph G(q) is created

from the ProbTree index structure, and MC sampling is performed

3
Yuchen Li, first author of [27], acknowledged this issue in email communication.
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on G(q). Clearly, if G(q) can be generated quickly, and if G(q) is

smaller than G, then executing the query on G(q) would be faster.

In [29], three index structures were developed. Among them, we

employ FWD tree (an abbreviation for fixed-width tree decompo-

sition) because (a) its index building time, space, and query pro-

cessing time are linear in the input graph size, and (b) the index

structure is lossless (i.e., produces good-quality results) for a tree

decomposition width w ≤ 2. In fact, as reported in [29], as well

as found in our experiments, FWD tree with w=2 produces high-

quality results, and exhibits good efficiency.

FWD tree index building has three phases: fixed-width tree de-

composition, building of the FWD index tree, and pre-computation

of reliability. The first phase is an adaption of the algorithms in

[35, 38], which performs a relaxed tree decomposition with a fixed

width w. At each step, a node having degree at most w is chosen,

marked as covered. A bag is created to contain this node and its

neighbors, along with the probabilistic edges between them in G.

Then, the covered node is removed from G and a clique between

its neighbors is added into G. This process repeats until there are

no such nodes left. Finally, the rest of the uncovered nodes and the

remaining edges are copied in the root of the tree.

The second phase is the creation of the FWD index tree. Each

bag is visited in its creation order, and their parents are defined as

the bag whose node set contains all uncovered nodes of the visited

bag. If no such bag exists, then the parent of the bag will be the root

of the tree. In the final phase, we need to compute R(v1, v2) for

each pair (v1, v2) in each bag. It follows a bottom-up manner. For

each bag B, it collects the computed reliability from B’s children,

and combine them with information within current bag to compute

the current reliability for all node pairs in B. When w ≤ 2, it

is possible to pre-compute the correct probability distributions be-

tween node pairs, thereby making the index structure lossless.

When conducting an s-t query, if the root contains both s and t,

the root is the query graph. Otherwise, it searches from the bottom

to find the bags containing s or t as the covered node, respectively.

Then it propagates them up all the way to the root, and merges

them as a combined graph for query answering. By doing so, all

irrelevant branches will not be included in the graph returned. An

example of index building and query processing is presented below.

EXAMPLE 2. In Figure 6(b), we show the FWD index tree for

the input uncertain graph in Figure 6(a). At first, node 3 has the

smallest degree 1 and is chosen. A bag (E) is created to contain it,

together with its neighbor, node 4. Then, we put all the unmarked

edges between them into this bag and mark them. After the con-

struction of this bag, we remove node 3 (the selected node) from

the original graph. Now, no node has degree 1, then we consider

degree 2. Due to the removal of node 3, node 4 has degree 2 and can

be selected. We treat it in the same way and obtain the second bag

(labelled as (C) in Figure 6(b)). Since there is no edge between

node 0 and node 6 (neighbors of node 4) in the original graph,

a new edge (0,6) is added. We repeat the aforementioned proce-

dure until no more bag can be created. Then, we traverse them in

the creation order (E), (C), (F ), (D), (B), (A), and decide their

parent-child relationships using lines 20-24. For computing reli-

ability in each bag, it follows a bottom-up manner as described

before. For example, in bag (D), the reliability from node 6 to

node 1 is collected from its child, bag (F ), and is computed as:

1− (1− 0.75) ∗ (1− 0.5 ∗ 0.5) = 0.8125.

For reliability from node 1 to node 2, we find bags (B) and (D)
(which have these nodes as cover), and finally bags (A), (B), and

(D) are merged as the query graph. Bags (C) and (E) are irrele-

vant to this query. Bag (F )’s information about the query node is

already contained in bag (D). Thus, it will not be involved as well.

Following [29], the time complexity of FWD probtree index con-

struction is linear in the number of nodes in the graph, and the com-

plexity of pairwise reliability computations in each bag isO(w2d),
where w is the tree width (w = 2 to ensure loseless index), and

d is the diameter of graph. The space complexity of FWD prob-

tree index is O(|E|). During online s-t query processing, the cost

of retrieving s and t from the FWD probtree is linear in the tree

depth. The reliability estimating cost is the same as MC sampling,

O(K(n′ +m′)), but with smaller number of nodes and edges.

Our adaptation in complexity. The original ProbTree index is

designed to support multiple kinds of s-t queries, e.g., reliabil-

ity query, shortest path query, etc. Therefore, it pre-computes the

distance probability distribution between each node in every bag.

However, if only considering s-t reliability query, we can just com-

pute and store the edge probability information, regardless of dis-

tance. Since w = 2, for each pair of nodes in the current bag, there

can exist at most 2 paths in its children. One can easily collect

and aggregate them by 1− (1− p1)(1− p2), where p1 and p2 are

the probability of these two paths. An illustration can be found in

Example 2. The complexity of pairwise reliability computations in

each bag can be reduced from O(w2d) to O(w2). Empirically, on

our largest BioMine dataset, we can reduce the index building time

from 4062 seconds to 2482 seconds.

