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ABSTRACT
Data analysts spend more than 80% of time on data clean-
ing and integration in the whole process of data analytics
due to data errors and inconsistencies. Similarity-based
query processing is an important way to tolerate the er-
rors and inconsistencies. However, similarity-based query
processing is rather costly and traditional database cannot
afford such expensive requirement. In this paper, we de-
velop a distributed in-memory similarity-based query pro-
cessing system called Dima. Dima supports four core sim-
ilarity operations, i.e., similarity selection, similarity join,
top-k selection and top-k join. Dima extends SQL for users
to easily invoke these similarity-based operations in their
data analysis tasks. To avoid expensive data transmission
in a distributed environment, we propose balance-aware sig-
natures where two records are similar if they share common
signatures, and we can adaptively select the signatures to
balance the workload. Dima builds signature-based global
indexes and local indexes to support similarity operations.
Since Spark is one of the widely adopted distributed in-
memory computing systems, we have seamlessly integrated
Dima into Spark and developed effective query optimization
techniques in Spark. To the best of our knowledge, this is
the first full-fledged distributed in-memory system that can
support complex similarity-based query processing on large-
scale datasets. We have conducted extensive experiments
on four real-world datasets. Experimental results show that
Dima outperforms state-of-the-art studies by 1-3 orders of
magnitude and has good scalability.
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1. INTRODUCTION
In big data era, data are full of errors and inconsisten-

cies and cause much trouble to data analysts. As reported
in a New York Times article, 80% of a typical data science
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project is cleaning and preparing the data, while the remain-
ing 20% is the actual data analysis. String similarity-based
query processing is indispensable in data integration sys-
tems (e.g. the state-of-the-art data integration system relies
on string similarity to find candidate pairs from datasets[28,
21, 7]). Therefore, it is demanding to have efficient and ef-
fective similarity-based query processing techniques to serve
the large-scale data cleaning job. However, similarity-based
query processing is very costly and traditional database can-
not afford such expensive requirement [19, 16]. Some effi-
cient serial algorithms [4, 44, 3, 40, 43, 39, 37, 31, 29] and
parallel algorithms on Hadoop [24, 8, 12, 36, 2] have been
proposed to improve the efficiency. They, however, suffer
from several limitations. First, they are not full-fledged –
they only support simple similarity operations but cannot
support complex data analysis (e.g., SQL-based analysis),
and have no effective optimization on queries involving mul-
tiple similarity operations. Second, the serial algorithms are
not efficient to support large-scale data analysis. Third, the
parallel algorithms still have the workload balance problem.

To address these limitations, we develop a distributed in-
memory system Dima to support SQL-based similarity-based
query processing. In particular, Dima focuses on supporting
four core similarity-based operations, i.e., similarity selec-
tion, similarity join, top-k selection and top-k join. Similar-
ity selection extends traditional exact selection by tolerating
errors and finds similar results. Similarity join extends tra-
ditional exact join by tolerating errors between records and
finds similar pairs of records. Top-k selection (top-k join)
computes the k most similar records (similar pairs).

One big challenge in distributed computing is to avoid
expensive data transmission. An effective way is to judi-
ciously assign data into different partitions such that the re-
sults must be in the same partition (and avoid the Cartesian
product over different partitions). To achieve this goal, we
propose effective signatures where two records are similar if
they share common signatures. On top of these signatures,
we build global indexes and local indexes to support simi-
larity operations, which can avoid unnecessary data trans-
mission among irrelevant partitions.

Another challenge is to balance the workload among par-
titions. To this end, we propose the concept of balance-
aware signatures, which are adaptively selectable based on
the workload. Based on selected signatures and effective
indexes, we devise efficient algorithms to support similarity-
based query processing. In particular, for similarity selec-
tion, we propose dynamic-programming algorithms to select
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961



the optimal signatures; for similarity join, we prove that the
optimal signature selection problem is NP-hard and pro-
pose a greedy algorithm to select high-quality signatures;
for top-k selection and top-k join, we progressively select
the signatures and avoid generating all signatures.

In summary, we make the following contributions.
(1) We develop a full-fledged distributed in-memory
similarity-based query processing system Dima, which pro-
vides SQL-based programming interface and DataFrame
API for further data analysis (Section 2). To the best of
our knowledge, this is the first distributed in-memory sys-
tem that can support similarity-based query processing.

(2) We devise selectable signatures and propose a novel
balance-aware signature selection framework in order to bal-
ance the workload in distributed environments (Section 4).

(3) We propose global and local indexes, and design efficient
algorithms to support similarity selection (Section 5), join
(Section 6), and top-k selection and join (Section 7).

(4) We develop cost-based query optimization techniques to
further enhance the performance (Section 8). As a result,
complex SQL-based data analysis can be supported by Dima,
beyond the standalone basic similarity operations.

(5) We have implemented Dima on top of Spark and con-
ducted extensive experiments on real-world datasets (Sec-
tion 9). The results show that Dima outperforms existing
studies by 1-3 orders of magnitude. Our source code is pub-
licized at https://github.com/TsinghuaDatabaseGroup/

dima.

2. SIMILARITY-BASED QUERY PRO-
CESSING FRAMEWORK

We first define four core similarity-based query opera-
tions (Section 2.1) and then introduce our framework (Sec-
tion 2.2). Finally we review related work (Section 3).

2.1 Similarity-Based Query Operations
Given two records r and s, we use a similarity function

to compute their similarity. There are many choices, e.g.,
Jaccard, Cosine, Dice, and edit distance. Due to space limit,
we focus on how to support Jaccard and the details for sup-
porting other functions are in our technical report [34].

We first tokenize records as sets of tokens and the Jaccard
similarity between r and s is Jac(r, s) = |r∩s|

|r∪s| , where r ∩ s
and r ∪ s are the overlap and union of r and s respectively.
Two records are similar w.r.t. Jaccard if their similarity is
not smaller than a threshold τ . Next we define four core
similarity-based operations.

Definition 1 (Similarity Selection). Given a col-
lection of records R, a query s, a similarity function f and
a threshold τ , the similarity selection problem aims to find
all similar records from R, i.e., {r ∈ R|Jac(r, s) ≥ τ}.

Definition 2 (Top-k Selection). Given a collection
of records R, a query s, a similarity function f and an in-
teger k, the top-k similarity selection problem aims to find
k records from R with the largest Jaccard similarity.

Definition 3 (Similarity Join). Given two collec-
tions of records R and S, a similarity function f and a
threshold τ , the similarity join problem aims to find all sim-
ilar record pairs, i.e., {(r ∈ R, s ∈ S)|Jac(r, s) ≥ τ}.

Definition 4 (Top-k Similarity Join). Given two
collections of records R and S, a similarity function f and
an integer k, the top-k similarity join problem aims to find
k record pairs from the two sets with the largest similarity.

RDBMS HDFS Native RDD

Spark

Local IndexingGlobal Indexing

Similarity-based Query Optimizer

simSQL Parser DataFrame API

CLI JDBC Scala Program

Similarity-based Query Operations 

Figure 1: The Framework of Dima.

We extend SQL and define simSQL to support these four
similarity operations.
(1) Similarity Selection. Users utilize the following simSQL

query to find records in table T whose column S is similar
to query s w.r.t. a similarity function f and threshold τ .

SELECT * FROM T WHERE f(T.S, s) ≥ τ
(2) Top-k Similarity Selection. Users utilize the following
simSQL query to find k records in table T whose column
S has the largest similarity to query s w.r.t. a similarity
function f and integer k.

SELECT * FROM T WHERE KNN(f, T.S, s, k)

(3) Similarity Join. Users utilize the following simSQL query
to find the records in tables T1 and T2 where T1’s column
S is similar to T2’s column R w.r.t. a similarity function f
and threshold τ .

SELECT * FROM T1 SIMJOIN T2 ON f(T1.S, T2.R) ≥ τ
(4) Top-k Similarity Join. Users utilize the following simSQL

query to find k records in tables T1 and T2 with the largest
similarity on table T1’s column S and table T2’s column R
w.r.t. a similarity function f and integer k.

