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ABSTRACT
A socio spatial group query finds a group of users who possess
strong social connections with each other and have the minimum
aggregate spatial distance to a meeting point. Existing studies limit
to either finding the best group of a fixed size for a single meet-
ing location, or a single group of a fixed size w.r.t. multiple loca-
tions. However, it is highly desirable to consider multiple locations
in a real-life scenario in order to organize impromptu activities of
groups of various sizes. In this paper, we propose Top k Flexible
Socio Spatial Group Query (Top k-FSSGQ) to find the top k groups
w.r.t. multiple POIs where each group follows the minimum social
connectivity constraints. We devise a ranking function to measure
the group score by combining social closeness, spatial distance,
and group size, which provides the flexibility of choosing groups
of different sizes under different constraints. To effectively process
the Top k-FSSGQ, we first develop an Exact approach that ensures
early termination of the search based on the derived upper bounds.
We prove that the problem is NP-hard, hence we first present a
heuristic based approximation algorithm to effectively select mem-
bers in intermediate solution groups based on the social connec-
tivity of the users. Later we design a Fast Approximate approach
based on the relaxed social and spatial bounds, and connectivity
constraint heuristic. Experimental studies have verified the effec-
tiveness and efficiency of our proposed approaches on real datasets.
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1. INTRODUCTION
Various social network sites now allow users to capture their

locations through GPS-enabled devices and share them through
check-ins or mentions in posts. As a result, socio spatial networks
are emerging where each user is associated with a physical location
along with the connectivity with other members of the network.
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Given such a network, socio spatial group queries [7, 25, 30, 33]
aim to find the ‘best’ group against a Point Of Interest (POI) where
the users possess social tightness within the group and have spatial
closeness to the POI. An example of such queries is to find a group
of three members, who are located close to a particular restaurant
and socially connected to at least one of the other members, so that
the group is competent for a targeted advertisement of a “20% dis-
count for a table of three” offer running at that restaurant.

Although existing works have contributions towards finding an
important class of group queries, there exists several gaps with the
real-life applications, particularly the following major limitations:
(i) Impracticality of specifying group size: In each of the existing
socio spatial group queries ( [7, 25, 30, 33]), a single value as the
size of the group (i.e., fixed size group) needs to be specified by
the query issuer a priori. However, without prior knowledge of the
social connections and users’ locations, it is difficult to provide an
exact and explicit size for the desired group. For example, “buy two
get one” is a traditional offer. However, the advertiser may find that
most of the groups close to the POI are generally of four people. So
the group size of three members may not be a feasible offer.
(ii) Finding only the best group for only one POI: The algorithms
in [7, 30, 33] can find only one group against only one query POI,
where the solutions are not easily extendable for multiple groups or
POIs (Section 2). Finding multiple groups are important for adver-
tisers, and multiple POIs are important to suggest the best meeting
location. For example, given multiple event locations of a festival,
each resulting group can get advertisement for its nearest event. To
the best of our knowledge, the only existing work that incorporates
multiple POIs is [25]. However, their proposed algorithm can find
only one group (i.e., k = 1) as the result. They use an R-tree and
a Ball-tree as index, and the algorithm is not easily extendable for
k > 1, which limits the applicability of the work.
(iii) Profit optimization - a trade-off between the group effective-
ness and the group size: Advertisers want to offer the best deal to
attract closely connected users who are located nearby to the POI;
and at the same time they want to maximize their profit by prefer-
ring a larger group, as increasing the group size is more profitable.
However, increasing the group size may decrease the users’ sat-
isfaction in the meet-up as it increases the chance of meeting with
more unknown people. Thus, there should have a trade-off between
satisfaction and cost; and finding the optimal group size is essen-
tial for such scenarios. In literature, the group score is generally
defined as the weighted combination of social and spatial scores of
the group, but the size of the group is ignored in the scoring func-
tion. Hence, the existing work are not suitable to find the balance
between the group effectiveness and group size trade-off.
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User o1 o2
a 9 3
b 12 2
c 6 8
d 9 5
e 8 3

Figure 1: A socio spatial graph, the table shows the distances of the
users from each meeting point

To address the above limitations, we propose a novel Top-k Flex-
ible Socio Spatial Group Query (Top k-FSSGQ) that finds top k
groups with flexible group sizes for a given set of POIs (meet-
ing points). Consider a scenario, where a chain-shop has mul-
tiple branches and they want to find k best groups to offer total
k coupons in different locations. Since the owner does not have
any prior knowledge on the groups and users around each branch,
she cannot decide on the number of coupons required in different
branches, and what should be the formation of the coupons, e.g.,
“buy two get one” or “buy three get one”. Thus the objective is to
find top k groups in total w.r.t. any query POIs (branches) with the
highest socio spatial ranks, where the group size can vary within a
query minimum and maximum size, specified by the query issuer
based on the application. For example, if the POI is a restaurant,
its maximum table size can be the maximum allowable group size.
Formally, for a given socio-spatial graph, the minimum and maxi-
mum number of users allowed in a group, a minimum acquaintance
constraint, a set of candidate meeting points, and a maximum dis-
tance constraint, the Top k-FSSGQ query returns k best groups
and their corresponding meeting points, where each group satis-
fies the minimum acquaintance and group size constraints, and the
location of each member satisfies the distance constraint. We also
guarantee that a top-k group cannot be fully contained in another
top-k group, for example, given a set of users {a, b, c, d, e}, then
groups like {a, b, c} and {a, b} both cannot be in the result.

We now present an example to illustrate the Top k-FSSGQ query,
which also highlights the limitations of the existing studies.

EXAMPLE 1. Figure 1 presents a graph of users V = {a, b, c,
d, e}, where the upper and lower part represent the social and spa-
tial layer, respectively. Each edge in the social layer represents
the connectivity between two users. Each user has a location,
shown with an arrow from the social to the spatial layer. Here,
O = {o1, o2} is a set of POIs. Let, we want the top 2 groups with
group size minimum 3 and maximum 4, and the resultant groups
should satisfy the minimum acquaintance constraint, 1.

As the existing studies [7, 30, 33] can only find the best group of
only one fixed size for only one POI, their algorithm needs to be
repeatedly reissued for each of the POIs and for each of the group
sizes between the minimum and maximum values. Although Shen et
al. [25] allows multiple POIs as the query input, they can only find
one single group (i.e., top-1 group) of a fixed size. Therefore, their
approach cannot be directly applied to find the top-2 groups. From
this example, it is evident that, (i) If the group size is strictly fixed,
potential profitable groups of other sizes may get excluded, (ii) A
high computational cost is incurred for the existing approaches by
reissuing query with different sizes for different POIs. Here, our
aim is to find the top-2 groups ({b, a, d, c} and {b, a, e, c} in this

example, detailed calculations are shown in Section 5.2) efficiently
by avoiding the repeated unnecessary calculations.

To process Top k-FSSGQ query, we extend the approach pre-
sented in [30] as our baseline. In this baseline, we repeat the ap-
proach for all possible groups of size between the minimum and
maximum value against all meeting points that satisfy the con-
straints, rank the groups and then return the top k groups as re-
sult. As the baseline requires a high computational cost (details in
Section 3), we propose multiple efficient solutions: (i) an efficient
Exact approach that finds optimal groups with much less computa-
tion overhead, (ii) a heuristic based Approximate approach which
further improves the efficiency by selecting members of the groups
based on the social connectivity, (iii) a Fast Approximate approach
that answers the query much efficiently by sacrificing the quality of
the groups slightly, and (iv) a Greedy Approximate approach.

