
LB+-Trees: Optimizing Persistent Index Performance on
3DXPoint Memory

Jihang Liu1,2 Shimin Chen1,2∗ Lujun Wang3

1SKL of Computer Architecture, ICT, CAS
2University of Chinese Academy of Sciences

3Alibaba Group
{liujihang,chensm}@ict.ac.cn, lujun.wlj@alibaba-inc.com

ABSTRACT
3DXPoint memory is the first commercially available NVM so-
lution targeting mainstream computer systems. While 3DXPoint
conforms to many assumptions about NVM in previous studies, we
observe a number of distinctive features of 3DXPoint. For exam-
ple, the number of modified words in a cache line does not affect
the performance of 3DXPoint writes. This enables a new type of
optimization: performing more NVM word writes per line in or-
der to reduce the number of NVM line writes. We propose LB+-
Tree, a persistent B+-Tree index optimized for 3DXPoint memory.
LB+-Tree nodes are 256B or a multiple of 256B, as 256B is the
internal data access size in 3DXPoint memory. We propose three
techniques to improve LB+-Tree’s insertion performance: (i) Entry
moving, which reduces the number of NVM line writes for inser-
tions by creating empty slots in the first line of a leaf node; (ii)
Logless node split, which uses NAW (NVM Atomic Write) to re-
duce logging overhead; and (iii) Distributed headers, which makes
(i) and (ii) effective for multi-256B nodes. Theoretical analysis
shows that entry moving reduces the number of NVM line writes
per insertion of the traditional design by at least 1.35x in a sta-
ble tree. Our micro-benchmark experiments on a real machine
equipped with 3DXPoint memory shows that LB+-Tree achieves
up to 1.12–2.92x speedups over state-of-the-art NVM optimized
B+-Trees for insertions while obtaining similar search and deletion
performance. Moreover, we study the benefits of LB+-Tree in two
real-world systems: X-Engine, a commercial OLTP storage engine,
and Memcached, an open source key-value store. X-Engine and
Memcached results confirm our findings in the micro-benchmarks.

PVLDB Reference Format:
Jihang Liu, Shimin Chen, Lujun Wang. LB+-Trees: Optimizing Persis-
tent Index Performance on 3DXPoint Memory. PVLDB, 13(7): 1078-1090,
2020.
DOI: https://doi.org/10.14778/3384345.3384355

1. INTRODUCTION
NVM technologies, including PCM [20], STT-RAM [2], and

Memristor [23], have been studied for over a decade as a promis-
ing solution to address the DRAM scaling problem. In April 2019,
∗Corresponding author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384355

Intel started to ship 3DXPoint based Intel Optane DC Persistent
Memory DIMM products1. This is the first commercially available
NVM solution targeting mainstream computer systems [10, 1].

Based on publicly available information [1, 13] and our experi-
mental micro-benchmark study to understand the characteristics of
3DXPoint [15], we find that 3DXPoint conforms to many assump-
tions about NVM in previous studies: (i) Like DRAM, the data ac-
cess granularity from CPU to 3DXPoint is 64-byte cache lines; (ii)
3DXPoint is modestly (i.e. 2–3x) slower than DRAM, but orders
of magnitude faster than flash and HDDs; (iii) 3DXPoint writes are
slower than reads; and (iv) Using special instructions (clwb and
sfence) to persist data from CPU cache to 3DXPoint can drasti-
cally slow down write performance by up to an order of magnitude.

However, we also observe a number of distinctive features of
3DXPoint: (i) The number of modified words in a cache line does
not affect the write performance; (ii) The internal data access gran-
ularity in 3DXPoint memory is 256B; and (iii) 3DXPoint perfor-
mance degrades as applications access more data. These obser-
vations guide software design considerations and enable new op-
timization opportunities. One important new design principle is
to reduce the number of NVM line writes rather than NVM word
writes as in previous studies [5, 6] because the write content does
not impact the NVM write performance. Therefore, we can per-
form more NVM word writes when a line has to be written to NVM
in order to reduce the number of future NVM line writes.

Based on these observations, we propose LB+-Tree, a persistent
B+-Tree index optimized for 3DXPoint memory. We set the tree
node size to be 256B or a multiple of 256B because this choice best
utilizes the internal data access bandwidth in 3DXPoint modules.