SELECT * FROM T1 SIMJOIN T2 ON KNN(f, T1.S, T2.R, k)

2.2 Our Framework
Our goal is to devise effective indexes and algorithms to

support simSQL queries with single or multiple operations.
DataFrame. In addition to simSQL, users can perform sim-
ilarity operations over DataFrame objects using a domain-
specific language similar to data frames in R. We extend
Spark DataFrame API to support similarity operations.

Index. Users can utilize the following simSQL query to cre-
ate indexes (including global index and local index) on col-
umn S of table T using our signature based indexing scheme
SEGINDEX, which will be introduced in Section 4.
CREATE Index SegIndex ON T.S USE SEGINDEX.

Similarity-Based Query Processing. For a selection
query, we utilize the global index to prune irrelevant par-
titions and send the query request to relevant partitions. In
each local partition, we utilize the local index to compute
local answers. For a join query, we utilize the global index to
make similar pairs be in the same partition to avoid expen-
sive data transmission. In each partition, we utilize the local
index to compute local join answers. For top-k selection and
join, we progressively identify the top-k results. The details
are discussed in Sections 5, 6, and 7.

Query Optimization. Dima extends the Catalyst opti-
mizer of Spark SQL and introduces a cost-based optimiza-
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tion (CBO) module to optimize the similarity-based queries.
The CBO module leverages the (global and local) index to
optimize complex simSQL queries. Query optimization in
Dima is discussed in Section 8.

Workflow of Dima. Figure 1 shows the architecture of Dima.
Its processing workflow is as follows. Given a simSQL query
or a DataFrame object, Dima first constructs a tree model by
the simSQL parser or a DataFrame object by the DataFrame
API. Then Dima builds a logical plan using Catalyst rules.
Next, the logical optimizer applies standard rule-based op-
timization to optimize the logical plan. Then Dima applies
cost-based optimizations based on signature-based indexes
and statistics to generate the most efficient physical execu-
tion plan.

3. RELATED WORK
Similarity Selection. There are many studies on
similarity-based selection [11, 48, 23, 22, 17, 6, 46]. They
utilized a count-based framework where the data records
are similar to the query if they share enough common ele-
ments, e.g., tokens, q-grams (substrings of q-length), with
the query [22, 48, 23, 17, 6, 11], using inverted lists to count
the number.

Similarity Join. There are many studies on similarity
join [4, 44, 3, 40, 43, 39, 12, 37, 31, 14, 45, 15, 10, 27,
38, 33, 41, 25]. Jiang et al. [19] conducted a comprehensive
experimental study. Existing studies employed a signature-
based framework, which generates some signatures for each
record such that two records are similar if they share at least
one common signature. There are two effective signatures,
prefix filtering [4, 44, 40, 42] and segment-based filtering [26,
13]. The former sorts the elements and selects several infre-
quent elements as signatures such that if two records do not
share a common signature, they cannot be similar. The lat-
ter partitions each record into different segments and takes
the segments as signatures such that if two records are simi-
lar they must share a common signature. In addition, some
studies [32, 18, 47, 5] focus on probabilistic techniques for
set-based similarity join. However, they cannot find the ex-
act answer and need to tune parameters which are tedious
and less effective [4].

Different from existing works, we focus on distributed in-
memory setting. We also extend them to support our set-
ting and compare with them. Our system significantly out-
performs them (see Section 9), because they involve huge
amount of unnecessary data transmission and cannot ad-
dress the data skew problem while we design novel balance-
aware signatures, effective index, and efficient algorithms.
Our segment-signature based method is much more efficient
than the prefix-signature based method because the latter
has the imbalance problem in parallel computing.

MapReduce-Based Similarity Join. There are some
works on supporting similarity join using Map-Reduce
framework [37, 30, 1, 9, 12]. Vernica et al. [37] utilized
the prefix filtering to support set-based similarity functions.
Metwally et al. [30] proposed a 2-stage algorithm for joining
over sets, multisets and vectors. Afrati et al. [1] optimized
the map, reduce and communication cost. Kim et al. [20]
addressed the top-k similarity join problem using MapRe-
duce. Deng et al [12] focused on supporting edit distance.
However, they involve large disk IOs and data transmission
in the cluster. Our system significantly outperforms them
due to our effective balance-aware signatures, indexes and

algorithms. Moreover, we offer more easy-to-use APIs, and
plentiful functions for users. Different from our demo pa-
per [35], we provide more technical details.

Spark. Spark is a fault-tolerant, distributed in-memory
computing engine. Spark SQL enables Spark to support
relational data query processing. However, Spark SQL does
not support similarity operations, and we extend Spark SQL
to support similarity-based query processing.

4. INDEXING
We propose a selectable signature that provides multiple

signature options and we can judiciously select the signa-
tures to reduce the transmission cost in query processing.

4.1 Selectable Signatures
4.1.1 Basic Idea
Segments. Given a data record r and a query record s,
we split them into the same number of disjoint segments,
say η|r| segments. |r| is the number of tokens in r and we
discuss how to set η|r| later. In order to assign the same
token in different records to the same segment, we keep a
hash function Γ|r| that maps a token t to the i-th segment,

i.e., Γ|r|(t) = i where 1 ≤ i ≤ η|r|. Let iSig+r,i,|r| and

pSig+s,i,|r| denote the i-th segment of r and s respectively. If

iSig+r,i,|r| 6= pSig+s,i,|r|, we can deduce that r and s have at

least 1 mismatched token.

Number of Segments η|r|. Suppose s is similar to r,

i.e., Jac(r, s) ≥ τ . We have |r∩s||r∪s| ≥ τ , 1 − |r∩s||r∪s| ≤ 1 − τ ,
|r∪s|−|r∩s|
|r∪s| ≤ 1−τ , |r∪s−r∩s|≤ (1−τ)|r∪s| ≤ (1−τ) |r∩s|

τ
≤

1−τ
τ
|r|. Since |r∪s− r∩s| is the number of mismatch tokens

between r and s, and |r∪s − r∩s|≤ 1−τ
τ
|r|, s has at most

b 1−τ
τ
|r|c mismatched tokens with r (see Lemma 1). If we

split r and s into η|r| = b 1−τ
τ
|r|c+1 segments, s must share a

common segment with r (otherwise s has more than b 1−τ
τ
|r|c

mismatched tokens with r).
Lemma 1. If s is similar to r, |r∪s− r∩s|≤ 1−τ

τ
|r|, i.e.,

s has at most b 1−τ
τ
|r|c mismatched tokens with r.

(1) Pruning Based on Segments. If iSig+r,i,|r| 6=
pSig+s,i,|r| for every i ∈ [1, η|r|], then r and s have at least

η|r| mismatched tokens and they cannot be similar based on
Lemma 1. We utilize this property to prune dissimilar pairs.

Figure 2 shows an example with a data record r1 =
{a, b, c, d, e} and a query record s1 = {a, b, c, d, e, f}. Sup-
pose τ = 0.8. We can get η|r1| = b 1−0.8

0.8
∗ 5c + 1 = 2, so

we split r1 into two segments. The two segments of r1 are
{a, c, e} and {b, d}, and the two segments of s1 are {a, c, e},
{b, d, f}. Since they share a common segment, they could be
similar. Consider another query record s2 = {a, b, c, d, f, g}.
The two segments of s2 are {a, c, g}, {b, d, f}. As r1 and s2
have no common segment, they have at least two mismatch
tokens and thus they cannot be similar based on Lemma 1.

Deletions on Segments. Let iSig−r,i,|r| (pSig−s,i,|r|) de-

note the deletion set of sub-segments by removing a token
from iSig+r,i,|r| (pSig+s,i,|r|). The deletion set of {b, d, f} is

{{b, d}, {b, f}, {d, f}}.
(2) Pruning Based on Deletions. Actually, there may
be more than one tuple for pSig+s,i,l as figure 2, therefore we

denote iSig+r,i,l and pSig+s,i,l as sets.

