
KBPearl: A Knowledge Base Population System
Supported by Joint Entity and Relation Linking

Xueling Lin, Haoyang Li, Hao Xin, Zijian Li, Lei Chen
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong, China

{xlinai, hlicg, hxinaa, zlicb, leichen}@cse.ust.hk

ABSTRACT
Nowadays, most openly available knowledge bases (KBs) are
incomplete, since they are not synchronized with the emerg-
ing facts happening in the real world. Therefore, knowledge
base population (KBP) from external data sources, which
extracts knowledge from unstructured text to populate KBs,
becomes a vital task. Recent research proposes two types of
solutions that partially address this problem, but the per-
formance of these solutions is limited. The first solution,
dynamic KB construction from unstructured text, requires
specifications of which predicates are of interest to the KB,
which needs preliminary setups and is not suitable for an
in-time population scenario. The second solution, Open In-
formation Extraction (Open IE) from unstructured text, has
limitations in producing facts that can be directly linked to
the target KB without redundancy and ambiguity. In this
paper, we present an end-to-end system, KBPearl, for KBP,
which takes an incomplete KB and a large corpus of text
as input, to (1) organize the noisy extraction from Open
IE into canonicalized facts; and (2) populate the KB by
joint entity and relation linking, utilizing the context knowl-
edge of the facts and the side information inferred from the
source text. We demonstrate the effectiveness and efficiency
of KBPearl against the state-of-the-art techniques, through
extensive experiments on real-world datasets.

PVLDB Reference Format:
Xueling Lin, Haoyang Li, Hao Xin, Zijian Li and Lei Chen. KB-
Pearl: A Knowledge Base Population System Supported by Joint
Entity and Relation Linking. PVLDB, 13(7): 1035-1049, 2020.
DOI: https://doi.org/10.14778/3384345.3384352

1. INTRODUCTION
With the recent development of information extraction

techniques, numerous large-scale knowledge bases (KBs),
such as Wikidata [63] and DBpedia [3], have been con-
structed. In these KBs, ontological knowledge is stored in
the form of (subject, predicate, object) triples, repre-
senting millions of real-world semantic concepts, including

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384352

entities, relations, specified types, and categories. These
KBs provide back-end support for various knowledge-centric
services of real-world applications, such as question answer-
ing [68] and online recommendations [7].

However, most KBs are not complete [44, 46], since they
have limited coverage of what happens in the real world and
are not synchronized with the emerging entities and their
relations. Rerunning the KB construction process to keep
these KBs up-to-date with real-time knowledge is too expen-
sive, since most KBs are built in a batch-oriented manner.
Therefore, knowledge base population (KBP) from external
data sources has been proposed [25, 29]. Specifically, this is
the task that takes an incomplete KB and a large corpus of
text as input, then extracts knowledge from the text corpus
to complete the incomplete elements in the KB.

Currently, there are two major types of research works
that address the KBP issue. The first type of works, such
as DeepDive [12, 45, 57] and SystemT [10], aim for a dy-
namic and broader construction of KBs. However, these
prior works require a specification that which predicates are
of interest to the KBP task. In other words, unless predi-
cates such as birthplace have been specified preliminarily by
the systems, the knowledge regarding these predicates will
never be discovered automatically. This limits the ability of
these systems to extract knowledge from unstructured text
for KBP without any preliminary setups.

The second type of works, Open Information Extraction
(Open IE) [13, 47, 53], partially addresses the task of KBP.
The approaches based on Open IE allow the subjects and
objects in the triples to be arbitrary noun phrases extracted
from external sources, while predicates will be arbitrary verb
phrases. Such Open IE approaches not only improve the
efficiency of KBP in an unsupervised manner, but also rec-
ognize entities and predicates that are not recorded in the
current KBs. Nevertheless, there are two major problems
that these Open IE approaches suffer from:

• The canonicalization problem: the triples extracted by
Open IE tools (referred to as Open triples) that repre-
sent the same semantic meaning are not grouped. For
instance, the Open triples (Michael Jordan, was born
in, California), (Professor Jordan, has birthplace,
CA), and (M. Jordan, was born in, CA) will all be pre-
sented even if they represent an equivalent statement,
which leads to redundancy and ambiguity. Recently, some
techniques [21,32,61,64] have been proposed to canonical-
ize Open triples, by clustering those with the same seman-
tic meaning in one group. However, such approaches have
high overheads and are not geared up for in-time KBP.

1035

• The linking problem: the knowledge in the Open triples
is not mapped to the ontological structure of the current
KBs. In other words, Open IE techniques only extract
(Michael Jordan, was born in, California), without
indicating which entity the noun phrase Michael Jordan
refers to. Recent techniques [16, 52] have been proposed
to address both entity linking and relation linking tasks
in short text, by linking the noun phrases (resp., relation
phrases) detected in the text to the entities (resp., pred-
icates) in the KB. However, there are still three draw-
backs. First, if a noun phrase cannot be linked to any
existing entity in the KB, then the knowledge regarding
this noun phrase cannot be populated to the KB. Sec-
ond, most of the existing works disambiguate each phrase
in a document separately. Nevertheless, it is beneficial to
consider entity and predicate candidates for the input doc-
ument in combination (which we call “global coherence”),
to maximize the usable evidence for the candidate selec-
tion process. For example, if a noun phrase artificial
intelligence refers to AI (branch of computer science)
rather than A.I. (movie), then we would expect the noun
phrase Michael Jordan in the same document to be M.
Jordan (computer scientist and professor) rather than M.
Jordan (basketball player). Third, none of the existing
works utilizes such global coherence for joint entity and
relation linking in long-text documents.

In this paper, we propose KBPearl (KB Population sup-
ported by joint entity and relation linking), a novel end-to-
end system which takes an incomplete KB and a set of doc-
uments as input, to populate the KB by utilizing the knowl-
edge extracted and inferred from the source documents. Ini-
tially, for each document, KBPearl conducts knowledge ex-
traction on the document to retrieve canonicalized facts and
side information. Specifically, the side information includes
(1) all the named entity mentions in the document; (2) the
types of these named entity mentions; and (3) the time-
stamps in the document. After that, to capture the global
coherence of concepts in the documents, KBPearl conducts
KBP in the following steps. First, KBPearl constructs a
semantic graph based on the knowledge extracted from the
canonicalized facts and the side information. Second, KB-
Pearl disambiguates the noun phrases and relation phrases
in the facts, by determining a dense subgraph from the se-
mantic graph in an efficient and effective manner. Finally,
KBPearl links the canonicalized facts to the KB and creates
new entities for non-linkable noun phrases.

Specifically, compared to the mainstream dynamic KB
construction, we acquire facts for non-predefined predicates.
Compared to the Open IE methods, we canonicalize the ar-
guments of facts and link them to the target KB. Compared
to the current techniques aiming for joint entity and rela-
tion linking, we conduct the joint linking task on long-text
documents efficiently. To the best of our knowledge, this is
the first work that conducts joint entity and relation linking
and reports new entities for KBP leveraging the knowledge
inferred from long-text documents. We summarize the novel
contributions of this paper as follows.

• We present an end-to-end system KBPearl to populate
KB based on natural-language source documents with the
support of Open IE techniques.
• We employ a semantic graph-based approach to represent

the facts and side information in the source documents.

In this way, we capture the concepts mentioned in the
documents with global coherence. Specifically, we propose
a novel similarity design schema to formulate the similar-
ity between entity (resp., predicate) pairs based on their
shared keyphrases stored in the target KB.
• We perform a joint entity and relation linking task on the

semantic graph, aiming to disambiguate the entities and
predicates jointly for KBP. Specifically, we formulate this
task as a dense subgraph detection problem. We prove
the NP-hardness of finding such a dense subgraph and
propose a greedy graph densification algorithm as solu-
tion. We also present two variants to employ the graph
densification algorithm in the KBPearl system in an effec-
tive and efficient manner. Moreover, we locate the noun
phrases representing new semantic concepts which do not
exist in the target KB, and create new entities for them.
• We conduct extensive experiments to demonstrate the vi-

ability of our system on several real-world datasets. Ex-
perimental results prove the effectiveness and efficiency of
KBPearl, compared with the state-of-the-art techniques.

The rest of the paper is organized as follows. We intro-
duce the important definitions in Section 2, and present the
system overview in Section 3. We illustrate the construc-
tion of the semantic graph in Section 4. We formulate the
dense subgraph problem, and present the graph densifica-
tion algorithm to perform joint entity and relation linking
in Section 5. Section 6 presents our experimental results.
We discuss the related works in Section 7 and conclude our
paper in Section 8.

2. PROBLEM DEFINITION
We first introduce the important definitions. We then

define the problem that our system addresses in Problem 1.

Definition 1. Knowledge Base (KB). A KB Ψ can be
considered as a set of facts, where each fact is stored in the
form of a triple (s, p, o), representing the subject, predicate,
and object of a fact. In the KB Ψ, we denote the set of
entities as EΨ, the set of predicates as PΨ, and the collection
of literals as LΨ. For a triple (s, p, o), we have s ∈ EΨ,
p ∈ PΨ and o ∈ EΨ ∪ LΨ.

Definition 2. Open Triples. The Open triples are ex-
tracted by the Open IE techniques from a given document.
An Open triple is denoted as t = (nsub, r, nobj), where the
noun phrase nsub is the subject, r stands for the relation,
and noun phrase nobj represents the object.

Definition 3. Side Information. The side informa-
tion of a given document d, denoted by S(d), includes (1)
all the named entity mentions detected in document d; (2)
the types of these named entity mentions; and (3) the time-
stamp information in the document d.

Problem 1. KB Population From External Unstruc-
tured Text. Given an incomplete KB Ψ and a document d,
our task is to (1) extract the side information S(d) and a
set of canonicalized Open triples T = {t1, t2, ...} from the
document d; (2) link each triple ti = (nsub, r, nobj) in T to
the KB Ψ in order to populate the knowledge in Ψ based on
the side information S(d). Specifically, in each ti ∈ T , we
decide whether nsub is linked to an entity e ∈ EΨ, r is linked
to a predicate p ∈ PΨ, and nobj is linked to an entity e′ ∈ EΨ
or referred to as a literal l ∈ LΨ.

