
Progressive Top-k Subarray Query Processing
in Array Databases

Dalsu Choi
Korea University

Seoul, Korea
dalsuchoi@korea.ac.kr

Chang-Sup Park
Dongduk Women’s University

Seoul, Korea
cspark@dongduk.ac.kr

Yon Dohn Chung
∗

Korea University
Seoul, Korea

ydchung@korea.ac.kr

ABSTRACT
Unprecedented amounts of multidimensional array data are
currently being generated in many fields. These multidimen-
sional array data naturally and efficiently fit into the array
data model, and many array management systems based
on the array data model have appeared. Accordingly, the
requirement for data exploration methods for large multi-
dimensional array data has also increased. In this paper,
we propose a method for efficient top-k subarray query pro-
cessing in array databases, which is one of the most impor-
tant query types for exploring multidimensional data. First,
we define novel top-k query models for array databases:
overlap-allowing and disjoint top-k subarray queries. Sec-
ond, we propose a suite of top-k subarray query processing
methods, called PPTS and extend them to distributed pro-
cessing. Finally, we present the results of extensive exper-
iments using real datasets from an array database, which
show that our proposed methods outperform existing näıve
methods.

PVLDB Reference Format:
Dalsu Choi, Chang-Sup Park, and Yon Dohn Chung. Progressive
Top-k Subarray Query Processing in Array Databases. PVLDB,
12(9): 989-1001, 2019.
DOI: https://doi.org/10.14778/3329772.3329776

1. INTRODUCTION
Unprecedented amounts of multidimensional array data

have been generated in many scientific and industrial fields.
The management of such data and the processing of scien-
tific workloads in the relational data model can be highly
inefficient [10, 24]. In the necessity of efficiently managing
multidimensional array data, many array management sys-
tems based on the array data model have been proposed [6,
7, 20, 22, 28].

A top-k query outputs k records with the highest scores.
These top-k records usually represent the most important
answers among all possible answers in specific aspects, and

∗Corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3329772.3329776

time

latitude

longitude

Top-2

Top-1

Figure 1: Two dimensional arrays with top-2 subarrays.

therefore facilitate users understanding of the data. Top-k
queries can also be used to obtain basic knowledge before
the application of complex data analysis techniques. Top-k
query processing in various fields has been extensively stud-
ied.

Array databases manage extremely large multidimensional
array data, and therefore, it is difficult to understand data
intuitively and extract important regions. To efficiently an-
alyze and understand large array data, the support of top-k
queries in array databases is required. Such queries have
not been studied in spite of this need. The concept of top-
k queries can be easily applied to multidimensional array
databases as follows.

Example 1: Meteorologists monitor global cloudiness
and its associated properties. Cloudiness monitoring plays
an important role in predicting climate changes, because
clouds affect the global energy balance. Frequently, the me-
teorologists objective is to find k fixed-sized regions sorted
by a scoring function for the cloud top height that satisfy
some selection conditions for the cloud top pressure in the
observed cloudiness map. Figure 1 shows an example map
[2] in which the shaded regions represent top-2 regions ac-
cording to the given scoring function and selection condi-
tions. The meteorologists extract interesting and important
regions, study the change in k regions in time-series, and
find unexpected changes.

Example 2: A group of researchers plans to create an
Amazon deforestation detection system. The Amazon has a
profound effect on ecological conditions worldwide. There-
fore, monitoring of the deforestation in the Amazon is crit-
ical. The researchers extract the top-k fixed-size regions as
scored by the average of the Normalized Difference Vegeta-
tion Index (NDVI). They also attempt to extract the top-k
regions, where the regions are scored according to the av-
erage of the difference between neighboring arrays in the
NDVI. This facilitates the detection of changes in foresta-
tion.

In the above example scenarios, it should be noted that
the top-k results are an ordered sequence not of k cells, but

989

of k subarrays. We call this novel type of query for multi-
dimensional array databases the top-k subarray query in
this paper. The top-k subarray query is useful for under-
standing and finding the meaning of array data.

To the best of our knowledge, no efficient methods exist
for solving the top-k subarray query. In a näıve manner,
all subarrays’ scores in a given array are computed and the
k subarrays with the highest scores are selected. However,
the näıve method suffers two problems. First, the compu-
tation of all subarrays’ scores in a large array is very time
consuming. Second, until computing the scores of all subar-
rays, users cannot know the answers, so usability is severely
decreased.

In this paper, we propose an efficient processing method
for top-k subarray queries for array databases based on the
following research directions. First, the top-k subarrays
should be found without it being necessary to compute all
the subarrays in the given array. Second, usability should
be increased. Third, it is necessary to prevent memory over-
flow during the query processing in large array data. Fourth,
distributed processing should be supported, because most
array database systems basically support distributed envi-
ronments because of the very large amount of array data
that they manage.

We first define the top-k subarray query in array databases.
Note that different subarrays may or may not overlap one
another. Therefore, we define two different types of top-k
subarray query: an overlap-allowing and a disjoint top-
k subarray query. The overlap-allowing top-k subarray
query reflects the fact that our objective is to find the sub-
arrays with the highest scores, regardless of overlaps. In
some cases, most k subarrays may overlap one another if
a small region has extremely large attribute values. The
results may be less meaningful, because the subarrays are
located in almost the same position. Therefore, we define
an additional top-k subarray query, the disjoint top-k subar-
ray query. The disjoint top-k subarray query returns top-k
subarrays disjointed from one another.

To solve these two types of top-k subarray queries, we
preprocess the underlying array data. First, the array is
partitioned to allow useful summary information to be ex-
tracted. We propose top-k subarray query processing meth-
ods called PPTS that utilize these partitions and prune
search space to find top-k subarrays efficiently. It should
be noted that a query is progressively solved. The progres-
sive approach increases usability, because the user can per-
form data analysis using the partially returned subarrays
while the query is finding the remaining answers. Then, we
propose a distributed progressive top-k subarray query pro-
cessing method. The support of distributed processing is a
critical issue in large scale data analysis. Finally, we intro-
duce optimization techniques for the proposed methods.

The rest of this paper is organized as follows. In the next
section, we define two types of top-k subarray queries. Sec-
tion 3 introduces a näıve method. We propose a partition-
based progressive top-k subarray query processing method
(PPTS) in Section 4. Section 5 introduces distributed pro-
cessing for the proposed method and the näıve method. Sec-
tion 6 presents optimization techniques. In Section 7, we de-
scribe the experimental evaluation of the methods. Section
8 introduces related work, and the final section concludes
the paper.

2. PROBLEM DEFINITION
Definition 2.1 (Array). Suppose that a dimension Di is
a set of consecutive integers in [Li, Ui], i.e., Di = {x ∈
Z|Li ≤ x ≤ Ui} where the lower bound Li and upper bound
Ui are integers, and an attribute Ai is a set of real num-
bers. Given m dimensions {D1, D2, ..., Dm} and n attributes
{A1, A2, ..., An}, an m dimensional array A is defined by a
function D1 × D2 × ... × Dm 7→ (A1, A2, ..., An). A tuple
(d1, d2, ..., dm) in D1 ×D2 × ... ×Dm is called a cell of the
array.

Definition 2.2 (Subarray). Given an array A defined by
D1 × D2 × ... × Dm 7→ (A1, A2, ..., An), where Di = {x ∈
Z|Li ≤ x ≤ Ui}(1 ≤ i ≤ m), a subarray SA of A is an array
Ds1 × Ds2 × ... × Dsm 7→ (A1, A2, ..., An), where Dsi =
{x ∈ Z|Li ≤ Lsi ≤ Usi ≤ Ui}(1 ≤ i ≤ m), and the attribute
values of a cell (d1, d2, ..., dm) in SA are the same as those in
A. (Ls1, Ls2, ..., Lsm) is the starting cell of a subarray and
(Us1, Us2, ..., Usm) is the ending cell. A subarray is denoted
by SA(starting cell, |Ds1| × |Ds2| × ...× |Dsm|).

To rank subarrays and find the top-k ones, a scoring
function SF is applied to a subarray, which aggregates the
values of a selected attribute, called a measure attribute, in
the cells of the subarray and produces a score value. In this
study, we assume that a scoring function strictly increases
with regard to a partial order on the sets of attribute val-
ues, i.e., given two sets of attribute values, {c11, c12, ..., c1k},
and {c21, c22, ..., c2k}, if c1i < c2i for ∀i ∈ {1, 2, 3, ..., k},
SF ({c11, c12, ..., c1k}) < SF ({c21, c22, ..., c2k}). Example
scoring functions are Sum, Avg, Min, Max, and Median.
A selection condition SC is a Boolean function applied
to a subset of attributes {A1, A2, ..., An} of a subarray.

Definition 2.3 (Top-k Subarray Query). Given an ar-
ray A, a scoring function SF , selection conditions SC,
a subarray size |Ds1| × |Ds2| × ... × |Dsm|, and an in-
teger k, a top-k subarray query finds the k number of
|Ds1| × |Ds2| × ... × |Dsm|-sized subarrays of A that have
the highest scores obtained from the SF and satisfy SC.

Note that the top-k subarrays can be disjoint or not.
Therefore, we consider two types of top-k subarray queries:
(1) the overlap-allowing top-k subarray query and (2) the
disjoint top-k subarray query. An overlap-allowing top-k
subarray query finds subarrays that satisfy Definition 2.3,
regardless of overlaps among the resultant subarrays. k sub-
arrays may or may not overlap one another. In some cases,
an overlap-allowing top-k subarray query may ultimately
include less meaningful k subarrays. That is, it is possible
that most subarrays overlap one another if a small region
in the given array contains many cells with extremely large
values of the measure attribute. Thus, we define disjoint
top-k subarray queries separately as follows.

