
Dynamic Scaling for Parallel Graph Computations

Wenfei Fan1,2,4 Chunming Hu2 Muyang Liu1 Ping Lu2 Qiang Yin3 Jingren Zhou3

1University of Edinburgh 2Beihang University 3Alibaba Group 4SICS, Shenzhen University
{wenfei@inf, muyang.liu@}ed.ac.uk, {hucm, luping}@buaa.edu.cn, {qiang.yq, jingren.zhou}@alibaba-inc.com

ABSTRACT
This paper studies scaling out/in to cope with load surges.
Given a graph G that is vertex-partitioned and distributed
across n processors, it is to add (resp. remove) k processors
and re-distribute G across n + k (resp. n − k) processors
such that the load among the processors is balanced, and its
replication factor and migration cost are minimized.

We show that this tri-criteria optimization problem is in-
tractable, even when k is a constant and when either load
balancing or minimum migration is not required. Nonethe-
less, we propose two parallel solutions to dynamic scaling.
One consists of approximation algorithms by extending con-
sistent hashing. Given a load balancing factor above a lower
bound, the algorithms guarantee provable bounds on both
replication factor and migration cost. The other is a generic
scaling scheme. Given any existing vertex-partitioner VP of
users’ choice, it adaptively scales VP in and out such that
it incurs minimum migration cost, and ensures balance and
replication factors within a bound relative to that of VP. Us-
ing real-life and synthetic graphs, we experimentally verify
the efficiency, effectiveness and scalability of the solutions.

PVLDB Reference Format:
Wenfei Fan, Chunming Hu, Muyang Liu, Ping Lu, Qiang Yin, Jin-
gren Zhou. Dynamic Scaling for Parallel Graph Computations.
PVLDB, 12(8): 877-890, 2019.
DOI: 10.14778/3324301.3324305

1. INTRODUCTION
In the real world, an e-commerce system often experiences

load surges. For instance, its load during Christmas and
Valentine’s Day is often much heavier, not to mention sales
triggered by unexpected hot events. This gives rise to a
natural question: how many processors should we allocate to
such a system? Obviously, maintaining sufficient resources
just to meet peak requirements is too costly [6].

This highlights the need for dynamic scaling. It is to adap-
tively scale out and in, i.e., add and remove processors when
load jumps up and down, respectively, to improve resource

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 8
ISSN 2150-8097.
DOI: 10.14778/3324301.3324305

Figure 1: Partitions of a graph

utilization and reduce costs. We allocate resources on de-
mand, instead of sticking to a one-size-fit-all configuration.

Challenges. Dynamic scaling is, however, quite hard. To
see this, consider an e-commerce system that employs n pro-
cessors and maintains a graph G that models transactions.
To maintain scalability, G is evenly partitioned into frag-
ments and distributed across n processors for load balancing.
Moreover, to reduce communication cost, it is often neces-
sary to minimize the replication factor, i.e., the copies of
vertices that reside in different processors. When k proces-
sors are added or removed, it is often a must to re-partition
G such that in addition to load balancing and minimum
replication factor, the migration cost is minimized, i.e., the
amount of data moved from one processor to another.

Example 1: Consider the graph G = (V,E) in Fig. 1 (a).
It has two types of nodes: user nodes u1, . . . , u6 and prod-
uct nodes p1, . . . , p5. In Fig. 1 (a), the edge set of G is split
into two parts by a partition Π1. Observe the following.

(1) The partition quality of Π1 is usually measured by both
balance factor and replication factor. (a) The balance factor
ε controls that the size of each fragment is not too far from
the average. Imbalanced partitions often lead to skewness
and stragglers, which slow down computations. For ε ≥
0, a partition is ε-balanced if each fragment is bounded by
d(1 + ε)|E|/ne. For Π1, ε = 0 since the size of each part
is at most d(1 + ε)|E|/2e = 8. (b) Its replication factor
∂(Π1) = 16/11, defined as the ratio of total occurrences of
nodes in different fragments to the total number |V | of nodes
in G. The smaller ∂(Π1) is, the better partition Π1 is.

Consider scaling out Π1 by adding k = 3 processors to n =
2. When ε = 0, the size of each fragment is at most 4. Such
a partition Π2 is shown in Fig. 1 (b). To get Π2 from Π1,
one has to move 9 edges, e.g., the edges relative to u2, u3, u5

and u6, to new processors. Hence the migration cost from
Π1 to Π2 is 9. Its replication factor is ∂(Π2) = 23/11.

(2) Given ε, it is not easy to scale out Π1 while minimizing
replication factor f and migration cost m. These factors

877

interact with each other, e.g., when ε = 0, (a) to balance
load, the minimum cost is 8 (different from the cost 9 for Π2);
(b) when moving 8 edges, the best f we can get is 20/11; but
(c) to get an optimal f = 18/11, we need to move 12 edges.
It is also nontrivial to identify which edges to be moved.

Moreover, graph G has to be re-partitioned in parallel.
This is because G is already partitioned across a cluster of
machines (e.g., by Π1 above); moreover, when G is large, it
is not realistic to re-partition G by a single machine. 2

We show that dynamic scaling is NP-complete. It remains
intractable even when (a) the number k of processors added
or removed during scaling is a constant, and (b) we put no
restriction on either balance factor or migration cost.

While there has been work on dynamic scaling [6, 46,
42, 29, 32, 40], few of these considered how to adaptively
partition graphs in scaling, and none offered guarantees on
balance factor, replication factor and migration cost.

One might think that incremental graph partitioners [45,
37, 36, 41, 16, 30, 48, 8, 40] could be used for dynamic
scaling. Given a partition P(G) of graph G and updates
∆G to G, it is to compute changes ∆O to P(G) such that
P(G⊕∆G)=P(G)⊕∆O, where ⊕ applies changes ∆G (resp.
∆O) to G (resp. P(G)). However, (a) the two are different
problems: dynamic scaling is to re-partition graph G in re-
sponse to addition or removal of k processors, not to changes
∆G to G. Moreover, (b) in practice it is often the case that
k>n, and hence the changes ∆G and ∆O are large. It is
known that when the changes are large, incremental parti-
tioning works no better than re-partitioning the entire graph
G starting from scratch. Thus incremental partitioning
techniques do not apply to dynamic scaling and vice versa.

Approximation and generic methods. We propose two
solutions. There are two general approaches to graph par-
titioning: edge-cut and vertex-cut. We focus on vertex-cut
here since it has not been as well studied as edge-cut.

(1) Approximate algorithms. In light of the intractability of
dynamic scaling, the best practical solution we can hope for
is approximation. We develop such a solution that consists
of two approximate algorithms. Given a vertex-cut partition
Π(n) of a graph G via hashing, balance factor ε and a num-
ber k, algorithms BVC− and BVC+ scale in and out Π(n) to
get a new ε-balanced partition Π(n − k) and Π(n + k), re-
spectively, by extending consistent hashing. Better yet, we
show that when ε is above a small threshold, the algorithms
guarantee bounds on both replication factor f and migra-
tion cost m. To the best of our knowledge, the algorithms
make the first solution to dynamic scaling with such bounds.

(2) A scaling scheme. While the solution above offers prov-
able bounds on f and m, it requires to start with an initial
partition based on hashing. Is it possible to scale an arbi-
trary vertex-cut partitioner VP of users’ choice?

The answer is affirmative. We propose a generic scheme.
Given an existing VP, it deduces two algorithms VP+ and
VP− to scale VP out and in, respectively. We show that
these algorithms incur minimum migration cost. Moreover,
its partition quality is within a bound relative to that of
VP. That is, while the scaling scheme provides no absolute
bounds like the approximate algorithms above, it provides
bounds relative to VP. Hence if users have been using VP,
the quality of VP+ and VP− is acceptable to them.

Contributions & Organization. Putting these together,
the paper (1) formalizes the dynamic scaling problem and es-
tablishes its complexity (Section 2); (2) provides an approx-
imation solution with bounds on replication factor and mi-
gration cost (Section 3); and (3) proposes a generic scheme
to scale existing vertex-cut partitioners with low migration
cost and relative bounds on partition quality (Section 4).

(4) Experimental study (Section 5). Using real-life and syn-
thetic graphs, we empirically verify the efficiency, partition
quality and scalability of our scaling algorithms. We find
the following. (a) Parallel BVC+ (resp. BVC−) algorithm
outperforms hash-based and stream-based competitors by
7.4 and 19.7 (resp. 8.5 and 18.2) times in efficiency, respec-
tively. (b) These algorithms also do better in replication
factor than hash-based competitors by 1.94 and 2.04 times,
up to 3.82 and 3.79 times. (c) Our generic scaling scheme
is promising. Two stream-based scaling algorithms deduced
under this scheme are able to achieve partition quality as
good as re-partitioning, and are 43.8 and 40.7 times faster
on average, up to 114.7 and 132.3 times. (d) Our algorithms
scale well with large n, k and graphs; e.g., parallel BVC+

(resp. BVC−) takes 9.45s (resp. 11.37s) on graphs with 440
million nodes and 14 billion edges when n = 320 and k > n

3
.

This work is among the first treatments of dynamic scal-
ing, from approximation to scaling of existing partitioners.

Related work. We summarize the related work as follows.

Graph partitioning. Vertex-cut was proposed in [15]. It
was shown in [3] that it is NP-complete to minimize the
replication factor f when evenly partitioning a graph. It
is NP-hard even when the balance factor is fixed [47]. A
simple vertex-cut strategy is to assign edges to fragments
randomly by hashing. However, this usually leads to bad
locality since it ignores the structures of input graphs [5].
2DHash [44] mitigates this problem by maintaining a 2

√
n−1

bound on f , where n is the number of fragments. Degree-
based hash partitioning [43] assigns edges based on ver-
tex degrees and favors cutting vertices with relatively large
degrees. HDRF [31] also replicates (or cuts) high-degree
vertices in streaming partition. Apart from these, several
heuristics were developed, e.g., [5, 25, 47].

This work differs from the prior work in the following.

(1) As a special case of Theorem 1 (k = 0∧m =∞), we show
that vertex-cut partitioning is NP-hard even when we put no
constraint on the balance factor ε. This is analogous to its
edge-cut counterpart [14]. This is not implied by the results
of [3, 47], and cannot be improved by further restricting ε.

Moreover, we settle the complexity of dynamic scaling and
reveal what dominates the cost (Theorem 1). To the best of
our knowledge, no previous work has studied this issue.