1036

Target KB 𝛹 Sentence Tokenizer

Named Entity
Recognition

POS Tagger

Open IE Tool

Stage 1: Knowledge Extraction Stage 2: Knowledge Linking

Semantic
Graph

Candidate Entity and
Predicate GenerationTime & Source

Constraint

Step 1.1: Side Information Extraction

Step 1.2: Triple Extraction Step 1.3: Canonicalization

Step 2.1: Semantic Graph Construction

Step 2.2: Graph Densification and Linking
document 𝑑 side information 𝑆(𝑑)

Open triples 𝑇∗(𝑑)

Figure 1: Framework overview.

Note that for a triple ti = (nsub, r, nobj), there are two
possible situations:

• The first situation is that nsub is linked to an entity e ∈
EΨ, r is linked to a predicate p ∈ PΨ, and nobj is linked
to an entity e′ ∈ EΨ or referred to as a literal l ∈ LΨ. If
(e, p, e′) or (e, p, l) does not exist in the KB Ψ, we add it
as a new fact to KB Ψ;
• The second situation is that at least one of nsub and nobj

is determined to be non-linkable to the KB Ψ. If nsub
is non-linkable, we report a new entity for it. If nobj is
non-linkable and it is detected as a named entity mention
in S(d), we also report a new entity for it. Finally, we add
the new fact to the KB Ψ as well.

3. SYSTEM FRAMEWORK OVERVIEW
Figure 1 depicts the framework overview of our system.

Given a KB Ψ and an input document d, our framework
works in two major stages.

3.1 Stage 1: Knowledge Extraction
In this stage, we conduct pre-processing and knowledge

extraction from the input document d.
Step 1.1: Side Information Extraction. The docu-
ment d is pre-processed by a pipeline of linguistic tools, in-
cluding (1) sentence tokenization, (2) part-of-speech (POS)
tagging, (3) noun-phrase chunking and named entity recog-
nition (NER) with entity typing, and (4) Time Tagger tools
which extract time information from d. The output of this
step is a set of side information S(d) of document d (defined
in Definition 3).
Step 1.2: Triple Extraction Supported by Open IE.
In this step, we employ an existing Open IE tool to extract
the triples in the form of t = (nsub, r, nobj). Specifically,
we choose several popular Open IE tools in the experiments
to evaluate the performance of our system (the details are
shown in Section 6). The output of this step is a set of Open
triples T (d) = {t1, t2, ...}.
Step 1.3: Triple Canonicalization and Noise Reduc-
tion. Step 1.2 produces a large set of candidate Open
triples, which may still contain noise and redundancy. In
this step, to reconcile the semantic redundancy and group
the triples with the same semantic meaning, we perform
triple canonicalization in three major tasks. First, we pre-
process the triples, by filtering those that only contain pro-
nouns, stopwords, and interrogative words as the subjects
and objects. Second, we conduct basic canonicalization on
the triples based on their noun phrases, by utilizing the
side information S(d) obtained in Step 1.1. Specifically,

we have two assumptions: (1) One particular surname or
first name in one article refers to the same PERSON-type en-
tity. For example, Jordan in an article refers to Michael
Jordan, which appears in the former part of the same ar-
ticle; (2) The pronouns in one sentence refer to the first
subject of the triple extracted from the former sentences for
co-reference [5]. Third, following QKBfly [44], we employ a
pattern dictionary [43] to conduct basic canonicalization on
the triples based on their relation phrases. The output of
this step is a set of canonicalized Open triples T ?(d).

3.2 Stage 2: Knowledge Linking
In this stage, we conduct knowledge linking from the out-

put of Stage 1 to the target KB.
Step 2.1: Semantic Graph Construction. For each
document d, we build a semantic graph based on the side
information S(d) (produced in Step 1.1) and the extracted
canonicalized Open triples T ?(d) (produced in Step 1.3).
The semantic graph captures all the noun phrases (resp.,
relation phrases) mentioned in document d, as well as all
the candidate entities (resp., predicates) to each noun phrase
(resp., relation phrase) (see Section 4).
Step 2.2: Graph Densification and Linking. In this
step, given the graph constructed in Step 2.1, our task is to
wisely select the optimal entity for each noun phrase, and
the optimal predicate for each relation phrase. The opti-
mal linking result is expected to represent global coherence
among these entities and predicates. We formulate the task
of joint entity and relation linking as an efficient graph den-
sification task (See Section 5).

4. SEMANTIC GRAPH CONSTRUCTION
Given a set of canonicalized Open triples T ?(d) extracted

from natural-language document d (produced in Step 1.3),
and a set of side information S(d) extracted from d (pro-
duced in Step 1.1), the KBPearl system builds a weighted
undirected semantic graph to represent all these knowledge
in an effective manner. An example of a semantic graph is
demonstrated in Figure 2.

We refer to the semantic graph built in this section as
G = (V,E). Specifically, V denotes the set of vertices (i.e.,
nodes), as introduced in Section 4.1, while E denotes the set
of edges among the nodes in G, as presented in Section 4.2.

4.1 Graph Nodes
A node in the semantic graph is a container for the fol-

lowing semantic knowledge extracted from the document.
In the semantic graph G = (V,E), there are four different
types of nodes in V , i.e., V = N ∪ E ∪R ∪ P.

1037

Relation Phrase Nodes (𝓡)

“Michael Jordan and Kurt Miller studied artificial intelligence. Jordan supervised Miller in 2010.”

(Michael Jordan, study, artificial intelligence)
(Kurt Miller, study, artificial intelligence)

(Michael Jordan, supervise, Kurt Miller)

canonicalized Open
triples 𝑇∗(𝑑) =

Michael Jordan: PERSON
Kurt Miller: PERSON

artificial intelligence: NULL
2010: TIME-STAMP

side information 𝑆(𝑑) =

input document 𝑑 =

Noun Phrase Nodes (𝓝)

Entity Nodes (𝓔)

Predicate Nodes (𝓟)

Kurt Miller
(baseball player)

Michael Jordan: PERSON artificial intelligence: NULLKurt Miller: PERSON 2010: TIME-STAMP

supervise
(doctoral student(s) of a professor)

field of study
(specialization of a person)

be educated at
(educational institution attended by subject)

M. Jordan
(professor)

Kurt Miller
(new entity)

M. Jordan
(basketball player)

AI
(CS branch)

A.I.
(movie)

studysupervise

Figure 2: Example of a semantic graph. The solid edges are the potential edges that comprise the dense
subgraph to capture the best coherence among the noun phrase nodes, entity nodes, relation phrase nodes,
and predicate nodes. “Kurt Miller” is recognized as a new entity.

Noun Phrase Nodes (N). A noun phrase node n ∈ N
represents a subject or object noun phrase in an Open triple
t ∈ T ?(d), or a noun phrase in the side information S(d).
Specifically, each noun phrase is assigned with a candidate
type from S(d). For example, in Figure 2, the noun phrase
node Michael Jordan is typed as PERSON. Moreover, a noun
phrase without type information in S(d) is assigned with the
type NULL.
Entity Nodes (E). An entity node e ∈ E denotes an exist-
ing entity in the target KB Ψ. Note that E ⊂ EΨ. Specifi-
cally, for each noun phrase node n, we generate a set of can-
didate entity nodes that (1) have n as one of their aliases,
and (2) match the types of noun phrases provided by the
side information. For example, for the noun phrase node
Michael Jordan typed as PERSON in Figure 2, we involve all
the entities that have Michael Jordan as one of their aliases
and typed as PERSON in Ψ as the candidate entity nodes, in-
cluding M. Jordan (basketball player) and M. Jordan (pro-
fessor). For a noun phrase node typed as NULL, we involve
all the entities with this noun phrase as their alias name as
the candidate entity nodes, without any type constraint.
Relation Phrase Nodes (R). A relation phrase node r ∈
R represents a relation phrase in an Open triple t ∈ T ?(d).
An example is the relation phrase node study in Figure 2.
Predicate Nodes (P). A predicate node p ∈ P denotes an
existing predicate in the target KB Ψ. Note that P ⊂ PΨ.
Specifically, for each relation phrase node p, we generate a
set of predicate nodes that have p as one of their aliases. For
example, for the relation phrase node study in Figure 2, we
involve all the predicates that have study as the alias names
in Ψ, including field of study and be educated at.

4.2 Graph Edges
An edge between two nodes in the semantic graph repre-

sents the similarity measure between the two nodes. In the

semantic graph G = (V,E), there are five different types of
edges in E, where the details are listed as follows.
Noun Phrase-Entity Edges. Let φe(ni, ej) denote the
weight of the noun phrase-entity edge between a noun phrase
node ni ∈ N and an entity node ej ∈ E . Specifically,
φe(ni, ej) reflects the likelihood that entity ej is the correct
linking for the noun phrase ni.

Following the recent entity disambiguation approaches [28,
41, 44], we compute φe(ni, ej) = pop(ni, ej), which is the
relative frequency under which a query of ni points to ej in
the target KB Ψ. For example, Michael Jordan refers to M.
Jordan (basketball player) in 75% of all its occurrences, while
only 15% to M. Jordan (professor). Specifically, pop(ni, ej)
can be easily obtained as the number of sitelinks of ej re-
garding ni in KB Ψ as the popularity of ej . Note that the
textual similarity between ni and ej is not considered, since
we only choose the entities that share the same alias name
with ni as its candidate entities (see Section 4.1).
Relation Phrase-Predicate Edges. Let φp(ri, pj) denote
the weight of the relation phrase-predicate edge between a
relation phrase node ri ∈ R and a predicate node pj ∈ P.
Specifically, φp(ri, pj) reflects the likelihood that predicate
pj is the true linking for the relation phrase ri.

We collect the synonymous phrases of the relation phrase
ri from pattern repositories such as PATTY [43], denoted as
P(ri). Moreover, we harness the target KB Ψ for labels and
aliases of the predicate pj , denoted as PΨ(pj). We formulate
φp(ri, pj) as the overlap coefficient [62] between P(ri) and
PΨ(pj), as shown in Equation 1.