2.8 Horizontal Comparison of Algorithms:
Strengths and Weaknesses

Estimator variance. The mean squared error (MSE) measures the

quality of an estimator. The lower the MSE, the better is an estima-

tor. For unbiased estimator, the MSE is equal to the variance of this

estimator. All estimators compared in this work are proved to be

unbiased in original papers. Statistically, BFS Sharing and Lazy

Propagation shares same variance as basic MC Sampling. The two

recursive methods, RHH and RSS, reduce the estimator variance by

dividing the sample size according to either edge probability (e.g,

RHH), or stratum probability (e.g., RSS). We refer to Theorem 2

in [18], and Theorems 4.2 and 4.3 in [26] as the theoretical basis

for variance reduction in RHH and RSS, respectively.

Running time per sample. For each sample, MC applies a BFS

search from the source node s, each edge encountered exists with

the probability on that edge. The BFS search terminates when the

target node t is found (early termination), or no new node can be

expanded. In contrast, while BFS Sharing follows the same BFS

search strategy; no early termination is allowed. The existence of

each edge in every sample has been determined offline (via index-

ing). Therefore, BFS Sharing tends to sample more edges than MC

in each sample, while the time cost of checking the existence of each

edge is saved due to indexing.

Lazy propagation employs geometric distribution to determine

the existence of an edge in samples, that is, each time when an edge
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Table 2: Properties of datasets

Dataset #Nodes #Edges Edge Prob: Mean, SD, Quartiles

LastFM 6 899 23 696 0.29 ± 0.25, {0.13, 0.20, 0.33}
NetHept uniform 15 233 62 774 0.04 ± 0.04, {0.001, 0.01, 0.10}
AS Topology 45 535 172 294 0.23 ± 0.20, {0.08, 0.21, 0.31}
DBLP 0.2 1 291 298 7 123 632 0.33 ± 0.18, {0.18, 0.33, 0.45}
DBLP 0.05 1 291 298 7 123 632 0.11 ± 0.09, {0.05, 0.10, 0.14}
BioMine 1 045 414 6 742 939 0.27 ± 0.21, {0.12, 0.22, 0.36}

is probed during the BFS search in one sample, it decides after how

many samples this edge will exist again. Therefore, unnecessary

edge probing is avoided.

ProbTree decomposes the graph and pre-computes the reliabil-

ity information beforehand, thus allowing running online BFS on

a smaller graph to improve efficiency. RHH and RSS recursively

simplify the graph, and apply MC sampling on the resulted graph

when sample size is smaller than a threshold, or the graph is fully

simplified. The improvement of the running time per sample de-

pends on how much the graph can be simplified. Additional time

cost may arise from graph simplification task and the recursive pro-

cedure. In all, Lazy Propagation and ProbTree can reduce the time

cost of investigating a sample when compared with MC, while BFS

Sharing, RHH and RSS have both improvements and additional

costs. The detailed experimental study can be found in Section 3.5.

Total running time. To achieve the same estimator variance (e.g.,

same quality), MC, BFS Sharing, Lazy Propagation, and ProbTree

would require same sample size, thus the Lazy Propagation and

ProbTree shall improve the efficiency (due to lower running time

per sample) compared to MC. For RHH and RSS, less samples are

needed, thereby also improving the efficiency compared to MC.

With all these, the final efficiency comparison for Lazy Propaga-

tion, ProbTree, RHH, and RSS is unknown. Therefore, our experi-

mental analysis is critical.

Memory usage. In addition to the original graph, the only memory

cost of MC is the current sample, and the count of samples where

t is reachable from s. For BFS Sharing, instead of original graph,

the whole index shall be kept in main memory. Each edge in BFS

Sharing index is a vector of Boolean values, while in the original

graph only a single value is stored. Compared with MC, Lazy Prop-

agation additionally requires a global counter for each node, and a

geometric random instance heap for its neighbors. The ProbTree

index size is linear in the original graph size. Both RHH and RSS

store the whole recursive stack, and simplified graph instances in

main memory, which makes them more memory intensive.

Indexing cost, re-computation, and adaptability. Both BFS Shar-

ing and ProbTree index sizes are linear in the original graph size.

ProbTree index is generally comparable to the original graph size,

and is independent of the sample size K. However, BFS Sharing

is also about linear in the sample size K. Thus, BFS Sharing in-

dex is usually larger than ProbTree index, and BFS Sharing also

requires more loading time into main memory. On the other hand,

BFS Sharing index is easier to build than ProbTree index. Only K

boolean values shall be generated based on the edge probability for

each edge. The ProbTree index requires decomposing the original

graph and pre-computing the reliability information.

To ensure the independence among queries, index shall be up-

dated between two successive queries for BFS Sharing, this is not

necessary for ProbTree. Moreover, ProbTree has the adaptability

to support estimators other than MC sampling, while BFS Sharing

has no such potential.