The key idea of the approaches is to derive theoretical bounds
on spatial distance and social connectivities to effectively prune a
large number of candidate groups that cannot be an answer. In de-
tails, we expand our search for all meeting points in parallel and
select users for possible solution group for each POI. Selection
of users is processed by prioritizing both spatial and social aspect
so that the formed groups can satisfy the acquaintance constraint
and possess the minimum aggregate spatial distance. For Exact ap-
proach, we exploit the connectivity and locations of already fetched
users w.r.t. each meeting point to derive upper bounds that can
safely determine whether we need to further explore the space for a
higher rank group. We also define a bound for the familiarity con-
straint for a user that must be satisfied in order to qualify the group
as an answer for our heuristic based Approximate approach. For
the Fast Approximate approach, we design more powerful pruning
strategies to reduce the exploration. We develop an upper bound
on spatial distance and a lower bound on social connectivity of a
member (in contrast to all members in the exact approach). Based
on these bounds, we develop an early terminate strategy.

The contributions of this paper are described as follows.
(i) We re-define the socio spatial group query for multiple meet-

ing points, and design a flexible ranking function consisting of so-
cial cohesiveness, spatial closeness, and group size.

(ii) We develop an Exact approach which is significantly faster
than the baseline and multiple Approximate approaches that are
highly efficient with almost similar quality of result.

(iii) We develop an early termination strategy and several prun-
ing rules for improving the efficiency of the Exact approach and the
Approximate approach based on the upper bound of spatial distance
and lower bound of social connectivity.

(iv) We conduct extensive experiments to verify the efficiency
of our developed algorithms and effectiveness of our approximate
solutions by using real datasets.

2. RELATED WORK
Different variants of group queries in social network have been

studied in literature recently. We can categorize the queries based
on (i) group with social connectivity constraints only; (ii) group
based on spatial distance; and (iii) group with both constraints.

2.1 Group Queries by Social Connectivity
Social connectivity based group queries can further be classified

as team formation [16, 18], community detection [9, 22], and com-
munity search [5, 6, 8, 12, 19, 26]. Team formation [16, 18] aims
at finding a group of experts in a social graph with required skills
while minimizing communication cost within that group. Com-
munity detection aims at finding all communities in a given graph
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based on specific criteria such as modularity [15] or the other dif-
ferent contexts [9, 22]. Whereas, given a query node, community
search aims at finding a group (community) of nodes in a large
graph where the resulting community must contain the query node.
Here, the query can be a single node [5–8, 12, 19, 26, 33] or mul-
tiple nodes [26] in a graph. Minimum degree metric or k-core
is often being used as the social constraint in defining communi-
ties [6,7,26,33]. Besides, k-clique [5], k-truss [12], and connectiv-
ity [11] have also been considered in online community search. In
addition to the social factor, a socio temporal group query [29] em-
phasizes the availability of all attendees in an impromptu activity.

2.2 Group Queries Based on Spatial Distance
Group nearest neighbor queries that find a meeting point with

the smallest aggregate distance (summation, maximum, etc.) from
the group have been extensively studied in different contexts [2, 3,
20, 23, 31]. The studies [14, 32] explored optimal location query
for a group, where given a set of users and a set of POIs, the query
finds the location of a new meeting point that minimizes the average
distance from each user to the closest meeting point [14,32]. Other
similar works [13, 24, 27, 28] find a location for a new server such
that the maximum distance between the server and any client is
minimized. Papadias et al. [23] find a location that minimizes the
sum of the distances from the users. Ali et al. [3] find optimal
subgroups and the meeting point for each subgroup that minimizes
the aggregate spatial distance for the subgroup; whereas Ahmed et
al. [2] extend [3] to include both spatial proximity and keyword
similarity while selecting a meeting point for a subgroup.

2.3 Socio Spatial Group Queries
For a given socio spatial graph, Yang et al. [30] propose a so-

cio spatial group query (SSGQ) that finds a set of members against
a fixed rally point where the aggregate spatial distance between
members and the rally point is minimized and each member is al-
lowed to be unfamiliar with at most a maximum number of mem-
bers in that group. Members’ locations are indexed using an R-tree,
and new members are added to an initially empty set based on dis-
tance ordering and familiarity checking. Finally, a resultant group
of predefined fixed size is returned. Our work is different from this
work in several aspects. Our aim is to find top k groups of vari-
able size for multiple POIs and each member has minimum level
of acquaintance with the other members. In contrast, SSGQ only
considers one rally point, which is impractical as for a large socio
spatial graph multiple rally points may exist. Moreover, the aver-
age minimum familiarity constraint [30] cannot always be prefer-
able for an individual where that member possesses weak social
connectivity within the resulting group. Lastly, potential candidate
members may be excluded due to the fixed size group.

Shen et al. [25] propose the multiple rally-point social spatial
group query (MRGQ) that chooses a suitable rally point from the
multiple points and the corresponding best group, which exhibits
the minimized spatial distance between group members to the best
rally point. The resulting group is of fixed size and satisfies the
average minimum familiarity constraint. To efficiently process the
query, an R-tree is used to index member locations and a Ball-tree is
used to index rally points. As only the best group is returned, index-
ing both activity locations and member locations makes solution
efficient. Incorporating the idea of multiple rally points enhances
the acceptance of MRGQ, but finding only the best group for multi-
ple POIs limits the applicability of socio spatial group queries. The
MRGQ also considers an average minimum social connection as
social cohesiveness, which limits individual’s satisfaction. More-
over, the resulting group has fixed size limitation.

Zhu et al. [33] propose a new class of geo-social group queries
with minimum acquaintance constraint (GSGQs), where the result
group guarantees the worst-case acquaintance of all users. GSGQs
takes three parameters: query issuer, spatial constraint, and social
constraint. Query issuer is a member in the given graph. Minimum
degree c is the social constraint. GSGQs considers three differ-
ent spatial constraints, i.e., GSGQs returns largest c-core within a
range or a c-core of more than a fixed size or a c-core of a fixed size.
Fang et al. [7] propose a spatial-aware community (SAC), which is
a connected c-core where the members in the resulting group are
located within a spatial circle having a minimum radius. SAC also
maintains the minimum acquaintance constraint. c-core is experi-
mented effectively [7,33] when a single query issuer is a member in
resulting group. However, in a large socio spatial graph, different
sized groups with different social and spatial configuration exist.
Socio spatial query issued by a member [7, 33] serves individual’s
purpose but does not help to understand the presence of various
socio spatial clusters in a given graph.

Armenatzoglou et al. [4] propose a set of geo-social ranking
(GSR) functions to combine both social and spatial factors and find
top-k users with respect to each of these functions. They introduce
a general GSR framework and propose four functions that cover
several practical scenarios. In our solution, we have adopted similar
technique like [4] to score social tightness and spatial closeness of a
group. Although GSR functions help understanding basic ranking
criteria in assessing the score of social and spatial features, rank-
ing users cannot serve the goal of socio spatial group queries. For
this reason, we are computing the score of groups rather than users
which helps to find top k groups in a given socio spatial graph.

3. PROBLEM FORMULATION & BASELINE
Let a socio-spatial graph be G = (V,E) where V is the set of

members and E is the set of edges representing the social connec-
tions. Let lv be the location for v ∈ V and O be a set of candidate
meeting points. We will first define our socio-spatial group score
function. A group with strong social connection among members
and less aggregate spatial distance to a meeting point is preferred,
where a user is interested in meeting points within a spatial range.
Group size is also important as a large group with the same con-
nectivity and aggregate spatial aspect is more preferable. We adopt
the social and spatial score measures from [4]. Now consider a sub
graph of G as G′ = (V ′, E′) and a meeting point o′ ∈ O. The
socio-spatial group score of (G′, o′) can be measured as follows.

DEFINITION 1. (Social connectivity score) The social score is
computed based on the average social connectivity, provided that
each member satisfies a minimum acquaintance constraint, c. The
social connectivity score Ssc is the density of G′ and computed as

2|E′|
|V ′|(|V ′|−1)

.

DEFINITION 2. (Spatial closeness score) The spatial closeness
score Ssp ofG′ is inverse to the normalized average distance of the

group members to o′ and computed as 1 −
∑

vi∈V ′ d(vi,o
′)

dm|V ′| where
d(vi, o

′) is the spatial distance from vi to o′, and dm is the maxi-
mum spatial distance of a user from a meeting point.

DEFINITION 3. (Group size score) The group size score Sgs of
G′ is directly proportional to its group size |V ′| and is computed
as |V

′|
n′′ , where n′′ is the maximum group size.