φp(ri, pj) = |P(ri) ∩ PΨ(pj)|
min(|P(ri)|, |PΨ(pj)|)

(1)

Entity-Entity Edges. Let ρ(ei, ej) denote the weight of
the entity-entity edge between a pair of entity nodes ei, ej ∈
E . Specifically, ρ(ei, ej) represents the pairwise relatedness

1038

M. Jordan
(professor)

instance of: human
nationality: USA

language: English
work place: California
occupation: professor

field of study: computer science
topic of interest: machine learning

AI
(CS branch)

instance of: academic discipline
has part: machine learning

field: computer science

A.I.
(movie)

instance of: movie
country of origin: USA

language: English
filming location: California

𝒆𝟏 = 𝒆𝟐 =

𝒆𝟑 =
field of study

(specialization of a person)

instance of: Wikidata property
related property: field of work

𝒑𝟏 =

Figure 3: Keyphrases in entities and predicates.

between ei and ej . An entity-entity edge only exists between
a pair of entity nodes connected to different noun phrase
nodes. The reason is that under the global coherence as-
sumption, to select the optimal entity for a noun phrase, we
only consider whether it is closely related to the candidate
entities of other noun phrases in the same document. For
example, in Figure 3, there is no edge between M. Jordan
(basketball player) and M. Jordan (professor), since they are
connected to the same noun phrase node Michael Jordan.

We propose a novel solution to formulate the pairwise
relatedness between entities ei and ej in a target KB Ψ,
by utilizing their keyphrases extracted from Ψ. We first
formally define the keyphrases for an entity e in a KB Ψ.

Definition 4. Keyphrases of Entities. The keyphrases
of an entity e in the KB Ψ, denoted as K(e), is the set of
predicate-object pairs of e stored in Ψ. Particularly, suppose
that there are m facts stored in Ψ where all of them have en-
tity e as subjects, i.e, {(e, p1, o1), (e, p2, o2), ..., (e, pm, om)},
we have K(e) = {(p1, o1), (p2, o2), ..., (pm, om)}. Further-
more, we denote Kp(e) = {p1, p2, ..., pm} as the predicate-
keyphrases of entity e, and Ko(e) = {o1, o2, ..., om} as the
object-keyphrases of entity e.

For instance, in Figure 3, K(e3) = {(instance of, academic
discipline), (has part, machine learning), (field, computer
science)}, while Kp(e3) = {instance of, has part, field}.

To measure the relatedness of entity pairs, we first assign
weights to the predicate-keyphrases and object-keyphrases
of the entities based on the Inverse Document Frequency
(IDF), which measures how important each keyphrase is in a
global view. The keyphrases with higher IDF weights will be
considered as more uncommon and important. For example,
in Figure 3, although e1 shares more object-keyphrases with
e2 (USA, English, and California) than e3 (machine learning
and computer science), e1 is more related to e3 since the
object-keyphrases they share are more uncommon.

Specifically, for a predicate-keyphrase pm, we compute
its weight as ω(pm) = log2

|EΨ|
|Epm |

, where Epm denotes the
set of entities that contain predicate pm in its keyphrases,
while |EΨ| is the total number of entities in the target KB
Ψ. Similarly, for an object-keyphrase om, we have ω(om) =
log2

|EΨ|
|Eom |

. Let (pm, om) denote a keyphrase tuple, we define
the pairwise relatedness between entity ei and ej as follows.

ρ(ei, ej) =

∑
om∈Ko(ei)∩Ko(ej) ω(pm) · ω(om)∑

om∈Ko(ei)∩Ko(ej) ω(pm)
(2)

Predicate-Predicate Edges. We use ρ(pi, pj) to denote
the weight of the predicate-predicate edge between a pair of
predicate nodes pi, pj ∈ P. Specifically, ρ(pi, pj) represents
the pairwise relatedness between pi and pj . Note that a
predicate-predicate edge only exists between a pair of pred-
icate nodes connected to different relation phrase nodes.

Similar to the entities, the keyphrases of a predicate p in
the target KB is denoted as K(p), which is a set of predicate-
object pairs that describe p in the KB. Take Figure 3 as an
example, where we have K(p1) = {(instance of, Wikidata
property), (related property, field of work)}.

Let (pm, om) denote a keyphrase tuple, we define ρ(pi, pj)
as the pairwise relatedness between pi and pj as follows.

ρ(pi, pj) =

∑
om∈Ko(pi)∩Ko(pj) ω(pm) · ω(om)∑

om∈Ko(pi)∩Ko(pj) ω(pm)
(3)

Entity-Predicate Edges. Let ρ(ei, pj) denote the weight
of the entity-predicate edge between an entity node ei ∈ E
and a predicate node pj ∈ P. Specifically, ρ(ei, pj) repre-
sents the pairwise relatedness between ei and pj .

We determine that ρ(ei, pj) = ω(pj) if both conditions
are satisfied: (1) the noun phrase node ni linked to ei and
the relation phrase node ri linked to pi are in the same
triple t ∈ T ∗(d); and (2) a fact (ei, pj , x) exists in the KB
Ψ and x 6= NULL (x can be either an entity or a literal).
Otherwise, ρ(ei, pj) = 0. Specifically, we use ω(pj) as the
value of ρ(ei, pj), because we need to avoid the cases where
popular predicates are linked to too many entities and hence
dominate the other predicates.

5. GRAPH DENSIFICATION & LINKING
In this section, our task is to wisely conduct the joint

entity and relation disambiguation and linking. Formally,
given a semantic graph G = (V,E), where V = N∪E∪R∪P,
we select one optimal entity node e ∈ E for each noun phrase
node n ∈ N , and one optimal predicate node p ∈ P for each
relation phrase node r ∈ R (as shown in Figure 2).

Specifically, the optimal linking result is expected to rep-
resent global coherence among these entities and predicates,
where each entity and predicate is related with at least one
of other entities and predicates in the result. Following the
community-search problem [59], we seek to transform this
candidate selection problem into a dense subgraph problem.
In this way, the subgraph that contains the optimal candi-
date entities and predicates is densely connected.

We discuss the definition of subgraph density and the def-
inition of our dense subgraph problem in Section 5.1. We
propose a greedy algorithm to address the dense subgraph
problem in Section 5.2. In Section 5.3, we deploy the greedy
algorithm on the KBPearl system effectively and efficiently.

5.1 The Dense Subgraph Problem

5.1.1 Definition of Subgraph Density
In this step, we discuss the best definition of subgraph

density, so that the global coherence of the candidate entities
and predicates is captured.

First, we determine the formulation of the node degrees in
the semantic graph. To capture global coherence among the
entity nodes and predicate nodes in the desired subgraph,
we need to examine whether a given node in the graph has
a strong connection with the other nodes. Hence, we define

1039

the weighted degree of a node v in the graph to be the total
weight of its incident edges. Formally, in the semantic graph
G = (V,E), let ε(v) denote the set of incident edges of the
node v, and w(µ) represent the weight of an edge µ ∈ E, the
weighted degree of v is defined as: w(v) =

∑
µ∈ε(v) w(µ).

Second, we determine how to measure the density of the
desired subgraph H. There are two methods for density
measurement in terms of the weighted degrees of its nodes.

The first method regards the average degree of the nodes

in H = (VH , EH) as its density, i.e., d(H) =
∑

v∈VH
w(v)

|VH |
, as

the density of H. This measurement has been extensively
studied in the dense subgraph area [1, 59]. However, one
drawback of this method is that an unrelated but densely
connected community can be easily added to the graph to
increase the average density. In other words, in our semantic
graph, an entity node (or predicate node) that share heavy
weighted edges with half of the other nodes can easily dom-
inate an entity node (or predicate node) that connects with
every other node. Take the entity node M. Jordan (basket-
ball player) in Figure 2 as an example. The total weight
of this node will be high, just because it has rather high
popularity and has a heavy edge linked to the noun phrase
Michael Jordan, but not because of its dense connection to
other entity nodes. Therefore, popular nodes such as M.
Jordan (basketball player) may easily dominate other nodes.
Hence, this measurement may cause failure to select a group
of nodes where global coherence is expected to be achieved.

The second method, which is used in this paper, is to re-
gard the minimum degree of the nodes in H as the density of
H, i.e., d(H) = min

v∈VH

w(v). This measurement does not suf-

fer from the failure cases that some popular nodes dominate
the others and form a non-related dense community. Maxi-
mizing the minimum degree of the nodes in H can guarantee
the global coherence goal such that the coherence among all
the entities and predicates are taken into account.

5.1.2 Definition of the Dense Subgraph Problem
Our goal is to compute a subgraph with maximum density,

while observing constraints on the subgraph structure.

Problem 2. The Dense Subgraph Problem. Given an
undirected connected weighted semantic graph G = (V,E),
where V = N ∪ E ∪ R ∪ P, our target is to find an induced
subgraph H = (VH , EH) of G, where VH = N ∪EH∪R∪PH .
Specifically, H satisfies all the following constraints:
• H is connected;
• H contains every noun phrase node and every relation

phrase node, i.e., N ⊆ VH and R ⊆ VH ;
• Every noun phrase node in H is connected to one entity

node, and every relation phrase node in H is connected
to one predicate node. A noun phrase node and a relation
phrase node cannot be linked to each other directly. More-
over, an entity node can be connected to more than one
noun phrase node, and a predicate node can be connected
to more than one relation phrase node. Therefore, H has
at most 2 · (|N |+ |R|) nodes, i.e., |VH | ≤ 2 · (|N |+ |R|);
• The minimum degree of H, i.e., min

v∈VH

w(v), is maximized

among all feasible choices for H.

Theorem 1. Problem 2 is NP-hard.
Proof. To prove that Problem 2 is NP-hard, we give

a unite-weight instance of Problem 2, as well as a simple

Algorithm 1 GraphDensification
Input: The semantic graph G = (V,E), where V = N∪E∪R∪P;

Specifically, ηG(v) denotes the neighbour nodes of v ∈ V in
graph G, and εG(v) denotes the incident edges of v ∈ V in
graph G.

Output: The dense subgraph H = (VH , EH) which satisfies the
constraints in Problem 2, where VH = N ∪ EH ∪R ∪ PH .