(i) If pSig+s,i,l ∩ iSig+r,i,l = ∅, s and r have at least one
mismatched token in the i-th segment.
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Table 1: Important Notations.
Notations Descriptions

τ Threshold
ηl #Segments for length l, ηl = b 1−τ

τ
lc+ 1

θ|s|,|r|
Bound of #Mismatch Segments for r and s

θ|s|,|r| = b 1−τ
1+τ

(|r|+ |s|)c+ 1

iSig+r,i,|r| the i-th indexing segment signature of record r

iSig−r,i,|r| the i-th indexing deletion signature of record r

l−|s|/l
+
|s| Min/Max Length l−|s| = dτ |s|e; l+|s| = b |s|

τ
c

pSig+s,i,l i-th probing segment signature of s for length l

pSig−s,i,l i-th probing deletion signature of s for length l

F+/F− Frequency table for indexing signature
L+/L− Inverted list for an indexing signature
J+/J− Inverted list for a probing segment signature

(ii) If pSig+s,i,l ∩ iSig+r,i,l=∅ & iSig+r,i,l ∩
pSig−s,i,l=∅ & pSig+s,i,l ∩ iSig−r,i,l=∅, r and s have at
least 2 mismatched tokens on the i-th segment. This is
because if r and s have only one mismatched token, we have
either pSig+s,i,l ∩ iSig−r,i,l 6= ∅ or iSig+r,i,l ∩ pSig−s,i,l 6= ∅.
For example, consider iSig+r,i,|r| = {b, d, f} and

pSig+s,i,|r| = {b, e, g}. iSig−r,i,|r| = {{b, d}, {b, f},
{d, f}} and pSig−s,i,|r| = {{b, e}, {b, g}, {e, g}}. As

pSig−s,i,l ∩ iSig+r,i,l=∅ & pSig+s,i,l ∩ iSig−r,i,l=∅ &

pSig+s,i,l ∩ iSig+r,i,l=∅, {b, d, f} and {b, e, g} have at
least 2 mismatch tokens.

(3) Hybrid Pruning. Lemma 1 gives an upper bound of
the number of mismatch tokens only based on |r|. Next,

we give a tighter bound based on |r| and |s|. As |r∩s||r∪s| ≥ τ ,
|r∩s|

|r|+|s|−|r∩s| ≥ τ , |r ∩ s| ≥ τ
1+τ

(|r| + |s|), |r ∪ s − r ∩ s| =

|r|+|s|−2|r∩s| ≤ |r|+|s|−2 τ
1+τ

(|r|+|s|) = 1−τ
1+τ

(|r|+|s|). Let

θ|s|,|r| = b 1−τ
1+τ

(|r|+ |s|)c+ 1 denote the dissimilar threshold
bound, i.e., if r and s have at least θ|s|,|r| mismatched tokens,
they cannot be similar (see Lemma 2).

Lemma 2. If s is similar to r, |r∪s−r∩s| ≤ 1−τ
1+τ

(|r|+|s|),

i.e., s has at most 1−τ
1+τ

(|r|+ |s|) mismatched tokens with r.
By selecting some segments and deletions of s, if we find s

has at least θ|s|,|r| mismatched tokens with r, we can prune
(r, s). Next we discuss how to select some segments and
deletions of s as its signatures.

4.1.2 Selectable Signatures Generation
Indexing Signatures. Given any record r, we generate
two types of indexing signatures: indexing segment signa-
tures and indexing deletion signatures.

Indexing Segment Signatures. We split a record r into η|r|
disjoint segments seg1, seg2, · · · , segη|r| , and iSig+r,i,|r| =

(segi, i, |r|) is an indexing segment signature for 1 ≤ i ≤ η|r|.
Indexing Deletion Signatures. For each segment signature
iSig+r,i,|r| = (segi, i, |r|), we generate an indexing deletion

signature iSig−r,i,|r|,j = (delji , i, |r|) where delji is a subset

of segi by deleting the j-th token (1 ≤ j ≤ |segi|). Let

iSig−r,i,|r| = ∪|segi|j=1 {iSig
−
r,i,|r|,j} denote the set of deletion

signatures for the i-th segment.
For each indexing segment/deletion signature, we use an

inverted list to keep records that contain the signature.

Probing Signatures. Given a record s, if it is similar to
record r, the length difference between s and r should not be
too large. In other words, s can only be similar to a record

Global Order:

r1={a,c,e,  b,d}

s1={a,c,e, b,d,f}

{a,c,e,g}{b,d,f,h}

((a,c,e),1,5) ((b,d),2,5)

((a,c),1,5)
((a,e),1,5)
((c,e),1,5)

(b,2,5)
(d,2,5)

((a,c,e),1,5) ((b,d,f),2,5)

((a,c),1,5)
((a,e),1,5)
((c,e),1,5)

((b,d),2,5)
((b,f),2,5)
((d,f),2,5)

iSig
+

iSig
-

pSig
+

pSig
-

if  iSig
+

∩pSig
+

=∅ &

    iSig
+

∩pSig
-
=∅ &

 iSig
-
∩pSig

+
=∅  

then error≧2

if iSig
+

∩pSig
+

=∅ 

then error≧1

Figure 2: Signature Example.

r whose length |r| ranges in [l−|s|, l
+
|s|]. Since |r| ≥ |r ∩ s| ≥

|r ∪ s| · τ ≥ |s| · τ , we have l−|s| = d|s| · τe. Similarly, since

|r| ≤ |r ∪ s| ≤ |r∩s|
τ
≤ |s|

τ
, we have l+|s| = b |s|

τ
c. As records

with different lengths have different segmentation strategies,
we should consider every length l ∈ [l−|s|, l

+
|s|] for s.

Probing Segment Signatures for Length l. As the record
with length l is split into ηl segments, we also split s to ηl
segments seg1, seg2, · · · , segηl (using the same global order,
e.g. the same hash function Γl). For i ∈ [1, ηl], we generate
a probing segment signature pSig+s,i,l = (segi, i, l).

Probing Deletion Signatures for Length l. For each probing
segment signature pSig+s,i,l = (segi, i, l), we generate a dele-

tion signature pSig−s,i,l,j = (delji , i, l) where delji is a subset
of sigi by deleting the j-th token. Then we can get a probing
deletion signature set pSig−s,i,l = ∪ηlj=1{pSig

−
s,i,l,j}.

Signature Selection. We select the deletion or segment
signatures for s. Suppose we select x probing segment sig-
natures and y probing deletion signatures of s such that
x + 2y ≥ θ|s|,|r|. The records on the inverted lists of these
signatures are candidates of s; other records are pruned as
they have at least θ|s|,|r| mismatched tokens with s. We
present how to select balance-aware signatures based on the
workload in Sections 5 and 6.

Example 1. Figure 2 presents an example with a data
record r1 = {a, b, c, d, e} and a query record s1 =
{a, b, c, d, e, f}. Suppose τ = 0.8. We can get
η|r1| = b 1−0.8

0.8
∗ 5c + 1 = 2, so we split r1 into

two segments. The two indexing segment signatures of
r1 are iSig+r1,1,5 = {((a, c, e), 1, 5)} and iSig+r1,2,5 =
{((b, d), 2, 5)}. Their indexing deletion signatures are ac-
quired by removing one token from their segment signatures,
i.e., iSig−r1,1,5={((a, c), 1, 5), ((a, e), 1, 5), ((c, e), 1, 5)} and

iSig−r1,2,5={(b, 2, 5), (d, 2, 5)}.
For record s1, we need to generate its probing signa-

tures. First, we need to get the max and min length
of records that can match s1, i.e. l+|s1| = b 6

0.8
c=7 and

l−|s1| = d6 ∗ 0.8e=5. Since |r1| = 5, which is within

[5, 7], r1 can be a candidate similar to s1, so l=5 and
η5 = b 1−0.8

0.8
∗ 6c + 1 = 2. We split s1 to two probing seg-

ment signatures: pSig+s1,1,5 = {((a, c, e), 1, 5)}, pSig+s1,2,5 =
{((b, d, f), 2, 5)}. Their probing deletion signatures are
pSig−s1,1,5 = {((a, c), 1, 5), ((a, e), 1, 5),

((c, e), 1, 5)}, pSig−s1,2,5 = {((b, d), 2, 5), (b, f), 2, 5),

(d, f), 2, 5)}. θ|s1|,|r1| = b 1−0.8
1+0.8

(5 + 6)c+ 1 = 2, which indi-
cates that r1 and s1 have at most 2 mismatched tokens.