DEFINITION 4. (Socio-spatial group score) Given a subgraph
G′ = (V ′, E′) in G, a meeting point o′ ∈ O, a maximum group
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size n′′ and a maximum spatial range dm, we measure the socio
spatial group score S(G′, o′) as a linear weighted combination of
the individual scores, which is the most common type of combina-
tion used in the literature [4, 21]. Note that, any other types of
combinations of the scores can also be used in our solutions.

S = α ∗ Ssc + β ∗ Ssp + γ ∗ Sgs (1)

Here, α + β + γ = 1, and the values of α, β and γ can be
set based on priority of social, spatial, and group size, respectively.
Based on the socio-spatial group score S(., .), the Top k-FSSGQ
query can be formalized as follows.

DEFINITION 5. (Top k-FSSGQ) Given a socio spatial graph
G = (V,E), a set O of locations as the meeting points, a mini-
mum group size n′, a maximum group size n′′, a minimum acquain-
tance constraint c, a maximum spatial range dm, and a parameter
k, the Top k-FSSGQ finds a ranked list of top-k groups and their
corresponding meeting points from O, each as a tuple of the form
(Gi, oi, S(Gi, oi)). Here, each Gi is a subgraph of G, and each
(Gi, oi, S(Gi, oi)) must satisfy the following conditions.

(1) (Gi, oi) is considered as an eligible candidate if and only if
it meets the spatial and social constraints, i.e., n′ ≤ |V (Gi)| ≤ n′′
holds, the minimum degree of any node in Gi is no less than c, and
the maximum distance of any user in Gi to oi is no larger than dm.

(2) S(Gi, oi) ≥ S(Gi+1, oi+1) for any 1 ≤ i ≤ k − 1;
(3) @o ∈ O, Gj ⊆ G and S(Gj , o) > S(Gi, o) where 1 ≤ i ≤

k, j > k and (Gj , o) is an eligible candidate.
Parameter settings and choice of default values. The problem

formulation is made generalized using different parameters to cater
for different needs of groups. As a component of the scoring func-
tion is the group size, the group size constraints n′ and n′′ are
optional. Here, n′ can be set as default to ‘1’, and n′′ can be set to
the number of users of the social graph. Similarly, the minimum ac-
quaintance (c) and the maximum distance (dm) are useful to filter
out the groups that the user does not want in the result. If the user
is unsure of these values, c can simply be set to default ‘1’ and dm
be infinity so the constraints do not have any affect on the result. As
value of all of the components in Equation 1 is normalized between
[0,1], γ can be replaced with (1−α−β) without losing generality.

THEOREM 1. The Top k-FSSGQ problem is NP-hard.

PROOF. We prove this by the reduction from n′-clique. Given
a graph Gc, n′-clique decision problem determines whether the
graph contains a clique, i.e., a complete graph of n′ vertices. For
Top k-FSSGQ problem, assume thatG = Gc, c = n′−1, n′′ = n′,
dm = ∞, O = {o} and ∀v ∈ V, d(v, o) = 1. We first prove the
necessary condition. If Gc contains a n′-clique, there must exist a
group with the same vertices in the n′-clique such that every mem-
ber has social connectivity with all the other members in that group.
Hence the total spatial distance is n′. We then prove the sufficient
condition. If G in Top k-FSSGQ has a group of minimum size of
n′ and maximum size of n′′ and c = n′ − 1, Gc in problem n′-
clique must contain a solution of size n′ too. Therefore, the Top
k-FSSGQ is an NP-hard problem.

Baseline approach: We develop a baseline by extending one of
the most relevant work proposed by of Yang et al. [30]. Yang et al.
developed a sub-optimal solution for a socio spatial group query
that finds the best group of a fixed size against a single meeting
point, where the resultant group follows the required average min-
imum acquaintance constraint among members. Thus to find the
answer of Top k-FSSGQ, for each meeting point, we find the best

Table 1: Basic notation

Symbol Description
d(v, o) The spatial distance between v ∈ G and a o ∈ O
n′ (n′′) Minimum (maximum) query group size
c Minimum acquaintance constraint
dm Maximum spatial distance constraint
k No. of results to be returned
α, β, γ Preference parameters in the scoring function
VIq (VRq ) The set of already explored members (remaining

members) of a candidate group for a oq ∈ O
fc (fk) Current social connectivity in VIq (kth group)
dc (dk) The current aggregate spatial distance of all

members in VIq (kth group)
δf (δd) The additional increase of the total social con-

nectivity (aggregate spatial distance)
fm The maximum additional social connectivity of

new members to the group
d↑n Spatial upper bound for a group of size n
maxdeg The maximum degree of the members in VRq

dmin The minimum spatial distance of the members in
VRq from the meeting point oq

fv↓ The lower bound on social connectivity
dv↑ The upper bound on spatial distance
f(v, VIq ) The number of social connectivity of v in VIq

groups for each allowable group size (between the minimum and
maximum group size), where the groups follow our required mini-
mum acquaintance constraint c. Then, we rank all the groups that
are found w.r.t. all meeting points to find the top k groups. Note
that in the above steps we only consider members that fall within
the maximum spatial range dm.

4. AN EFFICIENT EXACT APPROACH
We propose an efficient exact solution for answering the Top k-

FSSGQ. The key idea is to develop an early termination strategy
based on our derived upper bound on spatial distance that avoids
the exploration of a large number of groups. Next, we present our
advance termination strategy that determines when we should stop
the exploration of members w.r.t. a meeting point.

4.1 An Advance Termination Strategy
Let us assume that we have already found k initial groups that

satisfy the necessary constraints of our query, and let kth bestscore
be the current score of the kth group. Now we need to find whether
any un-explored group has a higher score than the kth bestscore.
Let for any meeting point oq ∈ O, VIq be the set of already ex-
plored members for a candidate group and VRq be the set of re-
maining members that are yet to be explored. If we can guarantee
that including more members from VRq to VIq will not yield any
group having a score greater than kth bestscore, we can safely
terminate the search process for the meeting point oq . Based on the
above observation, we will now formulate some bounds that can
ensure the safe termination of the search.

Let fk be the total social connectivity of the kth group, nk be
the number of members in the group, and dk be the aggregate spa-
tial distance of the group members from the corresponding meeting
point. Also, let fc be the current total social connectivity of mem-
bers in VIq and dc be current aggregate spatial distance of all mem-
bers of VIq from the meeting point oq . The ranking score of a group
is computed based on the weighted combination of three scores:
social score, spatial score and group size score. Thus, we first de-
termine the score gains that can be obtained by the new group w.r.t.
the kth best group in these three scoring measures.
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Social score gain: The social score of the kth group is fk/(nk ∗
(nk−1)) (Definition 1). Let, we are considering some more mem-
bers to be included in the currently explored group VIq so that final
group size becomes n where n′ ≤ n ≤ n′′. In this process, let δf
be the additional increase of the total social connectivity if we add
more members to VIq from VRq . Then, the social score gain of any
newly formed group w.r.t. the social score of the kth group is:

∆Ssc =
fc + δf

n ∗ (n− 1)
− fk
nk ∗ (nk − 1)

Spatial score gain: Similarly, the spatial score of the kth group is
1− dk/(nk ∗ dm) (Definition 2). Let δd be the additional increase
of the aggregate spatial distance of the currently explored group if
we add more members to VIq from VRq . Thus, the spatial score of
the newly formed group will be 1− (dc +δd)/(n∗dm). Hence the
spatial score gain of the newly formed group from the spatial score
of the kth group is ∆Ssp = 1

dm

(
dk
nk
− dc + δd

n

)
Group size score gain: Similarly, the gain of the group size score
of the current group w.r.t. the kth group (Definition 3) is as follows.

∆Sgs =
n− nk

n′′

Based on the above formulations, we can derive the combined
score gain of the new group over the kth group. If the gain is
positive, that implies that the new group may have a better score
than the kth group, thus a candidate for the result. Therefore, the
new group must satisfy the following equation.