1: H ← G
2: V ′ ← sorted(V); . Sort all v ∈ V based on their weights

from least to greatest.
3: for each v ∈ list(V ′) do
4: if v ∈ N or v ∈ R then continue;
5: else
6: for each n ∈ N do
7: if v ∈ ηG(n) and |(ηG(n)| > 1 then
8: H ← (VH − v,EH − εG(v));
9: for each r ∈ R do

10: if v ∈ ηG(r) and |(ηG(r)| > 1 then
11: H ← (VH − v,EH − εG(v));
12: for each e′ ∈ EH do
13: if

∑
x∈ηH (e′)∧x/∈NH

ρ(x, e′) < θ then
14: Reports a new entity for n ∈ N linked to e′;
15: return H;

reduction of this instance to the Steiner tree problem with
unit weights. It is known that the Steiner tree problem is
NP-hard [31] [6](Theorem 20.2). In the decision version of
the Steiner tree problem with unit weights, given a graph
G = (V,E), a set of nodes T ⊆ V (usually referred to as
terminals), and an integer k, we need to determine whether
there is a subtree of G which contains all nodes in T with
at most k edges. Specifically, we set k = 2 · |T | − 1 in our
problem.

Given an instance of the Steiner tree problem, with G as
the input graph, T as the set of terminal nodes, and 2·|T |−1
an upper bound on the number of edges, we define a unit-
weight instance of the decision version of our problem as
follows. Given G as the input graph, T = N∪R as the union
set of the noun phrase nodes and relation phrase nodes, the
upper bound on the number of nodes is 2 · |T |, and we need
to find a graph with a minimum degree of at least 1.

We show that there is a solution for the Steiner tree prob-
lem if and only if there is a solution for the unit-weight
instance of our problem. First, any Steiner tree using at
most 2 · |T |−1 edges is also a solution for our problem using
at most 2 · |T | nodes. Second, given a solution H for our
problem containing at most 2 · |T | nodes, we can compute a
Steiner tree with at most 2 · |T | − 1 edges by simply taking
any spanning tree of H.

5.2 Greedy Algorithm
As discussed above, finding a dense subgraph in the se-

mantic graph G with bounded size (Problem 2) is an NP-
hard problem. To address this problem, we extend the
greedy algorithm for finding strongly interconnected and
size-limited groups in social networks [28,59], while also lo-
cating the new entities.

The pseudo-code of the greedy algorithm is presented in
Algorithm 1. We start with the full semantic graph G =
(V,E). We first sort all the nodes v ∈ V in G, based on
their weights from least to greatest (line 2). We then itera-
tively remove the entity nodes and predicate nodes with the

1040

Algorithm 2 KBPearl-Pipeline
Input: The sentence group of the input document G =
{g1, g2, ..., g|G|}, where each of {g1, g2, ..., g|G|−1} contains k
sentences, and g|G| contains (|G| mod k) sentences.

Output: F (d), the final linking results of the input documents.
Note that F (d) contains all the noun phrase-entity edges and
relation phrase-predicate edges in each Hi for gi ∈ G.

1: ψ′e ← ∅; . Record set of the noun phrase-entity edges.
2: ψ′p ← ∅; . Record set of the relation phrase-predicate edges.
3: F (d)← ∅; . The final linking results.
4: for each gi ∈ G do
5: Build semantic graph Gi for the document based on gi;
6: Gi ← ψ′e, ψ

′
p;

7: Hi ← GraphDensification(Gi); . Employ Algorithm 1.
8: Obtain ψe(Hi) and ψp(Hi) from Hi as the linking results;
9: ψtempe ← ψe(Hi)− ψ′e, ψ

temp
p ← ψp(Hi)− ψ′p;

10: ψ′e ← ψtempe , ψ′p ← ψtempp ;
11: F (d)← ψe(Hi), ψp(Hi);
12: return F (d);

smallest weighted degree (lines 3 - 11). Specifically, to guar-
antee that we capture the coherence of the linkings for all
the entity nodes and predicate nodes, we enforce each noun
phrase node to remain connected with one entity node (lines
6 - 8), and each relation phrase node to remain connected
with one predicate node (lines 9 - 11). The algorithm ter-
minates when (1) at least one of the noun phrase nodes or
relation phrase nodes has the minimum degree in H, or (2)
a noun phrase node n ∈ N or a relation phrase node r ∈ R
will be disconnected in the next loop.

To recognize the new entities, we further conduct a post-
processing task. For each entity node e′ ∈ EH in the dense
subgraph H, we compute the sum of the weights of the in-
cident edges of e′ in H (except for the noun phrase-entity
edges). If it is smaller than a given threshold θ, we report a
new entity for the noun phrase linked to e′ (lines 12 - 14).
We discuss the learning of the threshold θ in Section 6.1.

The time complexity of Algorithm 1 is analyzed as fol-
lows. We record the weights of each node during the graph
construction process and use a list to record the neigh-
bour nodes of each node. The loop in lines 3 to 11 takes
O(|V ′|) = O(|V |) time to traverse all the node v ∈ V ′. Lines
6 to 8 search for every noun phrase node n ∈ N , which takes
O(|N |) time. Similarly, lines 9 to 11 take O(|R|) time. To lo-
cate new entities, lines 12 to 14 need O(|EH |) time. To sum-
marize, let β = |N |+|R|, the time complexity of Algorithm 1
is O(|V |·(|N |+|R|)+|EH |) ≤ O(|V |·(|N |+|R|)+|N |+|R|) =
O(β · |V |+ β) ≈ O(β · |V |). Specifically, since we reduce the
size of the semantic graph via the triple canonicalization in
Step 1.3 of Stage 1, β will be a relatively small number for
one document.

5.3 Efficient and Effective Linking
However, the assumption that all entities mentioned in a

document are densely connected with each other in a KB is
not always correct. This assumption will hurt the perfor-
mance in both effectiveness and efficiency.

In the aspect of effectiveness, in a long-text document, not
every pair of entities or predicates shares strong relatedness.
Take the case illustrated in Figure 4 as an example (we omit
the predicates for simplicity). Among the five entities, only
two pairs of them are closely related. This indicates that
the sparse coherence between the entities in documents is

Algorithm 3 KBPearl-NearNeighbour
Input: The input document d = {a1, a2, ..., a|d|}, where each

ai is the sentence in d; side information S(d); canonicalized
triples T ?(d); maximum number of near neighbour of noun
phrase distance k.

Output: F (d), the final linking results of the input documents,
which contains all the noun phrase-entity edges and relation
phrase-predicate edges in the dense subgraph H of G.

1: Generate V = N ∪ E ∪ R ∪ P from S(d) and T ?(d) (Section
4.1), E includes all the noun phrase-entity edges for each
n ∈ N , and all the relation phrase-predicate edges for each
r ∈ R; we use ηk(ni) to record the k noun phrase as near
neighbours of the noun phase ni ∈ N , E(ni) to denote the
candidate entities of ni ∈ N , P(ri) to denote the candidate
predicate of ri ∈ R, sen(ai) to record the noun phrases and
relation phrases in the sentence ai in d.

2: for each ni ∈ N do
3: for each nj ∈ ηk(ni) do
4: for each ei ∈ E(ni) AND each ej ∈ E(nj) do
5: if ei 6= ej then E ← ρ(ei, ej);
6: for each ai ∈ d do
7: for each ri ∈ sen(ai) do
8: for each rj ∈ sen(aj) do
9: for each pi ∈ P(ri) AND each pj ∈ P(ri) do

10: if pi 6= pj then E ← ρ(pi, pj);
11: for each ni ∈ sen(ai) do
12: for each rj ∈ sen(aj) do
13: for each ei ∈ E(ni) AND each pj ∈ P(ri) do
14: E ← ρ(ei, pj);
15: G← (V,E)
16: H ← GraphDensification(G); . Employ Algorithm 1.
17: F (d)← ψe(H), ψp(H);
18: return F (d);

Michael Jordan is a professor at the University of
California, Berkeley. He visited the BAAI Conference
held in Beijing, China in November, 2019.

M. Jordan
(professor)

University of California, Berkeley
(university)

BAAI Conference
(new entity)

Beijing
(city)

China
(country)

Figure 4: The coherence of entities in the sam-
ple document where entity mentions are underlined.
The edge represents real semantic relatedness be-
tween entities recorded in KB.

common, especially when there are new entities that can-
not be connected to any other nodes. Current researches
that propose to find the top-k densest subgraphs in a large
graph [4,23] and overlapping community detection [65] par-
tially address this issue. However, all these methods re-
quire a large graph that contains the weight information of
every edge as input. This requires the pre-computation of
each entity-entity edge, predicate-predicate edge and entity-
predicate edge.

Moreover, in the aspect of efficiency, suppose that the to-
tal number of entity nodes (resp., predicate nodes) in the
semantic graph is |E| (resp., |P|), computing the weights of
every entity-entity edges requires

(|E|
2

)
(resp.,

(|P|
2

)
) compu-

tations. Even if the task is parallelizable, overcoming such
complexity is necessary to achieve satisfactory scalability,
especially for the on-the-fly tasks such as real-time KBP.

In order to address the issue mentioned above, we propose
two variants of the KBPearl system as solutions.

1041

KBPearl in Pipeline Mode (KBPearl-PP). We show
the pseudo-code of the pipeline mode in Algorithm 2. Given
a document as input, we first separate it into sentence groups
G = {g1, g2, .., g|G|} (the sentence tokenization can be ob-
tained in Step 1.1), where each group {g1, g2, .., g|G|−1} con-
tains k sentences and the last group g|G| contains (|G| mod k)
sentences. For each document composed of gi ∈ G, we build
semantic graph Gi (line 5), and perform Algorithm 1 to ob-
tain a dense subgraph Hi (line 7). Specifically, this task is
processed in sequential order, and the linking results in Hi
will be utilized to derive Hi+1 (lines 6 - 10).