If we do not choose signatures from the second segment,
we get that the second segments of s1 and r1 match. If we
choose pSig+s1,2,5 as the segment signature, we get that the
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upper bound of the second segment mismatching is 1. If we
choose pSig−s1,2,5 as the deletion signature, we get that the
upper bound of the second segment mismatching is 2. Thus
selecting different signatures has different pruning power.

4.2 Distributed Indexing
Given a dataset R, we build a global index and a local

index. Figure 3 shows the index structure. How to utilize
the indexes to process a query is presented in Section 5-7.

Indexing. Note that different queries may have different
thresholds and we aim to support queries with any choice
of threshold. To achieve this goal, we utilize a threshold
bound to generate the index. For example, the threshold
bound for Jaccard is the smallest threshold for all queries
that the system can support, e.g., 0.6. Using this threshold
bound, we can select the indexing segment/deletion signa-
tures and build a local index. In addition, we also keep the
frequency table of each signature to keep each signature’s fre-
quency and build a global index that keeps a mapping from
the signature to the partitions that contain this signature.

Frequency Table. For each RDD Ri, for each record
r ∈ Ri, we compute its indexing segment number η|r| us-
ing the threshold bound, then generate the indexing seg-
ment signature set and the indexing deletion signature set.
For each segment signature g, we collect its global frequency
F+[g] and for each deletion signature g′, we collect its global
frequency F−[g′]. We use the frequency to select signatures
in Section 5. Note that the frequency table is very small and
can be easily distributed to every node.

Local Index. Next we shuffle the indexing signatures such
that (1) each signature and its inverted list of records that
contain this signature are shuffled to one and only one par-
tition, i.e., the same signature will be in the same partition
and (2) the same partition may contain multiple signatures
and their corresponding records. For each partition, we con-
struct an IndexRDD IRi for indexing signatures in this par-
tition. Each IndexRDD IRi contains several signatures and
the corresponding records, which include two parts. The
first part is a hash-map which keeps the mapping from a sig-
nature to two lists of records: L+[g] keeps the records whose
indexing segment signatures contain g and L−[g] keeps the
records whose indexing deletion signatures contain g. We
use L[g] to denote L+[g]∪L−[g]. The second part is all the
records in this RDD, i.e., Di = ∪g∈IRi L[g]. Note that the

records are stored in the data list Di while L+[g] and L−[g]
only keep a list of pointers to the data list Di. For example,
Figure 4 shows the local index for two records.

Global Index. For each signature, we keep the mapping
from the signature to the partitions that contain this sig-
nature. We only maintain a global function P that maps a
signature g to a partition p, i.e., P(g) = p. Thus the global
index is rather small.
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Figure 4: An Example of Local Index.

5. SIMILARITY SELECTION OPERA-
TION

Algorithm Overview. Given a query s, Algorithm 1
shows how to utilize the proposed indexes to answer the
query in three steps. (1) It first conducts a global search by
utilizing the frequency table to select the probing signatures
of s. Specifically, we propose an optimal signature selection
method to achieve a balance-aware selection. (2) For each
selected probing signature, it utilizes the global hash func-
tion to compute the partition that contains the signature
and sends the search request to the corresponding parti-
tion (lines 3-13). (3) Each partition exploits a local search
to retrieve the inverted lists of the probing signatures and
verify the records on the inverted lists to get local answers
(lines 14-19). Finally, it returns local answers to the master.

5.1 Probing Signature Selection
Given a query s we compute the maximal length lmax and

minimal length lmin of records that are similar to s (see Ta-
ble 1). Then for each length l in this range, we generate
the probing signatures of s. We first compute the number
of segments ηl for length l. For each segment at position
i ∈ [1, ηl], we generate a probing segment (deletion) signa-
ture pSig+s,i,l (pSig−s,i,l). Then we compute the bound of
mismatched tokens θ|s|,l between s and a record r of length
l, above which r could not be similar to s.

Next we discuss how to select the probing signatures. Let
Z denote a list where each element Z[i] ∈ {0, 1, 2} for 1 ≤
i ≤ ηl. Z[i] = 0 denotes that the probing signature on
the i-th segment is not selected. Z[i] = 1 denotes that the
probing segment signature on the i-th segment is selected.
Z[i] = 2 denotes that the probing deletion signature on the
i-th segment is selected.

If we select the probing segment signature in pSig+s,i,l,
it can only match the indexing segment signature, and the
candidate size is

∑
g∈pSig+

s,i,l
F+[g], which is the total size

of the inverted lists of segment signatures in pSig+s,i,l. If
there is no matching signature, there exists at least 1 mis-
matched token. If we select the probing deletion signa-
ture in pSig−s,i,l, its probing deletion signature can match
the indexing segment signature and its probing segment
signature can match the indexing deletion/segment signa-
ture. Based on case (ii) in Section 4.1, the candidate size
is

∑
g∈pSig−

s,i,l
F+[g]+

∑
g∈pSig+

s,i,l
(F−[g]+F+[g]). If there is

no matching signature, there are at least 2 mismatched to-
kens. The verification cost on different records is nearly the
same, and we utilize the candidate size to quantify efficiency.
We select x segment signatures and y deletion signatures of
s such that x + 2y ≥ θ|s|,l. Intuitively, we select signatures
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Algorithm 1: Dima-SimilaritySelection

Input: Dataset R; Query s with threshold τ
Output: Answer set A
Build index for R offline;1
// Global Search

for l ∈ [l−|s|, l
+
|s|] do2

Z=OptimalSignatureSelection(s, l);3
for each Zi 6= 0 do4

if Zi = 1 then5

for g+ ∈ pSig+q,i,l do6
P(g+).LocalSearch(s, τ,L+, g+);7

if Zi = 2 then8

for g− ∈ pSig−q,i,l do9
P(g−).LocalSearch(s, τ,L+, g−);10

for g+ ∈ pSig+q,i,l do11
P(g+).LocalSearch(s, τ,L+, g+);12

P(g+).LocalSearch(s, τ,L−, g+);13

// LocalSearch Method

for g+ has a L+ request in local search do14
for r ∈ L+[g+] do15

if Verify(r, s)=true then A = A ∪ {r};16

if g− has a L− request in local search then17
for r ∈ L−[g−] do18

if Verify(r, s)=true then A = A ∪ {r};19

return A;20

Function OptimalSignatureSelection

Input: Query s, length l, Frequency Tables F−,F+

Output: Selection Vector Z

for i ∈ [0, ηl] do M [i][0] = 0|P |;1

for j ∈ [1, θ|s|,l] do M [0][j] =∞|P |;2

for i ∈ [1, ηl] do3
for j ∈ [1, θ|s|,l] do Compute M [i][j]; Set Z[i];4

return Z;5

of s to minimize the number of candidates, i.e., minimizing
ηl∑
i=1

(bi
∑

g∈pSig+
s,l

F+
[g] + ci(

∑
g∈pSig−

s,l

F+
[g] +

∑
g∈pSig+

s,l

(F−[g] + F+
[g])))

bi =

{
1 Z[i] = 1

0 Z[i] 6= 1
ci =

{
1 Z[i] = 2

0 Z[i] 6= 2
s.t.

ηl∑
i=1

Z[i] ≥ θ|s|,l.

5.2 Balance-Aware Signature Selection
In order to balance the workload among different parti-

tions, we propose a balance-aware probing signature selec-
tion method.