Definition 2.4 (Disjoint Top-k Subarray Query).
Given an array A, a scoring function SF , selection con-
ditions SC, a subarray size |Ds1| × |Ds2| × ...× |Dsm|, and
an integer k, a disjoint top-k subarray query finds the
k number of |Ds1| × |Ds2| × ... × |Dsm|-sized subarrays of
A, {SA1, SA2, ..., SAk}, that satisfy SC and the following
conditions.
• SA1 is the subarray having the highest score.

• SAi(2 ≤ i ≤ k) is the subarray that is disjoint from all
SAj(1 ≤ j < i) and has the highest score.

990

We call overlap-allowing top-k subarray queries overlap-
allowing queries and disjoint top-k subarray queries dis-
joint queries in this paper.

Usually, a considerable amount of query processing time
is required to find the top-k subarrays in a huge volume of
multidimensional array data. To reduce the response time
and increase usability, we propose a progressive method for
top-k subarray query processing, called PPTS.

(0,0)

(4,5)

𝐷2

𝐷1 6 13 18 13

5 5 16 14

0 0

0 1 1 9 11

1 15 13 15 13

𝑆𝐴((0,4), 2 × 2)
k 2

subarray size 2 × 2

scoring

function
sum(temperature)

selection

condition
avg(temperature) ≥ 12

Figure 2: Examples of a two dimensional array with a single
attribute (e.g., temperature) and a top-k subarray query.

3. A NAÏVE METHOD
We first introduce a näıve method used to evaluate top-k

subarray queries on array databases. This method com-
putes all possible subarrays’ scores and selects the top-k
results, and therefore, is not progressive. The näıve method
for overlap-allowing queries computes all the subarrays that
satisfy the selection conditions with the given subarray size
in the given array and stores only the k subarrays that have
the highest scores during query processing. If a new subar-
ray with a score higher than that of the kth subarray in the
candidate subarrays is found, it becomes a new candidate
for the top-k answers, replacing the previous kth one. The
method allows overlaps among the top-k subarrays.

On the basis of the näıve overlap-allowing query pro-
cessing method, we introduce a näıve method for disjoint
queries. In disjoint queries, selected subarrays must be dis-
joint from one another. The method also computes all the
subarray’s scores in the given array; however, the difference
between overlap-allowing and disjoint queries is that disjoint
queries cannot determine whether a subarray is one of the
top-k subarrays while computing subarrays, which means all
the computed subarrays must be maintained. This is further
discussed in Section 5.3. After checking all the subarrays,
the method sorts them by scores and finds the disjoint top-k
subarrays that satisfy Definition 2.4.

4. PPTS : PARTITION-BASED PROGRES-
SIVE TOP-K SUBARRAY QUERY PRO-
CESSING

Irrespective of query type (overlap-allowing or disjoint),
näıve methods compute all the possible subarrays in the ar-
ray, which incurs an excessive computational cost. In Figure
2, it can easily be seen that, although it is unlikely that the
subarrays including shaded cells belong to the top-k answers,
they must be also computed. Furthermore, näıve methods
cannot return top-k subarrays progressively. To overcome
these problems, we propose a new top-k subarray query pro-
cessing method which consists of two steps: partitioning the
array and processing top-k subarray queries using the par-
titions.

4.1 Preprocessing - Partitioning over Array
Data

To allow efficient processing of top-k subarray queries, we
propose partitioning the given array data and computing

the useful information about the partitions. The insight
that suggested partitioning is that neighboring cells in array
data tend to have similar attribute values. The partitioning
results are used to prune the search space for finding top-k
subarrays. Given a set of partitioning sizes {l1, l2, ..., lm} for
the dimensions of an m dimensional array data, the entire
array is divided into uniform subarrays called partitions.
Then, each partition is shrunk as much as it can be while
still containing all the cells in the partition.

6 13 18 13

5 5 16 14

0 0

0 1 1 9 11

1 15 13 15 13

Starting cell Ending cell Max value Count

𝑃2 (0,3) (1,5) 18 6

𝑃5 (4,0) (4,2) 15 3

𝑃6 (4,3) (4,4) 15 2

𝑃4 (3,3) (3,4) 11 2

… … … … …
(4,5)

(0,0) 𝐷2

𝐷1 𝑷𝟏 𝑷𝟐

𝑷𝟑 𝑷𝟒

𝑷𝟔𝑷𝟓

Figure 3: Partitions when l1 = 2 and l2 = 3.

The partitioning algorithm is as follows. First, the given
array is partitioned uniformly with partition size parame-
ters {l1, l2, ..., lm}, the partitions are shrunk, and their max-
imum values and cell counts of the measure attribute are
calculated. Second, the partitions are sorted in descending
order of maximum values. Finally, information about the
partitions, including starting cells, ending cells, maximum
values, and cell counts, are stored on disk in a partition ta-
ble. Figure 3 shows the results of partitioning with partition
size parameters {2, 3} in the given example array.

The time complexity of partition computation is O(n +
NlogN), where n is the number of cells in the given ar-
ray, and N is the number of partitions produced, since it is
necessary to scan the entire array data and sort the result-
ing partitions. If the measure attribute is changed to the
other attribute, partitioning should be performed for the
new measure attribute.

4.2 Basic Partition-based Progressive Top-k
Subarray Query Processing

We first introduce the maximal virtual subarray (MVS)
and upper bound score (UBS).

Definition 4.1 (Maximal Virtual Subarray, MVS).
Given a partition pi and a subarray’s size |Ds1|×...×|Dsm|,
the maximal virtual subarray of pi is a |Ds1|×...×|Dsm|-
sized subarray where all the cells have the maximum value
of the measure attribute in pi.
Definition 4.2 (Upper Bound Score, UBS). Given a
partition pi and a scoring function SF , the upper bound
score of pi is SF (MV S(pi)).
Lemma 4.1. Suppose that there are a scoring function SF
and a sequence of partitions P = {p1, p2, ..., pn} on an array
in descending order of their maximum values. If a subarray
SA overlaps with pi(1 ≤ i ≤ n) but does not overlap with any
partitions in P ′ = {p1, p2, ..., pi−1}, SF (SA) ≤ UBS(pi).

Proof. When i = 1, MV S(p1) consists of the maximum
value in the entire array, and thus, SF (SA) ≤ UBS(p1).
For 1 < i ≤ n, assume that SF (SA) > UBS(pi). There
exists at least one cell c in SA that has a value larger than
pi’s maximum value m. Since all the cell values in pi are
smaller than or equal to m, c does not belong to pi. Then, c
must belong to another partition p′, the maximum value of
which is obviously larger than or equal to the value of c. This
means that p′ belongs to P ′ and SA overlaps with a partition
in P ′, which is a contradiction of the assumption.

991

Corollary 4.1. Given a scoring function SF and a set of
partitions P on an array, if a subarray SA overlaps with a
subset of partitions Ps ⊆ P and the partition pm ∈ Ps has
the highest maximum value among partitions in Ps, then
SF (SA) ≤ UBS(pm).

Proof. SA overlaps with pm but does not overlap with
any partition which has a higher maximum value than pm.
Therefore, SF (SA) ≤ UBS(pm) by Lemma 4.1.

If we consider selection conditions SC when getting UBS,
UBS could be lowered; however, it is impossible for UBS
to grow larger, which means that UBS still works.

Based on the previous definitions and lemma, the top-
k subarrays can safely be returned progressively without
checking all the subarrays in the given array. We de-
scribe partition-based progressive disjoint top-k subarray
query processing in Algorithm 1. To find the ith answer
(1 ≤ i ≤ k) in the given array, the algorithm selects parti-
tions serially in the sorted order and calculates the scores of
all the unchecked subarrays related to each partition. Note
that partitions are sorted in descending order of their max
values. Thus, the algorithm searches the partitions that
have higher maximum values earlier, which means that sub-
arrays with higher scores are considered first. currentTop
in Algorithm 1 keeps a subarray with its score that is the
most promising candidate of the ith answer. The algorithm
checks the first unchecked partition in P and calls the pro-
cedure getScores on the partition. For each subarray in
the set overlappingSA of unchecked subarrays overlapping
with the partition, if it satisfies the selection conditions,
the algorithm calculates the score (Lines 26-27). To find
overlappingSA, the algorithm utilizes a Boolean array to
determine whether each subarray has been already checked
(Line 24). If the subarray’s score is smaller than or equal
to that of currentTop, the algorithm inserts the subarray
into Candidates (Line 34); otherwise, if it is disjoint from
all subarrays in TopK, currentTop and Candidates are up-
dated with the subarray (Lines 28-32). Candidates is used
to keep a set of subarrays that can be an answer to the query
following the ith answer.

After processing the partition, the algorithm goes to the
next partition and checks the answer-returning condition
(Lines 6-8). If currentTop’s score is higher than the parti-
tion’s upper bound score, currentTop can safely be returned
as the ith answer (Line 14). Because the partitions are
checked in descending order of maximum values, the UBS of
a partition is the possible maximal score that an unchecked
subarray overlapping with the partition can have. There-
fore, if currentTop satisfies the answer-returning condition,
there exist no unchecked subarrays in the remaining parti-
tions that have higher scores than currentTop. currentTop
should be inserted into TopK and is used to filter candidate
subarrays that overlap with the existing answers (Line 15).
After returning the ith answer, the algorithm removes un-
necessary subarrays from Candidates and selects the subar-
ray with the highest score in Candidates as new currentTop
(Lines 16-21).