We analyze the time complexity of the pipeline mode in
Algorithm 2 as follows. For a document with γ sentences,
there will be |G| = γ

k
+ 1 iterations. Since the complexity of

generating Hi based on Gi in each iteration is O(βi ·|Vi|+βi)
(see Section 5.2), where Vi is the total number of nodes in
Gi, the total time complexity is O((γ

k
+ 1) · (βi · |Vi|+βi)) =

O((γ
k

+ 1) · βi · (|Vi| + 1)) ≈ O(γ
k
βi · |Vi|). Note that βi is

the total number of noun phrases and relation phrases in
the sentence group where gi is built on, which is relatively
small because of the canonicalization in Step 1.3.
KBPearl in Near-Neighbour Mode (KBPearl-NN).
We show the pseudo-code of the near-neighbour mode in Al-
gorithm 3. Specifically, to construct the edges of a semantic
graph (lines 2 - 14), the entity-entity edges are computed
only if the pair of the related noun phrases are within k dis-
tance in the document d (lines 2 - 5). For example, in Figure
4, the distance between Michael Jordan and Beijing is 3,
while the distance between BAAAI Conference and Beijing
is 1. The predicate-predicate edges are computed only if the
pair of the related relation phrases are in the same sentence
(lines 6 - 10). The entity-predicate edges are computed only
if the related noun phrase and relation phrase are in the
same sentence (lines 11 - 14).

Suppose that α is the average number of candidates for a
noun phrase or relation phrase. Originally, constructing the
edges among all entity nodes and predicate nodes in the se-
mantic graph G take O(|E|2 + |P|2 + |E||P|) = O(α2|N |2 +
α2|R|2 + α2|N ||R|) = O(α2(|N |2 + |R|2 + |N ||R|)) time.
Suppose that the average number of noun phrases and rela-
tion phrases in a sentence is w, and let |d| denote the average
number of sentences in one document. Algorithm 3 reduces
this time complexity to O(α2k|N | + |d|(w2α2 + w2α2)) =
O(α2(k|N |+ 2|d|w2)). To achieve promising efficiency, k is
set as a small number compared with |N | and |R|.

6. EXPERIMENTS
In our experiments, we first compare the performance of

different variants of KBPearl on the joint entity and relation
linking task against the state-of-the-art techniques. We then
demonstrate the ability of KBPearl on determining new en-
tities. Third, we validate the effectiveness and efficiency of
KBPearl based on the length of the source document.

6.1 Experiment Settings
Benchmarks. We validate the performance of KBPearl
and the baselines on several real-world datasets.

• ReVerb38 is a dataset proposed for Open KB canoni-
calization [61] with 45K Freebase triples extracted from
Clueweb09 [8] corpus. We manually annotate facts in 38
documents based on Wikidata and DBpedia as ground
truths. The average document length is 18.34 words.

• NYT2018 contains news articles collected from the New
York Times (nytimes.com) in 2018 from various domains [32].
We select 30 documents and manually annotate the facts
based on Wikidata and DBpedia as ground truths. The
average document length is 206.20 words.
• LC-QuAD2.0 [15] comprises 6046 complex questions for

Wikidata (80% questions are with more than one entity
and relation). We select 1942 questions for testing, where
the average question length is 14.13 words.
• QALD-7-Wiki [60] is one of the most popular bench-

mark datasets for question answering. This dataset is
mapped over Wikidata, comprising 100 questions. The
average question length is 6.87 words and over 50% of the
questions include a single entity and relation.
• T-REx [18] is a benchmark dataset which evaluates KBP,

relation extraction, and question answering. We select
1815 documents with Wikidata triples aligned as ground
truths. The average document length is 116.14 words.
• Knowledge Net [39] is a benchmark dataset for auto-

matic KBP with facts extracted from natural language
text on the web. It contains 3977 documents, and 6920
triples linked to Wikidata. The average document length
is 157.22 words.
• CC-DBP [26] is a benchmark dataset for KBP based on

Common Crawl and DBpedia. We select 969 documents
with non-empty triples as ground truths. The average
document length is 18.39 words.

Specifically, the original CC-DBP datasets only provide
ground truths that linked to DBpedia, while T-REx, Knowl-
edge Net, LC-QuAD2.0, and QALD-7-Wiki provide ground
truths linked to Wikidata. In order to utilize all the datasets
for evaluation, we employ SPARQL query1. We produce
the entity mapping between DBpedia and Wikidata based
on the relation owl:sameAs in DBpedia, and the relation
mapping based on the property owl: equivalentProperty in
DBpedia as well as the predicate P1628 (“equivalent prop-
erty”) in Wikidata. To ensure fairness, we only evaluate the
documents where both the DBpedia and Wikidata ground
truths are not null.
Baselines. We compare the performance of our system with
several state-of-the-art techniques listed as follows.

• DBpedia Spotlight [11,38] is a popular baseline for En-
tity Linking in TAC KBP [35, 37, 51] based on DBpedia.
We adopt the best configurations suggested in [38], where
annotation confidence is set as 0.6 and support to be 20.
• TagMe [20] is a popular baseline for Entity Linking in

TAC KBP datasets [30, 49] and Semantic Evaluation [50]
based on DBpedia. We follow all the suggested configura-
tions, and filter the linking results with a confidence lower
than 0.3.
• ReMatch [42] is one of the top-performing tools used

for the Relation Linking task, especially in the question-
answering community [16, 52, 58]. We follow all the sug-
gested configurations. Specifically, we set the minimum
(resp., maximum) length of combinatorials of input text
to be 2 (resp., 3), and the winner threshold to be 0.6.
• Falcon [52] performs joint entity and relation linking of

short text, leveraging several fundamental principles of
English morphology and an extended KB which merges
entities and relations from DBpedia and Wikidata. We

1https://www.w3.org/TR/rdf-sparql-query/

1042

adopt all the default configurations. The maximum length
of combinatorials of input text is set to be 3.
• EARL [16] also performs entity linking and relation link-

ing as a joint task, by formulating and solving a Gener-
alized Traveling Salesman Problem among the candidate
nodes in the knowledge graph. We adopt all the default
configurations suggested by the API of EARL.
• QKBfly [44] is proposed to dynamically conduct informa-

tion extraction tasks based on ClausIE [13] and produce
canonicalized triples linked to KB in an on-the-fly man-
ner. We obtain the code of QKBfly from the authors, and
adopt all the default configurations suggested in the pa-
per. Note that QKBfly does not perform the relation link-
ing task, but only canonicalizes the relation phrases based
on PATTY [43], a relational pattern dictionary. Hence, we
do not compare it in our relation linking task.
• KBPearl-PP and KBPearl-NN are our system that ex-

ecute in the pipeline mode and the near-neighbour mode,
respectively.

Specifically, some of the tools (DBpedia Spotlight, TagMe,
Falcon, and EARL) are designed to process short text. To
make them feasible on long-text documents, we follow the
setting in TagMe [20] to conduct sentence tokenization on
the documents with more than 30 words. One document
is divided into a list of sentences to pass to these tools for
further processing.
Implementation Details of KBPearl. We follow the
Opentapioca project [14] to index 64,126,653 entities and
predicates from the Wikidata JSON dump of 2018-07-22
with Solr (Lucene)2. We list the implementation details of
our system as follows.

• In Side information Extraction (Step 1.1 in Stage 1), we
employ the Washington KnowItAll project for sentence
tokenization3, the NLTK Toolkit [34] for part-of-speech
(POS) tagging, the Stanford CoreNLP toolkit [36] for
noun-phrase chunking and named entity recognition, and
SUTIME [9] for Time Tagger.
• In Triple Extraction (Step 1.2 in Stage 1), we employ four

different Open IE tools for performance evaluation, in-
cluding ReVerb [19], MinIE (in safe mode) [24], ClausIE
[13] and Stanford Open IE Tool [2]. Specifically, we choose
one of the four tools to execute our system each time. The
evaluation details are presented in Section 6.2.
• In Semantic Graph Construction (Step 2.1 in Stage 2),

we obtain the aliases of each entity and predicate item
from Wikidata by directly querying the values of its aliases
property. Moreover, to compute the weight of keyphrases,
we select the top 5% of entities with the largest number
of sitelinks, and 5% of predicates with the largest number
of statements as our samples for calculation. The rest of
the keyphrases are assigned the maximum weight in the
sample set of keyphrases during the computation.
• For the hyper-parameter training of θ in the greedy al-

gorithm to derive the dense subgraph (Step 2.2 in Stage
2, presented in Section 5.2), we utilize the ground truths
labeled for the NYT2018 dataset. For the noun phrases
detected as named entity mentions and are reported to be
non-linkable, we manually label whether they are emerg-
ing entities (i.e., entities not contained in Wikidata). We

2https://lucene.apache.org/solr/
3https://github.com/knowitall

label 127 noun phrases as emerging entities. We train θ
based on LBFGS optimization. Specifically, we exclude
all the validation data where the ground truths are used
to train the hyper-parameters in evaluation.

Evaluation Metrics. We use precision (P), recall (R) and
F1-score (F) for performance evaluation. Precision is de-
fined as the number of correct linkings provided by the sys-
tem, divided by the total number of linkings provided by
the system. Recall is defined as the number of correct link-
ings provided by the system, divided by the total number
of ground truths. F1-score computes the harmonic mean of
precision and recall, i.e., F1 = 2∗P∗R

P+R . Please refer to [48]
for a more detailed report and examples of calculation.
Experiment Setting. All the experiments presented are
conducted on a server with 128GB RAM, 2.4GHz CPU, with
Ubuntu 18.04.1 LTS installed.

6.2 Performance Evaluation
Performance of KBPearl and Baselines on the Joint
Entity and Relation Linking Task. We first evalu-
ate the results of the entity linking of our system and the
state-of-the-art techniques. As shown in Table 1, we con-
duct the experiments on 7 datasets, and compare the per-
formance of our system with 5 other competitors, includ-
ing Falcon, EARL, DBpedia Spotlight (referred to as Spot-
light for simplicity), TagMe, and QKBfly. On the short-
text datasets (LC-QuAD2.0, QALD-7-Wiki, CC-DBP, and
ReVerb38), both variants of KBPearl achieve satisfactory
performance. Moreover, on the long-text datasets (T-REx,
Knowledge Net, and NYT2018), both variants of KBPearl
significantly outperform the baselines in the precision and
F1-score. Specifically, KBPearl-NN obtains the best perfor-
mance of all long-text datasets. This is because that long-
text documents contain more valuable evidence to capture
the coherence among the knowledge in the source text.