5.2.1 Problem Formulation
Given |P| partitions, let Wj denote the workload on the

j-th partition, we want to minimize the maximal workload
on every partition, i.e., minimizemax(W1,W2, · · ·W|P|),
where Wj is computed as below:

Wj =

ηl∑
i=1

(
bi

∑
g∈pSig+

s,i,l
&P(g)=j

F−[g] + ci
∑

g∈pSig−
s,i,l

&P(g)=j

(
F+

[g]+

∑
g∈pSig+

s,i,l
&P(g)=j

F−[g] + F+
[g]
))

bi =

{
1 Z[i] = 1

0 Z[i] 6= 1
ci =

{
1 Z[i] = 2

0 Z[i] 6= 2
s.t.

ηl∑
i=1

Z[i] ≥ θ|s|,l.

where Wj can be computed by aggregating the size of the
inverted list of each selected signature in the j-th partition.
We can utilize the global search function P to efficiently
check whether a signature is in the j-th partition.
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Figure 5: Example of Optimal Signature Selection.

A naive method enumerates every possible case and se-
lects the case with a balanced workload. As each segment
has 3 cases, this method has a time complexity of 3ηl . To im-
prove the performance, we propose a dynamic-programming
algorithm to select the best probing signatures to minimize
the maximal workload.

5.2.2 Optimal Signature Selection
To minimize the maximal workload of |P| partitions,

we devise a dynamic programming algorithm to select
the probing signatures. Let M denote a matrix with ηl
columns and θ|s|,l rows. Each cell M [i][j] is a vector
W = [W1,W2, · · · ,W|P|] which denotes the optimal work-
load by selecting probing signatures in the first j segments
with threshold i. Then we discuss how to compute M [i][j]
based on cells M [i′][j′] where i′ ≤ i and j′ ≤ j. There are
three cases.

Case 1: If we do not select any signature for the i-th seg-
ment, then M [i][j] = M [i− 1][j].

Case 2: If we select the probing segment signature for the
i-th segment, then M [i][j] = M [i− 1][j − 1] + ∆S [i], where
∆S is the vector of the increased workload on each parti-
tion by selecting the probing segment signatures. ∆S [i] =∑
g∈pSig+

s,i,l
&P(g)=i

F+[g].

Case 3: If we select the probing deletion signature for
the i-th segment, then M [i][j] = M [i − 1][j − 2] +
∆D[i], where ∆D is the vector of the increased work-
load on each partition by selecting the probing dele-
tion signatures. ∆D[i] =

∑
g∈pSig−

s,i,l
&P(g)=i

F+[g] +∑
g∈pSig+

s,i,l
&P(g)=i

F−[g] + F+[g].

Among the three cases, we select the case whose maximal
value in the vector is minimal, i.e.,

M [i][j] = min


M [i− 1][j]

M [i− 1][j − 1] + ∆S [i]

M [i− 1][j − 2] + ∆D[i]

Example 2. Consider s1 = {a, b, c, d, e, f} of length l
=5. We get η5 = 2 and θ|s1|,5 = 2. s1 has two segments
and the mismatched bound is 2. The frequency in each par-
tition is shown in Figure 5. The workload distribution is
initialized as {0, 0, 0}. M [1][1] = {0, 0, 2} which means, if
we select segment signature of the first segment, the work-
load is (0, 0, 2). M [2][1] = {0, 0, 0} which means, if we select
segment signature of the second segment, the workload is
(0, 0, 0). M [2][2] = {0, 1, 0} which means, if we select dele-
tion signature of the 2nd segment, the workload is (0, 1, 0).
Time Complexity. The time complexity of the dynamic
programming algorithm is ηl · θ|s|,l · |P|.

Consider the selected signature vector Z. If Z[i] = 0, we
do not send a search request to any partition. If Z[i] = 1, for
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Figure 6: Similarity Join Workflow.

each signature g+ ∈ iSig+q,i,l, we send a segment search re-

quest to partition P(g+), which takes the records on L+[g+]
as candidates and verifies them. If Z[i] = 2, for each sig-
nature g− ∈ iSig−q,i,l, we send a segment search request

to partition P(g−), which takes the records on L+[g−]
as candidates and verifies them; and for each signature
g+ ∈ iSig+q,i,l, we send a segment search request and a

deletion search request to partition P(g+), which takes the
records on L+[g+] and L−[g+] as candidates and verifies
them.
5.3 Local Search

For each selected probing signature, it locates the corre-
sponding indexing signature and retrieves the inverted list.
Each record on the inverted list is a candidate which needs to
be verified. Since two candidates may have multiple match-
ing signatures, this method may involve duplicate verifica-
tion. To address this issue, for each candidate, we check
whether this signature is the first matching. If yes, we ver-
ify it; otherwise, we ignore this pair. To check whether this
signature is the first matching, we generate the indexing
signature of r and the probing signature of s before this sig-
nature, and check whether there is a match between them.
We can also add the probing signature before this signature
and send it to local executor. So we can avoid on-the-fly
generating signatures for candidates.

6. SIMILARITY-BASED JOIN OPERA-
TION

For similarity join on two sets R and S, a straightforward
approach is to first build the index for a set, e.g., R, then
take each record s ∈ S as a query and invoke the similarity
selection algorithm to compute its results. However, it is
rather expensive for the driver, because it is costly to select
signatures for a huge number of queries. To address this
problem, we propose an effective join algorithm.

Algorithm Overview. Algorithm 2 shows the pseudo
code. (1) It generates signatures and builds the indexRDD
for one dataset, say R (line 1). (2) It selects probing signa-
tures for each length l using a greedy algorithm (line 3-4).
(3) For each selected signature it builds the probeRDD for
the other dataset, say S (lines 5-14). Since the matched
probing and indexing signatures are in the same executor, it
avoids data transmission among partitions. (4) It computes
the local results in each executor based on the indexRDD
and probeRDD, and the master collects the results from lo-
cal executors (lines 15-20). Figure 6 shows the workflow.
6.1 Indexing

Given two datasets R and S, we first select a dataset to
index based on the cost estimation techniques in Section 8.1.
Without loss of generality, we select R to index using the
method in Section 4. For the dataset S, for each record
s ∈ S, we select its probing signatures based on the fre-
quency tables F+ and F−. After generating the probing
signatures, we build probeRDD. A straightforward method
is to generate the probeRDD randomly. This will lead to the

Algorithm 2: Dima-SimilarityJoin

Input: Two datasets R, S, threshold τ
Output: Answer set A
// Global Join
Build Index for R;1
for s ∈ S do2

for l ∈ [l−|s|, l
+
|s|] do3

Z=GreedySignatureSelection(s, l);4
for Zi 6= 0 do5

if Zi = 1 then6

for g+ ∈ pSig+s,i,l do7
Shuffle g+ and J+[g+]← s ;8

if Zi = 2 then9

for g− ∈ pSig−s,i,l do10
Shuffle g− and J+[g−]← s ;11

for g+ ∈ pSig+s,i,l do12
Shuffle g+ and J+[g+]← s ;13

Shuffle g+ and J−[g+]← s ;14

// Local Join
for g in each partition do15

for (r, s) ∈ L+[g]× J+[g] do16
if Verify(r, s)=true then A = A ∪ {(r, s)};17

for (r, s) ∈ L−[g]× J−[g] do18
if Verify(r, s)=true then A = A ∪ {(r, s)};19

return A;20

Function GreedySignatureSelection

Input: Query s, length l, Frequency Tables F−,F+

Output: Selection Vector Z
for i ∈ [1, ηl] do1

Compute W+i; Insert (i,maxW+i) into MinHeap M ;2

for x ∈ [1, ηl] do3
Pop min element (i, maxW+i) from M ;4

if Z[i] = 0 then Z[i]=1; Insert(i,maxW−i) into M ;5
else Z[i] = 2;6

return Z;7

case that the matched probing signatures and indexing sig-
natures may be in different partitions and thus involve huge
data transmission cost. To alleviate this problem, we want
to guarantee that the same probing/indexing signatures are
always in the same executor. To achieve this goal, we utilize
the same global hash function P as the indexRDD, and the
same signature will be partitioned into the same partition.
We can utilize the zip-partition to achieve this goal.
6.2 Balance-Aware Signature Selection
6.2.1 Problem Formulation

For a selection query, we can utilize the dynamic-
programming algorithm (proposed in Section 5.2) to min-
imize the maximal workload. However for the join query,
there are many records in the dataset, and balancing a
record cannot guarantee workload balance for all records.
Thus we want to select a balance-aware probing signature
to minimize the overall maximal workload on every parti-
tion, i.e., minmizemax(W1, W2, · · · ,W|P|), where Wj is
computed as below:

Wj =
∑
s∈S

(η|s|∑
i=1

(
b
s
i

∑
g∈pSig+

s,i,|s|&P(g)=j

F+
[g]+

c
s
i

( ∑
g∈pSig−

s,i,|s|&P(g)=j

F+
[g] +

∑
g∈pSig+

s,i,|s|&P(g)=j

(F+
[g] + F−[g])

)))

b
s
i =

{
1 Zs[i] = 1

0 Zs[i] 6= 1
c
s
i =

{
1 Zs[i] = 2

0 Zs[i] 6= 2
s.t.

ηl∑
i=1

Z
s
[i] ≥ θ|s|,l.
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whereWj can be computed by aggregating the cost of signa-
tures in the j-th partition. We can utilize the global function
to efficiently check whether a signature is in the j-th parti-
tion. Here the parameters have a superscript as compared
to those in the selection operation (in Section 5.2).