Although the overlap-allowing query processing algorithm
is similar to Algorithm 1 for disjoint queries, there are two
major differences. First, after returning the ith answer, it
does not consider overlaps and selects the subarray with the
highest score in Candidates as a new currentTop. Second,
after calculating a subarray’s score (Line 27), an overlap-
allowing query does not consider the disjoint condition. If

Algorithm 1: PPTS for a disjoint query

Input : k, subarray size SS, scoring function SF ,
selection conditions SC, sorted partitions P
on an array A

Output: disjoint top-k subarrays
1 currentTop← (null,−∞);
// a set of top-k subarrays selected thus far

2 TopK ← ∅;
3 priority queue Candidates← ∅;
4 for i=1 to k do
5 foreach unchecked partition p ∈ P do

// Answer-returning condition

6 if currentTop.score > UBS(p) then
7 break;
8 end

// Compute the scores of all unchecked

subarrays overlapping with p
9 getScores(p,currentTop,TopK);

10 end
11 if currentTop=(null,-∞) then
12 quit;
13 end

14 output currentTop as the ith answer;
15 TopK ← TopK ∪ {currentTop.SA};
16 From Candidates, remove subarrays that overlap

with at least one subarray in TopK;
17 if Candidates = ∅ then
18 currentTop← (null,−∞);
19 else
20 currentTop← Candidates.pop();
21 end

22 end

23 Procedure getScores(p,currentTop,TopK):
24 overlappingSA← a set of unchecked subarrays of

size SS and overlapping with partition p;
25 foreach SA ∈ overlappingSA do
26 if SA satisfies SC then
27 score← SF (SA);
28 if score > currentTop.score then
29 if SA is disjoint from all subarrays in TopK

then
30 currentTop← (SA, score);
31 Candidates← Candidates∪{currentTop};
32 end

33 else
34 Candidates← Candidates ∪ {(SA, score)};
35 end

36 end

37 end

a subarray satisfies the selection conditions, it is inserted
into Candidates. If the score of subarray is higher than
that of currentTop, it becomes new currentTop, without
the overlaps being considered.

We introduce an example of PPTS based on the example
array and query in Figure 2 and the partitions in Figure 3.
Assume that the query finds disjoint top-2 subarrays. The
query visits the first partition P2, the starting cell of which
is (0,3). After all the subarrays overlapping with the par-
tition are computed, currentTop is {(0,4),61}. The query
reads the next partition P5; its UBS is 60, and therefore,

992

currentTop satisfies the answer-returning condition. Af-
ter the third partition P6 is visited, currentTop becomes
{(3,3),48}. Its score is higher than the UBS of the fourth
partition P4, 44. The query returns {(3,3),48} as the second
answer without calculating the remaining subarrays.

(0,0)

(4,5)

𝐷2

𝐷1 6 13 18 13

5 5 16 14

0 0

0 1 1 9 11

1 15 13 15 13
(4,5)

Top-2
6 13 18 13

5 5 16 14

0 0

0 1 1 9 11

1 15 13 15 13

Top-1 Top-1

Top-2

(0,0) 𝐷2

𝐷1

Figure 4: Results of the overlap-allowing query (left) and
the disjoint query (right).

Theorem 4.1. Given a scoring function SF , a sequence
of partitions P = {p1, p2, ..., pn} on an array in descending
order of their maximum values, and a top-k subarray query,
assume that a set of partitions P ′ = {p1, p2, ..., pi−1}(1 <
i ≤ n) has been processed by the proposed algorithms. Let
ANS be a subarray having the highest score among all the
checked subarrays that are candidates for the next answer.
If the score of ANS is larger than the UBS of the partition
pi, i.e., SF (ANS) > UBS(pi), there exist no unchecked
subarrays having scores larger than ANS’s score.

Proof. Assume that there exists an unchecked subarray
SA, the score of which is larger than that of ANS, i.e.,
SF (SA) > SF (ANS). Since all subarrays overlapping with
partitions in P ′ have already been computed, SA does not
overlap with any partition in P ′, whereas it overlaps with
at least one partition in P − P ′. Without loss of generality,
let pj(i ≤ j ≤ n) be a partition in P − P ′ that overlaps
with SA and has the largest maximum value. This means
that SA does not overlap with {p1, p2, ..., pj−1}, whereas it
overlaps with pj . By Lemma 4.1, SF (SA) ≤ UBS(pj) and,
by the order of partitions, UBS(pj) ≤ UBS(pi). Thus,
if SF (ANS) > UBS(pi), we have SF (SA) < SF (ANS),
which is a contradiction of the assumption.

5. DISTRIBUTED PROCESSING

5.1 Chunking Strategy of Array Databases
Before proposing distributed processing for top-k subar-

ray query processing, we introduce the notion of chunking
in array databases. If an array is too large to be stored
in one node, array databases must spread the array across
multiple nodes. For this purpose, array databases divide an
array into multiple chunks [6, 7, 20, 22, 28]. Chunking is a
basic principle for supporting distributed processing in array
databases. A chunk becomes the unit of I/O and network
transfer. SciDB [7], the de facto standard array database,
divides an array into regular chunks, which means that each
chunk has the same dimension sizes. SciDB requires users
to input each dimension’s size for chunks. ArrayStore [22]
provides regular chunking, irregular chunking, and two-level
chunking in regular or irregular fashions. Irregular chunking
results in each chunk having different dimension sizes; the
chunks satisfy different conditions, such as that the number
of non-empty cells must be the same. We used the regular
chunking strategy in this study. Our proposed methods can
be easily extended for application to irregular chunking.

We assume column store array databases, which means
that they store each attribute’s values as separate chunks.

chunk

Node1
(0,0) 𝐷2

𝐷1 (0,0) 𝐷2

𝐷1

𝐴1
𝐴3

chunk

(4,4) 𝐷2

𝐷1

chunk

Node2
(0,4) 𝐷2

𝐷1

chunk

(4,0) 𝐷2

𝐷1

𝐴2 𝐴1
𝐴3𝐴2 𝐴1

𝐴3𝐴2 𝐴1
𝐴3𝐴2

Figure 5: Regular chunking and distribution over two nodes.

That is, if an array has n attributes {A1, ..., An}, the at-
tribute values of a cell are stored on separate n chunks, all
of which are stored in one node.

Figure 5 shows regular chunking in an array with two
dimensions {D1, D2} and three attributes {A1, A2, A3}. The
chunk sizes for D1 and D2 are 4. The chunks are distributed
over two nodes and each node has six chunks.

5.2 Computing Subarrays on Chunk Bound-
aries

When the chunks of an array are distributed over multi-
ple nodes, all the boundary subarrays that are on chunk
boundaries cannot be calculated within a single node. In
Figure 5, for example, Node 1 cannot calculate the 2×2 sub-
arrays’ score starting at (3,3), because it does not have cells
at (3,4) and (4,3). To compute boundary subarrays, chunks
have additional cells from other chunks according to the
given subarray size. Given a subarray size |Ds1|×...×|Dsm|,
we need chunk overlaps of size |Dsi| − 1 in each dimension
Di(1 ≤ i ≤ m) to compute all the boundary subarrays.

Definition 5.1 (Chunk Overlap). Given a set of over-
lap sizes X = {x1, ..., xm}, an m dimensional array, the
starting cell of which is {L1, ..., Lm} and the ending cell
{U1, ..., Um}, and a chunk, the starting cell of which is
{Lc1, ..., Lcm} and the ending cell {Uc1, ..., Ucm}, with a set
of cells O, the chunk is extended by X with the starting cell
(max(Lc1−x1, L1), ...,max(Lcm−xm, Lm)) and the ending
cell (min(Uc1 +x1, U1), ...,min(Ucm +xm, Um)). When the
extended chunk has a set of cells E, the chunk overlap means
E −O.

chunk

Node1
(0,0) 𝐷2

𝐷1

chunk
chunk

chunk

(0,0) 𝐷2

𝐷1

(3,3) 𝐷2

𝐷1

Node2
(0,3) 𝐷2

𝐷1

(3,0) 𝐷2

𝐷1

Figure 6: Chunks with {1, 1}-sized overlaps for an attribute
when a subarray size is 2× 2.

If we compute 2 × 2 subarrays, each chunk needs {1, 1}-
sized overlaps to allow computation of boundary subarrays,
as shown in Figure 6. {1, 1}-sized overlaps allow each chunk
to compute all boundary subarrays; larger overlaps also do,
but are unnecessary. SciDB [7] adopts the chunk overlap
mechanism when processing window aggregates. Note that
each chunk cannot know the exact sizes of the overlaps it
needs before a top-k subarray query is given at runtime,
although the overlaps of each chunk can be pre-defined.

5.3 Distributed Processing of a Naı̈ve Method
On the basis of the concepts of chunking and chunk over-

laps, we introduce a näıve method that can be applied in
distributed array databases. To process an overlap-allowing
query, the query determines the sizes of chunk overlaps
based on the given subarray size and transfers cells among

993

nodes to attain the chunk overlaps. Then, each node com-
putes the scores of all the subarrays that satisfy the selection
conditions, keeping the k subarrays with the highest scores.
The k subarrays can be overlapped with one another. We
call the k subarrays after computing all possible subarrays in
each node local top-k subarrays. Each node sends its lo-
cal top-k subarrays to the master node. The algorithm sorts
the subarrays and selects the k subarrays with the highest
scores as the global top-k subarrays.