On the other hand, both variants of KBPearl achieve the
second-best precision on LC-QuAD2.0 and QALD-7-Wiki,
while Spotlight and Falcon obtain better results. One rea-
son is that both datasets provide interrogative sentences as
text. The quality of Open IE results on interrogative sen-
tences may not be as satisfactory as on declarative sentences.
Moreover, KBPearl tends to extract more knowledge from
the text. For example, for the short-text input “Is the
wife of Obama called Michelle?”, apart from the enti-
ties for Obama and Michelle, KBPearl also provides entity
Q188830 (wife) based on wife, even though it also provides
predicate P26 (spouse) based on wife. Therefore, the pre-
cision of KBPearl is affected due to such false positives.

Note that KBPearl, TagMe, and Spotlight always achieve
relatively high recall. The reason is that they provide more
linking results than the other tools. Therefore, although
some of their results are not correct (low precision), they
have covered most of the truths (high recall).

We then evaluate the relation linking task. We conduct
the experiments on 5 datasets, and compare the perfor-
mance of our system with 3 other competitors, including
Falcon, EARL, and ReMatch. Specifically, two datasets are
excluded. One is Knowledge Net, which does not provide
the relation linking results as standard Wikidata predicates.
The other is CC-DBP, where most of the triples (over 80%)
are not labeled with relations. As shown in Table 2, KB-
Pearl significantly outperforms all the other baselines in the

1043

Table 1: Performance of the entity linking task.
Both KBPearl-PP and KBPearl-NN employ MinIE
for Open triple extraction. The best and the second-
best performance values are in bold.

Dataset
(# of words

per document)
System Precision Recall F1

ReVerb38
(18.34)

Falcon 0.498 0.464 0.480
EARL 0.496 0.535 0.515
Spotlight 0.642 0.605 0.623
TagMe 0.512 0.661 0.577
QKBfly 0.724 0.528 0.611
KBPearl-PP 0.643 0.664 0.653
KBPearl-NN 0.643 0.664 0.653

NYT2018
(206.20)

Falcon 0.275 0.470 0.347
EARL 0.282 0.526 0.367
Spotlight 0.393 0.524 0.449
TagMe 0.114 0.528 0.188
QKBfly 0.410 0.477 0.441
KBPearl-PP 0.422 0.744 0.539
KBPearl-NN 0.491 0.694 0.575

LC-QuAD2.0
(14.13)

Falcon 0.533 0.598 0.564
EARL 0.403 0.498 0.445
Spotlight 0.585 0.657 0.619
TagMe 0.352 0.864 0.500
QKBfly 0.518 0.479 0.498
KBPearl-PP 0.561 0.647 0.601
KBPearl-NN 0.561 0.647 0.601

QALD-7-Wiki
(6.87)

Falcon 0.708 0.651 0.678
EARL 0.516 0.460 0.486
Spotlight 0.619 0.634 0.626
TagMe 0.349 0.661 0.457
QKBfly 0.592 0.510 0.548
KBPearl-PP 0.647 0.715 0.679
KBPearl-NN 0.647 0.715 0.679

T-REx
(116.14)

Falcon 0.141 0.203 0.167
EARL 0.305 0.505 0.380
Spotlight 0.328 0.472 0.387
TagMe 0.057 0.064 0.060
QKBfly 0.248 0.271 0.259
KBPearl-PP 0.329 0.513 0.401
KBPearl-NN 0.340 0.554 0.421

Knowledge Net
(157.22)

Falcon 0.253 0.380 0.304
EARL 0.234 0.388 0.292
Spotlight 0.255 0.382 0.306
TagMe 0.254 0.362 0.299
QKBfly 0.322 0.472 0.382
KBPearl-PP 0.297 0.446 0.356
KBPearl-NN 0.327 0.466 0.384

CC-DBP
(18.39)

Falcon 0.244 0.303 0.270
EARL 0.277 0.605 0.380
Spotlight 0.382 0.604 0.468
TagMe 0.231 0.615 0.336
QKBfly 0.339 0.433 0.380
KBPearl-PP 0.415 0.620 0.497
KBPearl-NN 0.418 0.620 0.499

relation linking task in both short-text data and long-text
data. Specifically, the performance of all systems on T-REx
is relatively low. The reason is that T-REx provides less
number of relation linking ground truths for long-text doc-
uments that actually contain more relations.

As presented in Table 1 and Table 2, the performance of
all the systems on the entity linking task is better than the

Table 2: Performance of the relation linking task.
Both KBPearl-PP and KBPearl-NN employ MinIE
for Open triple extraction. The best and the second-
best performance values are in bold.

Dataset
(# of words

per document)
System Precision Recall F1

ReVerb38
(18.34)

Falcon 0.137 0.220 0.169
EARL 0.280 0.431 0.339
ReMatch 0.292 0.223 0.253
KBPearl-PP 0.403 0.452 0.426
KBPearl-NN 0.403 0.452 0.426

NYT2018
(206.20)

Falcon 0.151 0.203 0.173
EARL 0.201 0.245 0.221
ReMatch 0.218 0.297 0.251
KBPearl-PP 0.302 0.405 0.346
KBPearl-NN 0.313 0.494 0.383

LC-QuAD2.0
(14.13)

Falcon 0.302 0.325 0.313
EARL 0.259 0.251 0.255
ReMatch 0.201 0.214 0.207
KBPearl-PP 0.566 0.479 0.410
KBPearl-NN 0.566 0.479 0.410

QALD-7-Wiki
(6.87)

Falcon 0.337 0.329 0.333
EARL 0.214 0.222 0.218
ReMatch 0.208 0.203 0.205
KBPearl-PP 0.482 0.399 0.437
KBPearl-NN 0.482 0.399 0.437

T-REx
(116.14)

Falcon 0.026 0.072 0.038
EARL 0.126 0.157 0.140
ReMatch 0.125 0.151 0.137
KBPearl-PP 0.136 0.188 0.157
KBPearl-NN 0.139 0.187 0.159

relation linking task. The reason is that some of the relations
expressed in the natural language text have various repre-
sentations. For example, in the sentence “Barack Obama
was the US President”, the correct extraction should be
(Q76, P39, Q11696) (Barack Obama, political office held,
President of the United States). However, all the systems
recognize the more general predicate P31 (instance of) in-
stead of P39 (political office held) from the original sentence.
Performance of KBPearl based on different Open
IE tools. We also conduct experiments to evaluate the
performance of KBPearl when employing different Open IE
tools to extract the knowledge from natural language text
in Step 1.2 of Stage 1. Specifically, MinIE (in safe mode)
[24], ReVerb [19], Stanford Open IE Tool [2] (referred to
as Standford for simplicity), and ClausIE [13] are studied.
Note that we only involve Falcon and EARL as baselines for
comparison, because they are the only tools that perform
both entity linking task and relation linking task.

As listed in Table 3, all the variants of KBPearl based
on different Open IE tools outperform the baselines in 4
datasets. MinIE achieves the best and second-best F1 score
of all the time. The reason is that MinIE provides more
compact extractions, and therefore gives most of the correct
linkings, which leads to high recall. Specifically, the exper-
imental results indicates that there will not be a very huge
difference in the performance of KBPearl when employing
different Open IE tools to extract knowledge. The reason
is that we have conducted noise filtering, redundancy filter-
ing, and canonicalization on the Open triples at Step 1.3, to
reduce the redundant triples.

1044

Table 3: Performance of joint entity and relation linking of KBPearl-NN based on different Open IE tools
employed in Step 1.2, Stage 1. “#Extr.” denotes the total number of triples after the noise filtering and
canonicalization in Step 1.3, Stage 1. The precision (P) and recall (R) are the average value of those for the
entity linking task and relation linking task. The best and the second-best performance values are in bold.

Systems
QALD-7-Wiki T-REx ReVerb38 NYT2018

#Extr. P R F1 #Extr. P R F1 #Extr. P R F1 #Extr. P R F1
KBP-MinIE 200 0.565 0.557 0.561 373,553 0.239 0.370 0.291 183 0.523 0.558 0.540 402 0.402 0.594 0.479
KBP-ReVerb 59 0.631 0.481 0.546 100,063 0.353 0.243 0.288 67 0.606 0.448 0.515 158 0.516 0.330 0.403
KBP-Stanford 189 0.560 0.539 0.549 306,659 0.251 0.330 0.285 146 0.517 0.545 0.531 350 0.481 0.459 0.470
KBP-ClausIE 175 0.554 0.549 0.551 299,582 0.287 0.395 0.332 132 0.503 0.563 0.531 325 0.502 0.443 0.471
Falcon N.A 0.523 0.490 0.506 N.A 0.084 0.138 0.104 N.A 0.318 0.342 0.329 N.A 0.163 0.337 0.220
EARL N.A 0.365 0.341 0.353 N.A 0.216 0.331 0.261 N.A 0.388 0.483 0.430 N.A 0.192 0.385 0.256

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

T-REx ReV NYT LQ QA
Datasets

KBPearl-Sim KBPearl-PP
KBPearl-NN

(a) F1-measure of differ-
ent KBPearl variants on
different datasets.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10 20 30 40 50 80 10
0

12
0

15
0

17
5

20
0

25
0

28
0

#	of	Words

KBPearl-Sim KBPearl-PP
KBPearl-NN

(b) F1-measure of differ-
ent KBPearl variants with
different # of words.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 10 15 20 25 30 35 40
#	of	NPs	and	RPs

KBPearl-Sim KBPearl-PP
KBPearl-NN

(c) F1-measure of differ-
ent KBPearl variants with
different # of phrases.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

KBPearl-PP KBPearl-NN QKBfly
Systems	

Precision Recall F-measure

(d) Discovery of new enti-
ties and predicates.

Figure 5: Performance Evaluation.

0 25 50 75 100 125 150 175 200
of Words

0
5

10
15
20
25
30
35
40

Ti
m

e
(s

)

KBPearl-Sim
KBPearl-PP
KBPearl-NN

(a) Computation Time

1 2 3 4 5 6 7 8 9 10
k

0

20

40

60

80

100

Ti
m

e
(s

)

KBPearl-PP
KBPearl-NN

(b) Computation Time

Figure 6: Efficiency evaluation regarding the length
of the documents and different values of parameter
k of the KBPearl variants.