We prove that the balance-aware signature selection for
the join query is NP-hard, because selecting a record’s signa-
tures can affect other records’ workload. Even if we balance
the workload for s, the balance can be broken by record s′.

Theorem 1. The balance-aware probing signature selec-
tion problem is NP-complete.

6.2.2 A Greedy Algorithm for Workload Balancing
We propose a greedy algorithm to solve the balance-aware

signature selection problem. We process each record s in
S separately. For each record s, we can select its optimal
probing signatures. However, the selection process is costly
especially for a large number of records in S. To avoid this
issue, we propose a greedy algorithm.

Suppose the current workload is W. For each of its i-th
segment of record s, we compute the workload if we select
the i-th probing segment signature, denoted by W+i, where

W+i
j =Wj +

∑
g∈pSig+

s,i,l
&P(g)=j

F+[g]

Thus for each probing segment signature, we aim
to select the i-th segment signature such that i =
arg mini max{Wi+} for i ∈ [1, ηl], where max{W+i} =
max{W+i

1 ,W+i
2 , · · · ,W+i

|P|}.
If we select the i-th segment signature, we need to con-

sider whether we replace the segment signature with the i-
th deletion signature. Thus for each of its i-th segment, we
compute the workload if we select the i-th probing deletion
signature, W−i, where

W−ij =Wj+
∑

g∈pSig+
s,i,l

&P(g)=j

F−[g]+
∑

g∈pSig−
s,i,l

&P(g)=j

F+[g]

Here we do not add
∑
g∈pSig+

s,i,l
&P(g)=j

F+[g], because we

have added it when selecting the segment signature. Next
we give the greedy signature selection algorithm. We main-
tain a min-heap. Initially, we compute {W+i} and insert
max{W+i} into the heap. Next we pop the element with
the minimal value, e.g., the i-th segment. If Z[i] = 0, we set
Z[i] = 1, i.e., select the i-th segment signature, and we com-
pute W−i and insert max{W−i} into the heap. If Z[i] = 1,
we set Z[i] = 2, i.e., select the i-th deletion signature. After
ηs,l times, the algorithm terminates.
Time Complexity. The time complexity of the greedy
algorithm is θ|s|,l · |P| · log ηl.

Example 3. Let us consider the workloads in Figure 7.
We want to select the signatures of s1 = {a, b, c, d, e, f}.
We first compute the workload of each segment signature
and get W+1 = (0, 0, 2) and W+2 = (0, 0, 0). We pop
the minimal value W+2 and set Z = (0, 1). Next we push
W−2 = (0, 1, 0) into the min-heap. Then we pop the mini-
mal valueW−2 = (0, 1, 0) and get Z = (0, 2). Thus we select
the probing deletion signature of the second segment.
6.3 Building ProbeRDD

After selecting the probing signatures, we shuffle them and
build a probeRDD. For record s and length l, if Z[i] = 1,
we select its segment signature and for each signature g, we
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Figure 7: Running Example of Greedy Selection.

insert s into local index J+[g]. If Z[i] = 2, we select its dele-
tion signature and for each deletion signature g−, we insert
s into local index J+[g−] and for each segment signature
g+, we insert s into local index J+[g+] and J−[g+].

6.4 Local Join
In the same executor, for the same signature g, we have

two lists of records L+[g],L−[g] forR and two lists of records
J+[g],J−[g] for S. Each pair (r, s) ∈ L+[g] × J+[g] and
(r, s) ∈ L−[g]×J−[g] is a candidate, and we need to verify
it. Since two candidates may have multiple matching sig-
natures, we want to remove the duplicate verification. To
address this issue, for each candidate pair, we check whether
this signature is the first matching. If yes, we verify it; other-
wise, we ignore the pair. If L+[g]×L−[g] is too large, we will
partition L−[g] into multiple parts L−1 [g],L−2 [g], · · · ,L−x [g]
and distribute L+[g]×L−i [g] to the node with less workload.

7. TOP-K SELECTION AND JOIN
7.1 Top-k Selection
Basic Idea. For similarity selection, we use a given thresh-
old to generate segments and deletions as signatures. Top-k
selection, however, has no threshold. To address this prob-
lem, we propose a progressive method to compute top-k re-
sults. We first generate a signature, use the signature to
identify some candidates and put k best candidates in a pri-
ority queue Q. We use τk to denote the minimal similarity
among the candidates in Q. Then we estimate an upper
bound ub for other unseen records. If τk ≥ ub, we can guar-
antee that the candidates in Q are the final results and the
algorithm can terminate. If τk < ub, we generate next sig-
natures, compute candidates and update the priority queue
and τk. Next we discuss how to progressively identify can-
didates and how to estimate ub.

Indexing. We aim to first identify the candidates with the
largest similarity and add them into Q in order to get a
larger τk. To achieve this goal, we first split record r into
two segments, and take the first one as the first signature.
Then we further split the second segment of r into two sub-
segments and take the first sub-segment as the second sig-
nature. Iteratively we can generate the signature of r. For
example, for r1 = {a, c, e, b, d}, its segments are {a, c, e},
{b}, and {d}. Note for different records, we need to use the
same strategy to generate the signatures. Thus we first col-
lect all the tokens and split them into two sets. If a token
is in the first, we map it into the first signature. Then we
split the second set into two sub-sets, and we terminate if

968



there is only one token. For a record with length l, it has
log l segments. Similar to similarity selection and join, we
build global and local indexes for the signatures.

Computing Candidates. Given a query s, we use the
same method to generate its first signature g1. We utilize
the global index to get the relevant partitions. For each
relevant partition, we use the local inverted index to get
candidates L+[g1] and send top-k local candidates to the
master. The master collects all the local candidates and
puts them into the priority queue and compute τk.

Computing the Upper Bound ub. From the first seg-
ment, we can also estimate an upper bound of the similari-
ties of other records to the query. Since other records do not
share the same first signature with s, they have at least one
mismatch token with s. If |s| ≥ |r|, we have |r∩ s| ≤ |r| and
|r∪s| ≥ |r|+1. We also have |r∩s| ≤ |s|−1 and |r∪s| ≥ |s|.
Thus we have |r∩s||r∪s| ≤ min( |s|−1

|s| ,
|r|
|r|+1

). If |s| ≤ |r|, we have
|r∩s|
|r∪s| ≤ min( |r|−1

|r| ,
|s|
|s|+1

). So when we decide whether to

access the i-th segment, we set ub for the second segment as

ub2 = |s|
|s|+1

. If τk ≥ ub2, we do not need to visit the second

segment. Similarly, when we decide whether to access the

i-th segment, ubi = |s|
|s|+i−1

. If τk ≥ ubi, we do not need

to visit the i-th segment and the algorithm terminates; oth-
erwise, we access the i-th segment, retrieve the candidates
and update the priority queue and τk.

Balance-Aware Method. We can also generate and index
deletion signatures. When we select signatures to generate
the candidates, we either select the segment signatures or
the deletion signatures. We use the techniques in Section 5.2
to select the better signatures to balance the workload, and
our above techniques still work for selectable signatures.