Distributed processing of the näıve method for a disjoint
query is almost the same as that for an overlap-allowing
query. The major difference is that, in a disjoint query
each slave node must keep all the computed subarrays in
descending order of their scores rather than the local top-k
subarrays. The master node receives the subarrays from all
the slave nodes until it can decide global top-k subarrays. It
should be noted that the distributed processing of a disjoint
query is a holistic problem [13]; that is, the aggregation of
the local top-k results from all the slave nodes is not suffi-
cient to allow the master node to determine the global top-k
results.
Lemma 5.1. Given a disjoint top-k subarray query F (k,A)
on an array A with a scoring function SF and multiple
chunks with chunk overlaps according to the given subarray
size over N(≥ 2) nodes, let (1) Aj be a subset of A in Node
j(1 ≤ j ≤ N) such that A = ∪1≤j≤NAj, (2) Top(F (k,A))
be the set of disjoint top-k subarrays from F (k,A) (if there
do not exist disjoint k subarrays in A, |Top(F (k,A))| could
be smaller than k), and (3) M be the maximum integer
in {m|1 ≤ j ≤ N,m < m′, |Top(F (m′, Aj))| = m}.
Then, it does not always hold that Top(F (k,A)) ⊆ ∪1≤j≤N

Top(F (M, Aj)).
Proof. Assume that Top(F (k,A)) ⊆ ∪1≤j≤NTop(F (M,

Aj)) always holds. There could be an example that a subar-
ray SAa ∈ Top(F (M,Aa)) and a subarray SAb ∈ Top(F (M,
Ab))(a 6= b) overlap each other, and Node a cannot com-
pute SAb. It is obvious that at least one of SAa and SAb,
SAwrong, cannot be a member of global top-k subarrays.
There could be a real global answer SAreal that was not
selected as a member of Top(F (M,Aa)) or Top(F (M,Ab)),
because (1) SF (SAreal) < SF (SAwrong), and (2) SAreal

overlaps with SAwrong. It cannot be guaranteed that this
case does not occur, because (1) it cannot be guaranteed
that any SAa and SAb are always disjoint from each other
and (2) when SAa and SAb overlap with each other, Node
a or b may not know that SAb or SAa, respectively, exist.
Regardless of the size of M , ∪1≤j≤NTop(F (M,Aj)) cannot
include SAreal in this case. The counter-example makes
the assumption false, which means a disjoint top-k subarray
query is a holistic problem.

Figure 7 shows example scenarios, where each node con-
tains only one chunk and the subarrays are numbered in
descending order of their scores. In Figure 7(a), the sizes of
chunk overlaps are {1, 1}, because the size of the subarray
is 2×2. Disjoint top-2 subarrays, SA1 and SA4, from Node
2 and disjoint top-2 subarrays, SA2 and SA5, from Node
1 do not include one of the real answers, SA3. Although
chunks may have larger overlaps, the problem remains, as
shown in Figure 7(b), where each node keeps only the top-3
disjoint subarrays. Therefore, the näıve method for disjoint
top-k queries is not practical when an array is so large that
nodes cannot keep all the computed subarrays in the main
memory.

𝑆𝐴4

𝑆𝐴5

Node1 Node2

chunk overlap boundary

𝑆𝐴1
𝑆𝐴2

𝑆𝐴3

(0,0) 𝐷2

𝐷1

(a) k = 2

(0,0) 𝐷2

𝐷1 Node1 Node2

𝑆𝐴1
𝑆𝐴2

𝑆𝐴3

𝑆𝐴4

𝑆𝐴5

chunk overlap boundary

𝑆𝐴6

𝑆𝐴7

(b) k = 3

Figure 7: The problem of the näıve method for disjoint top-k
subarray queries.

5.4 Distributed Partition-based Progressive
Top-k Subarray Query Processing

Before top-k subarray queries are processed, the array is
partitioned as a preprocessing step. In distributed array
databases, chunks are partitioned independently of one an-
other for the measure attribute. The results are stored in the
same node with the chunks to process future top-k subar-
ray queries. Note that partitioning does not consider chunk
overlaps, because the future subarray size cannot be known.

We introduce PPTS in distributed environments in Algo-
rithms 2 and 3. We assume that there are N slave nodes
where the chunks of array data are stored. The master node
runs Algorithm 2 and each slave node executes Algorithm
3. Partitions for each chunk in a slave node are sorted in
descending order of their maximum values.

Given a top-k subarray query, the slave nodes calculate
the size of chunk overlaps based on the given subarray size
and transfer cells to one another to form the chunk overlaps
if chunks do not have enough overlaps. To determine the
ith(1 ≤ i ≤ k) answer, the master node requests new local
answers from the slave nodes in S′, which initially includes
all slave nodes. Each slave node that receives the request
processes its own chunks in descending order of the UBS
of the next unchecked partitions in the chunks. This al-
lows each node to visit chunks having partitions with higher
UBS values first, which means that the probability that it
will find a local answer with a higher score earlier is greater.
If the current local answer’s score is higher than a chunk’s
UBS (Line 14, Algorithm 3), the algorithm does not need to
explore the chunk and thus it can avoid unnecessary chunk
I/O. If this condition is not satisfied, but the chunk satisfies
Line 19 (Algorithm 3) after checking one or more partitions,
the query can proceed to the next chunk. When checking
a partition, all the unchecked subarrays overlapping with
the partition of the current chunk, including boundary sub-
arrays, are computed using the procedure defined in Algo-
rithm 1 (Line 22, Algorithm 3). If the current local answer
satisfies Line 14 or 19 of Algorithm 3 for all chunks in the
slave node, it is determined as the local answer of the slave
node and sent to the master node (Line 25, Algorithm 3).
When the master node has received local answers from all
the slave nodes in S′ (Lines 4-6, Algorithm 2), it selects the
best one i.e., that with the highest score among the local
answers of all slave nodes in S. After returning it as the
global ith answer, the master node sends the global answer
to all the slave nodes in S (Lines 7-10, Algorithm 2). Each
slave node receives the global answer (Line 27, Algorithm
3). If the global answer is not sent to all slave nodes right
after it is decided as the ith answer, slave nodes may se-
lect wrong local answers overlapping with the global answer

994

when deciding the subsequent global answers. The master
node identifies a set S′ of the slave nodes, the current lo-
cal answers of which overlap with the global answer (Line
11, Algorithm 2) and requests the subsequent local answers
from the slave nodes in S′.

Algorithm 2: (Master node)
Distributed processing of PPTS

Input : k
Output : disjoint top-k subarrays

1 Let S be a set of N slave nodes;
2 S′ ← S;
3 for i=1 to k do
4 foreach slave ∈ S′ do
5 Request and receive the local answer in slave;
6 end
7 globalAnsweri ← the best among all local answers of

the nodes in S;

8 output globalAnsweri as the ith answer;
9 if i < k then

10 Send globalAnsweri.SA to all slave nodes in S;
11 S′ ← a set of slave nodes in S, the current local

answers of which overlap with globalAnsweri.SA;

12 end

13 end
14 Notify all the slave nodes in S of termination;

Note that all slave nodes share the global answers imme-
diately after they are determined by the master node, and
therefore, the problem in the distributed version of the näıve
method for disjoint queries can be avoided. In Figure 7(a),
Node 1 selects SA2 as the local answer, and Node 2 per-
forms SA1 using Algorithm 3. The master node receives
Nodes 1 and 2’s local answers and determines that SA1 is
the global top-ranked answer, because SA1’s score is higher
than SA2’s. The master node notifies Nodes 1 and 2 of the
global answer. Node 1 can select SA3 as the subsequent lo-
cal answer, because SA2 is removed from Candidates. Node
2 selects SA4 as the next local answer. After the local an-
swers are sent/received, SA3 is selected as the subsequent
global answer.

When subarrays overlapping with a partition that was
made without considering chunk overlaps are computed,
boundary subarrays are also computed if they exist. Al-
though partitions do not contain cells in chunk overlaps,
PPTS guarantees that the global answers that lie on the
boundaries of chunks are checked.

Lemma 5.2. Given a sequence of partitions and a top-
k subarray query on an array that has chunks distributed
among N(≥ 2) nodes, assume that there exists a boundary
subarray SA which is the ith(1 ≤ i ≤ k) highest answer to
the query. SA is selected as the local answer by one of the
slave nodes SN that include a chunk overlapping with SA
when the proposed progressive algorithm finds the ith answer
to the query.