Gain = α ∗∆Ssc + γ ∗∆Sgs + β ∗∆Ssp > 0

⇒ α

(
fc + δf

n ∗ (n− 1)
−

fk

nk ∗ (nk − 1)

)
+

(n− nk) ∗ γ
n′′

+
β

dm

(
dk

nk

−
dc + δd

n

)
> 0

⇒
β

dm

(
α

(
fc + δf

n ∗ (n− 1)
−

fk

nk ∗ (nk − 1)

)
+

(n− nk) ∗ γ
n′′

)
+
dk

nk

−
dc + δd

n
> 0

⇒ Gain = n

(
dm

β

(
α

(
fc + δf

n ∗ (n− 1)
−

fk

nk ∗ (nk − 1)

)
+

(n− nk) ∗ γ
n′′

)
+
dk

nk

)
− dc − δd > 0

(2)

Here, we have two unknown variables: additional total social con-
nectivity δf and additional aggregate spatial distance δd that a group
can achieve. To achieve the maximum gain in Eq. (2), we need to
find the maximum possible δf and the minimum possible δd.

4.2 Computing δf

Let fm be the maximum additional social connectivity that a new
group can achieve if we include new members from VRq to VIq for
oq ∈ O. The next member from VRq to be included in VIq , can
be connected with maximum |VIq | members, and the second next
member can be connected with maximum |VIq |+ 1 members, and
so on. Thus, we get:

fm = |VIq |+ (|VIq |+ 1) + (|VIq |+ 2) + ....+ (n− 1)

=
(n− |VIq |) ∗ (n+ |VIq | − 1)

2

In this case, we assume that the maximum degree, maxdeg, of
the complete initial set of members VRq for oq is greater than or

equal to n − 1. However, since a member v ∈ VRq cannot be
connected with more than maxdeg members, we can tighten the
fm bounds. Thus, we can derive fm as follows.

fm = |VIq |+ (|VIq |+ 1) + (|VIq |+ 2) + ....+maxdeg

+maxdeg + .......+maxdeg︸ ︷︷ ︸
(n−maxdeg−1) times

=
(maxdeg + |VIq |) ∗ (maxdeg − |VIq |+ 1)

2

+ (n−maxdeg − 1) ∗maxdeg

If the current candidate group VIq has already more thanmaxdeg
members, the next included members can be socially connected
with at most maxdeg members in VIq . Thus, when maxdeg <
n−1 and |VIq | > maxdeg, then, fm = (n−|VIq |)∗maxdeg . A
new edge in a socio spatial graph increases the social connectivity
of the graph by two. Since fm represents the maximum social con-
nectivity that can be achieved by adding more members in VIq , the
additional social connectivity of VIq can be increased by at most
2 ∗ fm. Thus, we get δf = 2 ∗ fm.

4.3 Distance Upper Bound
Based on the computed upper bound of δf , i.e., δf = 2 ∗ fm, we

can derive the distance upper bound, d↑n, for the group by replacing
the value of δf in Eq. (2) as:

n

(
dm

β

(
α

(
fc + 2 ∗ fm
n ∗ (n− 1)

−
fk

nk ∗ (nk − 1)

)
+

(n− nk) ∗ γ
n′′

)
+
dk

nk

)
− dc = d↑n

(3)

Hence, d↑n is the upper bound for the aggregate spatial distance of
the members in VRq who can be included in VIq to form a feasible
group of size n.

4.4 Advance Termination
Based on the computed d↑n, we deduce an early termination strat-

egy for the group search. Let dmin be the minimum spatial distance
of the members in VRq from oq . Let us assume that we want to form
a new group of size n, where n′ ≤ n ≤ n′′. Thus, the minimum
aggregate spatial distance of the new n − |VIq | members can be
computed as dmin ∗ (n− |VIq |). Hence, δd = dmin ∗ (n− |VIq |).
Consequently, the new group cannot be included in the answer list,
if the following condition holds.

d↑n ≤ dmin ∗ (n− |VIq |) (4)

We can compute d↑n for each valid group size of n. If Eq. (4)
holds for all values of n, we terminate the search for oq as no better
group is possible by adding new members to VIq . We formalize the
above termination process in the following lemma.

LEMMA 1. Let oq be a meeting point, VIq be the list of mem-
bers already included in the process of forming a group. If for
∀n, d↑n ≤ dmin ∗ (n− |VIq |), where n′ ≤ n ≤ n′′, then no group
with a higher ranking score than the current kth best group is pos-
sible by including more members to VIq , and thus the search can
be terminated w.r.t. oq .

PROOF. Proof is omitted for the brevity of the presentation.
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Algorithm 1: Top k-FSSGQ(G,O, n′, n′′, c, dm, k)

1 Initialize a global empty list L
2 Initialize a min priority queue Q
3 foreach meeting point oi ∈ O do
4 Initialize VIi = ∅
5 VRi

←retrieveFromRtree(oi, dm)
6 VRi

←pruneUnqualifiedMembers(VRi
, c)

7 Q.push(oi, VIi , VRi
, dist(VRi

.get(0), oi))
8 generateRankList(Q,L, k)
9 Procedure generateRankList(Q,L, k)

10 while Q is not empty do
11 o, VI , VR← Q.pop()
12 if |VI | = n′′ or |VI |+ |VR| < n′ then
13 continue
14 mark all members of VR as unvisited
15 while (|VI | < n′′) and |VR| > 0 do
16 if there is any unvisited member in VR then
17 v, dv ← nextMember(VR, oi)
18 else break
19 if advanceTerminate(VI , dv , n′, n′′, L, k) then

break
20 flag, score← formGroup(VI , VR, v)
21 if flag = true then
22 if |VI | ≥ n′ and score > L.get(k).score then
23 updateRanklist(L, VI)
24 Q.push(o, VI , VR, dist(VR.get(0), o))
25 Q.push(o, VI − {v}, VR, dist(VR.get(0), o))
26 break;
27 else
28 mark v as visited

4.5 Algorithm
Algorithm 1 provides the pseudo code of the Exact approach.

Given a socio spatial graph G and the set O of meeting points,
the Exact approach for the Top k-FSSGQ returns a list L of top
k groups ranked in increasing order of their socio spatial scores.
The Top k-FSSGQ also takes the following input: the minimum n′

and the maximum n′′ allowable group size, the maximum spatial
distance, dm of members from a meeting point, and the minimum
acquaintance constraint c. Here, the locations of the users are in-
dexed with an R-tree [10].

For each meeting point oi, we initialize an intermediate solution
group VIi as empty and a remaining set VRi containing all mem-
bers within dm distance from oi through retrieveFromRtree
procedure (Lines 4-5). Members in VRi are sorted in ascending
order of their distance to oi. In Line 6, members whose social con-
nectivity do not satisfy the acquaintance constraint c are excluded
from VRi using pruneUnqualifiedMembers procedure.

The algorithm works in a best-first manner, where groups are
formed by incrementally retrieving users w.r.t. different points. A
priority queue Q is maintained, where each entity contains a tuple
of a meeting point oi, an intermediate group VIi , and remaining set
of members VRi for oi. Entities in Q are maintained in ascending
order of the minimum spatial distance between oi and locations of
the members in VRi . We initially push the list of entities w.r.t. all
meeting points in Q. Then, we call generateRankList proce-
dure to find the desired groups and ranks.

In generateRankList procedure, the top entity (o, VI , VR)
of queue Q is popped in each iteration. Then an inner loop starts
that fetches the next unvisited member v from VR, and check the
feasibility of including v in VI . The inner loop breaks when a mem-
ber is successfully included in VI . Procedure advanceTerminate
checks whether exploration of VI and VR w.r.t. o can generate a
group that can be in the final rank list L, and returns true when VI

can be pruned in advance according to Lemma 1.

formGroup returns a pair (flag, score). The flag is set to true
if |VI ∪{v}| < n′, or |VI ∪{v}| ≥ n′ and group VI ∪{v} satisfies
the acquaintance constraint. In either case v is included in VI . In
the later case, the score of the new group, score is also returned.
If score is greater than the score of the kth group, the rank-list L
is updated. When |VI ∪ {v}| ≥ n′ but the group VI ∪ {v} does
not satisfy the acquaintance constraint, the flag is set to false and
score is set to null. If flag is true, for the next step of processing,
two new entities are pushed into Q, where the first entity contains
updated (o, VI and VR), the second entity contains the previous
state, (o, VI − {v} , VR), i.e., before including v into VI , which
ensures the generation of other feasible groups excluding v.