7.2 Top-k Join
It is rather expensive to generate all the signatures for

all data. Instead, we only need to generate the first signa-
tures, estimate a bound based on current results and utilize
the bound to decide whether generating the next signatures.
In other words, we progressively generate the signatures as
follows. We first generate the first signatures of the two
datasets and use zip-partition to shuffle the same signature
into the same partition. In each partition, we compute the
candidates. Then the master collects all the candidates,
puts the candidates into the priority queue, and computes
τk. Next for each record, we decide whether to generate its
second signatures or not based on the upper bound ub. If
τk ≥ ub, we do not generate its signatures; otherwise, we
generate its second signature. If we do not need to generate
the next signatures for all records, the algorithm finds the
top-k pairs and terminates.

8. COST-BASED QUERY OPTIMIZA-
TIONS

In this section, we present the cost-based query optimiza-
tions. We first introduce the query estimation techniques
(Section 8.1) and then discuss the parameter optimization
techniques (Section 8.2).
8.1 Cost Estimation

A SQL query may contain multiple operations, so it is
important to estimate the cost of each operation and thereby
the query engine can utilize the cost to select a query plan,
e.g., join order. Since Spark SQL has the cost model for
exact selection and join, we focus on estimating the cost for

similarity operations. If there are multiple join predicates,
we also need to estimate the result size.

Cost/Size Estimation for Similarity Selection. Given
a similarity selection operation, we first select its probing
signatures and then we can estimate its candidate num-
ber by the sum of frequency of its probing signature, i.e.,
Cf =

∑
g∈s F [g], where g is a selected signature. The cost

of verification can also be estimated. The cost of verifying
a pair is Cv = |s|. Thus the estimation cost of a selection
query is CvCf . Similarly, we can estimate its result size by
N = α

∑
g∈s F [g], where α is the ratio of the result size to

the candidate size, which we can get using a sample.

Cost/Size Estimation for Similarity Join. There are
two methods to estimate the similarity join cost. First, if
there is an index on a dataset, we can utilize the estima-
tion method for similarity selection query to estimate the
join cost. Specifically, we sample some records from another
dataset, compute the cost of these samples, and then es-
timate the cost of the join query based on these selected
samples. The cost is CvCfβ where β is the ratio of dataset
size to the sample size. Similarly, we can estimate its result
size by N = αβ

∑
g∈q F [g]. Second, if there is no index, we

directly sample some records and estimate the cost and size.

8.2 Parameter Optimization
There are two parameters in our system. The first is the

number of partitions and the second is the global order of
elements (e.g., tokens) to make the same signature shuffle
to the same partition.

Number of Partitions. Increasing the number of par-
titions can increase the parallel scale but it also increases
the signature selection time (and incurs system overhead
for more partitions). We first consider the similarity se-
lection. The time complexity of our dynamic-programming
algorithm for signature selection is O(θ|s|,lηl|P|), which is

approximately O(l2|P|). The total size of the inverted list
is O(

∑
|s|). Suppose the pruning power of the signature-

based method is λ, i.e., O(
∑
|s|
λ

) records will be taken as
candidates. Then the expected selection cost in parallel is

O(
∑
|s|

λ|P| ). To achieve the best performance for selection, we

should set |P| as O(
√∑

|s|
λl2

). Next we consider the similarity

join. The time complexity of our greedy algorithm for sig-
nature selection is O(θ|s|,l log ηl|P|), which is approximately
O(l log |P|). Suppose the pruning power of the signature-

based method is λ+, i.e., O(
∑
|s|

λ+

∑
|r|

λ+ ) records will be taken
as candidates. Then the expected selection cost in parallel

is O(
∑
|s|

λ+

∑
|r|

λ+|P| ). To achieve the best performance for join,

we should set |P| as O(
√∑

|s|
∑
|r|

λ+3l2
).

Global Order of Elements. It is important to give a
good global mapping function to make the signatures evenly
distributed in each segment and avoid the unbalance prob-
lem. Intuitively, if two frequent tokens are in the same seg-
ment, then the inverted-list size of the segment will be rather
long and lead to bad performance. To this end, we propose
a round-robin method to generate a good global mapping
function. We first get the frequency of each token, and then
sort the tokens based on their frequency in a descending
order. Suppose there are |P| partitions. For the first |P|
tokens, we put the i-th token into the i-th segment. For the
next |P| tokens, we put the i-th token into the (|P| − i)-th
segment. Iteratively, we get a good global mapping order.
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Figure 8: Comparison with Baselines on Tweet (Selection)
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Figure 9: Comparison with Baselines on Review (Selection)
Table 2: Datasets.

Datasets Cardinality AvgLen MinLen MaxLen Size
Tweet 20,000,000 15.52 5 32 2.9GB
Review 20,000,000 10.3 1 399 1.5GB
ReviewBig 100,000,000 11.2 1 399 7.7GB

9. EXPERIMENT
9.1 Experimental Setup
Dataset. Table 2 shows the statistics of the datasets used:
Tweet, Review, ReviewBig. Tweet2 is a user-follower dataset.
Each record is a set of followers of a user. Review3 is a book
review dataset on Amazon. Each record is a set of tokens.
ReviewBig was too large to be supported by baselines, so we
sampled 20% of the data to compare with existing methods.

Baselines. We tried the MapReduce-based method [37, 30,
1, 9, 12], but they were too slow due to huge data trans-
mission cost. We extended their code to support Spark
and compared with them. Here we showed the signature-
partition method PrefixSig [37] that achieved the best re-
sult on Spark among these methods (note that [12] only
supported edit distance and [30, 1, 9] were slow due to in-
volving huge data transmission). We compared with the
native Spark Naive without index, and two data-partition
methods PrefixData and SelectableData. PrefixData and
SelectableData directly partitioned the data into different
partitions. To avoid Cartesian product, we partitioned the
data based on the length. For records of each length l, we
partitioned them into same partitions and the records with
length between lmin and l were also in this partition. Then
we performed join in each partition but the data should be
replicated in different partitions to meet the length require-
ment. For local join, PrefixData and SelectableData used
prefix filtering [37] and our method respectively to compute
local results. We implemented two versions of our method:
Dima+ with balance-aware techniques while Dima without.

Parameters. We varied three parameters, similarity
threshold τ , number of cores and data set size. When we
varied a parameter, other parameters were set to default val-
ues (highlighted in bold in Table 3). Due to space limit, we
omitted results for evaluating partition number, indexing,
and other functions and please see [34] for more results.

2
http://snap.stanford.edu/data/twitter7.html

3
http://snap.stanford.edu/data/web-Amazon.html

Table 3: Parameters (Default value is highlighted).
Parameter Value
Jaccard Threshold τ 0.8, 0.85, 0.9, 0.95
k for Top-k Selection 250, 500, 750, 1000
k for Top-k Join 2500, 5000, 7500, 10000
k for BigData Top-k Selection 1250, 2500, 3750, 5000
k for BigData Top-k Join 5000, 10000, 15000, 20000
#Cores 32, 64, 96, 128
#Size 5M, 10M, 15M, 20M

Machines. All experiments were conducted on a cluster
consisting of 64 nodes with a 8-core Intel Xeon E5-2670 v3
2.30GHz and 48 GB RAM. Each node was connected to a
Gigabit Ethernet switch and ran Ubuntu 14.04.2 LTS with
Hadoop 2.6.0 and Spark 1.5.0. The Spark cluster was de-
ployed in standalone mode.