Proof. Assume that SA is not selected as a local answer
by any node in SN . Two cases are possible: (1) SA is not
checked by any node, and (2) although SA is checked by
some node, it is not selected as the local answer of the node.
First, Case (1) means that in Node j ∈ SN , a partition pj
that has the highest UBS among the partitions overlapping
with SA is not processed. By Corollary 4.1, this means that
SF (SA) ≤ UBS(pj). When searching the ith answer to the

Algorithm 3: (Slave node)
Distributed processing of PPTS

Input : chunks, k, subarray size SS, scoring function
SF , selection conditions SC, sorted
partitions on each chunk

1 localAnswer ← (null,−∞);
2 globalAnswers← ∅;
3 priority queue Candidates← ∅;
4 Determine the sizes of chunk overlaps based on SS, and

transfer cells among nodes to form the chunk overlaps
if chunks do not have enough overlaps;

5 while True do
6 Wait until a message m from the master node arrives;
7 switch m do
8 case m requests the subsequent local answer do
9 if Candidates 6= ∅ then

10 localAnswer ← Candidates.pop();
11 end
12 Sort the chunks in the node in descending order

of UBS(nextPartition);
13 foreach chunk c in the current node do
14 if localAnswer.score > UBS(c.nextPartition)

then
15 continue;
16 end
17 Read chunk c;
18 for p=c.nextPartition to c.lastPartition do
19 if localAnswer.score > UBS(p) then
20 break;
21 end
22 getScores(p,localAnswer,globalAnswers);

23 end

24 end
25 Send localAnswer to the master node;

26 end
27 case m delivers globalAnsweri.SA do
28 globalAnswers←

globalAnswers ∪ {globalAnsweri.SA};
29 Remove subarrays from Candidates that overlap

with at least one subarray in globalAnswers;

30 end
31 case m notifies termination do
32 quit;
33 end

34 end

35 end

query, Algorithm 3 in Node j finds a local answer
localAnswer as a candidate for the global ith answer. As pj
is not processed by Node j, UBS(pj) < SF (localAnswer).
Therefore, we have SF (SA) < SF (localAnswer). Since the
master node running Algorithm 2 selects one of the local an-
swers from all the slave nodes as the global ith answer, it is
a contradiction of the assumption that SA is the ith answer
to the query. For Case (2), we consider the overlap-allowing
query and the disjoint query separately. There exists a sub-
array SAwrong that has the higher score than SA, satisfies
the selection conditions, and is selected as the local answer of
a slave node in SN . In the overlap-allowing query, because
the subarray with the highest score among local answers is
selected as the global answer without considering overlaps,
it is a contradiction of the assumption of this lemma. In the

995

disjoint query, the existence of SAwrong means that the node
in SN does not have at least one of the previously selected
global answers, globalAnswers. Note that after a local an-
swer is selected as one of the global answers by the master
node, the answer is shared among all slave nodes immedi-
ately. Algorithm 2 and 3 remove candidate subarrays that
overlap with globalAnswers before finding the ith answer.
Also, the procedure in Algorithm 1 does not allow subar-
rays overlapping with globalAnswers to be a candidate. It
is impossible for SAwrong to be disjoint with globalAnswers,
which means that Case (2) cannot be happened. Therefore,
SA is safely selected as the local answer of a node in SN .

Some boundary subarrays may be evaluated redundantly
by several chunks. However, the case rarely happened in our
experiments because (1) the number of boundary subarrays
was small compared to the total number of subarrays and
(2) there were few cases that all of the attribute values in a
boundary subarray were large enough for all adjacent chunks
to check it.

6. OPTIMIZATIONS
6.1 Incremental Computation

We consider an optimization technique to calculate the
scores of the subarrays overlapping with a partition effi-
ciently. If the scoring function is distributive or algebraic,
such as sum or average, we can divide a subarray into sev-
eral units by the most minor dimension Dsm and compute
the scores of consecutive subarrays, avoiding repetitive cal-
culation of the same units. We explain the optimization
technique using the example in Figure 2. When we check
SA((0, 3), 2 × 2), the subarray can be sliced into two units
{U1, U2} starting at (0, 3) and (0, 4). The scores of units are
computed and summed to obtain the subarray’s score. To
compute the score of next subarray SA((0, 4), 2× 2), we do
not need to recalculate the score of U2. We need only the
score of the unit U3 starting at (0, 5). By subtracting U1’s
score and adding U3’s score from the first subarray’s score,
we can obtain the second subarray’s score. This optimiza-
tion technique is similar to that presented in [15], but in this
study we applied incremental computation not to the entire
array but to the subarrays overlapping with a partition.

6.2 Upper Bound Score Optimization for
Sparse Arrays

As mentioned in Section 4.2, the UBS of a partition p is
derived from the MVS in which all the cells have the max-
imum value of the measure attribute in p. However, query
processing using the UBS could be highly inefficient in the
case of sparse arrays, because the UBS may be considerably
higher than the scores of actual subarrays overlapping with
the partition. Therefore, we devise an optimization tech-
nique applied on the UBS for sparse arrays based on maxi-
mal density estimation at query runtime. The optimization
can be applied when a scoring function SF satisfies the con-
dition: given a set of attribute values C = {c1, c2, ..., cm},
SF (C \ {ci}) < SF (C) (1 ≤ i ≤ m). Given a top-k subar-
ray query with a subarray size SS, it estimates the maximal
density of each chunk that an SS-sized subarray can have.
At query runtime, the UBS is calculated from the MVS that
have the estimated density.

The primary concept of the maximal density estimation is
that the preprocessing results, partitions, are utilized. Note
that partitions have the number of non-empty cells, and

therefore, we can infer the specific subarray’s maximum cell
counts.

Algorithm 4: Maximal density estimation

Settings: N slave nodes
Input : partitions, subarray size |Ds1| × ...× |Dsm|,

partition size {l1, ..., lm}
Output : maximal density estimates for each chunk

1 start← {0, ...}, end← {0, ...};
2 newSubarray ← {0, ...}, newOverlap← {0, ...};
3 for i=1 to m do
4 start[i]← start[i] + li − 1;
5 end[i]← start[i] + |Dsi| − 1;
6 newSubarray[i]← bend[i]/lic − bstart[i]/lic+ 1;
7 newOverlap[i]← d(|Dsi| − 1)/lie;
8 end
9 Transfer the cell counts of partitions among nodes to

attain the newOverlap-sized overlaps for each chunk;
// Now, each node independently executes the

algorithm below

10 foreach Ci ∈ chunks in the current node do
11 maxCount←Top-1 newSubarray-sized subarray

when the scoring function is sum;
12 maxDensity ←

min(maxCount/(|Ds1| × ...× |Dsm|), 1);
13 Write (i,maxDensity) to the current node;

14 end

(0,0) 𝐷2

𝐷1

Non-empty cell

1 1 0

0 0 0

1 0 1

(1,1) 𝐷2

𝐷1

3 × 3-sized subarray

Original array

Partitions for

the chunk starting at (4,4)

Top-1 2 × 2-sized subarray

Chunk boundary

Partition boundary

Figure 8: Maximal density estimation for the chunk starting
at (4,4) in an array with four chunks.

We describe the maximal density estimation algorithm in
Algorithm 4. For the sake of simplicity, we assume that
the dimensions’ partition size are submultiples of the corre-
sponding dimensions’ chunk sizes. In the algorithm, parti-
tions are temporarily extended to partition boundaries, as
shown in Figure 8. We introduce an example where an array
is divided into four chunks in Figure 8. The given 3×3-sized
subarray can overlap with maximally 2 × 2 partitions, as
shown in the left hand side array in the figure, which means
that the new subarray size becomes 2× 2 (Line 6). Because
the array consists of multiple chunks, the chunk overlaps
must be considered. In the figure, it is shown that, to esti-
mate the maximal density of the chunk starting at (4,4), the
cell counts of partitions are transferred to obtain {1, 1}-sized
chunk overlaps (Line 9). Then, the top-1 2× 2-sized subar-
ray query on the partitions with the scoring function sum is
processed, as shown in the right hand side figure (Line 11).
Because partitions of partitions are not considered, all the
subarrays’ scores are computed. The number of partitions
is usually much smaller than that of the cells in the original
array, and therefore, it is reasonable that the processing of
the top-1 query is based on the näıve method. The score of
the top-1 answer is 2. Then, the maximal possible density
of the original subarray in the chunk of the original array is

996

estimated, which is 2/9 (Line 12). The UBS can be obtained
from the MVS where 2/9 cells have the maximum value of
a partition and other cells are empty.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
Settings. For the performance evaluation of the proposed
methods, we used a server cluster consisting of 10 nodes with
an Intel i5-2500 3.30 GHz CPU and 16 GB memory. Each
node runs an instance of SciDB 18.1 on Ubuntu 14.04 LTS
to play the role of a slave node in the processing of queries.
The first node also performs as a master node. We con-
figured the server cluster based on Ubuntu diskless booting.
We call the time required for transferring cells to form chunk
overlaps chunk overlap transfer time in this section. Un-
less otherwise noted, we used 10 as the default parameter
of partition sizes for all dimensions. SciDB provides a plu-
gin mechanism that enables users to make a user-defined
operator (UDO) for their own purposes. After a UDO is
loaded in SciDB, it runs as a built-in operator in SciDB. All
the methods were implemented as UDOs in C++. Specifi-
cally, we used three main built-in functionalities in SciDB:
(1) API to read specific chunks from disks, (2) API to trans-
fer data (e.g., variables, chunks) among nodes, and (3) API
to write specific chunks on disks. Additionally, we created
a PPTS client that just returns top-k subarrays from UDOs
progressively. The PPTS client was built in Python 2.7.6.
Datasets. We used three different MODIS datasets, con-
sisting of MOD11A1 [4], MOD13Q1 [1], and MOD06L2
[3], and one synthetic dataset. MOD11A1 version 6 pro-
vides daily attributes related to land surface temperature in
1200 × 1200 grids [4]. Each grid represents 1 km × 1 km.
We merged 12 adjacent MOD11A1 data, which resulted in
3600 × 4800 grids. We selected 20 days MOD11A1 data
and merged them, which resulted in 20× 3600× 4800 array
having a total size of 5.9 GB. MOD13Q1 version 6 provides
vegetation index values, such as the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) in 4800×4800 grids at 16-day intervals [1]. Each grid
represents 0.25 km × 0.25 km. We randomly selected and
merged 7 MOD13Q1 data, which resulted in a 7×4800×4800
array having a total size of 12.4 GB. MOD06L2 consists
of attributes related to clouds, such as cloud top pressure,
cloud top height, and cloud phase [3]. We loaded MOD06L2
data for 20 days into sparse 8800× 11600-sized arrays hav-
ing a total size of 491 MB. MOD11A1, MOD13Q1, and
MOD06L2 also include attributes related to the quality of
datasets. For the experiments, we also generated synthet-
ically a 50000 × 50000 two dimensional array in which an
attribute attr1 had Gaussian distributions with different
means and variances. We also added to the array an at-
tribute attr2 with random values from 300 to 1000. The
total size of the synthetic array data was 39.9 GB.
Query Sets. We used different scoring functions and selec-
tion conditions according to the datasets, as shown in Table
1. LST Day 1km represents daytime land surface tempera-
ture. Clear day cov represents daytime clear sky coverage,
and the condition avg(Clear day cov) > 1000 means that
subarrays with a very unclear sky are excluded. The NDVI
measures the density of green on land using near-infrared
and visible radiation. The more thickly a patch of land is
wooded, the higher is the NDVI value.