4.6 Time Complexity
For each meeting point, the maximum number of entities in Q is

O(2n′′
). The inner while loop (Lines 1.15-1.28) is executed at most

O(n′′) iterations. The nextMember, advanceTerminate, and
updateRanklist functions incur O(1), O(n′′), and O(k) time,
respectively. So the time complexity of generateRankList
is O(|O|2n′′

(n′′ + |k|)), where |O| is number of meeting points.
However, in practice, the bounds and the termination significantly
reduce the number of entries inQ for each meeting point. Let Cpre

be the initial filtering cost as shown in Lines 1.3-1.7, which in-
cludes object retrieval from R-tree and filtering out the users who
do not satisfy familiarity constraints. Hence the total runtime of
exact approach is O(|O|2n′′

(n′′ + |k|) + Cpre).

5. HEURISTIC-APPROXIMATE APPROACH
In our Exact approach, we use distance upper bound based ad-

vanced termination strategy for pruning. However, since the prob-
lem is NP-hard, it may not be scalable for large datasets. Thus,
we propose a familiarity constraint satisfaction heuristic function
that calculates a lower bound on connectivity of each individual
while considering as a potential group member. This heuristic fur-
ther prunes a larger number of members based on connectivity con-
straint, which makes it a scalable solution.

5.1 Familiarity Constraint Satisfaction
In our Exact approach, for each meeting point, we include mem-

bers in the intermediate group VIq from VRq in ascending order of
spatial distance without considering their social connections. As a
result, when a valid size group is formed, the group may not sat-
isfy the minimum query acquaintance constraint. To overcome this
problem, in the member inclusion process from VRq to VIq , we
prioritize the users having strong social connectivity with the other
members in VIq , and define a familiarity constraint filtering func-
tion to filter out groups that cannot be a result.

Let |VIq | < n′, and f(v, VIq ) be the number of social connec-
tions that v already has with other members in VIq . If v needs to
satisfy constraint c, v requires to have an additional c − f(v, VIq )
connectivity. After including v in VIq , additional n′ − 1 − |VIq |
members need to be included so that VIq becomes an n′ size group.
If c−f(v, VIq ) > n′−1−|VIq |, v cannot have at least c connectiv-
ity because the necessary additional connectivity is greater than the
number of members to be added. As a result, c−f(v, VIq ) ≤ n′−
1−|VIq |, which can be expressed as f(v, VIq ) ≥ c−n′+1+|VIq |.
Also, when |VIq | ≥ n′, v needs to be connected with c other mem-
bers so that the group VIq ∪ {v} can satisfy the familiarity con-
straint. Formally, we write the familiarity constraint function as:

f(v, VIq ) ≥
{
c− n′ + 1 + |VIq |, when |VIq | < n′

c otherwise
(5)
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Algorithm. We can slightly modify Algorithm 1 to introduce the
above familiarity constraint. The code in Line 20-28 will be exe-
cuted only if checkFamiliarity(v, VI) returns true. The pro-
cedure checkFamiliarity verifies whether v satisfies the fa-
miliarity constraint satisfaction function as discussed. If v fails to
satisfy the constraint, v is marked as visited. Next, we explain the
working procedure of our Approximate (which also includes all the
steps of our Exact approach) with a running example.

5.2 Detailed Steps with an Example
We explain our algorithm with the example in Figure 1. Let

V = {a, b, c, d, e} be the set of members and O = {o1, o2} be
the set of meeting points. We want to find the top 2 groups, i.e.,
k = 2 where group size can vary between 3 and 4 (i.e., n′ =
3, n′′ = 4). Each resulting group needs to maintain minimum
acquaintance constraint c = 1. Let α = β = γ = 0.33. Figure 1
shows the social connectivity of the users, where the table presents
the distance of the users from each meeting point in kms. Let the
maximum spatial distance constraint dm be 15kms. Initially, for
each meeting point we retrieve the members within dm distance
from the R-tree in increasing order of spatial distances (Line 1.5).

Figure 2 presents the step-by-step illustration of the member ex-
ploration while forming groups. Each state (node in tree) is marked
with a number denoting the sequence of exploration step. The
users within dm distance from o1 and o2 are {b, a, e, d, c} and
{c, e, a, d, b}, respectively, where the users are sorted in ascend-
ing order of their distances from the corresponding meeting point.

We explore the groups in a best first manner with a min-priority
queue Q, where Q is maintained based on the minimum distance
between the meeting point oi and the locations of the members in
VRi . Initially, there are two entries in Q: (o1, {}, {c, e, a, d, b}, 6)
and (o2, {}, {b, a, e, d, c}, 2) (Refer to Section 4.5 for entries in
Q). The entry (o2, {}, {b, a, e, d, c}, 2) is dequeued first from Q
based on the minimum distance. Let, we begin exploring from the
member b. This state of exploration is shown in Figure 2 (marked
as 1). As the terminating conditions are not satisfied, according to
Lines 1.25-1.26, the entries (o2, {b},{a, e, d, c}, 3) and (o2, {},
{a, e, d, c}, 3) are then pushed to Q for further exploration. The
subsequent explorations are shown in Figure 2.

From Figure 2, we see that less number of groups are explored
for o1 than o2. For o1, all of the subsequent states of {c, e}, {c, d},
{e, d} and {c, a, d} are pruned by early termination (Lemma 1).
Similarly, the state {a} and its subsequent states are also not gen-
erated for the same reason. State {e, a, d} is filtered by familiarity
constraint function (Subsection 5.1) and its subsequent states are
pruned due to early termination. For meeting point o2, Exact ap-
proach stops generating unnecessary states, i.e., state {d} or {e} is
not generated since it cannot produce any group satisfying the min-
imum size constraint. Familiarity constraint satisfaction function
stops generating some states, for example {b, e, c}, {e, d, c}, {a, e, d}.
At the end of the process, group {b, a, d, c} and {b, a, e, c} are the
top 2 groups with score 83.6 and 79.2 respectively.

6. A FAST APPROXIMATE APPROACH
In the Exact approach, we defined upper bounds and the ter-

minating condition based on all the remaining set of members to
ensure that all feasible groups are considered, hence the Exact ap-
proach needs to explore a large number of members. To expedite
the group search further, we propose a Fast Approximate (FA) ap-
proach. The key idea is to develop an upper bound on spatial dis-
tance and a lower bound on social connectivity of a member (in
contrast to all members in the exact approach) to be included in
a feasible group. Based on the bounds, we early terminate when

Figure 2: Node exploration steps

there is no remaining member who can increase the group rank.
Moreover, we impose a strict familiarity constraint, i.e., we only
include a member if her connectivity with the existing members of
the group is greater than the expected connectivity of the group (cf.
Section 6.4). In this approach, we only include a member to the
initially formed group if it results in a higher ranked group. Let,
for a meeting point oq we have got an initial feasible group VIq

where |VIq | ≥ n′. A member v ∈ VRq will be included in VIq if
VIq ∪ {v} has a higher rank score than VIq . Similar to the exact
approach (Section 4), we derive the gains in social score, spatial
score, and the group size score for a new member as follows.

Social score gain: Let fc be the total social connectivity of
members in VIq and δf be the additional social connectivity if a
new member v is included in VIq . Thus, the social score gain of the
group VIq ∪ {v} can be expressed as follows.