(2) For partition quality, algorithms BVC+ and BVC− guar-
antee both a bound on the replication factor and the balance
of partitions. The bound differs from the one of the degree-
based approach in [43] by only a small factor, a small price
for balancing, which is not guaranteed by [44, 43, 31, 25].

(3) BVC+ and BVC− adopt consistent hashing to prepare for
dynamic scaling, which allows us to adjust an existing par-
tition in response to adding or removing processors, without
re-partitioning the graph starting from scratch. It was not
studied in the prior work [44, 15, 43, 31, 3, 47].

878

Consistent hashing. The method was proposed in [17] to re-
duce the movement of hashed clients when the size of hash
table changes (see Section 3.1). As shown in [33, 27], when
there are far more clients than servers as in real-life dynamic
scaling, simple consistent hashing [17] suffers from imbal-
anced load. In [27], a simple linear probing technique was in-
tegrated into consistent hashing to deal with load balancing.

A popular variant is DHT (distributed hash table), e.g.,
CAN [34] and Chord [38]. DHT employs consistent hashing
to store key-value pairs in a distributed setting, for users to
locate a key-value pair with a given key, via “hashing”.

Closer to this work are [34, 28, 24, 18, 19] for adding or re-
moving servers (analogous to fragments) in DHT, and [9, 23]
for balancing the workload of servers in DHT. When adding
a new server, CAN [34] bisects a randomly picked zone,
which plays the same role as an “interval”, and assigns one of
the half zones to the new server. A bucket solution was given
in [28, 24] to handle server removal, and multiple-choice al-
gorithms were used in [28, 19] to add servers. Servers are
evenly distributed over a unit circle for load balancing [9].
Upper and lower bounds for workload are used to guide in-
terval adjustments [9].

Our work differs from the prior work in the following.

(1) In contrast to [17, 27] that hash fragments, we assign the
fragments in a different way to ensure that its distribution
is as uniform as possible. This also helps us balance load
when used together with the technique of [27].

(2) We propose a strategy to add or remove fragments for
dynamic scaling. (a) To add fragments, we bisect a largest
interval, rather than randomly picking one [34, 28]; (b) we
define an order in which fragments are removed; and (c)
we add or remove fragments, but do not move fragments as
in [28, 24, 18]. These help us guarantee provable bounds on
load balance, replication factor and migration cost.

(3) We integrate a degree-based approach [43] with consis-
tent hashing, to leverage the coherence of edges (or clients)
and bound the replication factor. In contrast, consistent
hashing often treats all clients equally and thus ignores their
coherence. Directly adopting such approaches in our setting
fails to provide a bound on the replication factor.

Scaling. The study of dynamic scaling has mostly focused
on how to allocate virtual machines (VMs) when load varies
in cloud computing [6, 46, 42, 29], or how to reduce energy
consumption when workload is low [21, 22].

The scaling problems studied in the prior work differ from
DS(ε, f,m) (Section 2) in that it does not consider graph
partitioning, not to mention its three objectives (ε, f,m).

Closer to this work are [32, 40, 7, 12], which study graph
partitioning in dynamic scaling; these focus on edge-cut
partitioning. A greedy heuristic was developed in [32] to
migrate vertices when scaling; [40] randomly picks vertices
based on a given probability, and moves the vertices to other
fragments in response to changes to the graphs; [7] adopts
a lazy strategy: when a worker is added, necessary vertices
are moved to it only when the worker processes a query; [12]
uses a bin-packing model to balance workers after scaling.

This work differs from [32, 40, 7, 12] as follows. (a) We
study scaling with vertex-cut partition, which is not yet well
studied, as opposed to edge-cut. (b) None of [32, 40, 7, 12]
guarantees partition quality as we do. In particular, [7] ac-
cumulates vertices at new workers and is not load balanced.

2. THE DYNAMIC SCALING PROBLEM
We first state the problem and settle its complexity.

Preliminaries. We consider (un)directed graphs G =
(V,E), where V is the set of vertices, and E ⊆ V × V is
the set of edges. Denote by (a) v(e) = {u,w} the set of two
end-points of an edge e, and (b) v(E′) =

⋃
e∈E′ v(e) the set

of vertices that are on the edges in a set E′ ⊆ E.

Partitions. A vertex-cut n-partition of graph G = (V,E) is
Π(n) = (E1, E2, . . . , En), which partitions the edge set E
into n disjoint sets. We refer to Ei as a fragment of Π(n).

A n-partition Π(n) induces n subgraphsG1, G2, . . . , Gn of
G, where Gi = (v(Ei), Ei), such that V =

⋃
i∈[1,n] v(Ei) and

E =
⋃
i∈[1,n]Ei. To simplify the presentation, we assume

w.l.o.g. that each Ei is nonempty in the sequel.

There are two criteria to evaluate the quality of Π(n).

(a) Balance factor. Given ε ≥ 0, Π(n) is called ε-balanced if

max{|E1|, . . . , |En|} ≤ d(1 + ε)|E|/ne.
That is, no Ei is substantially larger than the average.

(b) Replication factor. The replication factor of Π(n) is

∂(Π(n))=
1

|V |

n∑
i=1

|v(Ei)|.

Intuitively, the larger ∂(Π(n)) is, the higher the communi-
cation cost is for synchronization in a distributed setting.

Scaling. Given an integer k ∈ (−n,∞) and a n-partition
Π(n) of G, we want to reconfigure Π(n) to a new partition
Π(n+k). This is called scaling in if −n<k<0 by reducing |k|
processors; and scaling out if k > 0 by adding k processors.

The migration cost from Π(n) to Π(n+ k) is the number
of edges moved to get Π(n+k), including (a) edges migrated
from G1, . . . , Gn to the (new) fragments of Π(n + k), and
(b) edges moved among G1, . . . , Gn+k to be rebalanced.

The dynamic scaling problem is stated as follows.

◦ Input: A n-partition Π(n) of G, an integer k > −n, a
balance factor ε, a replication factor f , and a bound m.

◦ Question: Does there exist an ε-balanced vertex-cut (n+
k)-partition Π(n + k) of G such that ∂(Π(n + k)) ≤ f
and migration cost from Π(n) to Π(n+k) is at most m?

That is, under balance factor ε and replication factor f , it
aims to minimize the migration cost of dynamic scaling.

Complexity. The dynamic scaling problem bears three cri-
teria: a balance factor ε, a replication factor f and a bound
m on moving cost. We denote it as DS(ε, f,m) or simply DS.

To identify the impact of the three criteria on the complex-
ity, we also study three variants of DS(ε, f,m), when one of
the three criteria is dropped. Denote by DS(f,m), DS(ε,m)
and DS(ε, f) the three variants when dropping constraints
on balance factor ε, replication factor f and migration cost
m, respectively. For example, DS(f,m) asks whether there
exists a partition Π(n+ k) of G such that ∂(Π(n+ k)) ≤ f
and migration cost from Π(n) to Π(n+ k) is at most m, no
longer requiring Π(n+ k) to be load balanced.

It is not surprising that DS(ε, f,m) is NP-complete. We
show that the intractability is quite robust: it remains NP-
hard as long as f is one of the optimization goals, even when
the number of processors added or removed is fixed.

Theorem 1: (1) Each of DS, DS(f,m) and DS(ε, f) is NP-
complete, and remains NP-hard even when k is a constant.

879

(2) DS(ε,m) is in PTIME; and DS(f,m) is in PTIME when
both k and n are fixed and when m is ∞ (unrestricted). 2

Proof: (1) An NP algorithm for DS works as follows: it
first guesses a (n + k)-partition and then checks in PTIME
whether the three constraints are satisfied. Hence DS is in
NP, and so are its special cases DS(f,m) and DS(ε, f).

We verify the NP-hardness of DS and DS(ε, f) by reduc-
tion from the 3-partition problem [2], and DS(f,m) by re-
duction from the maximal clique problem (cf. [13]). The
reductions are constructed with constant k.

(2) For DS(ε,m), the PTIME algorithm below suffices. Each
time it moves one edge from the largest fragment to a min-
imum one until either (a) the balance factor gets back to ε
(Yes); or (b) the migration cost exceeds the bound m (No).

When neither ε nor m is bounded and both n and k are
constants, we first show that there is a partition such that its
replication factor is minimal, and the number of cut nodes
is bounded by a constant. Based on this property, we give
a PTIME algorithm for DS(f,m) with m=∞: enumerate all
possible sets of cut nodes; check whether any of the associ-
ated partitions has replication factor no larger than f . 2

3. APPROXIMATION ALGORITHMS
In light of the intractability of DS(ε, f,m), the best prac-

tical solutions are approximate algorithms. We now de-
velop such a solution. It consists of algorithms BVC+ and
BVC− to scale out and in a partition Π(n) of a graph to
an ε-balanced partition Π(n+ k), respectively (Section 3.2).
Given any balance factor ε above a small threshold, both
algorithms guarantee bounds on replication factor f and
migration cost m. We parallelize these algorithms (Sec-
tion 3.3), retaining the same bounds. We are not aware
of other dynamic scaling solutions that offer such bounds.

Our solution extends consistent hashing [17, 27] and hash-
based partitioning [43]. We remark the following (see Sec-
tion 1 for details). (1) None of the prior algorithms works on
dynamic scaling, especially for deciding which fragments to
be removed or added while ensuring a bound on replication
factor f . (2) As observed in [4, 18, 44, 33, 27], consistent
hashing does no better than random hash partitioning and
gives no guarantee on partition quality. (3) In particular,
the algorithms of [17, 27] have no guarantee on replication
factor f , and [43] gives no guarantee on balance factor ε.

3.1 Consistent Hashing and Extension
We first review consistent hashing, and then outline our

extension to cope with dynamic scaling. Consider mapping
M balls to N bins. Consistent hashing [17] is a hash-style
solution, using two different hash functions hM and hN , with
the same range. The range is modeled as a hash ring, a unit
circle C. It first hashes the balls and bins to locations on
C by applying hM and hN , respectively. Each ball is then
mapped to the nearest bin on C in the clockwise order.

Its advantage is that when the number of bins changes
dynamically, the number of balls that need remapping is
small. When removing a bin from C (scale in), only the
balls in the deleted bin are remapped to the next bin on C
in the clockwise order. When adding a new bin on C (scale
out), it first finds certain balls that are hashed to locations
between the new bin and its previous bin in the clockwise
order. It then remaps these balls to the new bin.