Table 1: Queries for MOD11A1, MOD13Q1, MOD06L2, and
the synthetic data.

Scoring function Selection condition

MOD11A1 sum(LST Day 1km) avg(Clear day cov) > 1000

MOD13Q1 avg(NDVI) -

MOD06L2 sum(Cloud Top Height) -

Synthetic avg(attr1) avg(attr2) > 500

Evaluated Algorithms. In the experiments, we com-
pared the following algorithms: (a) the näıve method

(NAÏVE), (b) the näıve method with incremental computa-

tion (NAÏVE + IC), (c) progressive top-k subarray query
processing without optimization (PPTS), (d) progressive
top-k subarray query processing with incremental compu-
tation (PPTS + IC), and (e) progressive top-k subarray
query processing with incremental computation and max-
imal density estimation (PPTS + IC + ME). We used
four significant digits for the results.

7.2 Experimental Results
We first conducted experiments on real datasets,

MOD11A1 and MOD13Q1 data. The chunk sizes were
1×800×800 for MOD11A1 and 1×500×500 for MOD13Q1,
as the array data are almost equally distributed among
nodes. The partitioning of the array data was performed
only one time before processing queries; the times taken to
partition the arrays with the partition size 1× 10× 10 and
store the results on disks for MOD11A1 and MOD13Q1 were
10.10 and 12.60 s, respectively. We performed top-k subar-
ray queries varying the subarray size from 1 × 10 × 10 to
1 × 50 × 50. For the sake of efficiency of the experiments,
transferring cells among nodes to form the {0, 49, 49}-sized
chunk overlaps required for the queries was performed only
one time before processing queries; the chunk overlap trans-
fer times were 59.03 s and 66.73 s for MOD11A1 and
MOD13Q1 data, respectively, and were excluded from query
execution times.

Figures 9 and 10 show that (a) PPTS outperforms

NAÏVE, and PPTS+IC outperforms NAÏVE+IC in all
cases, while they progressively returned answers, which can-
not be achieved by the näıve methods, and (b) disjoint
queries require more time to terminate than overlap-allowing
queries. Figure 9 depicts the top-10 subarray query re-
sults according to subarray sizes and two subarray query
types. Note that a log scale is used for the Y axis of the
graphs. As the subarray size increases, all the methods re-
quire more time to complete a query, and the differences
in the query execution time of PPTS and NAÏVE also in-
crease. This indicates that the proposed methods can prune
the search space efficiently, although the given subarray size
increases. The näıve methods compute all the subarrays
in an array in both disjoint and overlap-allowing queries;
however, disjoint queries require more time because each
node sends more computed subarrays with their scores to
the master node. PPTS also takes more time in process-
ing disjoint queries than overlap-allowing ones since disjoint
queries usually compute more candidate subarrays to find
top-k answers.

Figure 10 shows the results of top-k 1 × 30 × 30-sized
subarray queries according to k values and subarray query
types. In all cases, the query execution times of the pro-
posed methods are almost linear, which means that the time
between the ith and (i + 1)th(1 ≤ i < k) answers remains
similar when the value of i is increased. In overlap-allowing

997

PPTS+IC PPTS Naive+IC Naive

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

1x10x10 1x20x20 1x30x30 1x40x40 1x50x50

ti
m

e(
s)

subarray size

5.427

10.37

23.10

38.16

56.18

5.274

11.66

28.89

54.59

91.72
196.8

289.7
384.5

483.9
591.4238.5

414.3

626.9
894.1

1228

(a) MOD11A1, disjoint

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

1x10x10 1x20x20 1x30x30 1x40x40 1x50x50

ti
m

e(
s)

subarray size

5.093

8.415

15.52

24.84

41.84

5.130

9.330

19.43

35.85

67.04162.2

247.3
336.6

419.0
507.0201.8

367.3

571.8
810.5

1107

(b) MOD11A1,overlap-allowing

 16

 32

 64

 128

 256

 512

 1024

 2048

1x10x10 1x20x20 1x30x30 1x40x40 1x50x50

ti
m

e(
s)

subarray size

23.27
27.09

38.05

52.46

70.06

28.66

39.84

72.88

120.9

191.7

113.4
142.8

179.0
213.3

249.9
173.2

323.8

525.6

783.3

1111

(c) MOD13Q1, disjoint

 16

 32

 64

 128

 256

 512

 1024

 2048

1x10x10 1x20x20 1x30x30 1x40x40 1x50x50

ti
m

e(
s)

subarray size

16.43

25.84

34.42

45.45

60.34

18.15

36.63

66.85

108.0

166.1

63.63

96.17

129.8
170.1

209.0

119.0

277.7

477.3

729.7

1045

(d) MOD13Q1,overlap-allowing

Figure 9: Results of top-10 queries with different subarray sizes.

 16

 32

 64

 128

 256

 512

 1024

10 30 50 70 90

ti
m

e
(s

)

k

23.19

31.16

40.00

53.52
59.28

28.70

39.86

51.55

70.92 77.93

383.9 387.0 395.0 401.2 404.5

626.2 632.7 636.9 643.5 646.9

(a) MOD11A1, disjoint

 8

 16

 32

 64

 128

 256

 512

 1024

100 300 500 700 900

ti
m

e
(s

)

k

15.18 16.43 16.76 17.59 18.00

19.40 19.58 20.07 22.22 22.81

341.3 337.9 337.9 332.0 339.9

564.9 572.3 566.8 565.1 568.2

(b) MOD11A1,overlap-allowing

 16

 32

 64

 128

 256

 512

 1024

10 30 50 70 90

ti
m

e
(s

)

k

31.65
35.21 37.04 38.97 41.23

64.99
72.72 75.34 78.72 83.10

179.8 188.8 192.6 198.6 208.8

530.4 538.3 541.2 547.9 558.6

(c) MOD13Q1, disjoint

 16

 32

 64

 128

 256

 512

 1024

100 300 500 700 900

ti
m

e
(s

)

k

29.61 30.61 30.96 31.53 31.94

62.41 63.74 64.80 65.52 65.38

136.3 134.5 134.5 134.1 134.3

484.3 485.5 485.9 481.0 481.9

(d) MOD13Q1,overlap-allowing

Figure 10: Results of top-k 1× 30× 30-sized subarray queries with different k.

Table 2: Average/standard deviation of delays between the
ith and (i+ 1)th(1 ≤ i < k) answers in Figure 10. (seconds)

Methods MOD11A1, disjoint MOD13Q1, disjoint

PPTS + IC 0.4844/0.8054 0.1317/0.1489

PPTS 0.6287/1.024 0.2383/0.2656

queries, if the method selects a subarray as one of the top-k
subarrays, it tends also to select other subarrays near that
selected as one of the top-k subarrays, which results in a
similar query execution time, although k increases, and less
meaningful top-k subarrays. When k is varied, the näıve
method takes almost the same time to complete queries
in overlap-allowing queries. The time complexities of the
näıve methods in overlap-allowing and disjoint queries are
O(nlogk) and O(nlogn + nk), respectively, where n is the
number of cells in the array. Therefore, if the value of n
is large and k value is relatively small, the time taken to
complete queries does not change drastically according to k
in the näıve methods. However, in disjoint queries, the time
increases more faster than in overlap-allowing queries when
k value grows because the slave nodes send more computed
subarrays to the master node. The top-90 disjoint queries in
Figure 10(a) and Figure 10(c) actually mean the top-49146
and 54531 overlap-allowing query, respectively.

In Figure 9 and 10, it can be seen that the incremen-
tal computation is efficient, especially when the subarray
size and the k value are large. However, the optimization
technique cannot be applied to queries with holistic scoring
functions. Although PPTS outperformed NAÏVE in the ex-
periments, if attribute values of an array get more and more
similar, PPTS has difficulty pruning the search space. It is
a common limitation in threshold-based algorithms.

Figure 11 shows communication costs during query pro-
cessing including the chunk overlap transfer time. In PPTS,
Node 1, the master node, utilizes the network when decid-
ing the ith(1 ≤ i ≤ k) answer. Specifically, Node 1 requests
the next local answers to maximally N − 1 slave nodes, re-
ceives the local answers from the nodes, and sends the ith

answer to the nodes, which means that the total number of
communications is maximally (N − 1)× 3× k during query
processing. Because we configured our server cluster based

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 100 200 300 400 500 600

chunk overlap transfer time ends

PPTS+IC ends Naive+IC requests/receives candidates

n
et

w
o

rk
(K

B
)

time(s)

PPTS+IC(recv)
PPTS+IC(send)
Naive+IC(recv)
Naive+IC(send)

Figure 11: (MOD11A1) Communication costs in Node 1
with the disjoint top-10 1× 50× 50-sized subarray query.

on diskless booting, small communication costs were consis-
tently required to maintain the system. The same patterns
were observed in the MOD13Q1 dataset.