∆Ssc =
fc + δf

(|VIq |+ 1) ∗ |VIq |
−

fc

|VIq | ∗ (|VIq | − 1)

=
1

|VIq | ∗ (|VIq |+ 1)

(
δf −

2fc

(|VIq | − 1)

)
Spatial score gain: Let dc be the aggregate spatial distance

from members in VIq to oq , and δd be the additional spatial distance
between new member v ∈ VIq and oq . The spatial score gain is:

∆Ssp =

(
1−

dc + δd

dm ∗ (|VIq |+ 1)

)
−
(

1−
dc

dm ∗ |VIq |

)
=

1

dm ∗ (|VIq |+ 1)

(
dc

|VIq |
− δd

)
Group score gain: If we include a new user v to VIq , the group
size will increase by one. Thus, the group size score gain is:

∆Sgs =
(|V ′|+ 1)− |V ′|

n′′
=

1

n′′

Total score gain: To ensure that the new group VIq ∪ {v} has a
higher rank score than the initial group VIq , the summation of the
gains of the above three scores must be positive.

α ∗∆Ssc + β ∗∆Ssp + γ ∗∆Sgs > 0

⇒
α

|VIq | ∗ (|VIq |+ 1)

(
δf −

2fc

(|VIq | − 1)

)
+

γ

n′′

+
β

dm ∗ (|VIq |+ 1)

(
dc

|VIq |
− δd

)
> 0

⇒
dm ∗ (|VIq |+ 1)

β

(
α

|VIq | ∗ (|VIq |+ 1)

(
δf−

2fc

(|VIq | − 1)

)
+

γ

n′′

)
+

dc

|VIq |
> δd (6)
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6.1 Distance Upper Bound for an User
Based on the above formulation we can derive a distance bound

for a user v. In Eq. (6), we have two unknown variables, δd and
δf . As the new group must satisfy constraint c, if we add v (from
VRq ) to VIq , the connectivity of group VIq will increase at least by
2 ∗ c. Thus, we replace δf with 2 ∗ c in Eq. (6). Let left hand side
(L.H.S) of Eq. (6) be dv↑. Thus, we get dv↑ > δd. Therefore, dv↑
is the upper bound on spatial distance of a user v to be considered
as a candidate member in VIq w.r.t. oq . Formally,

dm ∗ (|VIq |+ 1)

β

(
α

|VIq | ∗ (|VIq |+ 1)

(
2 ∗ c−

2fc

(|VIq | − 1)

)
+

γ

n′′

)
+

dc

|VIq |
= dv↑

(7)

Here, if d(v, oq) < dv↑, the new group VIq ∪ {v} will have
higher score than that of the previous group.

LEMMA 2. For a v ∈ VRq , if |VIq | ≥ n′, d(v, oq) < dv↑,and
f(v, VIq ∪ {v}) ≥ c, then VIq ∪ {v} guarantees a higher scoring
group than the current group VIq .

6.2 Lower Bound Social Connectivity of a User
When v ∈ VRq satisfies Lemma 2, VIq ∪ {v} becomes higher

scoring than VIq . However, if v cannot satisfy Lemma 2, VIq ∪{v}
can still have higher score as v can have more than c connection
with members of VIq (as opposed to our previous assumption that
v can have c social connection within VIq ). We can re-write our
score gain formulation, and can get the following equation for δf .

α ∗∆Ssc + β ∗∆Ssp + γ ∗∆Sgs > 0

⇒
α

|VIq | ∗ (|VIq |+ 1)

(
δf −

2fc

(|VIq | − 1)

)
+

γ

n′′
+

β

dm ∗ (|VIq |+ 1)

(
dc

|VIq |
− δd

)
> 0

⇒ δf >
|VIq | ∗ (|VIq |+ 1)

α

(
β

dm ∗ (|VIq |+ 1)
∗

(
δd −

dc

|VIq |

)
−

γ

n′′

)
+

2fc

(|VIq | − 1)

Here, we put δd = d(v, oq), which is the lowest possible δd as v
has the minimum distance in VRq from oq , to get the lower bound
on social connectivity fv↓ from the R.H.S of the above equation.
Thus, δf > fv↓. Eventually, if including v in VI results in in-
creased social connectivity more than fv↓, VIq ∪ {v} will have
higher score than VIq . Since f(v, VIq ) denotes the number of con-
nectivity of v in VIq , we have δf = 2 ∗ f(v, VIq ). Formally,

fv↓ =
|VIq | ∗ (|VIq |+ 1)

α

(
β

dm ∗ (|VIq |+ 1)
∗

(
d(v, oq)−

dc

|VIq |

)
−

γ

n′′

)
+

2fc

(|VIq | − 1)

(8)

LEMMA 3. If |VIq | ≥ n′ and 2 ∗ f(v, VIq ) > fv↓, VIq ∪ {v}
guarantees a higher scoring group than the current group VIq .

PROOF. Let d(v, oq) be the minimum spatial distance between
any v ∈ VRq to oq . We compute the lower bound on social connec-
tivity fv↓ by putting the value δd = d(v, oq) in Eq. (8). Since v has
the minimum spatial distance d(v, oq) to oq , the social connection
of v in VIq must be greater than the lower bound of social connec-
tivity to guarantee that the score of VIq ∪{v} is greater than current

VIq . As a new connection increases the social connectivity of the
graph by two, if 2 ∗ f(v, VIq ) is greater than fv↓, then VIq ∪ {v}
is guaranteed to be a higher scoring group than VIq .

6.3 Early Termination using Distance Bound
According to Lemma 2, we can decide whether we should add

a member v ∈ VRq to VIq . To terminate our search for any po-
tential members in VRq , we have to ensure that no other members
in VRq can generate any better group. However, checking such
constraint for each member in VRq is computationally expensive.
To overcome this, we compute an upper bound on spatial distance
based on the social connectivity assumption that the member v in
VRq , which is considered to be included in VIq , will be socially
connected to every other members of VIq . Moreover, if maxdeg
denotes the maximum degree of the initial set VRq of all mem-
bers, then a member cannot be connected to more than maxdeg
members. Thus, we get fmin = min(maxdeg, |VIq |). We put
δf = 2 ∗ fmin in Eq. (6), and get the L.H.S. of Eq. (6) as d↑.
Hence, d↑ > δd. Therefore d↑ is the upper bound on spatial dis-
tance for a member in VRq w.r.t. oq . Formally, we get d↑ as follows.

dm ∗ (|VIq |+ 1)

β

(
α

|VIq | ∗ (|VIq |+ 1)

(
2 ∗ fmin−

2fc

(|VIq | − 1)

)
+

γ

n′′

)
+

dc

|VIq |
= d↑

(9)

We fetch members from VRq in increasing order of their spatial
distance from oq . Let v ∈ VRq be the member with the minimum
spatial distance from oq . Then v cannot provide any higher rank
score if d(v, oq) > d↑.

LEMMA 4. Let v ∈ VRq be the next fetched member from VRq .
If |VIq | ≥ n′, d(v, oq) > d↑, the search for a better group w.r.t. oq
can be terminated as including any member from VRq to VIq does
not result in a higher scoring group.

PROOF. Any member from VRq is expected to have spatial dis-
tance to oq less than d↑ so that including one more member from
VRq to VIq ensures positive score gain. Let v be the next retrieved
member from VRq . As the members are retrieved in increasing or-
der of their distances from oq , v has the minimum distance from oq
than any other member in VRq . If d(v, oq) > d↑, then no other sub-
sequent member in VRq can have a distance less than d↑. Thus we
can safely terminate as no better scoring group can be formed.