3. EXPERIMENTAL RESULTS
We conduct experiments to compare six state-of-the-art reliabil-

ity estimation algorithms, and report the number of samples re-

quired for their convergence, estimator accuracy, variance, running

time, and memory usage using medium and large-scale, real-world

network datasets. We obtain the source code of ProbTree [29]

from the authors, which is written in C++, and we further opti-

mize their index building method as discussed in the paragraph

“Our improvement in complexity” in Section 2.7. We implement

other five algorithms in C++, and perform experiments on a sin-

gle core of a 100GB, 2.40GHz Intel Xeon E5-4650 v2 server. Our

datasets and source code are available at: https://github.

com/5555lan/RelComp.

3.1 Environment Setup

3.1.1 Datasets
We downloaded five real-world networks (Table 2). Many of

them have been extensively used in past research on uncertain graphs,

including reliability estimation [18,21,26,27,31,40,41]. • LastFM

(www.last.fm). Last.FM is a musical social network, where users

listen to their favorite tracks, and communicate with each other

based on their musical preferences. We crawled a local network of

Last.FM, and formed a bi-directed graph by connecting two users

if they communicated at least once. • NetHEPT (www.arXiv.org).

This graph was extracted from the “High Energy Physics Theory”

section of the e-print arXiv with papers from 1991 to 2003. The

nodes are connected by bi-directed edges if they co-authored at

least once. • AS Topology (http://data.caida.org/datasets/topology/

ark/ipv4/). An autonomous system (AS) is a collection of con-

nected Internet Protocol (IP) routing prefixes under the control of

one or more network operators on behalf of a single administra-

tive entity, e.g., a university. The AS connections are established

with BGP protocol. It may fail due to various reasons, e.g., fail-

ure of physical links when one AS updates its connection config-

uration to ensure stricter security setting, while some of its peers

can no longer satisfy it, or some connections are cancelled manu-

ally by the AS administrator. We downloaded one network snap-

shot per month, from January 2008 to December 2017. • DBLP

(www.informatik. uni-trier.de/ ley/db/). This is a well-known col-

laboration network. We downloaded it on March 31, 2017. Each

node is an author, and bi-directed edges denote their co-authorship

relations. • BioMine (www.cs. helsinki.fi/group/ biomine/). This

is the database of the BIOMINE project [10]. The graph is con-

structed by integrating cross-references from several biological data

-bases. Nodes represent biological concepts such as genes, pro-

teins, etc., and directed edges denote real-world phenomena be-

tween two nodes, e.g., a gene “codes” for a protein.

3.1.2 Edge Probability Models
By following bulk of the literature on reliability estimation over

uncertain graphs [18, 21, 26, 27, 31, 40, 41], we adopt the following

widely-used edge probability models.

• LastFM. The probability on any edge corresponds to the in-

verse of the out-degree of the node from which that arc is outgoing.

• NetHEPT. Each edge is assigned with a probability, chosen uni-

formly at random, from (0.1, 0.01, 0.001). • AS Topology. Once an

AS connection (i.e., an edge) is observed for the first time, we cal-

culate the ratio of snapshots containing this connection within all

follow-up snapshots as the probability of existence for this edge.

• DBLP 0.2 and DBLP 0.05. The edge probabilities are derived

from an exponential cdf of mean µ to the number of collaborations

between two respective authors; hence, if two authors collaborated

c times, the corresponding probability is 1 − exp−c/µ. We con-

sider µ = 5, 20 in our experiments, and generate two uncertain

networks, DBLP 0.2 and DBLP 0.05, respectively. Clearly, higher

values of µ generate smaller edge probabilities. • BioMine. Edge

probabilities, which quantify the existence of a phenomenon be-

tween the two endpoints of that edge (a gene “codes” for a pro-
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Figure 7: Comparison of estimator variance and convergence. The symbol ρK on Y-axis denotes the ratio
VK
RK

=
average variance at #samples=K
average reliability at #samples=K
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Figure 8: Comparison of average reliability returned by each esti-

mator in regards to average reliability returned by MC sampling at

K = 10 000 (shown as horizontal dashed line), BioMine.

tein), were determined in [10] as a combination of three criteria:

relevance (i.e., relative importance of that relationship type), infor-

mativeness (e.g., degrees of the nodes adjacent to that edge), and

confidence on the existence of a specific relationship (e.g., confor-

mity with the biological STRING database).

3.1.3 Parameters Setting
For each dataset, 100 distinct s-t pairs are generated as follows.

For a specific graph, we first select 100 different source nodes, uni-

formly at random. For a source node, we next perform BFS up to 2

hops. Among these visited nodes we select one target node that is

2-hop away from s, uniformly at random. These 100 s-t pairs are

used consistently for all six competing methods over that dataset.

All our results are averaged over these 100 s-t pairs.