For dynamic scaling, we can model edges as balls and frag-
ments of a partition as bins, and apply consistent hashing.
However, we need to address the following challenges.

(1) Replication factor. Consistent hashing treats all balls
equally. This is equivalent to hashing edges by a random
hash function, which, as observed by [44], often leads to poor
locality. To rectify this, we employ degree-based hashing
proposed in [43], which favors cutting vertices with relatively
large degrees. Intuitively, the replication factor gets smaller
when more vertices with large degrees are cut.

(2) Load balance. By hashing balls, a bin may have far more
balls than the others. Moreover, when M � N , the maxi-

mum load may deviate from the average by
√

2M logN
N

[33],

where M and N are the number of balls and bins, respec-
tively. One might want to add virtual workers to mit-
igate the unbalance [17], but it works only when M =
O(N logN) [33]. For graph partitioning, the number of balls
is much larger than the number of bins, i.e., M � N , and
adding virtual workers (a fragment is mapped to multiple
positions in circle C) cannot make the bins balanced.

To balance the workload, we enforce a given balance factor
as a hard constraint, and rebalance partitions by using a
linear probing technique [27]. In addition, we adopt degree-
based hashing and extend consistent hashing to weighted
consistent hashing, which was not studied in [17, 27].

(3) Migration cost. Consistent hashing maps fragments as
bins on the circle C by hash functions. However, when M �
N , which is typically the case in our setting, this usually
incurs heavy cost in graph partition. This is because when
balls are not distributed evenly, some bins may be overfull,
and balancing the bins increases the migration cost.

To minimize the cost, we propose a fragment placement
strategy. Instead of hashing the fragments, we first evenly
distribute the fragments on the circle C [9]. When scaling
in or out, our placement strategy selects fragments to be re-
moved or added, and places the fragments on C as uniformly
as possible. We will see that this allows us to bound the mi-
gration cost. It also helps us improve partition quality.

Notations. We will use the following notations. Consider
a graph G = (V,E) in which each vertex v ∈ V has a unique
global id v.id. Given a unit circle C and a constant c, we
divide it into 2c segments, and use it as the hash ring. We
use only one hash function hM that maps the id’s of vertices
to the locations of C, i.e., to the set {0, 1, . . . , 2c − 1}.

We consider power-law graphs. A graph follows power-law
if the probability that a vertex has degree d is given by

Pr(d) ∝ d−α,
where α is the power-law constant that controls the “skew-
ness” of degree distribution. Many real-life graphs follow
the power law and have a power-law constant around 2 [15].
The power-law constant helps us bound replication factor,
but it has no impact on the bound on migration cost.

3.2 Algorithms for Scaling Out and In
We now present algorithms BVC+ and BVC− for dynamic

scaling out and in, respectively. Given a partition Π(n) =
(E1, . . . , En) of graph G and a number k > −n, BVC+ and
BVC− adjust Π(n) to get a new partition Π(n + k). As
remarked earlier, the algorithms extend consistent hashing.
Below we first show how to obtain an initial partition, to

880

which BVC+ and BVC− are applied. We then present our
scaling algorithms and prove the performance guarantees.

Initial partition. Given a graph G and a number n, we
extend consistent hashing to compute an initial partition
Π(n) = (E1, . . . , En) of G. In contrast to classical consistent
hashing, (i) we use degree-based hashing to improve repli-
cation factor; and (2) we evenly distribute the fragments on
the unit circle C to reduce migration cost. More specifically,
Π(n) = (E1, . . . , En) is computed as follows.

(1) We first evenly distribute the fragments E1, . . . , En,
i.e., bins, initially empty, on the circle C. This is done by
allocating each Ei (i∈[1, n]) at position id 2

c−1
n
e on C.

(2) We then hash each edge e ∈ E by using its vertex with a
relatively smaller degree. More specifically, the hash value
e.hash of an edge e = (u, v) is defined by

e.hash =
{
hM (v.id) deg(v) < deg(u),
hM (u.id) otherwise.

This favors cutting vertices with relative large degrees. Edge
e is then assigned to the nearest fragment clockwise. More
specifically, denote by L1, L2, . . . , Ln the positions of E1,
. . . , En on C respectively, we assign e to Enext par(e,C), where

next par(e, C) = argmini∈[1,n]((Li − e.hash) mod 2c).

Example 2: For graph G of Fig. 1 (a), let c = 5, i.e., to
divide circle C into 25 segments. Assume that hash function
hM maps vertices onto C: p1→2, p2→20, p3→22, p4→29,
p5→30, u1→10, u2→12, u3→5, u4→21, u5→26, u6→25. Let
n = 2, then the initial partition Π(2) = (E1, E2) obtained as
above is E1 = {e1,1, e1,3, e2,2, e2,3, e3,1, e3,2, e3,5}, and E2 =
{e2,4, e4,1, e4,3, e5,2, e5,3, e5,4, e5,5, e6,1, e6,5}. 2

Overview of BVC+ and BVC−. Given a number k>− n,
a balance factor ε, and a partition Π(n) that is an initial
partition obtained as above, algorithms BVC+ and BVC−

adjust Π(n) to Π(n+k) in three steps as follows.

(1) Step (1) updates fragment placement on the circle C.
Suppose that for i ∈ [1, n], fragment Ei is placed at loca-
tion Li before scaling starts. Given k, step (1) identifies |k|
locations to remove (scale in) or add (scale out) fragments.

To minimize the migration cost in the next steps, we pro-
pose a strategy to place the fragments uniformly. Let I1,
. . . , In be the n intervals on C induced by E1, . . . , En, i.e.,

Ii = (Lnext(i) − Li) mod 2c

where next(i) = (i+1) mod n. Denote by Imax = max{Ii}ni=1

and Imin = min{Ii}ni=1. We select |k| locations for dynamic
scaling, and ensure the following interval invariant:

Imax ≤ 2Imin, (1)

i.e., the maximum interval has size at most twice the size
of the minimum one. As will be seen shortly, this inter-
val invariant will be used to bound both migration cost and
replication factor. Note that the initial partition satisfies
the interval invariant. Starting from an evenly distributed
placement of fragments, we will propose a strategy to main-
tain the interval invariant during scaling.

(2) It then employs consistent hashing to update edge as-
signments as we did in the initial partition construction.

(3) It restores balance via linear probing [27] (see below).

We will see that when ε is not too small, BVC− and BVC+

guarantee bounds on migration cost and replication factor.

Figure 2: Scaling in

Fragment placement. We use a stack to keep track of the
order of locations when the circle C is adjusted by remov-
ing or adding fragments. When we remove a fragment, we
remove the one on the top of the stack, and when we add a
new fragment, we push its location onto the stack.

Initial stack. The stack is initialized with the n fragments
E1, . . . , En when the initial partition is constructed. We
decide a specific order such that we do not remove two con-
secutive fragments at the same time when scaling in, since
otherwise it may triple the size of the intervals and violate
the invariant. Indeed, the fragments are evenly distributed
on C, and the size of the smallest interval is d 2

c−1
n
e. When

we remove two consecutive fragments, e.g., fragments lo-
cated at id 2

c−1
n
e and (i+ 1)d 2

c−1
n
e, we get an interval from

(i−1)d 2
c−1
n
e to (i+2)d 2

c−1
n
e, and its size is 3d 2

c−1
n
e, which

triples the size of the smallest intervals.

More specifically, suppose that E1, . . . , En are located in
the clockwise order on C. We start from E1, walk the circle
clockwise, and pick every other fragment. We proceed until
no fragment is left. This yields an order E1, E3, . . . , Et. We
push their locations onto the stack in the reverse order, i.e.,
E1 is on top of the stack, and Et is at its bottom.

We next give our strategy to remove and add fragments.

Removing fragments. To remove |k| fragments from the cir-
cle C, we simply pop up |k| locations from the stack one by
one, and remove their corresponding fragments.

Adding fragments. To add a new fragment E′, we find the

largest interval on C, place E′ in the middle of the interval,
and push the location of E′ onto the stack. If there exist
multiple largest intervals of the same size, we randomly pick
one. To add k fragments, we repeat the process k times.

Lemma 2: The interval invariant holds when fragments are
added or removed as described above. 2

Proof: We show that if the invariant holds before scal-
ing, then it also holds after it. Observe that after adding
fragments, the size of the largest interval decreases; and af-
ter removing fragments, the smallest interval increases. For
scaling out, Imax ≤ 2Imin because we bisect the largest in-
terval, and obtain two smallest intervals. For scaling in, we
merge two smallest intervals and generate a largest one. 2

Example 3: Suppose that we initially have 8 fragments as
shown in Fig. 2 (1). We show how to remove 5 fragments.

(1) Based on the strategy, the fragments in Fig. 2 (1) are
ordered as E1 → E3 → E5 → E7 → E2 → E6 → E4 → E8.
We remove the first 5 fragments (E1, E3, E5, E7 and E2) in
the order, yielding Fig. 2 (2). The intervals have size 1

2
×2c,

1
4
× 2c and 1

4
× 2c, respectively. The invariant holds.

(2) One might want to remove fragments also by picking
the smallest intervals. However, this may violate the invari-
ant. For instance, if we remove fragments surrounded by two
minimum intervals, e.g., E2, E4 and E7 from Fig. 2 (1), we
end up with Fig. 2 (3), and can no longer remove more frag-

881

Algorithm BVC+

Input: A partition Π(n) = (E1, . . . , En) of G,
a number k > 0, and a balance factor ε.

Output: An ε-balanced new partition Π(n+ k)=(E1, . . . , En+k).

/* Step (1): Adjust fragments on C */
1. identify k locations Ln+1, . . . , Ln+k for fragments to add;
2. add k new fragment such that En+j at Ln+j for j ∈ [1, k];
/* Step (2): Reallocate edges via consistent hashing */
3. for each e ∈

⋃n
i=1 Ei do

4. i∗=next par(e.hash, C); /*get the next fragment on C */
5. if i∗ ∈ {n+ 1, . . . , n+ k} then
6. move e to fragment Ei∗ ;
/* Step (3): Balancing */

7. w ← d(1 + ε)
|E|
n+k
e;

8. while there exists some Ei with |Ei| > w do
9. ∆Ei ← select (|Ei| − w) edges from Ei;
10. Ei ← Ei \∆Ei;
11. next← (i+ 1) mod n;
12. migrate ∆Ei to fragment Enext;
13. Enext ← Enext ∪∆Ei;

Algorithm BVC−

Input: A partition Π(n) = (E1, . . . , En) of G,
a number 0 < k < n, and a balance factor ε.