9.2 Comparison with Baselines
9.2.1 Similarity Selection

We first evaluated different methods for similarity selec-
tion. For each dataset, we randomly sampled 10,000 queries
and reported the average time in Figures 8 and 9.
Varying Thresholds (Figures 8(a), 9(a)). We had five
observations. (1) With the threshold increasing, the perfor-
mance of all methods improved because a larger threshold
can result in a smaller number of results. (2) Our meth-
ods significantly outperformed baseline approaches, by 1-
3 orders of magnitude. This is attributed to our indexing
framework and our selectable signatures. The two data par-
tition based methods had low performance because i) they
only partitioned the data but cannot guarantee the workload
balance and ii) the prefix filter had lower pruning power
than our signature based method. PrefixSig had lower
performance because it had lower pruning power than our
method. (3) Dima+ outperformed Dima because Dima+ used
the balance-aware signature to make workload much more
balanced. (4) Naive was rather slow as it had no index for
similarity queries. (5) Our methods achieved high perfor-
mance and answered a query within 10 ms.
Scalability (Figures 8(b),9(b)). We evaluated scalabil-
ity and made two observations. (1) The running time of all
methods increased but our methods were better. (2) Our
methods scaled better and outperformed competitors due
to our effective signatures and workload-balance techniques.
Scale-up (Figures 8(c),9(c)). We varied the number of
cores and had the following observations. (1) With more
cores provided, the performance of all methods increased
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Figure 10: Comparison with Baselines on Tweet (Join)
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Figure 11: Comparison with Baselines on Review (Join)

as we could utilize more cores to compute answers. (2)
Our methods still outperformed the baselines by 1-3 orders
of magnitude (3) With more cores, our superiority against
baselines were more signifiant as we had a large opportunity
to keep balanced workloads on more cores.
Scale-out (Figures 8(d),9(d)). We varied the number of
cores and the dataset size. In the figures “5m, 32c” means
5 million sets and 32 cores. We had three observations. (1)
Dima+ scaled-out well on both datasets, especially when we
increased from “15m,96c” to “20m,128c”. This matched the
results of our previous experiments on data size and cores
standalone. (2) Our methods outperformed baselines by 1-
2 orders of magnitude. (3) The balance-aware techniques
could improve the performance.

9.2.2 Similarity Join
Varying Thresholds (Figures 10(a),11(a)). First, we
found that Dima+ significantly outperformed PrefixData,
PrefixSig, SelectableData and Dima in term of efficiency,
especially when the threshold was small. For example, for
τ = 0.8 on the Review dataset, PrefixData took 1280 min-
utes, PrefixSig took 950 minutes, SelectableData took
651 minutes while Dima took 57 minutes and Dima+ took
37 minutes. The main reasons were three-fold. (1) Prefix-
based signatures generally generated more candidate pairs
than our selectable signatures. (2) We employed global in-
dexing to decrease communication between nodes and lo-
cal indexing to prune candidate pairs. (3) Our balanc-
ing mechanism also played an important role in improving
the performance as the stragglers in the distributed envi-
ronment would cause great delay. Second, we found that
SelectableData and Dima+ were sensitive to the similarity
threshold settings and SelectableData was faster than Dima

when the threshold was higher than 0.8, but still slower than
Dima+. SelectableData was less affected by slow tasks com-
pared with Dima because it did not send signatures over the
network while Dima suffered from this issue. Dima+ resolved
this problem by incorporating the balancing mechanism and
it outperformed SelectableData. The main reason was that
Dima+ utilized global indexing to avoid redundant communi-
cation between cores over the network, which was considered
to be a major performance killer in distributed computing.

Scalability (Figures 10(b),11(b)). We varied the
dataset sizes and tested the scalability. We had the fol-
lowing observations. (1) The superiority of our method over

baselines was signifiant when the dataset was large, because
larger dataset made the problem harder and involved more
data transmission to compute the join results. (2) Dima+

had better scalability because Dima+ utilized selectable sig-
natures to balance the workload. (3) Dima+ performed com-
parably better on selection than join, as the loads on all
machines were closer with each other and the data trans-
mission over the network was rather little.

Scale-up (Figures 10(c),11(c)). We varied the number
of cores. We had the following observations. (1) With
the increase of the number of cores, the performance of
all methods increased because we could utilize more cores
to compute answers. (2) With different number of cores,
our methods significantly outperformed existing approaches
by 1-3 orders of magnitude. For example, Dima+ took 83
minutes for 96 cores and 64 minutes for 128 cores on the
Tweet dataset. Dima+ performed better than other methods
with increasing number of cores as only it utilized balancing
mechanism to distribute loads as equally as possible among
different nodes. (3) Our superiority against baselines be-
came more signifiant for more cores, as we had a large op-
portunity to do balance on more cores.

Scale-out (Figures 10(d),11(d)). We varied both num-
ber of cores and the dataset size. We had the following
observations. (1) Most methods scaled out well: with the
increase of the number of cores and dataset sizes, their per-
formance slightly increased. (2) Our methods still outper-
formed the baselines by 1-2 orders of magnitude. (3) The
balance-aware techniques could improve the performance.
For example, Dima+ took 35 minutes for 10 million sets and
took 64 minutes for 20 million sets on the Tweet dataset.
Our method achieved nearly linear scalability. This was at-
tributed to our efficient filtering methods to prune dissimi-
lar candidate pairs, signature-based partition with balancing
mechanism which was better than rough data-based parti-
tion as it was more accurate and fine-grained to calculate
the loads on different machines, and multi-level indexing to
avoid unnecessary network IO.

9.2.3 Top-K Similarity Selection
We compared with three baselines, the signature partition

based method PrefixSigTopK [20] and two data partition
based methods PrefixDataTopK and SelectableDataTopK.
We used the threshold-based algorithms to compute the re-
sults with threshold 0.95. If there were k results, the algo-
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Figure 12: Comparison with Baselines on Tweet (Top-k Selection)
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Figure 13: Comparison with Baselines on Tweet (Top-k Join)
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Figure 14: Evaluation on ReviewBig (100M)

rithms terminated; otherwise, we decreased the threshold to
0.9 until we found k results. Due to space limit, we only
showed results on Tweet. From Figure 12, we had three ob-
servations. (1) With the increase of k, the runtime of all
methods increased, because a larger k led to a larger num-
ber of results. (2) Our methods significantly outperformed
baselines due to our indexing framework and progressive sig-
natures. (3) Dima+ was better than Dima, because Dima+

used the signatures with decreasing length to make workload
more balanced among iterations, and Dima+ used selectable
signatures to accelerate convergence and balance workload.

9.2.4 Top-K Similarity Join
From Figure 13, we found Dima+ significantly out-

performed Dima, PrefixDataTopK, PrefixSigTopK,
SelectableDataTopK in efficiency. The reasons were
three-fold: (1) Prefix-based signatures generally generated
many more candidate pairs than our selectable signatures,
especially during the early iteration round. (2) Splitting
records with decreasing segment length could reduce
operations on the queue. (3) Our balancing mechanism,
also played an important role in improving the performance
of computing the most time-consuming partitions. (4) Our
methods could make full use of cores of the cluster even
when the degree of parallelism was high.

9.3 Evaluation on Big Dataset
We evaluated our framework on a big data set ReviewBig

to study the scalability w.r.t. a varying threshold. Since
other methods could not support big data, we only showed
the results for Dima+. Figure 14 showed the results. We had
the following observations. (1) Our method still kept high
performance for selection, join and top-k. (2) Our method
could answer a selection query in milliseconds. For exam-
ple, when the threshold was 0.8, Dima+ was able to answer

each query within 280ms in average. This was attributed to
our efficient filtering methods to prune as many dissimilar
pairs as possible and our balancing mechanism to prevent
from data skewing and stragglers. (3) Even for the join op-
eration, our method still achieved very high performance.
(4) For top-k queries, Dima+ still achieved very high perfor-
mance. This was attributed to our progressive framework,
the balance-aware signature selection methods and efficient
signature generation methods.
Summary. Our methods significantly outperformed the
baselines by 1-3 orders of magnitude for similarity selection,
join and top-k selection, join. Our balance-aware signature
selection could address the skewed workload problem. Our
method scaled very well and could support big data.

10. CONCLUSION
We have developed a distributed in-memory similarity-

based query processing system called Dima which supported
four core similarity query operations: similarity-based se-
lection and join, top-k similarity selection and join. We
designed various selectable signatures as well as global &
local index to facilitate efficient processing of similarity op-
erators. We developed balance-aware signature selection al-
gorithms to balance the workload for each involved partition
in distributed environment. Extensive experiments on real-
world datasets demonstrated the efficiency and scalability
of Dima, and verified the effectiveness of our balance-aware
signatures, indexes, and algorithms.
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