Notice that we select s-t pairs with shortest-path distance = 2

hops, because if they are closer, their reliability would usually be

higher. On the other hand, if some s-t pairs are far apart, their relia-

bility would be naturally small. Nevertheless, we also demonstrate

experimental results by varying the shortest-path distance between

s-t pairs in our extended version [19].

The initial K, i.e., #samples considered in all algorithms is 250.

We then increase K by a step of 250 till convergence is reached.

(we refer to Section 3.1.4 for discussion on convergence).

For recursive estimators [18, 26], a few additional parameters

need to be defined. For recursive sampling, we set the prefix group

size threshold to be 5 as per [18]. For recursive stratified sampling,

we set r = 50 (i.e., #selected edges in each stratum) as recom-

mended in [26]. We find that these parameter values also work well

in our experimental setting (For details, we refer to our sensitivity

analysis results in the extended version [19]). Following [18, 26],

we refer to recursive sampling and recursive stratified sampling as

RHH and RSS, respectively.

3.1.4 Performance Metrics

Variance: Unlike MC-based estimators [11, 27, 29, 41], which re-

port reachability from s to t as 1 or 0 in each sample; both recursive

sampling algorithms [18, 26] estimate reliability in a holistic man-

ner by considering all K samples. Thus, following [18, 26], we

compute variance of an estimator by repeating experiments with the

current number of samples (K). Given an estimator and K, we re-

peat querying each s-t pair, e.g., si-ti for T times; and we obtain T

estimation results for each pair si-ti: R1(si, ti,K), R2(si, ti,K),
. . ., RT (si, ti,K). We calculate the variance as follows.

V (si, ti,K) =
1

T − 1

T
∑

j=1

(Rj(si, ti,K)−R(si, ti,K))2 (11)

Here, R(si, ti,K) is the average value of these T estimation re-

sults, for a fixed K. Following [18], we set T = 100. We compute

this variance for all 100 s-t pairs, and the average variance for this

estimator, with given K, is:

VK =
1

100

100
∑

i=1

V (si, ti,K) (12)

Analogously, we define average reliability for an estimator, with

given K, as:

RK =
1

100

100
∑

i=1

R(si, ti,K) (13)

Based on our experiments, we find that as one increases K, the

average variance VK monotonically decreases. However, we also

notice that, with same K, VK varies for different datasets and esti-

mators. This is primarily because the average reliability RK is dif-

ferent for different datasets and estimators, even for same K. Thus,

it is difficult to fix a uniform threshold on the average variance VK

which could define convergence in all cases.

Instead, we systematically consider the ratio ρK = VK

RK
to de-

cide convergence of an estimator over a given dataset. The ratio of

variance to mean is also known as the index of dispersion, which
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Figure 9: The trade-off between relative error and running time/memory usage, lastFM.
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Figure 10: The trade-off between relative error and running time/memory usage, BioMine.

is a normalized measure of the dispersion of a dataset. Dispersion

is close to zero if all the data are similar, and increases as the data

become more diverse. Given a dataset and an estimator, we keep

increasing K (in steps of 250), and when ρK = VK

RK
< 0.001, we

say that the convergence has been reached for that estimator and

over that dataset. For that estimator and dataset, we report average

reliability at that specific value of K, since this estimation is robust.

Relative error: By following [18, 29, 41], we report the relative

error (RE) of reliability estimation for an estimator with respect to

MC sampling. This is computed as follows.

REK =
1

100

100
∑

i=1

|R(si, ti,K)−RMC(si, ti, Convergence)|

RMC(si, ti, Convergence)

(14)

Here, RMC(si, ti, Convergence) denotes the reliability of the pair

si-ti, as returned by MC sampling at convergence. On the other

hand, R(si, ti,K) denotes the reliability of the same pair, returned

by the specific estimator, at #samples=K.

Online and offline efficiency and memory usage: In regards to

online querying, we report (a) total time cost to answer an s-t re-

liability query, (b) average time cost per sample (i.e., total time

cost/#samples), and (c) memory usage for all algorithms. In ad-

dition, for index-based methods, i.e., BFS sharing [41] and Prob-

Tree [29], we report their (i) time costs for creating index, (ii) time

costs for loading index in main memory, and (iii) index sizes.

3.2 Estimator Variance and Convergence
We report our empirical findings on estimator variance and con-

vergence in Figure 7 and Figure 8, which are summarized below.

(1) Figure 7 depicts that among six competing estimators, four

MC-based estimators: Monte Carlo (MC) sampling, BFS Sharing,

ProbTree, and Lazy Propagation (LP+) exhibit nearly similar char-

acteristics in estimator variance. The other two recursive estima-

tors: Recursive Sampling (RHH) and Recursive Stratified Sam-

pling (RSS) share similar estimator variance between them.

In particular, BFS Sharing performs the sampling of MC offline

by building indexes, and this does not change the estimator vari-

ance compared to MC. Another index-based method, ProbTree de-

composes the original graph into “bags” and re-organizes them in

a tree structure. When processing an online query, it generates a

smaller but equivalent graph from the tree index, by ignoring ir-

relevant branches. We apply MC (as the original paper [29] did)

to estimate the s-t reliability on this smaller but equivalent graph.