6.4 A Heuristic for Familiarity Constraint
To expedite the group search process in the fast approximate ap-

proach, we also propose a heuristic that prioritizes members with
higher social connectivity to the intermediate solution group. Since
the minimum group size is n′, each member in n′ size group must
be connected with at least c members from the remaining n′ − 1
members to satisfy the acquaintance constraint. According to uni-
tary method, a member v ∈ VRq will be included in VIq , if v has

social connectivity with at least
c∗|VIq |
n′−1

members. Thus we get the

social connectivity of member v in VIq , f(v, VIq ) ≥ c∗|VIq |
n′−1

when
|VIq | < n′. On the other hand, when |VIq | ≥ n′, v must know
c members to form a group VIq ∪ {v} that satisfies the minimum
acquaintance constraint. In summary, we can express our strict fa-
miliarity constraint satisfaction function as follows.

f(v, VIq ) ≥
{

c∗|VIq |
n′−1

, |VIq | < n′

c |VIq | ≥ n′
(10)
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6.5 Algorithm
In the FA approach, we incrementally fetch members from VR

in increasing order of their distances from a meeting point, and
include a member to the intermediate solution group VI , when the
member satisfies the strict familiarity constraint function. Once the
size of VI reaches n′, we compute both spatial and social bounds
to decide on whether we can include more members to the group to
form higher scoring groups. The steps of the algorithm is quite sim-
ilar to the Exact algorithm. We need to make the following changes
in Algorithm 1: (i) In the advanceTerminate procedure (Line
19), we need to incorporate the early termination condition as pre-
scribed in Lemma 4. (ii) The block (Line 20 - 28) is executed only
when |VI | < n′ is true, otherwise when either dv < dv↑ (Lemma
2) or 2 ∗ f(v, VI) > fv↓ (Lemma 3) is true.

6.6 Approximation Ratio
In this section, we derive a theoretical bound on the approxi-

mation ratio of our approximate approach. We compute the ratio
as the score of a group retrieved by our Fast Approximation algo-
rithm divided by the score of the best possible group which might
be missed by our algorithm in the worst case scenario.

In our approach, the set of unexplored members, VR is sorted
according to distance of the members from a meeting point. Let G
be a group retrieved from VR where dL and dH are the nearest and
the farthest distances of members from the meeting point o, respec-
tively. As per Equation 1, the score of groupG w.r.t. o, S(G, o) (or
simply S(G)), will be the lowest when each member inG has a so-
cial connectivity of exactly c (the lowest connectivity) and distance
dH from o. Let us denote such lowest scoring group (sub-optimal)
asGsopt. Similarly, the highest scoring group is formed when each
member is connected to every other member in the group and has
a distance of dL from the meeting point. Let us denote this group
(optimal) as Gopt. Let us assume that the sizes of Gsopt and Gopt

are n and nopt, respectively. Since we assume that members of
Gopt are at dL distance, and Gsopt are at dH distance, and our
algorithm retrieves members in order of distance, we can retrieve
members of Gsopt instead of members of Gopt iff dH = dL. We
compute the score of each of the three constituents of our Gsopt

and Gopt as follows.
Score Gsopt Gopt

Social 2×n×c/2
n(n−1)

= c
n−1

2×nopt×(nopt−1)/2

nopt(nopt−1)
= 1

Spatial 1− n×d
n×dm

= 1− d
dm

1− nopt×d

nopt×dm
= 1− d

dm

Size n
n′′

nopt

n′′

Hence, we have the following scores: S(Gsopt) = α × c
n−1

+

β× (1− d
dm

) +γ× n
n′′ , and S(Gopt) = α×1 +β× (1− d

dm
) +

γ × nopt

n′′

If we set nopt = n′′ (the maximum group size), we get the max-
imum possible score of S(Gopt) as: S(Gopt) = α× 1 + β× (1−
d

dm
) + γ × 1. Hence, for any group returned by the FA algorithm,

the approximation ratio will be bounded by the following value:

S(Gsopt)

S(Gopt)
=
α× c

n−1
+ β × (1− d

dm
) + γ × n

n′′

α× 1 + β × (1− d
dm

) + γ × 1

We also show the approx. ratio bound for different scenarios:
Emphasis Weights Approximation ratio

Social score α = 1, β = γ = 0 c
n′′−1

Spatial score β = 1, α = γ = 0 1

Size score γ = 1, α = β = 0 n′

n′′

6.7 A Greedy Approximation Approach
To expedite the search, we propose a greedy approximate ap-

proach that works as our baseline for the approximate approach.
In the greedy approximation approach, we avoid the backtracking,
and only progressively add members from VR to VI if they satisfy
familiarity and other constraints. Thus, when a member is included
in VI we do not exclude it for forming other possible groups.

7. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation for the

baseline and our proposed approaches to answer the Top k-FSSGQ
queries. Specifically, we compare the performance among the fol-
lowing five methods: (i) the baseline (B) as presented in Section 3,
(ii) the exact approach (E) (iii) the approximate approach (A), (iv)
the fast approximate approach (FA), and (v) the greedy approxi-
mate approach (GA) as presented in Section 6.7.

7.1 Experimental Settings
These algorithms are implemented in Java and run on a server

with Intel Xeon E5-2630, 6 cores X 2 threads per core @2.3 Ghz,
15360 kB of cache and 256 GB of RAM.
Dataset. We conduct extensive experiments with three real datasets
(i) Brightkite [17], (ii) Gowalla [17], and (iii) Twitter [1].

Brightkite and Gowalla, each contains the social connections of
the users and their check-in locations. As a user may have multiple
check-ins, we consider the most frequent check-in location as the
location of that user. If a user does not have any check-in, that user
along with her social connections is discarded. The meeting point
locations are generated by using the same distributions of check-
in locations, i.e., the locations with higher check-ins have higher
chance of selecting as meeting locations. Table 2 contains the de-
tails information of the datasets after applying these processing.

Table 2: Datasets

Datasets #Nodes #Edges Check-ins Time Period
Brightkite 58,228 214,078 4,491,143 Apr 08 - Oct 10
Gowalla 196,586 950,327 6,442,890 Feb 09 - Oct 10
Twitter 10M 84,744,091 - May 11

The intuition behind selecting the meeting points in this way is,
if many people frequently visit a place, the place is more likely
to be their meeting point in real life. We also ran experiments by
randomly selecting the meeting points with uniform distribution.
However, in that case, there are many instances where no valid
group is formed due to the sparsity of check-ins. Therefore, we
exclude such experiments results.

The Twitter dataset contains the ‘follow’ relations among users
and the locations of users in their profiles. As only a fraction of
the users (appx. 1.5 millions of 10 millions) have their meaningful
location mentioned in the profile, we generate the locations of the
other users following the same distribution. We consider the ‘fol-
low’ relationship as an undirected social connection. We use this
augmented twitter dataset to show the scalability of our approaches.
Evaluation Metrics and Parameters. We evaluate the efficiency,
scalability, and effectiveness of our algorithms by varying different
parameters. The list of parameters with their ranges and default val-
ues are shown in Table 3. For all experiments, a single parameter
is varied while keeping the rest at default. To determine efficiency
and scalability, we study (i) total runtime and (ii) total number of
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Table 3: Parameters

Parameter Range Default
Min group size (n′) 4,5,6,7 6
Max group size (n′′) 6,7,8,9 8
Min acquaintance 2,3,4,5 3
Max distance constraint 16,20,24,28 20
α, β, γ [0, 1] .33
No. of meeting points 50,100,200,400 100
k 4,8,16,32 8
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Figure 3: Effect on varying n′

members (nodes) explored to find the top-k results. For each ex-
periment, we generate 100 queries with the same parameter setting
and report the average performance. To measure the effectiveness
of our approximate approaches, the impact of each parameter is
studied using the following metrics.
(i) Percentage of group appearance. Both the exact and approx-
imate approaches return a ranked list, where the groups in the ap-
proximate result is guaranteed to have a lower or equal score than
the groups returned by the exact approach. Therefore, some groups
in the exact results may not appear in the approximate results. In
our experiments, we compute the number of groups that are com-
mon in the top k approximate results and in the corresponding top
k, 1.5 ∗ k, and 2 ∗ k exact results as a percentage. For example,
when k = 16, we compute the percentage of the groups in top 16-
approximate that also appear in top 16, top 24, and top 32-exact.
Similar evaluation is applied for top k-FA (fast approximate) and
top k-GA (greedy) solution.
(ii) Precision. Precision is generally measured as the fraction of
the relevant instances among the retrieved instances. In our case,
we measure the precision as how many groups in top k-A are in
top k-E. For example, when k = 16, if 12 groups in top 16-A also
appear in top 16-E, the precision is computed as 12/16=0.75.
(iii) Recall. Recall is generally measured as the fraction of the
relevant instances that have been retrieved over the total amount
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Figure 4: Effectiveness for varying n′

of relevant instances. We measure the recall as ratio of the kth

group rank in top k-A and the rank of the same group using the E
approach. For example, when k = 16, if 16th group in top 16-A
appear as the 20th ranked group in E, recall is 16/24=0.67.
(iv) Percentage of user overlap. We also compare the percentage
of user overlaps in two rank lists. For example, when k = 16, if
the same set of users appear in both top 16-A and top 16-E, then
percentage of user overlap will be 100%.