We propose the following three techniques to improve LB+-
Tree’s insertion performance:

• Entry moving: An insertion inserts a new index entry and up-
dates the header in a leaf node. If the insertion finds an empty
slot in the same line (i.e. the first line) as the header, then it
can use one NVM line write to both insert the new entry and
update the header. This is the best case. On the other hand, if
the first line is full, the insertion finds an empty slot in another
line in the leaf node and incurs two NVM line writes, one for
updating the header, one for writing the new entry. We take
this opportunity to actively create empty slots in the first line
by moving as many entries from the first line to the line being
written to. Then, future insertions will more likely to find an
empty slot in the first line, achieving the best case.
• Logless node split: Previous NVM-optimized B+-Trees rely

on logging to support node splits. However, logging incurs

1We use 3DXPoint and Intel Optane DC Persistent Memory interchange-
ably in this paper.

1078

Core
L1 L1

L2

Core
L1 L1

L2

L3

Memory Controller

3DXPoint

DRAM

Core
L1 L1

L2

Core
L1 L1

L2

L3

Memory Controller

3DXPoint DRAM

(a) Memory mode (b) App-direct mode
Figure 1: 3DXPoint NVDIMM modes.

extra NVM write and persist cost. Instead, we use NAW
(NVM Atomic Write) to switch between two alternative sib-
ling pointers for node splits.
• Distributed headers: For multi-256B nodes, traditional de-

signs put all the meta-information in a centralized header in
the beginning of the node. Examples of meta-information in-
cludes bitmap to identify valid and empty index entry slots
and fingerprints to facilitate key search. However, the num-
ber of entry slots in the first line will decrease as the node size
increases. This makes the entry moving optimization less ef-
fective. With the distributed headers technique, we distribute
a piece of the header to every 256B block in the node. We
also design a set of alternative headers. In this way, both entry
moving and logless node split can remain effective for multi-
256B nodes.

We prove the correctness of our proposed algorithms. That is, the
insertion and deletion algorithms of LB+-Trees are guaranteed to
keep the LB+-Tree leaf nodes in a consistent state in NVM memory
in light of power failures and process crashes. We analyze the cost
of insertions and show that entry moving reduces the number of
NVM line writes per insertion of the traditional design by at least
1.35x in a stable tree.

We compare LB+-Tree and state-of-the-art NVM optimized in-
dex structures on a real machine equipped with 3DXPoint memory.
Our micro-benchmark experiments show that LB+-Tree achieves
up to 1.12–2.92x speedups over state-of-the-art NVM optimized
B+-Trees, WB+-Tree [6] and FP-Tree [18], for insertions while ob-
taining similar search and deletion performance. We study the ben-
efits of LB+-Tree in two real-world systems: X-Engine, a commer-
cial OLTP storage engine, and Memcached, an open source key-
value store. X-Engine experiments show that LB+-Trees achieve
better performance than skip lists, which are used in X-Engine.
Memcached experiments confirm our micro-benchmark findings.

Contributions. The contributions of this paper are fourfold. First,
we present three design principles based on our observation of 3DX-
Point characteristics and the analysis of existing NVM-optimized
B+-Tree studies. Second, we propose LB+-Tree, which exploits
entry moving, logless node split, and distributed headers for better
insertion performance. Third, we formally prove the correctness of
the proposed algorithms using the concept of NAW sections, and
we present a theoretical analysis of the insertion cost. Finally, we
preform micro-benchmark experiments and experiments with two
real-world systems to show the benefits of LB+-Tree.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 describes 3DXPoint characteristics, discusses related work,
and presents the three design principles. Section 3 describes the
design of LB+-Tree. Section 4 evaluates the proposed solution
using a real machine equipped with 3DXPoint memory. Finally,
Section 5 concludes the paper.

2. BACKGROUND AND MOTIVATION
We begin by describing 3DXPoint memory in Section 2.1. We

pay special attention to the similarities and differences between the
characteristics of 3DXPoint and the NVM assumptions in previous
simulation or emulation based studies. Then, we examine the main
schemes to support persistent data structures in NVM memory in
Section 2.2, and delve into the NAW scheme in Section 2.3. After
that, we discuss existing NVM optimized B+-Tree design choices
in Section 2.4. Finally, we rethink the design principles for opti-
mizing B+-Trees on 3DXPoint memory in Section 2.5.