Output: A new partition Π(n) = (E′1, . . . , E
′
n−k) of G.

1. identify and remove fragments Ej1 , . . .Ejk , with a stack;

2. for each edge e ∈
⋃k
i=1{Eji} do

3. i = next par(e.hash, C); /*get the next fragment on C */
4. move e to Ei;
5. {E′1, E′2, . . . , E′n−k} ← {E1, . . . , En} \ {Ej1 , . . . , Ejk};
6. balance E′1, . . . , E

′
n−k by linear probing as Algorithm BVC+;

Figure 3: Algorithm for scaling out/in

ment without violating the invariant. Indeed, if we further
remove E1, we end up with Fig. 2 (4), in which the distance
between E8 and E3 triples the distance between E5 and E6.
Removing other fragments also inflicts violation. 2

We now present algorithms BVC+ and BVC− in Fig. 3.

Algorithm BVC+ Given Π(n), ε and k > 0, BVC+ extends
Π(n) to Π(n+ k) in three steps. (1) It first adds new frag-
ments on circle C as remarked earlier, maintaining the inter-
val invariant. (2) It then re-allocates edges by a degree-based
approach to improve locality, and maps edges to fragments
as in consistent hashing. (3) Finally it adjusts the partition
to make it balanced. Steps (2) and (3) integrate consistent
hashing [17, 27] and the degree-based approach [43].

(1) It first identifies k locations with the placement strategy
above, and adds k new fragments at the locations (lines 1-2).

(2) It then identifies edges belonging to the new fragments
based on consistent hashing and moves them to the corre-
sponding new fragments (lines 3-6).

(3) Finally, it applies linear probing [27] to balance the par-
tition (lines 7-13). For each fragment Ei, if it is not balanced

(|Ei|>d(1+ε) |E|
n+k
e), then it forwards |Ei|−d(1+ε) |E|

n+k
e

edges to the next fragment in the clockwise order.

Remark. (a) BVC+ terminates when all fragments are bal-
anced. This is assured by that each edge is migrated at most
n+ k times, and at most |E| edges need to be moved.

(b) The initial partition step can be done by BVC+, denoted
by BVC. Indeed, it is a special case when the graph is given
as a fragment, and BVC+ adds another n− 1 fragments.

Example 4: We show how BVC+ extends the partition Π(2)
of Example 2 to a new partition Π(5) = (E1, . . . , E5). It first

Figure 4: Scaling out

identifies 3 locations on circle C to place the new fragments
E3, E4 and E5. It then finds edges that belong to the new
fragments, and moves them to the right place. We get E1 =
{e1,1, e1,3, e2,2, e2,3}, E2 = {e2,4, e5,4, e5,5}, E3 = {e3,1, e3,2,
e3,5}, E4 = {e4,1, e4,3, e5,2} and E5 = {e5,3, e6,1, e6,5}. This
yields balanced Π(5) of Fig. 1 (b). 2

Algorithm BVC− Given a balance factor ε, a number k such
that −n<k<0, and a partition Π(n) = (E1, . . . , En) of G
such that Ei’s are placed on a unit circle C, BVC− adjusts
Π(n) to Π(n+k) as follows. It first identifies |k| fragments
Ej1 , . . . , Ej|k| on the top of the stack, and removes them

from circle C (line 1). As assured by Lemma 2, after the
removal, the circle C still satisfies the interval invariant.

After these steps, BVC− remaps the edges in Ej1 , . . . ,
Ej|k| to the remaining fragments based on consistent hashing

(lines 2-4). More specifically, for each edge e in a removed
fragment, it finds the next fragment on C in the clockwise
order (line 3) and moves e to it (line 4). At last it balances
the fragments via linear probing as in BVC+ (lines 5-6).

Analysis. We show that when the balance factor is not too
small, BVC+ and BVC− guarantee bounds on both replica-
tion factor and migration cost. Since each edge is hashed by
its vertices, denote by hmax the maximum number of times of
a vertex used for hashing. Here hmax is usually much smaller
than the maximum degree of the graph, as for a vertex it is
unlikely that most of its edges are hashed using its id.

Given k>−n, we have the following starting from an ini-
tial partition with BVC+, in which β1

k= 8(n+k)hmax

|E| log((n+

k)
√
|E|+ 1), βk=

√
β1
k(
√
β1
k+
√

2), and θ = dmin × α−1
α−2
−

dmin × α−1
2α−3

+ 1
2
, where dmin is the minimal node degree in

a power-law graph, and α is its power-law constant [43].

Theorem 3: If k > −n and ε > 1 + 2βk, then (1) the
expected value of migration cost when scaling out (resp. in)
from Π(n) to Π(n + k) via BVC+ (resp. BVC−) is at most

O(k |E|
n+k

) (resp. O(k |E|
n

)); and (2) the expected value of the

replication factor is at most (n+k)(1−(1−2 1
n+k

)θ)+ 2
|V | . 2

Observe the following about Theorem 3.

(1) The lower bound βk for balance factor is not very restric-
tive, since in the real world it is common to find that |E|�n.
Taking Twitter as an example (see Section 5), βk≤0.009 for
n=64, where |E| is approximately 1.5 billion.

(2) Edge selection in linear probing affects neither migration
cost [27] nor the upper bound for replication factor.

(3) The bound for migration cost holds on general graphs,
but not the replication factor fe. On a power-law graph G,
fe of degree-bashed hashing would decrease when G gets
more skewed [43]; this does not hold on general graphs.

Proof: We only give a proof sketch for the bounds for
BVC−; the proof for BVC+ is similar.

(1) The migration cost of BVC− includes (a) the cost of mov-
ing edges from removed fragments to fragments that remain;
and (b) the cost of rebalancing fragments. For cost (a), since

882

each fragment has at most d(1 + ε) |E|
n
e edges, and k frag-

ments are removed, at most O(k |E|
n

) edges are migrated.

Thus the migration cost for (a) is bounded by O(k |E|
n

).
For cost (b), we show that the expected number of edges

in each fragment Ei to be forwarded is bounded by O(1
n2),

by using Bernstein’s inequality [10]. Since each edge can be
forwarded at most n times, the migration cost for balancing
each fragment is at most O(1

n
). Hence total migration cost

for balancing all n fragments is bounded by O(1).

(2) Suppose that Vi is the set of vertices contained in frag-
ment Ei (i ∈ [1, n+k]) after BVC− terminates. To bound the
replication factor, by its definition, we only need to bound
the expected value of |Vi| for all i ∈ [1, n + k]. Note that
|Vi| can be bounded by the number of vertices hashed to Ei
plus the number of vertices forwarded to Ei during the re-
balancing step. The number of vertices hashed to Ei can be
bounded by |E|(1− (1− 2

n+k
)θ) using the technique of [43],

since the fragments are such placed that the invariant holds,
and the probability that an edge is hashed to Ei is bounded
by 2

n+k
. For the number of vertices forwarded to Ei, since

the total number of forwarded edges is bounded by O(1) as
proved above, and each edge has two associated vertices, the
number of vertices forwarded to Ei can also be bounded. 2

3.3 Parallelization
Dynamic scaling has to be conducted in parallel. It starts

with a partition when a graph is already fragmented and
distributed across a cluster of processors. To scale out/in,
all processors involved need to work together in parallel.
Moreover, when dealing with large graphs, it is not practical
for a single-machine to compute a balanced partition.

In light of this, we next parallelize BVC+ and BVC−, and
develop their parallel versions ParBVC+ and ParBVC−, re-
spectively. We show that these parallel algorithms retain the
same performance guarantees as their serial counterparts.

Parallel setting. Our parallel algorithms run in a shared-
nothing distributed setting, as commonly used nowadays.

(a) Initially, a graph G = (V,E) is partitioned into n frag-
ments E1,. . . , En, which are distributed to n processors P1,
. . . , Pn, respectively, referred to as workers.

(b) The workers run under the BSP model [39], which sep-
arates scaling into supersteps. In a superstep, each worker
conducts computation of ParBVC+ or ParBVC− to refine its
own fragment and exchanges updates via messages.

(c) When adding or deleting |k| fragments (k>−n), |k| addi-
tional workers are added or |k| existing workers are deleted.

Parallel algorithms. We only present ParBVC+; ParBVC−

is similar. As opposed to its serial counterpart (Section 3.2),
the algorithm conducts in parallel (a) the computation of
hash values and edge assignments, and (b) edge migration
and linear probing for load balancing, by all workers.

Algorithm ParBVC+. Given a partition Π(n) of G placed
on a unit circle C, a balance factor ε and a number k > 0,
ParBVC+ scales out Π(n) to an ε-balanced partition Π(n+k).
Like BVC+, it first adds k new fragments on the circle C,
maintaining the interval invariant. It then identifies edges
that belong to the new fragments by consistent hashing, and
migrates them to the corresponding fragments. As opposed
to BVC+, ParBVC+ does these in parallel : for each existing
fragment Ei (1 ≤ i ≤ n), its worker Pi identifies and moves

out the related edges in Ei. Finally ParBVC+ balances the
resulting partition, in parallel via linear probing.

Analysis. We show that ParBVC+ retains the same bounds
on replication and migration cost as BVC+ (Theorem 3).

(a) Bounds for ParBVC+. Since ParBVC+ and BVC+ use
the same hash function for edges, the distribution of edges
among fragments is the same for both ParBVC+ and BVC+.
Moreover, both algorithms maintain the same interval in-
variant (Lemma 2). Hence the same bounds of Theorem 3
can be deduced for both of them, although ParBVC+ mi-
grates edges in parallel, while BVC+ does it sequentially.

(b) Running time. For BVC+, the migration cost is bounded

by O(|k| |E|
n+k

). For ParBVC+, the expected running time is

in O(|E|
n+k

), since edge migration from existing fragments to

new ones dominates the cost, and ParBVC+ conducts it in
parallel. By Theorem 3, only a small number of edges need
to be moved in the linear probing step for rebalancing.

4. A GENERIC SCALING SCHEME
The approximation solution above requires an initial par-

tition that places fragments on a hash ring and satisfies the
interval invariant. In practice, however, users often start
with a partition computed by a partitioning algorithm VP
of their own choice. Is there a method that scales any exist-
ing vertex-cut partitioner VP in response to load surges?