Hence, the estimator variance remains same. For LP+, it utilizes

the geometric distribution to decide the existence of an edge in sam-

ples, which is statistically equivalent [27] to MC; therefore results

in similar variance. Overall, our empirical results confirm them.

For recursive estimators, [26] discussed that RHH is a special

case of RSS when r = 1 (r denotes the number of selected edges

in RSS). In Figure 7, we observe that the curves of RSS and RHH

are close, but RSS always has lower variance than RHH.

(2) Our experimental results in Figure 7 confirm that recursive

estimators have lower variance than MC-based estimators. By di-

viding the sample size according to either edge probability (e.g.,

RHH), or stratum probability (e.g., RSS), the uncertainty during

sampling is reduced, which results in lower variance. It can be

noted that some later proposed methods, e.g., ProbTree and LP+

do not outperform RHH and RSS in estimator variance.

(3) As discussed in Section 2.2, larger K ensures more accurate

result by MC sampling. In Figure 8, we compare the reliability

returned by each estimator with respect to that of MC sampling

with very large K, e.g., K = 10000 (shown as horizontal dashed

line) [37, 39]. Figure 8 clearly presents that the reliability esti-

mated at variance convergence is very close to that at very large

K, which indicates that estimator variance convergence can help

find a sample size for high quality estimation.

(4) Past works on uncertain graphs generally employed some

standard K (i.e., #samples) in their experiments, such as K=500

[31], 1 000 [18,29], 2 000 [26,41], or even 10 000 [20], while men-

tioning that they observed convergence for those specific K in their

experimental setting. For future researchers and practitioners, we

would like to emphasize that there is no single K such that all

estimators achieve convergence across all datasets, which can be

confirmed from our empirical findings. The K at convergence for

every estimator on each dataset is listed in Tables 3-6 (observed

from Figure 7). Interestingly for MC-based methods, K values at

convergence are almost different over various datasets. Recursive

estimators reach convergence with smaller K, e.g., K=250 on three

out of five datasets. However, they require around 750 and 1000

samples on NetHept and BioMine datasets, respectively, for con-

vergence. Recursive methods generally converge with about 500

less samples than MC-based methods on the same dataset.

(5) With a closer look, we find that ProbTree has a slight im-

provement in estimator variance compared to three other MC-based

872



Table 3: Comparison of relative error (RE): LastFM

Estimator
At Convergence At K=1000

K RK RE (%) RK RE (%)

MC 1000 0.1025 0.00 0.1025 0.00
BFS Sharing 1000 0.1030 0.97 0.1030 0.97
ProbTree 1000 0.1007 1.77 0.1007 1.77
Lazy Propagation 1000 0.1052 1.84 0.1052 1.84
Recursive (RHH) 250 0.1041 1.91 0.1040 1.88
Recur. Stratified (RSS) 250 0.1018 1.06 0.1020 1.07

Pairwise Deviation 0.53 0.52

Table 4: Comparison of relative error (RE): NetHept

At Convergence At K=1000

K RK RE (%) RK RE (%)

1250 0.00190 0.00 0.00183 2.18
1250 0.00194 1.83 0.00187 2.01
1000 0.00187 1.47 0.00180 1.47
1250 0.00196 1.93 0.00180 2.41
750 0.00196 1.73 0.00196 1.78
750 0.00192 1.47 0.00192 1.49

0.26 0.48

Table 5: Comparison of relative error (RE): DBLP 0.05

Estimator
At Convergence At K=1000

K RK RE (%) RK RE (%)

MC 750 0.2128 0.00 0.2136 0.17
BFS Sharing 750 0.2133 1.26 0.2134 1.15
ProbTree 750 0.2156 1.37 0.2162 1.40
Lazy Propagation 750 0.2154 1.52 0.2153 1.49
Recursive (RHH) 250 0.2114 1.39 0.2108 1.32
Recur. Stratified (RSS) 250 0.2124 1.36 0.2131 1.37

Pairwise Deviation 0.11 0.15

Table 6: Comparison of relative error (RE): BioMine

At Convergence At K=1000

K RK RE (%) RK RE (%)

1500 0.4019 0.00 0.4038 1.39
1500 0.4040 0.85 0.4041 1.62
1250 0.4050 0.79 0.4077 1.43
1500 0.4013 1.09 0.4068 2.47
1000 0.4052 1.15 0.4052 1.15
1000 0.4047 1.08 0.4047 1.08

0.19 0.65

methods. This is because the ProbTree index pre-computes the

reliability information contained in a bag’s children subtrees, and

stores it in the current bag. By directly applying such pre-computed

probabilities, one can reduce the uncertainty of sampling, and lower

the estimator variance. In our experimental results on NetHept and

Biomine, ProbTree requires around 250 less samples for conver-

gence, when compared with other MC-based estimators.