Figure 12 shows the disjoint top-k subarray query results
on the synthetic data with various subarray sizes and k val-
ues. The näıve method always failed, because of the “out
of memory” error, and therefore, we excluded it from the
figure. The chunk size was set as 1500× 1500, and one-time
partitioning took 179.0 s. The {99, 99}-sized chunk overlaps
that are required for the subarray query with the largest
size (100× 100) in the experiments were pre-computed and
stored before processing queries. In Figure 12(a), it can
be seen that the query execution times rapidly increase as
the subarray sizes increase. This is because (1) the cost of
computing a subarray increases and (2) outstanding regions
with high attribute values are covered by a smaller number
of subarrays; thus, for queries with a larger subarray size, it
is necessary to find more subarrays in the data than for those
with a smaller subarray size. Figure 12(b) shows that the
delays between consecutive answers remain almost constant,
irrespective of k. The average values of delays for PPTS +
IC and PPTS were 0.6479 s and 0.7432 s, respectively.

We conducted experiments on the UBS optimization
based on maximal density estimation proposed in Section
6.2 in the case of MOD06L2 data (Figure 13). We ran
queries on 20 independent array datasets, and averaged the
results. The chunk size was set as 1500 × 1500. One-time
partitioning took 0.6794 s on average. When the subar-
ray size was 250 × 250, the average chunk overlap transfer
time was 2.235 s and the average time to estimate maxi-
mal densities was 2.034 s. The results in the graphs include

998

PPTS+IC PPTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

20x20 40x40 60x60 80x80 100x100

ti
m

e(
s)

subarray size

20.80
48.25

116.8

250.0

483.8

21.36
52.77

145.6

364.4

804.3

(a) k = 50

 100

 150

 200

 250

 300

 350

 400

 450

100 200 300 400 500

ti
m

e
(s

)

k

116.9

154.8

216.5

294.5

333.5

139.7

187.4

266.6

362.7

413.1

(b) 50× 50

Figure 12: Disjoint top-k queries on synthetic data.

PPTS+IC+ME PPTS+IC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

50x50 100x100 150x150 200x200 250x250

ti
m

e(
s)

subarray size

11.86 15.78

26.85

49.43

83.05

35.82

54.07

78.78

116.7

177.1

(a) k = 10

 20

 30

 40

 50

 60

 70

 80

 90

10 30 50 70 90

ti
m

e
(s

)

k

25.59

36.46

44.83

51.22

58.23

76.29 76.86 77.85 79.11 80.69

(b) 150× 150

Figure 13: Effects of maximal density estimation on
MOD06L2 dataset and disjoint top-k queries.

the times taken to perform maximal density estimation and
exclude the chunk overlap transfer times. Without max-
imal density estimation, partitions’ UBSs are significantly
higher than the scores of actual subarrays overlapping with
partitions, because the maximal virtual subarrays assume
that they have the maximum values in all cells without
empty cells, although MOD06L2 data constitute sparse ar-
rays. This means that, even when one of the top-k subarrays
is found in a partition, the query cannot satisfy the answer-
returning condition and has to continue query processing to
the subsequent partitions. On the basis of maximal density
estimation, the query terminates much earlier, as shown in
the figures.

Figure 14 shows comparisons between PPTS and k-BRS
[21] on disjoint top-10 subarray queries with various subar-
ray sizes in a single node. We randomly selected 5 arrays
from MOD11A1 and MOD06L2 datasets, respectively. We
ran the queries in each array and averaged the results. For
MOD11A1 datasets, we extracted the 100 × 100 subarray
starting at (0, 0) from each array (3600 × 4800) as k-BRS
always failed on the original MOD11A1 datasets because
of memory overflow. The average percentage of non-empty
cells were 83.04% (MOD11A1) and 0.08478% (MOD06L2).
k-BRS can be executed only when a whole array forms a
single chunk. For PPTS, we used one chunk in MOD11A1
and 1000 × 1000 chunking in MOD06L2. In Figure 14(b),
the results of PPTS+IC+ME included the chunk overlap
transfer times and maximal density estimation times. For
PPTS, partition sizes were 2 × 2 and 10 × 10, and average
partitioning times were 0.4978 s and 1.655 s in MOD11A1
and MOD06L2, respectively.

As shown in Figure 14, k-BRS was highly inefficient in
MOD11A1 datasets while it performed better than PPTS in
MOD06L2 datasets only on relatively small subarray sizes.
This is because the sweep algorithm of k-BRS quickly de-
cides the region that includes some objects. However, as
the subarray size increased, the query execution times of k-
BRS increased rapidly, and it eventually failed on the sub-
array size of 120 × 120 because of memory overflow caused
by investigating a huge number of candidates in MOD06L2.
In addition to better performance, PPTS also supports the

PPTS+IC+ME PPTS+IC k-BRS

 0

 10

 20

 30

 40

 50

 60

2x2 4x4 6x6 8x8 10x10

ti
m

e(
s)

subarray size

0.377 0.359 0.358 0.369 0.4486

1.047
2.809

8.095

20.71

53.71

(a) MOD11A1 (dense)

 0

 5

 10

 15

 20

 25

80x80 90x90 100x100 110x110 120x120

ti
m

e(
s)

subarray size

8.434
9.842

10.41

12.52

14.55

3.798

7.426

11.60

23.86

(b) MOD06L2 (sparse)

Figure 14: Comparisons between PPTS and k-BRS (disjoint
top-10 queries without selection conditions, single node).

PPTS+IC PPTS Naive+IC Naive

 32

 64

 128

 256

 512

 1024

 2048

2 4 6 8 10

ti
m

e
(s

)

node

165.4

113.1

74.92
66.03

57.05

252.5

173.4

117.7
102.0

87.72

988.9
826.2

591.3

2011
1706

1218

(a) MOD11A1

 64

 128

 256

 512

 1024

 2048

2 4 6 8 10

ti
m

e
(s

)

node

267.9

146.2

98.22
82.56

71.10

730.4

408.3

265.2
224.8

193.9

370.8

296.8
253.3

1631

1297
1110

(b) MOD13Q1

Figure 15: Disjoint top-10 1×50×50-sized subarray queries
varying the number of nodes.

PPTS+IC PPTS Naive+IC Naive Partitioning

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

2
(4096x4096,256,16)

4
(64x...x64,16,4)

8
(8x...x8,4,2)

ti
m

e(
s)

the number of dimensions of each array
(Array,chunk,subarray/partition sizes)

0.4177

1.478

4.883

0.4280

1.615

5.68810.12

38.62
54.94

20.90

66.31 74.07

(a) The number of dimensions

 4

 16

 64

 256

 1024

 4096

10000x10000 10000x20000 10000x30000 10000x40000 10000x50000

ti
m

e(
s)

array sizes
 (subarray size=50x50)

5.722 5.272 5.482
4.509 4.619

5.869 5.807 5.876 5.776 5.960

197.4

315.9
453.4

913.1

1535
2089

9.585

19.94
29.38

34.73 40.87

(b) The size of arrays

Figure 16: Disjoint top-10 subarray queries varying the num-
ber of dimensions and the size of arrays.

wider range of scoring functions and distributed processing
based on the array data model.

Figure 15 shows disjoint top-10 subarray query results on
the real datasets varying the number of nodes. When the
number of nodes was 2 or 4, the näıve methods failed be-
cause of the “out of memory” error. PPTS benefited from
the increasing number of nodes in both datasets; however,
the straggler problem cannot be avoided. This is because
(a) how the array data are distributed among nodes affects
query processing and (b) PPTS is a synchronous algorithm.

Figure 16 shows the disjoint top-10 subarray query re-
sults varying the number of dimensions and the size of ar-
rays. Each array contained 30 subarrays with random at-
tribute values in the range of [600, 1000], and the other cells
had random values in [0, 500]. As the number of dimen-
sions increases (Figure 16(a)), overhead of computing sub-
arrays also increases because the number of consecutively
accessible cells, the most minor dimension size, decreases.
The reason also explains the decreasing impact of IC in the
näıve methods. Because the 4 − d array was distributed
somewhat unequally with the chunk size, the näıve meth-
ods operated inefficiently. Figure 16(b) shows that PPTS
efficiently prunes the search space regardless of the size of
original arrays, which means that PPTS is scalable.

7.3 Effects of Parameters
To evaluate the effect of a partition size on the per-

formance of the proposed method, we conducted experi-

999

Table 3: Effects of partition sizes on MOD11A1 and
MOD13Q1 with the chunk size of 800× 800. (seconds,KB)

Partition size 10 50 100 150 200 250 300 350

MOD11A1

PPTS + IC 21.31 24.55 27.57 28.30 30.98 43.52 40.13 42.50

Partitioning time 1.675 1.038 1.010 1.010 1.001 1.033 1.006 1.039

Required storage 2811 162.2 49.30 33.54 18.87 19.92 14.93 14.95

MOD13Q1

PPTS + IC 36.9 42.0 47.0 60.9 53.8 59.3 65.1 65.4

Partitioning time 4.022 2.578 2.490 2.581 2.488 2.661 2.568 2.705

Required storage 8435 356.8 95.58 59.72 30.97 32.31 22.02 22.24

ments using 20 independent MOD11A1 and 15 independent
MOD13Q1 array datasets with various partition sizes. We
ran disjoint top-10 subarray queries with a subarray size of
50 × 50 on each array using PPTS + IC and averaged the
results. The effects of the partition sizes are shown in Table
3. The partition size given in the table was applied to all di-
mensions. The partitioning time includes the time required
to read arrays from disks, create partitions, and write parti-
tions on disks. The required amount of storage for partitions
is also shown in the tables. The results indicate that, as the
partition size increases, the proposed method takes a longer
time to complete the queries. This is because, although the
queries already find one of the top-k subarrays, they cannot
terminate, as there remain subarrays to be computed that
overlap with the current partition. In contrast, the amount
of storage for partitions decreases as the partition size in-
creases because of the smaller number of partitions. The
time complexity of partitioning is O(n + NlogN), where n
is the number of cells in an array and N is the number of
partitions. The value of N was considerably smaller than
that of n in these experiments. Therefore, it was observed
that the partitioning time was independent of the size of
the partitions except for when the partition size was 10. If
the partition size is extremely small, the time complexity
approaches more closely to O(nlogn), and the required stor-
age increases rapidly. Sometimes there existed cases that it
took longer time to terminate queries even with the smaller
size of partitions. This was because, for example, if a region
with high attribute values was covered by not one parti-
tion A but several partitions B with the smaller partition
size, the coverage of B could be wider than the region and
A, and more partitions had to be checked; more subarrays
also had to be computed. In summary, if an array is parti-
tioned using small partition sizes, the top-k subarrays can
be obtained earlier; however, the partitions require a larger
amount of storage space.