We next develop such a generic solution and show that
it guarantees minimum migration cost and a relative bound
on partition quality (Section 4.1). As proof of concept, we
scale two existing vertex-cut partitioners (Section 4.2).

4.1 Dynamic Scaling Scheme
Given a vertex-cut partitioning algorithm VP, we deduce

algorithms VP+ and VP−. Given a n-partition Π(n) =
(E1, . . . , En) generated by VP and an integer k > −n, VP+

and VP− compute partition Π(n+ k) for scaling out and in,
respectively, depending on whether k > 0. To simplify the
presentation, we assume w.l.o.g. that ε = 0 in this section.

Scaling scheme. The scheme computes Π(n+k) by select-
ing a minimum number of edges to move, employing VP to
re-assign these edges, and retaining the edge assignments of
VP as much as possible. This allows us to minimize migra-
tion cost and achieve partition quality comparable to VP.
More specifically, VP+ and VP− work as follows.

Scaling out. From each fragment Ei (i ∈ [1, n]), VP+ (a)

selects a subset E′i ⊆ Ei of edges such that |E′i| = k|Ei|
n+k

, and

(b) applies VP to the set
⋃n
i=1E

′
i of all selected edges, and

obtains a k-partition (E′′n+1, . . . , E
′′
n+k). (c) These yield a

(n+ k)-partition (E1 \ E′i, . . . , En \ E′n, E′′n+1, . . . , E
′′
n+k).

That is, it employs the original partitioner VP to re-assign
the selected edges. It only moves edges from Ei to the k new
fragments, not between existing fragments Ei (i ∈ [1, n]).

Scaling in. VP− randomly selects |k| fragments Ei1 , . . . ,
Ei|k| to remove, and then employs VP to reassign edges of⋃|k|
j=1Eij to the remaining fragments Ej1 , . . . , Ejn+k .

VP+ and VP− incur the minimum migration cost, since
they move the minimum number of edges to make the new
partition balanced with ε = 0. VP+ only moves edges from
original fragments to newly added ones, and VP− reassigns

883

edges from the removed fragments to the remaining ones.
Neither moves edges among existing fragments.

Proposition 4: Given a balanced partition Π(n), the mi-

gration cost of VP+ (resp. VP−) is O(k|E|
n+k

) (resp. O(|k||E|
n

))

when adding (resp. removing) |k| fragments. 2

Edges selection. We next show that the algorithms also
offer relative bounds on replication factor f . Below we focus
on VP+; the analysis of VP− is similar and simpler.

Observe that VP+ only selects edges from overfull frag-
ments and moves them to newly added ones. VP+ uses the
following edge selection strategy: from each fragment Ei
(i ∈ [1, n]), VP+ selects k

n+k
|Ei| edges from Ei such that

the number of vertices on the selected edges is minimum.
We now give an upper bound on the replication factor of

VP+. Denote by τi the average vertex degree in fragment Ei.

Proposition 5: The replication factor after VP+ is at most
F+k· k

n+k
2|E|

min{τi}ni=1·|V |
with the edge selection strategy above.

Here min{τi}ni=1 is the minimum average vertex degree of all
fragments, and F is the replication factor before scaling. 2

Proof: This is deduced from the following: (a) the repli-
cation factor of the original fragments after the scaling is
at worst F ; (2) the number of vertices on selected edges

from fragment Ei is at most k
n+k

2|Ei|
τi

; and (3) each selected
vertex can be assigned to at most k new fragments. 2

In practice, the replication factor is expected to be better
than this upper bound, because (1) when we remove edges
from a fragment Ei, its replication factor is decreased and is
often smaller than F ; and (2) when we use VP to distribute
the selected edges, the replication factor of the new frag-
ments is often smaller than the second term in Proposition 5,
since each vertex unlikely appears in all new fragments.

4.2 Scaling Stream Partitioners
As case studies, we next scale HDRF [31] and Greedy (Pow-

ergraph [15]), two well-known vertex-cut partitioners.
Both partitioning algorithms are stream-based, which pro-

cesses edges in a one-pass fashion. Consider a vertex-cut
partition Π(n) = (E1, . . . , En) generated so far. An incom-
ing edge e is assigned to a fragment Ei based on scores
S(e, Ei)(i ∈ [1, n]), which aggregates edges assigned to Ei
so far. More specifically, edge e is assigned to Ei∗ , where

i∗ = argmaxi∈{1,...,n}S(e, Ei),

i.e., the fragment that maximizes the score. Partitioners
HDRF and Greedy use different score functions.

HDRF. We start with HDRF, which favors replicating ver-
tices with relatively large degrees. Given an edge e = (u, v),
it computes a score S(u, v, Ei) w.r.t. each fragment Ei:

S(u, v, Ei) = SRep(u, v, Ei) + SBal(Ei), (2)

where SRep(u, v, Ei) is a replication score of e w.r.t. Ei and
SBal(Ei) is a balance score of Ei, defined as follows. To
replicate vertices with higher degrees first, HDRF defines
SRep(u, v, Ei) = g(u, v, Ei) + g(v, u, Ei), where

g(v, u, Ei) =

{
1 + deg(u)

deg(v)+deg(u)
if v ∈ Vi,

0 otherwise.

Here deg(u) and deg(v) are the degrees of u and v, respec-
tively. Let Maxsize and Minsize be the maximum and

minimum size of all fragments when processing edge e, re-
spectively, then the balance score SBal(Ei) of e is defined as

SBal(Ei) = λ
Maxsize− |Ei|

1 + Maxsize−Minsize
,

where λ is a user-defined parameter that controls the impact
of the balance score. HDRF sets the default value of λ as 2.

Edge selection of HDRF. We focus on edge selection for
scaling out, since there is no much flexibility for scaling in.
A naive method is to randomly select edges from overfull
fragments. However, this usually leads to degeneration of
partition quality. Instead, we introduce two strategies based
on score and timestamp of stream HDRF.

(1) Score based. Intuitively, a larger HDRF score S(e, Ei) of
e indicates better locality of e w.r.t. fragment Ei. Hence
it is natural to move out edges with relatively lower scores.
However, we cannot simply use the score assigned to e when
it comes in, since it only reflects the fragment information
at that moment. Hence for each edge e, we compute a new
score S(e, Ei \ {e}) by treating e as a new edge for Ei. Edges
with relatively lower new scores are selected for scaling out.

(2) Timestamp based. Intuitively, edges that are processed
earlier are more likely to be assigned to “wrong” fragments,
since their scores are computed with less information and
may not be accurate. In HDRF, deg(u) and deg(v) used in
the score function cannot be computed in advance and thus
are approximated by their partial degrees, i.e., the number
of processed edges that are attached to u and v, respectively.
The degrees used in the score computation for earlier edges
are not as accurate as those of later edges.

This suggests that we revise the assignment of early com-
ing edges and retain the assignment of later ones. Hence
when running HDRF, we associate with each edge e a times-
tamp recording when it is added to its fragment. We select
edges with relatively smaller timestamp for scaling out.

Based on these, we deduce HDRF+ and HDRF− as follows.

HDRF+. From each fragment Ei, HDRF+ selects k
n+k
|Ei|

edges based on one of the edge selection strategies above. It
merges these edges as a new stream and invokes HDRF to
assign these edges to the k newly added fragments.

HDRF−. This case is simpler. HDRF− randomly selects |k|
fragments and merges their edges as a new stream. It then
uses HDRF to reassign the edges to the remaining fragments.

As will be demonstrated in Section 5, HDRF+ and HDRF−

scale partition with quality comparable to re-partitioning
the entire graphs by HDRF starting from scratch, while they
incur the minimum migration cost (Proposition 4).

Replication factor. We show that with the two simple edge-

selection strategies above, HDRF+ still guarantees bounded
replication factor relative to partitioner HDRF.

We use the following notations. Denote by (a) E′1, . . . , E
′
n

the sets of edges selected from partition (E1, . . . , En) by one
of the strategies; (b) E′′1 , . . . , E

′′
n the edges remaining in the

n fragments; and (c) f ′ and f ′′ the replication factor of
(E′1, . . . , E

′
n) and (E′′1 , . . . , E

′′
n), respectively.

Observe that f ′′ is at least as good as the replication factor
of the original (E1, . . . , En). For the k new fragments, we
show that the replication factor is comparable to f ′. To
simplify the analysis, we adopt λ = 1 as in [31].

884

Proposition 6: The replication factor after HDRF+ is

bounded by (1) f ′′+ 2k2

n+k
|E| with the score-based strategy, and

(2) f ′+f ′′+ k
n+k

|E|
|V |−

|V1|
2·|V | for timestamp-based when λ = 1,

where V1 is the number of vertices in the selected edges. 2

Proof: We verify statement (1); the proof for statement (2)
is similar. Observe that the replication factor of the re-
sulting partition is the sum of the replication factor of n
remaining fragments Π(n)′ = (E′′1 , . . . , E

′′
n) and that of the

partition Π(k) of k new fragments with edges E′1, . . . , E
′
n.

The replication factor of Π(n)′ is at worst f ′′. From a de-
tailed analysis of the new score S(e, Ei \ {e}) it follows that

the replication factor of Π(k) is bounded by 2k2

n+k
|E|. 2

Greedy. Greedy is a stream-based partitioner adopted by
Powergraph [15]. It can be seen as a special case of HDRF.
It also uses Eq. (2) to compute edge scores. It differs from
HDRF in that it (a) uses 1 as the default value for λ to
balance score; and (b) it does not include the impact of
degrees in the replication score and defines g(v, u,Ei) by

g(v, u,Ei) =

{
1 if v ∈ Vi,
0 otherwise.

The edge selection strategies for HDRF also work for Greedy.
Denote by Greedy+ and Greedy− the scaling algorithms
deduced from Greedy along the same lines. Then the bounds
for migration cost and replication factor of HDRF+ and
HDRF− also hold on Greedy+ and Greedy−, respectively.

Parallelization. Following [35], we parallelize HDRF+ and
HDRF− (resp. Greedy+ and Greedy−) in a mini-batch fash-
ion as follows. Each worker maintains a shared state that in-
cludes the information of degrees and locations of processed
vertices. The edge assignment is conducted in rounds. In a
round, each worker handles a small batch of edges in paral-
lel, as in HDRF or Greedy; workers communicate with each
other at the end of each round to synchronize the shared
state. The process terminates when all edges are processed.

5. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted four

sets of experiments to evaluate our scaling algorithms for
their (1) efficiency, (2) partition quality, (3) scalability, and
(4) impact on the performance of graph analysis tasks.

Experimental setting. We start with the setting.

Datasets. We used three real-life power-law graphs: (a) PLD
[26], an undirected graph with 39 million nodes and 623 mil-
lion edges, in which each node represents a pay-level domain
and each edge indicates a hyperlink between a pair of do-
mains; (b) Twitter [20], a social network with 42 million
users and 1.5 billion links; and (c) UKWeb [1], a large Web
graph with 106 million nodes and 3.7 billion edges.

We also generated synthetic graphs with size up to 440
million vertices and 14 billion edges, to test scalability.

Algorithms. We implemented approximate ParBVC− and

ParBVC+ (Section 3), and parallel HDRF+, HDRF−, Greedy+

and Greedy− (Section 4), all in C++, compared with the
following: (1) CH [17], a consistent-hashing partitioner; in
contrast to ParBVC+ and ParBVC−, CH takes edge id as
hashing key and hashes fragments to a unit circle; it also
uses a virtual-sever method to balance load; (2) 2DHash [44],
a widely used hash-based vertex partitioner; (3) Libra [43],

a state-of-the-art degree-based hashing algorithm; and (4)
stream partitioners HDRF and Greedy (Section 4). Since
2DHash, Libra, HDRF and Greedy do not support dynamic
scaling, we mainly consider their partition quality.

To evaluate the effectiveness of our edge selection strate-
gies of our generic scaling scheme, we implemented variants
of HDRF+ and Greedy+, also in C++. Denote by HDRF+

s

and HDRF+
t the implementations of HDRF+ with edge selec-

tion based on score and timestamp, respectively; similarly
for Greedy+s and Greedy+t . The results reported for HDRF+

and Greedy+ take the average of two strategies. We also im-
plemented a strategy that randomly chooses edges for scal-
ing out, denoted by HDRF+

r and Greedy+r , respectively. We
parallelized the algorithms as described in Section 4.2. The
mini-batch size is set to 256 by default.

The experiments were conducted on GRAPE, a parallel
graph processing engine [11], deployed on an HPC cluster
of up to 36 machines, each with 12 cores powered by Intel
Xeon 2.2GHz and 128GB memory, with a 10Gbps link
between machines. Each experiment was repeated 5 times
and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the scaling time
and migration cost of the algorithms. For ParBVC+ and
ParBVC−, we set balance factor ε = 0.1; the other algorithms
do not take ε as a hard constraint on load balance.

Varying k. Fixing n = 96, we varied k from 20 to 100 (resp.
10 to 50) for scaling out (resp. in). We find the following.

(1) As shown in Figures 5(a)-5(c), ParBVC+ performs the
best in time efficiency. It outperforms CH, HDRF+ and
Greedy+ by 2.7, 20.3 and 18.5 times, respectively, up to 3.4,
36.1 and 33.1 times. All algorithms take longer when k gets
larger, as expected. However, ParBVC+ and CH are less
sensitive to the change of k than HDRF+ and Greedy+, since
they incur less synchronization overhead during scaling.

(2) 2DHash, Libra, HDRF and Greedy do not support
dynamic scaling, and have to re-partition graphs. ParBVC+

is 8.9, 7.4, 926.5 and 763.6 times faster than these methods,
respectively, up to 13.1, 11.2, 1406.8 and 1224.8 times (not
shown). This is because the re-partitioning methods need to
(a) recompute edge assignments, and (b) move most edges
(their migration cost is 2.9 times larger than ParBVC+).

(3) The results for scaling in are consistent with scaling out.
As shown in Fig. 5(d), on average ParBVC− outperforms CH,
HDRF− and Greedy− on UKWeb by 2.7, 18.6 and 17.4 times,
respectively, up to 3.1, 26.7 and 27.8 times. The results on
Twitter and PLD are consistent (not shown).

(4) CH incurs larger migration cost, on average 1.1 (resp. 1.2)
times more than ParBVC+ (resp. ParBVC−). It is 2.7 (resp.
2.7) times slower than ParBVC+ (resp. ParBVC−) (see (1)),
since CH generates unbalanced partitions (Exp-2), which
yield stragglers and slow down scaling. This verifies the ef-
fectiveness of our fragment placement strategy (Section 3.2).

(5) HDRF+ and Greedy+ (resp. HDRF− and Greedy−) incur
minimum migration cost. These are 1.37 and 1.37 (resp. 1.40
and 1.40) times better than ParBVC+ (resp. ParBVC−) on
average, respectively. Nevertheless, they are slower than
ParBVC+ and ParBVC−. This is because during scaling they
need to (a) compute the score w.r.t. all fragments to decide

885

ParBVC
+/-

CH

2DHash

Libra

HDRFT
+

GreedyT
+

HDRFS
+

GreedyS
+

HDRFR
+

GreedyR
+

HDRF
-

Greedy
-

HDRF

Greedy

LEC

 2

 4

 8

 16

 32

 64

 128

20 40 60 80 100

T
im

e
(s

)

(a) Varying k (scale out, UKWeb)

 3

 9

 27

 81

20 40 60 80 100

T
im

e
(s

)

(b) Varying k (scale out, Twitter)

 1

 2

 4

 8

 16

 32

20 40 60 80 100

T
im

e
(s

)

(c) Varying k (scale out, PLD)

 2

 4

 8

 16

 32

 64

 128

10 20 30 40 50

T
im

e
(s

)

(d) Varying k (scale in, UKWeb)

 4

 8

 16

 32

 64

 128

20 40 60 80 100

T
im

e
(s

)

(e) Varying k (n = 48, UKWeb)

 16

 32

 64

 128

 256

32 64 96 128 160

T
im

e
(s

)

(f) Varying k � n (UKWeb)

 2

 4

 8

 16

 32

 64

 128

32 64 96 128 160

T
im

e
(s

)

(g) Varying n (scale out, UKWeb)

 2

 4

 8

 16

 32

 64

 128

32 64 96 128 160

T
im

e
(s

)

(h) Varying n (scale in, UKWeb)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r

(i) Varying k (scale out, UKWeb)

 2

 4

 8

10 20 30 40 50

R
ep

li
ca

ti
o

n
 F

ac
to

r

(j) Varying k (scale in, UKWeb)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r

(k) Varying k (n = 48, UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(l) Varying k � n (UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(m) Varying n (scale out, UKWeb)

 2

 4

 8

32 64 96 128 160

R
ep

li
ca

ti
o

n
 F

ac
to

r

(n) Varying n (scale in, UKWeb)

 10

 100

 1000

 10000

20 40 60 80 100

T
im

e
(s

)

(o) Edge-cut vs vertex-cut (time)

 3

 9

20 40 60 80 100

R
ep

li
ca

ti
o

n
 F

ac
to

r

(p) Edge-cut vs vertex-cut (f)

 5

 25

 125

G1 G2 G3 G4 G5

T
im

e
(s

)

(q) Scalability (scale out)

 5

 25

 125

G1 G2 G3 G4 G5

T
im

e
(s

)

(r) Scalability (Scale in)

 50

 100

 200

 400

 800

32 64 96 128 160

T
im

e
(s

)

(s) App evaluation (PageRank)

 20

 40

 80

 160

 320

 640

32 64 96 128 160

T
im

e
(s

)

(t) App evaluation (SSSP)

Figure 5: Performance Evaluation

the assignment of an edge, and (b) synchronize shared state.
(6) HDRF+ and Greedy+ are on average 53.1 and 46.1 times
faster than HDRF and Greedy, respectively. However, they
take longer than hash-based CH for the same reason given
in (5) above; similarly for HDRF− and Greedy−.

(7) We also evaluated the impact of different initial partition
numbers n. Fixing n = 48, we varied k from 20 to 100
(resp. 10 to 40) for scaling out (resp. scaling in). As shown
in Fig. 5(e) on UKWeb, its scaling-out performance pattern
is consistent with Fig. 5(a) when n = 96. The (scaling-in)
results on Twitter and PLD are consistent (not shown).

Varying k � n. Fixing n = 32, we varied k from 32 to 160
on UKWeb to evaluate scaling-out algorithms when k�n.
As shown in Fig. 5(f), the results are consistent with Fig-
ures 5(a)–5(c). (a) When k gets larger, all algorithms take

longer. (b) ParBVC+ is on average 2.4, 20.4 and 19.6 times
faster than CH, HDRF+ and Greedy+, respectively. (c)
HDRF+ and Greedy+ beat HDRF and Greedy by 16.9 and
15.4 times, respectively. (d) ParBVC+ beats re-partitioning
methods 2DHash, Libra, HDRF and Greedy by 10.3, 8.4, 348.4
and 302.5 times, respectively. (e) ParBVC+ and CH are not
as sensitive to k as HDRF+ and Greedy+, since they are
easy to parallelize and incur less synchronization cost. The
(scaling in) results on Twitter and PLD are consistent.

Varying n. Fixing k/n = 1/3, we varied n from 32 to 160
on UKWeb. The results on Twitter and PLD are consistent.

As shown in Fig. 5(g), (1) ParBVC+ beats CH, HDRF+ and
Greedy+ by 2.8, 18.5 and 17.4 times on average, respectively.
(2) HDRF+ and Greedy+ are 59.4 and 54.9 times faster than
HDRF and Greedy, respectively (HDRF and Greedy are not

886

shown). (3) When n is larger, all algorithms take less time.
(4) HDRF+ and Greedy+ are not very sensitive to n as when
n increases, so does their communication cost. ParBVC+

and CH have better parallel scalability: they are 4.3 and 3.4
times faster when n varies from 32 to 160, respectively. This
is because (a) consistent hashing reduces migration cost; and
(b) the hash computation can be efficiently parallelized.

As shown in Fig. 5(h), the results for scaling in are con-
sistent with Fig. 5(g). In particular, ParBVC− outperforms
CH, HDRF− and Greedy− by 2.9, 19.5 and 18.4 times on
average, respectively. When n increases from 32 to 160,
ParBVC− and CH are 5.3 and 3.6 times faster, respectively.

Exp-2: Partition quality. We next evaluated (a) the
replication factor f , and (b) balance factor ε. We also eval-
uated (c) the effectiveness of the edge selection strategies
(Section 4.2) for stream partitioners. We used UKWeb; the
results on Twitter and PLD are consistent (not shown).