3.3 Tradeoff among Relative Error, Running
Time, and Memory Usage

Figures 9 and 10 demonstrate the trade-off among estimation

error, running time, and memory usage. The estimation error is

provided as the relative error with respect to the reliability returned

by MC sampling at variance convergence (as discussed in Sec-

tion 3.1.4).

As shown in each subfigure (a) of Figures 9 and 10, when reach-

ing the estimator variance convergence, the relative error rates of

all six methods are (1) very close to each other; (2) below 2%; and

(3) also converge. The estimator accuracy can benefit little by fur-

ther increasing the sample size K. However, the running time of

all estimators grows about linearly with the sample size K. The

memory usages of estimators are not very sensitive to the sample

size. Memory usage of MC, ProbTree, and LP+ nearly remains the

same all the way. With larger number of samples, more indexes

are required to be loaded into main memory by BFS Sharing, thus

slightly increasing its memory cost. For recursive methods, larger

K can allow larger recursion depths, thus more memory is con-

sumed. In summary, the estimator variance convergence can help

us to find the sweet point which balances the estimator error and

running time/memory consumption. More detailed accuracy and

efficiency comparison can be found in Sections 3.4 and 3.5.

3.4 Estimator Accuracy
We compare relative errors (with respect to MC Sampling at

variance convergence, Section 3.1.4) of all algorithms. Relative

errors are reported (a) at convergence for that estimator, and (b) at

K=1000. We report relative errors also at K=1000, since many

prior works [18,26,29,41] did the same, irrespective of whether an

estimator has converged or not. Our results are given in Tables 3-6.

(1) When the value of K at convergence is larger than 1000 for

a method, its relative error at convergence is smaller than that

at K=1000 (e.g., see the results over NetHept and BioMine). In

contrast, if the value of K at convergence is smaller than 1000

for a method, the relative error nearly remains the same when in-

creasing K to 1000 (e.g., see the results over lastFM, AS Topology,

DBLP 0.2, and DBLP 0.05 datasets). Therefore, K=1000 is not a

fair setting to compare the estimator accuracy across all estimators

and datasets. Rather, K at convergence for that estimator ensures

higher accuracy. Similarly, if the estimator has already converged

at some K <1000, the relative error would not reduce further, in-

stead only the running time will increase for larger K.

(2) At convergence, relative errors for all six methods are low

(< 2%) and comparable (no common winner exists), which indi-

cates that our approach of finding convergence (based on index of

dispersion) ensures high accuracy. The best relative error rate on

each dataset is below 1.5%.

Previous work [18] compared the relative error at K=1000, and

concluded that RHH had better accuracy over MC-based methods.

However, this does not hold when we consider K at convergence

for respective methods. Empirically we find that K=1000 is suffi-

cient for RHH and RSS to achieve convergence, while other meth-

ods may still require more samples (e.g., on NetHept and BioMine)

for their convergence. Only considering K=1000 is unfair to them.

We notice that at convergence, there does not exist a common win-

ner in regards to relative error among these six estimators.

We further calculate the pairwise deviation (D) of relative errors

(RE) across different estimators on each dataset.

D =
1

5 ∗ 6

6
∑

i=1

6
∑

j=1

|RE(i)−RE(j)| (15)

Here, RE(i) denotes the relative error of method i. One can ob-

serve that if a dataset requires more than 1000 samples for con-

vergence (e.g., NetHept in Table 4 and BioMine in Table 6), the

pairwise deviation of relative errors among estimators over that

dataset significantly decreases when increasing K from 1000 to

that at convergence of respective estimators. These results further

demonstrate that at convergence, relative errors for all six methods

are low and comparable; and measuring relative error at a spe-

cific value of K (e.g., K=1000) across all methods can be unfair

to certain estimators.

3.5 Estimator Efficiency
We present online running times for all methods both at conver-

gence and at K=1000 in Tables 7-10. The time cost per sample is

reported in milliseconds at convergence.

(1) At convergence, RSS and RHH are the faster estimators. RSS

is similar or even faster than RHH on large datasets. However, it

is slower than RHH on smaller datasets. ProbTree and LP+ are

in the middle range, and are often comparable to RHH. MC and
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Table 7: Comparison of running time: LastFM

Estimator
At Convergence At K=1000 Time Per

K Time (sec) Time (sec) Sample (ms)

MC 1000 0.078 0.078 0.078
BFS Sharing 1000 0.593 0.593 0.593
ProbTree 1000 0.006 0.006 0.006
Lazy Propagation 1000 0.010 0.010 0.010
Recursive (RHH) 250 0.004 0.017 0.016
Recur. Stratified (RSS) 250 0.026 0.101 0.104

Table 8: Comparison of running time: AS Topology

At Convergence At K=1000 Time Per
K Time (sec) Time (sec) Sample (ms)

500 166 327 332
500 641 1235 1282
500 19 38 38
500 20 39 40
250 12 45 48
250 14 55 56