2.1 3DXPoint Memory
3DXPoint based Intel Optane DC Persistent Memory is the first

NVM main memory solution available for mainstream computer
systems [10, 1]. The product is packaged in the NVDIMM format
and plugs into standard DDR4 DIMM sockets. It uses the propri-
etary DDR-T protocol, which revises the DDR4 protocol to support
asynchronous operations. The capacity of an NVDIMM is 128GB
— 512GB. A dual-socket machine can be equipped with up to 12
NVDIMMs or up to 6TB of NVM memory.

There are two main NVDIMM configuration modes, as shown in
Figure 1. In the memory mode, DRAM is managed as a cache for
3DXPoint memory by the memory controller. The main memory
capacity is equal to the total size of the 3DXPoint memory. This
mode enables un-modified applications to exploit the large main
memory capacity provided by 3DXPoint. However, there are two
drawbacks. First, the memory mode does not support persistent
data structures. This is because contents in the DRAM cache are
lost upon power failure. Therefore, it can only be used as large
volatile main memory. Second, it takes longer time to load data
from 3DXPoint because a load consists of a DRAM cache visit
(miss) followed by a 3DXPoint visit. Hence, it may be sub-optimal
to run data-intensive applications with working sets larger than the
DRAM cache capacity in the memory mode.

In the app-direct mode, 3DXPoint and DRAM are both directly
accessed by the CPU. 3DXPoint modules are recognized as spe-
cial devices by the OS. We can install file systems on 3DXPoint
modules and use PMDK (Persistent Memory Development Kit)2 to
map a file from 3DXPoint into the virtual memory space of an ap-
plication. The OS runs DAX device drivers for 3DXPoint so that
accesses to 3DXPoint get around the OS page cache. In this way,
applications can directly access 3DXPoint using load and store in-
structions, and implement persistent data structures in 3DXPoint.
In order to support persistent B+-Trees, we focus on the app-direct
mode of 3DXPoint NVDIMMs in this paper.

We have performed an experimental micro-benchmark study to
understand the characteristics of 3DXPoint [15]. Based on our
study and publicly available information [1, 13], we find that 3DX-
Point conforms to many assumptions about NVM in previous stud-
ies: (i) Like DRAM, the data access granularity from CPU to 3DX-
Point is 64-byte cache lines. (ii) 3DXPoint is modestly (i.e. 2-3x)
slower than DRAM, but orders of magnitude faster than flash and
HDDs. (iii) The read and write performance of 3DXPoint is asym-
metric. 3DXPoint writes are slower than reads. (iv) Using special
instructions (clwb and sfence) to persist data from CPU cache to
3DXPoint can drastically slow down write performance by up to an
order of magnitude.

We also observe a number of distinctive features of 3DXPoint:
• Observation 1: The number of modified words in a cache line

does not affect the write performance. Previous studies pro-
posed various techniques (e.g., data comparison write, flip-N-

2http://pmem.io/pmdk/libpmem/

1079

write) to improve NVM write performance by writing a subset
of bits instead of the full cache line [22, 7, 9, 11]. For exam-
ple, in data comparison write, the hardware reads the original
line, compares the modified line with the original line to find
the modified bits, and writes only the modified bits to the un-
derlying NVM memory. The write latency is lower if fewer
words are modified in the line. Since NVM reads are faster
than NVM writes, data comparison write can significantly
improve write performance. Since the effect of such tech-
niques contradicts with Observation 1, we believe that opti-
mizations such as data comparison write are not implemented
in 3DXPoint. An explanation is that Intel Optane DC Persis-
tent Memory implements hardware encryption to ensure data
security from physical intrusion. A bit change in the origi-
nal data can lead to many bit changes in the encrypted result
(a.k.a. the avalanche effect [21]). Thus, it would be difficult
to support write content based optimizations [24]. Note that
hardware encryption is a desirable feature for NVM mem-
ory to protect sensitive information. Therefore, we argue that
Observation 1 will be applicable beyond 3DXPoint to future
NVM memory techniques with hardware encryption support.
• Observation 2: The internal data access granularity in 3DX-

Point memory is 256B. To serve a 64B cache line read, 3DX-
Point reads 256B internally and returns the 64B line. To serve
a 64B cache line write, 3DXPoint reads 256B, modifies 64B,
and writes the modified 256B internally. Therefore, applica-
tions can achieve better memory bandwidth with 256B reads.
256B writes can also be beneficial under the condition that
there are no data persist operations in between writes.
• Observation 3: 3DXPoint performance degrades as the work-

ing set size of an application increases. This may be due to
techniques such as caching in 3DXPoint memory modules.
We find that the memory performance becomes stable when
the size of the data accessed by applications is 1/8 or more of
the total capacity of a 3DXPoint memory module.