Replication factor. In the same setting as Exp-1, Fig-
ures 5(i)-5(n) report replication factors of the algorithms.

(1) Varying k. As shown in Fig. 5(i), the replication factors
of all algorithms for scaling out become larger when n or k
increases. Moreover, observe the following.

(a) HDRF+
t has the best replication factor among the scal-

ing out algorithms over all datasets. On average, it outper-
forms HDRF+

s , Greedy+t , Greedy+s , ParBVC+ and CH by 1.1,
1.2, 1.4, 1.8 and 5.9 times, respectively, up to 1.2, 1.3, 1.6,
2.8 and 10.4 times. When k = 100, HDRF+

t beats these al-
gorithms by 1.2, 1.3, 1.5, 2.7 and 10.4 times, respectively.
That is, HDRF+

t performs well even when the configuration
is changed substantially (when k > n). This is because
HDRF+

t (i) retains data locality as HDRF by assigning edges
to where their vertices are located and cutting vertices with
large degrees; and (ii) rectifies “bad edge assignments” by
reassigning edges based on the information of graphs.

(b) HDRF+
t also does better than re-partitioning algorithms

Libra, 2DHash and Greedy on average by 1.8, 2.5 and 1.3
times, respectively. It is even better than HDRF in most
cases, which re-partitions graphs starting from scratch. This
is because (i) early incoming edges incur bad locality since
their assignments by HDRF use little information of graphs;
and (ii) HDRF+

t utilizes more information, e.g., the de-
grees of processed vertices, and rectifies the “bad” assign-
ments when scaling out. This shows that our generic scaling
scheme does not come with a price of partition quality.

(c) The replication factor of CH is on average larger than
20 (not shown). ParBVC+ and Libra have comparable repli-
cation factors, since both of them employ a degree-based
approach and hence retain good locality. On average, they
outperform other hash-based algorithms CH and 2DHash by
3.4 and 1.4 times, respectively, up to 3.8 and 1.6 times.

(d) The results of scaling in are consistent. As shown
in Fig. 5(j), on average HDRF− outperforms Greedy−,
ParBVC−, CH, Libra, 2DHash, HDRF and Greedy by 1.3, 2.3,
8.8, 2.4, 3.5, 1.1 and 1.4 times, respectively. As opposed
to scaling out, the replication factors of all algorithms for
scaling in decrease when k increases.

(e) The timestamp based edge selection strategy works the
best. On average the replication factor of HDRF+

t (resp.
Greedy+t) is 1.1 and 1.4 (resp. 1.1 and 1.2) times better than
HDRF+

s and HDRF+
r (resp. Greedy+s and Greedy+r).

Table 1: Balance factor
Alg/Dataset UKWeb Twitter PLD

ParBVC+ 0.1 0.1 0.1

HDRF+ 0.003 < 0.001 < 0.001
HDRF 0.043 < 0.001 < 0.001

Greedy+ 0.085 0.013 0.023
Greedy 0.503 0.201 0.119
CH 3.21 3.06 3.15
Libra 0.012 0.008 0.011

2DHash 1.13 1.16 1.04

(f) As in Exp-1, we also tested the case when n = 48. As
shown in Fig. 5(k), the results are consistent with Fig. 5(i).
This shows that our algorithms have a stable performance
pattern regardless of the initial partition number n.

(2) Varying k � n. As in Exp-1, we also set n = 32 and var-
ied k from 32 to 160. As shown in Fig. 5(l), the replication
factors of all scaling-out algorithms except the stream-based
variants, i.e., HDRF+, HDRF+

r , Greedy+, and Greedy+r , in-
crease when k gets larger. (a) When k varies from 32 to 160,
the replication factor of HDRF+ increases from 2.8 to 3.0. It
beats Greedy+, ParBVC+, CH, Libra and 2DHash by 1.2, 2.5,
8.9, 2.5 and 3.7 times, respectively. (b) The replication fac-
tors of HDRF+, HDRF+

r , Greedy+ and Greedy+r get slightly
smaller when k > 96. This is because (i) when k > 96, most
of edges have to be moved; (ii) these algorithms rectify edges
assignment during scaling. (c) HDRF+ (resp. Greedy+) has
comparable replication factor to HDRF (resp. Greedy).

(3) Varying n. Fixing k/n = 1/3, as shown in Figures 5(m)
and 5(n), the replication factors of all algorithms become
larger when n increases. (a) When n varies from 32 to 160,
the replication factor of HDRF+ varies from 2.6 to 3.2. On
average it beats Greedy+, ParBVC+, CH, Libra and 2DHash
by 1.3, 2.6, 9.0, 2.6 and 3.9 times, respectively. (b) The re-
sults for scaling in are consistent. On average, HDRF− beats
Greedy−, ParBVC−, CH, Libra, 2DHash and Greedy by 1.3,
2.3, 7.7, 2.3, 3.4 and 1.4 times, respectively. (c) HDRF+ and
HDRF− achieve replication factors comparable to HDRF.

Balance factor. We next evaluated the balance factor. Ta-
ble 1 shows the balance factors for scaling out when n = 96
and k = 40 on average over the three real-life graphs.

(1) HDRF+ does the best in most cases. Its balance factor
is as small as 0.003. The balance factor of Greedy+ varies
from 0.001 to 0.095. It is not as balanced as HDRF+ since
(a) it puts less weight on balance score than HDRF+ (see
Section 4.2) and (b) it may assign edges based on high-
degree vertices and cut vertices with relatively low degree.
Even so, Greedy+ still does better than Greedy in balance.

(2) ParBVC+ enforces a user-defined balance factor ε = 0.1
by its rebalancing stage (Section 3.2). In contrast, CH and
2DHash have ε as large as 3.46 and 1.16, respectively. Libra
has a smaller ε, but it is not efficient as ParBVC+ (Exp-1).

(3) The balance factor of CH is much worse than ParBVC+,
from 23.1 to 34.6 times, since it uses hash function to place
fragments and its virtual-server strategy does not improve
balance much when m � n, i.e., when there are far more
edges than fragments as found in our setting. This verifies
the benefit of our fragment placement strategy.

(4) The results for scaling in are consistent (not shown).
HDRF− achieves the best balance factor in most cases, while
ParBVC− guarantees a user-defined balance factor.

We also evaluated the impact of user-imposed balance fac-
tor by setting ε = 0.1 and 0.3 for ParBVC+ and ParBVC−

887

(not shown). (1) With larger ε, both get slightly better repli-
cation factors f . (2) Smaller ε incurs larger migration cost.
When n = 96 and k = 40, the migration cost of ParBVC+

over UKWeb increases from 0.26|E| to 0.34|E| when ε varies
from 0.3 to 0.1. The results of ParBVC− are consistent.

Edge-cut partitions. We also compared with LEC [32], a scal-
ing algorithm for edge-cut partitions. Following [47], we de-
duced a vertex-cut partition from an edge-cut partition, and
computed its replication factor accordingly.

The results on UKWeb are shown in Figures 5(o) and 5(p).
(1) When k or n increases, the replication factor of LEC also
increases. When k varies from 20 to 100 (resp. 10 to 50),
the replication factor of LEC varies from 6.4 to 7.7 (resp. 4.9
to 5.9). It is slight better than ParBVC+ (resp. ParBVC−),
but is much worse than HDRF+ and Greedy+ (resp. HDRF−

and Greedy−). On average the replication factor of LEC is
2.3 (resp. 2.2) times larger than HDRF+ (resp. HDRF−). (2)
Its scaling time is much larger than our algorithms. On av-
erage it is 2188.6, 87.6 and 93.8 times slower than ParBVC+,
HDRF+ and Greedy+, respectively. This is because LEC mi-
grates vertexes and edges greedily, and is hard to paral-
lelize. (3) Edge balancing of LEC is much worse than our
algorithms, varying from 0.8 to 1.7, since LEC focuses on
vertex balance only. Due to its imbalance, graph processing
takes longer on partitions computed by LEC. On average,
PageRank with LEC is 1.5, 3.7 and 2.9 times slower than
with ParBVC+, HDRF+ and Greedy+, respectively.

Exp-3: Scalability. Fixing n=320 and k=110, we varied
the size |G|=(|V |, |E|) of synthetic graphs from (88M,2.8B)
to (440M,14B) to test the scalability of the algorithms.

As shown in Fig. 5(q)-5(r), (1) ParBVC+ and ParBVC−

scale well with |G|. When G varies from (88M, 2.8B) to
(440M, 14B), ParBVC+ (resp. ParBVC−) takes 1.99s to 9.45s
(resp. 2.15s to 11.37s), almost linear with |G|. On average,
ParBVC+ beats CH, HDRF+ and Greedy+ by 4.5, 46.1 and
43.3 times, respectively. ParBVC− beats CH, HDRF− and
Greedy− by 2.9, 46.6 and 42.9 times, respectively. (2) CH
scales almost as well as ParBVC+ and ParBVC−, since they
all employ consistent hashing. (3) Although the efficiency of
HDRF+ and Greedy+ is not as good as that of ParBVC+, they
scale well; their computation and communication costs are
linear with |G|. When |G| increases 5 times, running time
of HDRF+ (resp. Greedy+) increases 4.9 (resp. 5.1) times.

Exp-4: Impact on graph analysis tasks. To fur-
ther evaluate the effectiveness of our scaling algorithms, we
tested the execution time and communication cost of two
standard graph analysis tasks, PageRank and SSSP (single
source shortest path), over the partitions obtained by our
scaling algorithms. Fixing k/n = 1/3 and varying n from
32 to 160, we report their performance on UKWeb; the re-
sults on Twitter and PLD are consistent (not shown).

(1) As shown in Figures 5(s)-5(t), (a) when n gets larger,
PageRank and SSSP get faster on UKWeb with all partition-
ing algorithms. (b) Pagerank (resp. SSSP) with HDRF+ is
1.3, 1.3, 2.5, 5.3, 2.6 and 16.9 (resp. 1.2, 1.3, 3.0, 6.4, 2.8
and 22.9) times faster than with Greedy+, Greedy, ParBVC+,
2DHash, Libra and CH on average, respectively. (c) ParBVC+

and Libra have similar effectiveness since they have compa-
rable replication and balance factors. On average, PageRank
and SSSP with these two are 4.5 and 4.9 times faster than
with the other hash-based partitioners, respectively.