Table 9: Comparison of running time: DBLP 0.05

Estimator
At Convergence At K=1000 Time Per

K Time (sec) Time (sec) Sample (ms)

MC 750 670 899 893
BFS Sharing 750 2503 3094 3337
ProbTree 750 105 134 140
Lazy Propagation 750 81 106 108
Recursive (RHH) 250 38 150 152
Recur. Stratified (RSS) 250 45 150 179

Table 10: Comparison of running time: BioMine

At Convergence At K=1000 Time Per
K Time (sec) Time (sec) Sample (ms)

1500 4070 2678 2660
1500 12723 8644 8482
1250 600 482 480
1500 770 520 513
1000 389 389 389
1000 375 375 375
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Figure 11: Online memory usage comparison

BFS Sharing are much slower. BFS Sharing consumes about 4×
running time when compared with MC.

High efficiency of RHH and RSS (one s-t query finishes within

400 seconds for all datasets) is due to the following reasons. (i)

When finally conducting sampling in RHH and RSS, the graph has

been simplified. This is because certain parts of the graph will no

longer be connected to the source node with the absence of some

selected edges. Moreover, these estimators can avoid sampling if

there exists a path connecting s and t with selected edges. (ii) Due

to faster convergence, the sample size K required in RHH and RSS

is smaller than that for other methods.

ProbTree and LP+ reduces about 80% of the running time of MC.

ProbTree simplifies the graph with pre-computed indexes. LP+

speeds up the sampling procedure by avoiding unnecessary probing

of edges, which is implemented with geometric distribution. Un-

like RSS and RHH, they still require larger number of samples; and

hence, their running times are in the middle range.

MC can be terminated early when the target node is visited. But

for BFS Sharing, no early termination is possible (see our discus-

sion in Section 2.3). In summary, though BFS Sharing was pro-

posed after MC, it can be 4× slower than MC in regards to s-t re-

liability estimation. Moreover, ProbTree and LP+ were developed

after recursive methods, but both recursive methods are generally

more efficient due to their faster convergence.

(2) When K=1000, there is no common winner in running time.

RHH, RSS, ProbTree, and LP+ are comparable, and each of them

wins once or twice out of all our datasets. This is because the ad-

vantage of requiring less samples (to reach convergence) does not

hold here for RHH and RSS. Therefore, comparing these methods

at a fixed K (e.g., K=1000 as it is done in [29]) is unfair to both

RHH and RSS. We notice that even at a fixed K=1000, MC and

BFS Sharing are much slower than other estimators.

(3) We observe that except for BFS Sharing, the time cost per

sample is about the same at convergence and at K=1000, which

indicates that their running time is linear in the sample size K. For

BFS Sharing, a small decrease in running time per sample can be

viewed with increasing K, which implies that sharing BFS among

samples reduces the impact of sample size K. However, its online

running time is still not independent of K. With larger K, the total

running time of BFS Sharing still increases (which is evident in

Tables 8-10). Therefore, we do not agree with the claim in [41]

that their online running time is independent of K. In fact, as we

already discussed, its theoretical time complexity is still O(k(n +
m)), which is due to cascading updates (see the paragraph “Our

correction in complexity analysis” in Section 2.3).

3.6 Estimator Memory Usage
Figure 11 presents the online memory usage for each algorithm.

Since the memory usage to reach convergence is similar to that at

K=1000, we only report the memory cost at convergence for every

estimator. The general increasing order of memory usage is: MC

< LP+ < ProbTree < BFS Sharing < RHH ≈ RSS. The memory

usage of both RSS and RHH is about 4× to that of MC, and reaches

up to 10GB over our larger datasets. RHH and RSS consume space

for recursion stack, selected edge sets and their existence statuses,

and for the simplified graph instance. MC only stores the graph

and BFS status variables. Compared to MC, LP+ requires a global

counter for each node and a geometric random instance heap for

its neighbors. Both ProbTree and BFS Sharing build indexes, and

due to efficiency reasons, we load their indexes into memory. The

index size of BFS Sharing is larger than that of ProbTree, and BFS

Sharing additionally maintains a state vector for each node online.

In spite of that, BFS Sharing and ProbTree require less memory

than recursive estimators: RSS and RHH.