8. RELATED WORK
Array Databases. Array database management systems
have been studied under the necessity of managing multi-
dimensional data. RasDaMan [6] was the first fully oper-
ational array database. ArrayStore [22] supports parallel
processing and various workloads for arrays. SciDB [7, 23]
constitutes the de facto standard open source array database
with steady version updates. TileDB [20] is an array stor-
age manager and provides embeddable libraries to efficiently
manage both dense and sparse arrays, providing fast up-
dates. ChronosDB [28] is a distributed and geospatial array
database with command line tools; however, it is still under
development.
Data Exploration in Array Databases. Searchlight
[16, 17] provides efficient subarray exploration by integrat-

ing constraint programming solvers and main-memory syn-
opses. It can be considered an efficient filter for subarrays
that satisfy the selection conditions given in our study. Our
approach focuses mainly on finding the top-k subarrays with
regard to a scoring function, and hence allows a different
type of data exploration in array databases.
Top-k Query Processing. Top-k queries have been exten-
sively studied in various fields. In [14], the top-k query types
and processing using various aspects in relational databases
were summarized. Fagin [11] proposed the Threshold Algo-
rithm (TA) that retrieves top-k answers by setting thresh-
old values. To apply TA to a top-k subarray query, we have
to compute and sort all subarray’s scores, which means the
näıve method. TA mainly targets scoring functions that con-
sider several attributes together while PPTS considers the
measure attribute. Top-k region queries have been studied
in spatial databases. In [18], the top-k hot region queries
that find k non-overlapping regions with regard to a subject
were defined. A region is scored by the weighted sum of the
number of objects. The MaxRS problem [9] was proposed
for finding the top-1 rectangle of a given size where spatial
objects’ weighted sum is maximized. Best Region Search
[12] finds the top-1 region given a set of spatial objects and
the size of a two dimensional rectangle based on a sub-
modular monotone scoring function. The k-BRS problem
[21] finds the top-k best rectangles according to a monotone
scoring function. Based on the vertical/horizontal sweep al-
gorithm, k-BRS finds slabs and regions. These approaches
[9, 12, 18, 21] do not consider the array data model, and
they support limited scoring functions. In particular, the
approaches presented in [9, 12] target only the top-1 region.
Furthermore, all of them do not provide distributed process-
ing, which is critical for large scale data analysis.

In addition, there exist studies on distributed threshold-
based top-k query processing [5, 8, 19, 25, 26, 27]. In DiTo
[26, 27], each node stores the skyline objects for its own data
as a summarization, and a coordinator node processes top-k
queries progressively based on the summarizations. TPUT
[8] and KLEE [19] prune ineligible objects based on thresh-
old values while minimizing network traffic. In [5], a study
on distributed top-k query processing considering keywords
was reported. RIPPLE [25] is a generic framework for pro-
cessing rank queries such as top-k and skyline queries using
distributed hash tables. The results of these studies can-
not be directly applied to top-k subarray query processing,
because they did not consider the concept of subarrays.

9. CONCLUSION
In this paper, we introduced progressive top-k subarray

query processing. In our method, first an array is parti-
tioned and important information is extracted from parti-
tions. Second, the proposed PPTS method based on par-
titions, which is further extended to distributed processing,
is applied. Then, we devised optimization techniques to im-
prove PPTS. Finally, we showed by extensive experiments
that PPTS outperforms the existing method to a notewor-
thy extent and is effective over large real and synthetic array
data.

Acknowledgements
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. NRF-2017R1A2A2A05069318).

1000

10. REFERENCES
[1] Didan, K.. MOD13Q1 MODIS/Terra Vegetation

Indices 16-Day L3 Global 250m SIN Grid V006. 2015,
distributed by NASA EOSDIS LP DAAC,
https://doi.org/10.5067/MODIS/MOD13Q1.006.

[2] NASA VISIBLE EARTH.
https://visibleearth.nasa.gov/view.php?id=92137.

[3] Platnick, S., Ackerman, S., King, M., et al., 2015.
MODIS Atmosphere L2 Cloud Product (06 L2).
NASA MODIS Adaptive Processing System, Goddard
Space Flight Center, USA:
http://dx.doi.org/10.5067/MODIS/MOD06 L2.006.

[4] Wan, Z., S. Hook, G. Hulley. MOD11A1
MODIS/Terra Land Surface Temperature/Emissivity
Daily L3 Global 1km SIN Grid V006. 2015,
distributed by NASA EOSDIS LP DAAC,
https://doi.org/10.5067/MODIS/MOD11A1.006.

[5] D. Amagata, T. Hara, and S. Nishio. Distributed
top-k query processing on multi-dimensional data with
keywords. In Proceedings of the 27th International
Conference on Scientific and Statistical Database
Management, page 10. ACM, 2015.

[6] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. The multidimensional database system
rasdaman. In Acm Sigmod Record, volume 27, pages
575–577. ACM, 1998.

[7] P. G. Brown. Overview of scidb: large scale array
storage, processing and analysis. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of data, pages 963–968. ACM, 2010.

[8] P. Cao and Z. Wang. Efficient top-k query calculation
in distributed networks. In Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing, pages 206–215. ACM, 2004.

[9] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable
algorithm for maximizing range sum in spatial
databases. PVLDB, 5(11):1088–1099, 2012.

[10] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
S. Madden, M. Stonebraker, S. B. Zdonik, and P. G.
Brown. Ss-db: A standard science dbms benchmark.
Under submission, 2010.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
computer and system sciences, 66(4):614–656, 2003.

[12] K. Feng, G. Cong, S. S. Bhowmick, W.-C. Peng, and
C. Miao. Towards best region search for data
exploration. In Proceedings of the 2016 International
Conference on Management of Data, pages 1055–1070.
ACM, 2016.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data mining and knowledge discovery,
1(1):29–53, 1997.

[14] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[15] L. Jiang, H. Kawashima, and O. Tatebe. Incremental
window aggregates over array database. In Big Data
(Big Data), 2014 IEEE International Conference on,
pages 183–188. IEEE, 2014.

[16] A. Kalinin, U. Cetintemel, and S. Zdonik. Searchlight:
Enabling integrated search and exploration over large
multidimensional data. PVLDB, 8(10):1094–1105,
2015.

[17] A. Kalinin, U. Cetintemel, and S. Zdonik. Interactive
search and exploration of waveform data with
searchlight. In Proceedings of the 2016 International
Conference on Management of Data, pages 2105–2108.
ACM, 2016.

[18] J. Liu, G. Yu, and H. Sun. Subject-oriented top-k hot
region queries in spatial dataset. In Proceedings of the
20th ACM international conference on Information
and knowledge management, pages 2409–2412. ACM,
2011.

[19] S. Michel, P. Triantafillou, and G. Weikum. Klee: A
framework for distributed top-k query algorithms. In
Proceedings of the 31st international conference on
Very Large Data Bases, pages 637–648. VLDB
Endowment, 2005.

[20] S. Papadopoulos, K. Datta, S. Madden, and
T. Mattson. The tiledb array data storage manager.
PVLDB, 10(4):349–360, 2016.

[21] D. Skoutas, D. Sacharidis, and K. Patroumpas.
Efficient progressive and diversified top-k best region
search. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 299–308. ACM, 2018.

[22] E. Soroush, M. Balazinska, and D. Wang. Arraystore:
a storage manager for complex parallel array
processing. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data,
pages 253–264. ACM, 2011.

[23] M. Stonebraker, P. Brown, A. Poliakov, and
S. Raman. The architecture of scidb. In International
Conference on Scientific and Statistical Database
Management, pages 1–16. Springer, 2011.

[24] R. Taft, M. Vartak, N. R. Satish, N. Sundaram,
S. Madden, and M. Stonebraker. Genbase: A complex
analytics genomics benchmark. In Proceedings of the
2014 ACM SIGMOD international conference on
Management of data, pages 177–188. ACM, 2014.

[25] G. Tsatsanifos, D. Sacharidis, and T. K. Sellis. Ripple:
A scalable framework for distributed processing of
rank queries. In EDBT, pages 259–270, 2014.

[26] A. Vlachou, C. Doulkeridis, and K. Nørv̊ag.
Distributed top-k query processing by exploiting
skyline summaries. Distributed and Parallel Databases,
30(3-4):239–271, 2012.

[27] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and
M. Vazirgiannis. On efficient top-k query processing in
highly distributed environments. In Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 753–764. ACM, 2008.

[28] R. A. R. Zalipynis. Chronosdb: distributed, file based,
geospatial array dbms. PVLDB, 11(10):1247–1261,
2018.

1001