(2) Pagerank (resp. SSSP) with HDRF+ incurs less commu-
nication costs (not shown), and ships 71.9%, 73.4%, 28.5%,
20.4%, 28.1% and 11.3% (resp. 74.4%, 72.9%, 26.7%, 17.3%,
25.9% and 7.5%) of data shipped with Greedy+, Greedy,
ParBVC+, 2DHash, Libra and CH on average, respectively.

Summary. We find the following. (1) Algorithms ParBVC+

and ParBVC− perform the best in efficiency. ParBVC+ out-
performs CH, Libra, 2DHash, HDRF+ and Greedy+ by 2.7,
8.7, 10.8, 20.4 and 18.9 times on average. When n=96
and k=100, it is 2.6, 7.1, 8.4, 26.5 and 24.2 times faster.
ParBVC− is 2.8, 10.3, 12.2, 18.5 and 17.9 times faster than
CH, Libra, 2DHash, HDRF− and Greedy−, respectively. Al-
gorithms HDRF+ and Greedy+ (resp. HDRF− and Greedy−)
are 43.8 and 40.1 times (resp. 43.7 and 41.2) faster than
HDRF and Greedy on average, respectively, up to 114.7
and 106.6 times (resp. 129.8 and 132.3). (2) Our algo-
rithms achieve good partition quality. In the same set-
ting as (1), ParBVC+ (resp. ParBVC−) does better than
hash-based CH and 2DHash in replication factor by 3.37
and 1.45 (resp. 3.56 and 1.52) times on average, and 17.7
(resp. 24.6) times in balance factor on average. HDRF+ and
HDRF− (resp. Greedy+ and Greedy−) have replication and
balance factors comparable to re-partitioning with HDRF
(resp. Greedy). HDRF+ (resp. HDRF−) does even better
than ParBVC+ (resp. ParBVC−) in partition quality, but not
as fast. (4) Our algorithms have stable performance and
scale well with large n, k and graphs. On graphs with 440
million vertices and 14 billion edges, ParBVC+, HDRF+ and
Greedy+ (resp. ParBVC−, HDRF− and Greedy−) take 9.45s,
427.2s and 413.5s (resp. 11.37s, 490.6s and 453.8s), when
n=320 and k>n

3
. (5) Graph analysis tasks work well with

partitions generated by our scaling algorithms. PageRank
(resp. SSSP) over HDRF+ is on average 4.9 (resp. 6.3) times
faster. Moreover, PageRank (resp. SSSP) with HDRF+ ships
38.9% (resp. 37.5%) data shipped by the others on average.

6. CONCLUSION
To the best of our knowledge, this work is a first system-

atic study of dynamic scaling for parallel graph computa-
tions. We have provided (a) the complexity of the problem
and its dominating factor, (b) parallel approximate algo-
rithms with provable bounds on migration cost and partition
quality, and (c) the first generic scheme for scaling existing
vertex partitioners with (relative) bounds. Our empirical
study has verified that the solutions are promising.

One topic for future work is to adapt the methods to edge-
cut and improve the bounds. Another topic is to study
online scaling, to adjust partitions in response to load surges
without interrupting ongoing computations.

Acknowledgments. The authors are supported in part by
ERC 652976, Royal Society Wolfson Research Merit Award
WRM/R1/180014, 973 2014CB340302, NSFC 61421003,
EPSRC EP/M025268/1, Shenzhen Institute of Computing
Sciences, and Beijing Advanced Innovation Center for Big
Data and Brain Computing. Lu is also supported in part
by NSFC 61602023. Liu is also supported in part by the
Engineering and Physical Sciences Research Council (grant
EP/L01503X/1), ESPRC Centre for Doctoral Training in
Pervasive Parallelism at the University of Edinburgh, School
of Informatics. The authors thank Lihang Fan, Ziyan Han,
Jingbo Xu and Wenyuan Yu for help with the experiments.

888

7. REFERENCES
[1] UKWeb. http://law.di.unimi.it/webdata/uk-union-

2006-06-2007-05, 2006.

[2] K. Andreev and H. Racke. Balanced graph partitioning.
TCS, 39(6), 2006.

[3] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced
graph edge partition. In SIGKDD, pages 1456–1465,
2014.

[4] J. W. Byers, J. Considine, and M. Mitzenmacher.
Simple load balancing for distributed hash tables. In
IPTPS, pages 80–87, 2003.

[5] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, pages 1:1–1:15, 2015.

[6] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal.
Dynamic scaling of Web applications in a virtualized
cloud computing environment. In ICEBE, pages
281–286, 2009.

[7] C. Curino, E. Jones, Y. Zhang, E. Wu, and S. Madden.
Relational cloud: The case for a database service. New
England Database Summit, pages 1–6, 2010.

[8] D. Dai, W. Zhang, and Y. Chen. IOGP: An incremen-
tal online graph partitioning algorithm for distributed
graph databases. In HPDC, pages 219–230, 2017.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In ACM SIGOPS operating
systems review, volume 41, pages 205–220. ACM, 2007.

[10] D. P. Dubhashi and A. Panconesi. Concentration of
measure for the analysis of randomized algorithms.
Cambridge University Press, 2009.

[11] W. Fan, Y. Wu, J. Xu, W. Yu, J. Jiang, Z. Zheng,
B. Zhang, Y. Cao, and C. Tian. Parallelizing Sequential
Graph Computations. In SIGMOD, pages 495–510,
2017.

[12] K. Fernandes, R. Melhem, and M. Hammoud. Dynamic
elasticity for distributed graph analytics. In CloudCom,
pages 145–148. IEEE, 2018.

[13] M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.
H. Freeman and Company, 1979.

[14] O. Goldschmidt and D. S. Hochbaum. A polynomial
algorithm for the k-cut problem for fixed k. Math.
Oper. Res., 19(1):24–37, 1994.

[15] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[16] J. Huang and D. Abadi. LEOPARD: Lightweight
edge-oriented partitioning and replication for dynamic
graphs. PVLDB, 9(7):540–551, 2016.

[17] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the World Wide Web. In STOC, pages
654–663, 1997.

[18] D. R. Karger and M. Ruhl. Simple efficient load balanc-
ing algorithms for peer-to-peer systems. In SPAA, 2004.

[19] K. Kenthapadi and G. S. Manku. Decentralized algo-
rithms using both local and random probes for P2P

load balancing. In SPAA, 2005.

[20] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twit-
ter, a social network or a news media? In WWW, 2010.

[21] W. Lang and J. M. Patel. Energy management for
MapReduce clusters. PVLDB, 3(1):129–139, 2010.

[22] J. Leverich and C. Kozyrakis. On the energy
(in)efficiency of Hadoop clusters. Operating Sys-
tems Review, 44(1):61–65, 2010.

[23] H. Li and S. Venugopal. Efficient node bootstrapping
for decentralised shared-nothing key-value stores. In
Middleware, pages 348–367, 2013.

[24] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly. In
PODC, pages 183–192, 2002.

[25] D. Margo and M. Seltzer. A scalable distributed graph
partitioner. PVLDB, 8(12):1478–1489, 2015.

[26] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer.
Graph structure in the Web — revisited: A trick of
the heavy tail. In WWW, 2014.

[27] V. Mirrokni, M. Thorup, and M. Zadimoghaddam.
Consistent hashing with bounded loads. In SODA,
pages 587–604, 2018.

[28] M. Naor and U. Wieder. Novel architectures for P2P
applications: The continuous-discrete approach. ACM
Trans. Algorithms, 3(3):34, 2007.

[29] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes.
AGILE: Elastic distributed resource scaling for
infrastructure-as-a-service. In ICAC, 2013.

[30] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen.
Hermes: Dynamic partitioning for distributed social
network graph databases. In EDBT, 2015.

[31] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and
G. Iacoboni. HDRF: Stream-based partitioning for
power-law graphs. In CIKM, 2015.

[32] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: Scaling online social networks. In
SIGCOMM, pages 375–386, 2010.

[33] M. Raab and A. Steger. “Balls into bins” - A simple and
tight analysis. In RANDOM’98, pages 159–170, 1998.

[34] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM, 2001.

[35] H. P. Sajjad, A. H. Payberah, F. Rahimian, V. Vlassov,
and S. Haridi. Boosting vertex-cut partitioning for
streaming graphs. In BigData Congress, 2016.

[36] K. Schloegel, G. Karypis, and V. Kumar. Multilevel
diffusion schemes for repartitioning of adaptive meshes.
J. Parallel Distrib. Comput., 47(2):109–124, 1997.

[37] Z. Shang and J. X. Yu. Catch the wind: Graph
workload balancing on cloud. In ICDE, 2013.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM,
pages 149–160, 2001.

[39] L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, 33(8):103–111, 1990.

[40] L. M. Vaquero, F. Cuadrado, D. Logothetis, and
C. Martella. Adaptive partitioning for large-scale
dynamic graphs. In ICDCS, 2014.

[41] C. Walshaw, M. Cross, and M. G. Everett. Parallel

889

dynamic graph partitioning for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 47(2):102–108,
1997.

[42] W. Wang, H. Chen, and X. Chen. An availability-aware
virtual machine placement approach for dynamic scal-
ing of cloud applications. In UIC/ATC, pages 509–516,
2012.

[43] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed
power-law graph computing: Theoretical and empirical
analysis. In NIPS. 2014.

[44] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
GraphX: A resilient distributed graph system on
Spark. In GRADES, page 2, 2013.

[45] N. Xu, L. Chen, and B. Cui. Loggp: A log-based dy-
namic graph partitioning method. PVLDB, 7(14):1917–
1928, 2014.

[46] L. Yu and Z. Cai. Dynamic scaling of virtual clusters
with bandwidth guarantee in cloud datacenters. In
INFOCOM, pages 1–9, 2016.

[47] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li.
Graph edge partitioning via neighborhood heuristic.
In KDD, pages 605–614, 2017.

[48] A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Pla-
nar: Parallel lightweight architecture-aware adaptive
graph repartitioning. In ICDE, pages 121–132, 2016.

890

	Introduction
	The Dynamic Scaling Problem
	Approximation Algorithms
	Consistent Hashing and Extension
	Algorithms for Scaling Out and In
	Parallelization

	A Generic Scaling Scheme
	Dynamic Scaling Scheme
	Scaling Stream Partitioners

	Experimental Study
	Conclusion
	References