3.7 Indexing Time and Space
Since ProbTree and BFS Sharing rely on graph indexes, we eval-

uate offline cost for building, storing, and loading of their indexes

(Figure 12) (1) ProbTree index is independent of sample size K. It

decomposes the graph into “bags” and stores them in a tree struc-

ture. Its index size and building time depends on how many bags

can be decomposed from the graph, and the depth of index tree. The

maximum index size is 1.8GB over our largest BioMine dataset,

and the corresponding maximum index loading time is 98 seconds,

which is trivial when comparing with the time cost of s-t reliabil-

ity estimation. However, index building requires about one hour

over BioMine. (2) The index size of BFS Sharing is linear in the

sample size K. As K at convergence is not known apriori, a length-

L binary vector is attached to each edge in BFS Sharing index to

represent the existence of this edge across L samples. In our ex-

periments, we set L=1500 as a safe bound. We find that the in-

dex building time of BFS Sharing is smaller than that of ProbTree,

since former just simply samples each edge L times. However, its

index size can be larger than that of ProbTree, and as a result the

index loading time is also higher than that of ProbTree. Still in-
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Figure 12: Offline index cost comparison for ProbTree and BFS Sharing

Table 11: Additional time of

BFS Sharing index update (per

query) while answering 1000 suc-

cessive queries

Dataset Time Cost (sec)

lastFM 0.02
NetHept 0.05
AS Topology 0.11
DBLP 0.2 6.14
DBLP 0.05 5.64
BioMine 6.98

Table 12: ProbTree with effi-

cient estimators: running time at

convergence

Method
Running Time (sec)
AS Top. BioMine

LP+ 20 770
ProbTree+LP+ 16 663

RHH 12 389
ProbTree+RHH 10 356

RSS 14 375
ProbTree+RSS 10 321

Table 13: Summary and recommendation

Online Query Processing

Method Variance Accuracy Running Time Memory

MC ⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆⋆

BFS Sharing ⋆ ⋆⋆⋆ ⋆ ⋆⋆

ProbTree ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

LP+ ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

RHH ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆

RSS ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆

Index-related

Method
Time Time Time

Size
(build) (load) (update)

BFS Sharing ⋆⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆⋆⋆

ProbTree ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆

dex loading time for BFS Sharing is within 200 seconds in most

cases. Unlike ProbTree, those edge indexes used by BFS Sharing

to answer a query need to be re-sampled before processing the next

query, in order to maintain inter-query independence. We conduct

1000 successive queries with BFS Sharing and present the addi-

tional time cost (per query) for index updating in Table 11.

3.8 ProbTree with Efficient Estimators
ProbTree index decomposes the graph and pre-compute the reli-

ability information during index building. When answering online

queries, a smaller but equivalent graph is generated from the index.

The sampling procedure is conducted on this simplified graph, thus

the efficiency is improved. In previous sections, the ProbTree in-

dex is analysed only with MC sampling (as the original paper [29]

did). As presented in Table 12, ProbTree is able to support other

estimators and even improve the efficiency by 10-30%.

4. DISCUSSION AND CONCLUSION
Summary. In this work we investigated six state-of-the-art sequen-

tial algorithms for s-t reliability estimation, corrected certain issues

in these algorithms to further improve their performance, and con-

ducted a thorough experimental evaluation.

For estimator variance, both recursive methods: RHH and RSS

exhibit significantly better performance than other four MC-based

approaches: MC, BFSSharing, ProbTree, and LP+. Methods in

the same category share very similar variance. In general, RSS

is the best regarding variance, and achieves fastest convergence.

To achieve convergence, there is no single sample size K that can

BFS Sharing,

RSS, RHH

Memory
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Running

Time

MC Sampling,

LP+, ProbTree

RSS, RHH BFS SharingMC Sampling,

LP+
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Figure 13: The decision tree for selecting a proper reliability estima-

tor under different scenarios

be used across various datasets and estimators. Usually recursive

methods require about 500 less samples than MC-based methods

on the same dataset.

For accuracy, all methods have similar relative error (<1.5%) at

convergence. If K is set as 1000 for all estimators, some of them

might not reach convergence, thus their relative errors can further

be reduced by using larger K until convergence.

For efficiency, RHH and RSS are the fastest when running time is

measured at convergence. When K is set as 1000, there is no com-

mon winner in terms of running time. Overall, the running times

of RHH, RSS, ProbTree, and LP+ are comparable. BFSSharing is

4× slower than MC, since it estimates all nodes’ reliability from

the source node.

The memory usage ranking (in increasing order of memory) is:

MC < LP+ < ProbTree < BFSSharing < RHH ≈ RSS.

Recommendation. Table 13 summarizes the recommendation level

of each method according to different performance metrics. The

scale is from 1 to 4 stars, and larger star number stands for higher

ranking. Clearly, there is no single winner. Considering various

trade-offs, in conclusion we recommend ProbTree for s-t reliabil-

ity estimation. It provides good performance in accuracy, online

running time, and memory cost. Its index can slightly reduce the

variance, compared to other MC-based estimators. Notably, we

adopted MC as ProbTree’s reliability estimating component (as the

original paper [29] did). However, one can replace this with any

other estimator (e.g., recursive estimators: RHH and RSS) to fur-

ther improve ProbTree’s efficiency and to reduce its variance (as

demonstrated in Section 3.8).

The decision tree shown in Figure 13 demonstrates our recom-

mended strategy for estimator selection under different constraints.

Following the branch with red tick, the better estimator(s) under the

current condition can be determined. Notice that the path from the

root to the leaf of ProbTree consists of all red ticks, indicating its

applicability and trade-off capacity considering various factors.
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