Performance of Different Variants of KBPearl. We
also evaluate the performance of KBPearl in pipeline mode
(KBPearl-PP), KBPearl in near-neighbour mode (KBPearl-
NN), and KBPearl which directly constructs the whole se-
mantic graph and conduct graph densification without filter-
ing sparse coherence (KBPearl-Sim). Figure 5(a) illustrates
the F-measure of the three variants in joint entity and rela-
tion linking task, on T-REx, ReVerb38 (ReV), NYT2018
(NYT), LC-QuAD2.0(LQ), and QALD-7-Wiki (QA). We
also present the detailed performance of KBPearl-PP and
KBPearl-NN in Table 1 and Table 2. For short-text datasets,
such as LC-QuAD2.0, QALD-7-Wiki, and ReVerb38, there is
very little difference between the performance of all variants
of KBPearl. The reason is that the numbers of candidate
entities and predicates are always limited in short text, while
the number of sentences is also limited. Therefore, limiting
the number of neighbours or the number of sentence groups
will not have different performances. On the other hand, for
long-text datasets such as T-REx and NYT2018, KBPearl-
PP and KBpearl-NN perform better than KBPearl-Sim. This
proves the capability of our system to handle the sparse co-
herence (illustrated in Figure 4) which is common in the
real-world scenarios for most long-text documents.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 3 4 5 6
k	

Precision Recall F1

(a) KBPearl-PP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 4 5 6 7 8 9 10
k

Precision Recall F1

(b) KBPearl-NN

Figure 7: Parameter Sensitivity in KBPearl-
Pipeline (KBPearl-PP) and KBPearl-Near Neigh-
bour (KBPearl-NN).

We further investigate the performance of different vari-
ants of KBPearl in terms of the length of the document.
Specifically, the length of the documents is determined based
on the number of words (Figure 5(b)), and the number of
noun phrases and relation phrases in the canonicalized Open
triples (Figure 5(c)). The performance of KBPearl is based
on MinIE. KBPearl-PP and KBPearl-NN achieve satisfac-
tory performance with both short-text and long-text docu-
ments, while the F1-measure of KBPearl-Sim decreases with
long documents. This also demonstrates the effectiveness of
the pipeline mode and near-neighbour mode of KBPearl.

Moreover, Figure 6(a) presents the efficiency evaluation
of KBPearl regarding the lengths of the sentences. We can
observe that with more than 75 words, the time cost of
KBPearl-Sim increases in an exponential manner, while the
time cost of both KBPearl-PP and KBPearl-NN is still lin-
ear to the number of words.
Parameter Sensitivity in Different Variants of KB-
Pearls. We first study the time cost of KBPearl-PP and
KBPearl-NN based on different k. As shown in Figure 6(b),
the time cost of KBPearl-NN is linear to k when it is smaller
than 8, while the time cost of KBPearl-PP is linear to k when
it is smaller than 5. We also investigate the performance

1045

of both variants based on different k. As demonstrated in
Figure 7(a), the precision of KBPearl-PP is affected with
k larger than 4. Moreover, Figure 7(a) indicates that the
precision of KBPearl-NN drops with k larger than 8. This
suggests that a wise selection of k will be around 3 to 4 for
KBPearl-PP, and 6 to 7 for KBPearl-NN. The result indi-
cates that in most cases, the information in 3 to 4 sentences
in a document is valuable enough for knowledge inference
and linking with global coherence. On the other hand, when
conducting entity disambiguation, knowledge of the 6 to 7
nearest noun phrases can give valuable support.
Results of Detecting New Entities. As demonstrated
in Figure 5(d), we evaluate the performance of KBPearl-
PP, KBPearl-NN, and QKBfly on new entity discovery on
NYT2018. We do not involve other baselines for compari-
son, since they do not create new entities for non-linkable
facts. Specifically, both variants of KBPearl achieve better
performance than QKBfly. The reason that all systems have
relatively low precision and high recall is that it is not trivial
for them to recognize entities containing long phrases. For
example, in a sentence containing “Girl from the North
Country” (a song), both QKBfly and our system will ex-
tract Girl and the North Country separately and report
new entities, which introduces false positives.
Summary. In conclusion, the joint entity and relation link-
ing task in KBPearl performs better than the state-of-the-
art techniques, especially in long-text datasets. KBPearl
relies on Open IE tools for knowledge extraction, but with
side information preparation, the performance of KBPearl
will not be affected by the output quality of the Open IE
tools. Moreover, the two variants of KBPearl enhance the
effectiveness and efficiency of our method on long-text doc-
uments. KBpearl is also capable of discovering new entities.

7. RELATED WORKS
Knowledge Base Population (KBP). Recently, a lot of
research in the text analysis community focus on KBP from
external data sources [25, 29, 30, 46]. There are two ma-
jor tasks: (1) Entity Discovery and Linking, which extracts
the entities from the unstructured text and link them to an
existing KB, and (2) Slot Filling, i.e., Relation Discovery
and Linking, which conduct information mining about re-
lations and types of the detected entities. However, most
of the techniques proposed for KBP treat them as separate
tasks [25,29], and therefore the global coherence among the
candidate entities and predicates cannot be utilized. More-
over, declarative methods to IE and KBP, such as Deep-
dive [12,45,57] and SystemT [10], rely on predefined sets of
predicates and rules. Hence, these techniques are not suit-
able for in-time KBP. QKBfly [44] is proposed as a solution
for dynamic KB construction and KBP. Nevertheless, it also
relies on a pre-generated dictionary of relational patterns to
generate canonicalized facts.
Entity Linking and Relation Linking. Most of the En-
tity Linking (EL) works focus on three tasks: candidate
entity generation [27, 55, 66, 67], candidate entity ranking
[33, 54] and non-linkable mention prediction [55, 56]. How-
ever, all these works only assign the non-linkable mentions
to a NIL entity, without further clustering and processing
on the NIL entities. Furthermore, linking relation phrases
to predicates in KBs is a relatively new field of study. Re-

match [42] is the first attempt in this direction, which mea-
sures the semantic similarity between the relation phrases
and the predicates in KBs based on graph distances from
Wordnet [40]. Moreover, SIBKB [58], AskNow [17], and
QKBfly [44] utilize large dictionary resources for textual
patterns that denote binary relations between entities (e.g.,
PATTY [43]), to discover synonymous relation phrases in
unstructured text and assist relation linking. Particularly,
EARL [16] and Falcon [52] are the first two works that
perform both the entity linking task and relation linking
task. Specifically, EARL exploits the connection density be-
tween entity nodes in KBs, while Falcon leverages the funda-
mental principles of English morphology and extended self-
integrated KBs without considering the coherence among
the entities and predicates. However, neither of them pro-
cesses the non-linkable noun phrases.
Open IE. The Open IE methods [13, 47, 53] overcome the
limitations of KBP, but face issues that neither entities nor
predicates in the Open triples are canonicalized. There are
some recent research works that focus on the canonical-
ization of Open triples by clustering the triples with the
same semantic meaning. Galárraga [21] performs cluster-
ing on noun phrases over manually-defined feature spaces
to obtain equivalent entities, and clusters relation phrases
based on rules discovered by AMIE [22]. FAC [64] solves
Galárraga’s problem in a more efficient graph-based clus-
tering method with pruning and bounding techniques. Fur-
thermore, CESI [61] and SIST [32] conduct the canonical-
ization of entities and relations jointly based on the external
and internal side knowledge. However, all these works only
improve the output of Open IE techniques. None of them
investigates the method to map and link the canonicalized
facts to the existing KBs for enhancement and population.

8. CONCLUSION
In this paper, we present an end-to-end system, KBPearl,

for KB population. KBPearl takes an incomplete KB and a
large corpus of text as input, to (1) organize the noisy ex-
traction from Open IE into canonicalized facts; and (2) pop-
ulate the KB by joint entity and relation linking, utilizing
the facts and the side information extracted from the source
documents. Specifically, we employ a semantic graph-based
approach to capture the knowledge in the source document
in a global coherence, and to determine the best linking
results by finding the densest subgraph effectively and effi-
ciently. Our system is also able to locate the new entities
mentioned in the source document. We demonstrate the
effectiveness and efficiency of KBPearl against the state-of-
the-art techniques, through extensive experiments on real-
world datasets.

Acknowledgments
We acknowledge all our lovely teammates and reviewers for
their valuable advice on this paper. This work is partially
supported by the Hong Kong RGC GRF Project 16202218,
CRF project C6030-18G, AOE project AoE/E-603/18, the
National Science Foundation of China (NSFC) under Grant
No. 61729201, Science and Technology Planning Project of
Guangdong Province, China, No. 2015B010110006, Hong
Kong ITC grants ITS/044/18FX and ITS/470/18FX, Didi-
HKUST Joint Research Lab Grant, Microsoft Research Asia
Collaborative Research Grant, WeChat Research Grant, We-
Bank Research Grant, and Huawei PhD Fellowship.

1046

9. REFERENCES
[1] R. Andersen and K. Chellapilla. Finding dense

subgraphs with size bounds. In International
Workshop on Algorithms and Models for the
Web-Graph, pages 25–37. Springer, 2009.

[2] G. Angeli, M. J. J. Premkumar, and C. D. Manning.
Leveraging linguistic structure for open domain
information extraction. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 344–354, 2015.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. In The semantic web, pages
722–735. 2007.

[4] O. D. Balalau, F. Bonchi, T. Chan, F. Gullo, and
M. Sozio. Finding subgraphs with maximum total
density and limited overlap. In Proceedings of the
Eighth ACM International Conference on Web Search
and Data Mining, pages 379–388. ACM, 2015.

[5] D. Bamman, T. Underwood, and N. A. Smith. A
bayesian mixed effects model of literary character. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 370–379, 2014.

[6] K. Bernhard and J. Vygen. Combinatorial
optimization: Theory and algorithms. Springer, Third
Edition, 2005., 2008.

[7] R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec.
Entity recommendations in web search. In
International Semantic Web Conference, pages 33–48.
Springer, 2013.

[8] J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09
data set, 2009.

[9] A. X. Chang and C. D. Manning. Sutime: A library
for recognizing and normalizing time expressions. In
Lrec, volume 2012, pages 3735–3740, 2012.

[10] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan,
F. R. Reiss, and S. Vaithyanathan. Systemt: an
algebraic approach to declarative information
extraction. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics,
pages 128–137. Association for Computational
Linguistics, 2010.