7.2 Performance evaluation

7.2.1 Varying Minimum Group Size, n′

Efficiency and scalability evaluation: Figure 3 shows the effect
of varying n′ for Brightkite and Gowalla. The runtime of the base-
line, the exact approach, and the approximate approach gradually
increase with n′, as more groups are likely to be explored for a
higher n′. The runtime of FA and GA does not vary much, as these
processes can terminate earlier by exploring less number of groups.
As shown in Figure 3, on average E takes 3.67 times and 9.3 times
less run time than B in Gowalla and Brightkite, respectively. The
approximate approach runs 84 times and 12.67 times (on average)
faster than B in Gowalla and Brightkite, respectively. FA runs 737
times and 23.56 times (on average) faster than B in Gowalla and
Brightkite, respectively. The number of nodes explored also shows
similar trend. As GA avoids backtracking, the approach is faster
than the other approximate approaches. Since the density of mem-
bers around meeting points is higher in Gowalla than in Brightkite,
the number of explored nodes w.r.t. the same group size is larger in
Gowalla than that of Brightkite.
Effectiveness Evaluation: Figure 4 presents the effectiveness for
varying n′. For each n′, we have nine values (shown with bars).
The first three values denote the percentage of the groups of top k-
Approximate (topk-A) appearing in top k-Exact (topk-E), top 1.5 ∗
k-E, and top 2∗k-E rank list, respectively, where k is set to default.
The next six bars represent these values for FA (fast approximate)
and GA (greedy). A higher percentage denotes a higher effective-
ness. For Brightkite, the percentage for (A) is 98.25-100%, and for
Gowalla the percentage varies from 80-97% with some noticeable
less percentage (8%) for lower n′. We observe that GA fails to find
top groups of size 4 where strict familiarity is applied (c = 3) for
Gowalla. However we observe that in most of the cases, the top
k-E and the top k-A return exactly the same set of groups. FA pro-
duces similar result (96.75-99.75% ) for Brightkite, whereas 63%
in the average best case for Gowalla dataset.

High precision (99% for Brightkite and 70% for Gowalla) and
high recall are also observed for approximation. The precision of
(FA) is on average 98% and 21% for Brightkite and Gowalla, re-
spectively. However recall of FA is 98% and 46% for these datasets.
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Figure 5: Effect on varying number of meeting points

The percentage of user overlaps between the top k-E and the top k-
A is always 100% for Brightkite, whereas, the percentage user over-
laps is on average 81% for Gowalla (not shown in figure). Similar
result of member overlap is found between the top k-E and the top
k-FA (always 100% for Brightkite and 50.65% for Gowalla).

GA (greedy) exhibits lower percentage of group appearance for
Gowalla. Sometimes, GA has a very low percentage (e.g., 0% for
Gowalla). GA exhibits 69% group appearance in top k-E, 85% in
top 1.5 ∗ k-E, and 96% in 2 ∗ k-E for Brightkite. In general, both
precision and recall (79% for Brightkite and 31% for Gowalla) are
also much lower (not shown in figure) than the other approximate
approaches. Although GA has much lower runtime and the least
number of node exploration, the effectiveness is traded significantly
for efficiency in many cases.

7.2.2 Varying Meeting Points
Efficiency and scalability: As the search space increases with the
increase of the |O|, the costs for the baseline and exact approach
increase (Figure 5). The costs of the approximate algorithms do
not vary much as many calculations are avoided by considering
bounds on individual members than the group. The benefit of our
approaches are higher for higher |O|. Similar pattern is seen w.r.t.
number of nodes explored.
Effectiveness: Figure 7 shows the percentage of group appearance
when we vary |O|. Both A and FA demonstrate a very high effec-
tiveness for both datasets. GA has a very low percentage (0%) for
Gowalla but high percentage (84%) for Brightkite. GA produces
similar results while varying other parameters too.

From these experiments we consistently find that, although GA
has almost constant efficiency, the effectiveness of GA is not com-
petitive in many cases.

7.2.3 Varying Maximum Distance Threshold (dm)
As more users become eligible to be included in the result with

the increase of dm, costs increase rapidly with the increase in dm
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Figure 6: Effect on varying maximum distance
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Figure 7: Effectiveness for varying the number of meeting points

(Figure 6). In all cases, baseline is significantly outperformed by
other approaches. E takes 13 times higher runtime than A and 122
times higher runtime than FA for threshold 50km in Gowalla. The
number of nodes explored also increases for a higher threshold due
to the expanded search space. As the density of members is higher
in Gowalla than Brightkite, the benefit of the both A and FA is much
higher than E in Gowalla for a higher threshold.

7.2.4 Varying Minimal Acquaintance Constraint c
Figure 8 demonstrates that for both datasets, the number of ex-

plored nodes decreases rapidly with the increase of c. The reason is
that, the degree of nodes in all datasets follow the long tail distribu-
tion. So for a higher c, the number of nodes that do not satisfy the
constraint increases rapidly; thus a higher number of nodes can be
pruned. Although the number of nodes explored differ in all cases,
the runtimes are very close for c ≥ 4 for Brightkite and Gowalla.

7.2.5 Varying Other Parameters
We also vary k, α, β, and γ (not shown for space constraint). We

do not observe any noticeable change in trends for varying these pa-
rameters except β. With the increase of β, especially when β > α
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Figure 8: Effect on varying minimum acquaintance constraint

and β > γ, both the processing time and the number of nodes ex-
plored decrease. Since we explore members based on the increas-
ing order of spatial distance w.r.t. meeting points, it is expected that
the nearby groups are found quickly for a large β.

7.2.6 Experiments with Twitter Dataset
To show our scalability, we use augmented Twitter dataset of 10

million users, and run the experiments by varying different param-
eters (Figure 10(a) - (d)). Due to space constraints, we have only
shown the number of nodes explored (which shows similar trends
to the required time). We have observed similar performance im-
provement that we observed in other datasets. However, we have
also observed few exceptions: e.g., in Figure 10(a), the results do
not change much for varying n′, the number of nodes (also the
time) even start to decrease after n′ = 6. The reason is that, on
average, each user has only a few connections in this dataset. Thus,
if n′ is fixed to a large value, not many groups can satisfy that con-
straint. However, A, FA, and GA require about 5.5, 15, and 110
times less node exploration than the baseline.

8. CONCLUSIONS
We have proposed a novel Top k Flexible Socio Spatial Group

Query (Top k-FSSGQ) to find the top k groups of various sizes
w.r.t. multiple POIs. To incorporate the trade-offs among differ-
ent socio-economic factors, we have devised a ranking function by
combining social closeness, spatial distance, and group size, which
provides the flexibility of choosing groups of different sizes under
different constraints. To effectively process Top k-FSSGQ, we have
first developed an Exact approach that ensures early termination of
the search based on the computed upper bound distance. We have
proved that the problem is NP-hard, and thus we have designed a
Fast Approximate approach based on the relaxed bound and strict
social connectivity constraint, which is much faster than the exact
solution by sacrificing the quality slightly. We have conducted de-
tailed experimental studies with three popular real-world datasets
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Figure 9: Effect on varying maximum group size
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Figure 10: Scalability experiments on the Twitter dataset

and shown that the Exact approach runs up to one order magnitude
faster than the baseline, and the Fast Approximate approach runs
up to two orders of magnitude faster than the Exact approach and
returns the same set of groups in most of the cases.
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