[11] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes.
Improving efficiency and accuracy in multilingual
entity extraction. In Proceedings of the 9th
International Conference on Semantic Systems, pages
121–124. ACM, 2013.

[12] C. De Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu,
and C. Zhang. Deepdive: Declarative knowledge base
construction. ACM SIGMOD Record, 45(1):60–67,
2016.

[13] L. Del Corro and R. Gemulla. Clausie: clause-based
open information extraction. In Proceedings of the
22nd international conference on World Wide Web,
pages 355–366. ACM, 2013.

[14] A. Delpeuch. Opentapioca: Lightweight entity linking
for wikidata. arXiv preprint arXiv:1904.09131, 2019.

[15] M. Dubey. test set for lcquad 2.0. 7 2019.
[16] M. Dubey, D. Banerjee, D. Chaudhuri, and

J. Lehmann. Earl: Joint entity and relation linking for
question answering over knowledge graphs. In
International Semantic Web Conference, pages
108–126. Springer, 2018.

[17] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and
J. Lehmann. Asknow: A framework for natural
language query formalization in sparql. In European
Semantic Web Conference, pages 300–316. Springer,
2016.

[18] H. Elsahar, P. Vougiouklis, A. Remaci, C. Gravier,
J. Hare, F. Laforest, and E. Simperl. T-rex: A large
scale alignment of natural language with knowledge
base triples. In Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation (LREC-2018), 2018.

[19] A. Fader, S. Soderland, and O. Etzioni. Identifying
relations for open information extraction. In
Proceedings of the conference on empirical methods in
natural language processing, pages 1535–1545.
Association for Computational Linguistics, 2011.

[20] P. Ferragina and U. Scaiella. Tagme: on-the-fly
annotation of short text fragments (by wikipedia
entities). In Proceedings of the 19th ACM
international conference on Information and
knowledge management, pages 1625–1628. ACM, 2010.

[21] L. Galárraga, G. Heitz, K. Murphy, and F. M.
Suchanek. Canonicalizing open knowledge bases. In
CIKM, pages 1679–1688, 2014.

[22] L. A. Galárraga, C. Teflioudi, K. Hose, and
F. Suchanek. Amie: association rule mining under
incomplete evidence in ontological knowledge bases. In
WWW, pages 413–422, 2013.

[23] E. Galbrun, A. Gionis, and N. Tatti. Top-k
overlapping densest subgraphs. Data Mining and
Knowledge Discovery, 30(5):1134–1165, 2016.

[24] K. Gashteovski, R. Gemulla, and L. Del Corro. Minie:
minimizing facts in open information extraction. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
2630–2640, 2017.

[25] J. Getman, J. Ellis, S. Strassel, Z. Song, and
J. Tracey. Laying the groundwork for knowledge base
population: Nine years of linguistic resources for tac
kbp. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), 2018.

[26] M. Glass and A. Gliozzo. A dataset for web-scale
knowledge base population. In European Semantic
Web Conference, pages 256–271. Springer, 2018.

[27] S. Guo, M.-W. Chang, and E. Kiciman. To link or not
to link? a study on end-to-end tweet entity linking. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 1020–1030, 2013.

[28] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau,
M. Pinkal, M. Spaniol, B. Taneva, S. Thater, and
G. Weikum. Robust disambiguation of named entities
in text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages
782–792. Association for Computational Linguistics,
2011.

1047

[29] H. Ji and R. Grishman. Knowledge base population:
Successful approaches and challenges. In Proceedings
of the 49th annual meeting of the association for
computational linguistics: Human language
technologies-volume 1, pages 1148–1158. Association
for Computational Linguistics, 2011.

[30] H. Ji, J. Nothman, B. Hachey, et al. Overview of
tac-kbp2014 entity discovery and linking tasks. In
Proc. Text Analysis Conference (TAC2014), pages
1333–1339, 2014.

[31] D. S. Johnson and M. R. Garey. Computers and
intractability: A guide to the theory of
NP-completeness, volume 1. WH Freeman San
Francisco, 1979.

[32] X. Lin and L. Chen. Canonicalization of open
knowledge bases with side information from the source
text. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 950–961. IEEE, 2019.

[33] X. Liu, Y. Li, H. Wu, M. Zhou, F. Wei, and Y. Lu.
Entity linking for tweets. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages
1304–1311, 2013.

[34] E. Loper and S. Bird. Nltk: the natural language
toolkit. arXiv preprint cs/0205028, 2002.

[35] W. Lu, Y. Zhou, H. Lu, P. Ma, Z. Zhang, and B. Wei.
Boosting collective entity linking via type-guided
semantic embedding. In National CCF Conference on
Natural Language Processing and Chinese Computing,
pages 541–553. Springer, 2017.

[36] C. Manning, M. Surdeanu, J. Bauer, J. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In Proceedings of
52nd annual meeting of the association for
computational linguistics: system demonstrations,
pages 55–60, 2014.

[37] P. N. Mendes, J. Daiber, M. Jakob, and C. Bizer.
Evaluating dbpedia spotlight for the tac-kbp entity
linking task. In Proceedings of the TAC-KBP 2011
Workshop, pages 118–120, 2011.

[38] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
C. Bizer. Dbpedia spotlight: shedding light on the
web of documents. In Proceedings of the 7th
international conference on semantic systems, pages
1–8. ACM, 2011.

[39] F. Mesquita, M. Cannaviccio, J. Schmidek, P. Mirza,
and D. Barbosa. Knowledgenet: A benchmark dataset
for knowledge base population. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 749–758, 2019.

[40] G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

[41] A. Moro, A. Raganato, and R. Navigli. Entity linking
meets word sense disambiguation: a unified approach.
Transactions of the Association for Computational
Linguistics, 2:231–244, 2014.

[42] I. O. Mulang, K. Singh, and F. Orlandi. Matching
natural language relations to knowledge graph
properties for question answering. In Proceedings of
the 13th International Conference on Semantic

Systems, pages 89–96. ACM, 2017.
[43] N. Nakashole, G. Weikum, and F. Suchanek. Patty: a

taxonomy of relational patterns with semantic types.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages
1135–1145. Association for Computational Linguistics,
2012.

[44] D. B. Nguyen, A. Abujabal, N. K. Tran, M. Theobald,
and G. Weikum. Query-driven on-the-fly knowledge
base construction. PVLDB, 11(1):66–79, 2017.

[45] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. Deepdive:
Web-scale knowledge-base construction using
statistical learning and inference. VLDS, 12:25–28,
2012.

[46] H. Paulheim. Knowledge graph refinement: A survey
of approaches and evaluation methods. Semantic web,
8(3):489–508, 2017.

[47] M. Ponza, L. Del Corro, and G. Weikum. Facts that
matter. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1043–1048, 2018.

[48] D. M. Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness and
correlation. 2011.

[49] J. R. Raiman and O. M. Raiman. Deeptype:
multilingual entity linking by neural type system
evolution. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[50] H. Rosales-Méndez, B. Poblete, and A. Hogan.
Multilingual entity linking: Comparing english and
spanish. In LD4IE@ ISWC, pages 62–73, 2017.

[51] M. Rospocher and F. Corcoglioniti. Joint posterior
revision of nlp annotations via ontological knowledge.
In IJCAI, pages 4316–4322, 2018.

[52] A. Sakor, I. O. Mulang, K. Singh, S. Shekarpour,
M. E. Vidal, J. Lehmann, and S. Auer. Old is gold:
linguistic driven approach for entity and relation
linking of short text. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2336–2346, 2019.

[53] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al.
Open language learning for information extraction. In
Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning, pages
523–534. Association for Computational Linguistics,
2012.

[54] W. Shen, J. Wang, P. Luo, and M. Wang. Liege: link
entities in web lists with knowledge base. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1424–1432. ACM, 2012.

[55] W. Shen, J. Wang, P. Luo, and M. Wang. Linden:
linking named entities with knowledge base via
semantic knowledge. In Proceedings of the 21st
international conference on World Wide Web, pages
449–458. ACM, 2012.

[56] W. Shen, J. Wang, P. Luo, and M. Wang. Linking
named entities in tweets with knowledge base via user

1048

interest modeling. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 68–76. ACM, 2013.

[57] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and
C. Ré. Incremental knowledge base construction using
deepdive. PVLDB, 8(11):1310–1321, 2015.

[58] K. Singh, A. S. Radhakrishna, A. Both,
S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas,
A. Khikmatullaev, D. Punjani, C. Lange, et al. Why
reinvent the wheel: Let’s build question answering
systems together. In WWW, pages 1247–1256, 2018.

[59] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 939–948. ACM, 2010.

[60] R. Usbeck, A.-C. N. Ngomo, B. Haarmann,
A. Krithara, M. Röder, and G. Napolitano. 7th open
challenge on question answering over linked data
(qald-7). In Semantic Web Evaluation Challenge,
pages 59–69. Springer, 2017.

[61] S. Vashishth, P. Jain, and P. Talukdar. Cesi:
Canonicalizing open knowledge bases using
embeddings and side information. In WWW, pages
1317–1327, 2018.

[62] M. Vijaymeena and K. Kavitha. A survey on
similarity measures in text mining. Machine Learning
and Applications: An International Journal,

3(2):19–28, 2016.
[63] D. Vrandečić. Wikidata: A new platform for

collaborative data collection. In WWW, pages
1063–1064, 2012.

[64] T.-H. Wu, Z. Wu, B. Kao, and P. Yin. Towards
practical open knowledge base canonicalization. In
Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages
883–892. ACM, 2018.

[65] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: The state-of-the-art
and comparative study. Acm computing surveys
(csur), 45(4):43, 2013.

[66] W. Zhang, Y.-C. Sim, J. Su, and C.-L. Tan. Entity
linking with effective acronym expansion, instance
selection and topic modeling. In Twenty-Second
International Joint Conference on Artificial
Intelligence, 2011.

[67] W. Zhang, J. Su, C. L. Tan, and W. T. Wang. Entity
linking leveraging: automatically generated
annotation. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages
1290–1298. Association for Computational Linguistics,
2010.

[68] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and
L. Song. Variational reasoning for question answering
with knowledge graph. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

1049