Finally, NVM technologies, such as PCM, have endurance issues.
The number of writes to a PCM cell before it wears out is about
108 − 109. Therefore, wear-leveling and improving NVM en-
durance have been important topics in the literature [25, 7]. How-
ever, there has been no official information from Intel about 3DX-
Point’s endurance. Nevertheless, our techniques in this paper aim
to reduce NVM writes for index insertions, which will also improve
NVM endurance.

2.2 Schemes to Achieve Data Persistence
It is challenging to design persistent data structures in NVM

memory. While NVM is non-volatile, CPU cache is still volatile,
and its contents get lost upon power failure. Normal data store in-
structions complete when the data are written to CPU cache. How-
ever, the hardware controls when and in what order dirty cache
lines are written back to main memory. Therefore, it is necessary
to use special cache line flush instructions (e.g., clwb) followed by
a memory fence instruction (e.g., sfence) to guarantee modified
data are written back to NVM. We call clwb instructions followed
by a sfence instruction a persist operation. As persist operations
incur drastic overhead as discussed in Section 2.1, it is important
to reduce not only NVM writes but also persist operations in the
design of persistent data structures in NVM memory.

There are four software schemes to achieve data persistence in
NVM memory: logging [17], shadowing [8], PMwCAS [3], and
NVM atomic writes (NAW) [6]. Here, atomicity means that the write
to NVM either succeeds or fails in its entirety in light of power fail-
ure and process crashes. An NAW is an 8B write followed by a per-

sist operation. Note that data persistence and concurrency control
are orthogonal issues. NAWs should not be confused with atomic
instructions (e.g., compare-and-swap), which are atomic in light of
instructions executed by other processor cores.

In write-ahead logging, we protect an NVM write by logging the
write intention into a log in the NVM memory. We first write and
persist a log record containing (address, old value, new value) to
the log, then perform the actual NVM write without persisting it.
During failure recovery, we check the log. If the log record does
not exist, then the NVM write must not have occurred. If the log
record exists, we compare the value at the address with the logged
values, and can perform either undo or redo to achieve a consistent
state for the persistent data structure.

In shadowing, we do not directly modify the persistent data struc-
ture. Instead, we create a shadow copy of the portion of the data
structure to be modified in a newly allocated space in NVM, modify
and persist the shadow copy, and then use a single NAW to switch
the old copy and the new copy in the persistent data structure. Note
that this requires that there is a single pointer to the portion of data
structure to be modified (e.g., the pointer to a B+-Tree node in its
parent node). During failure recovery, the pointer points to either
the old copy or the newly written and persisted copy. Therefore,
the data structure is in a consistent state.

The PMwCAS is a mechanism to support persistent multi-word
compare-and-swap operations. First, it records the address, the old
value, and the new value for every target word in a descriptor buffer.
Second, it persists the descriptor buffer. Third, it writes and persists
the pointer to the descriptor buffer in every target word. Finally, it
performs the actual writes to the target words. PMwCAS can be
used to achieve both data persistence and latch free operations for
data structures.

Logging and shadowing incur extra NVM write and persist cost
for writing logs and creating new copy of data, respectively. PMw-
CAS incurs extra overhead for writing and persisting the descriptor
buffer and the descriptor pointer to the target words. Such cost can
be much higher than directly modifying the persistent data struc-
ture. Therefore, recent studies aim to use light-weight NAWs to
make direct changes to the persistent data structure, thereby avoid-
ing the overhead of logging and shadowing. We discuss NAW in
detail in the following subsection.

2.3 NVM Atomic Write (NAW)
An NVM atomic write (NAW) is an 8B word write followed

by a clwb and a sfence to persist the data to NVM memory. It
is guaranteed that the NVM stores the entire 8B word atomically.
That is, upon failure, the NVM contains either the new 8B word or
the original 8B word. The 8B data can never be partially written.

We often use an NAW in an NAW section. The basic idea is to
prepare new changes in previously unused space so that the mod-
ifications do not impact the correctness of a data structure upon
failure. Then we persist the new changes, and use a single NAW to
switch the state of the data structure to include the new changes.

DEFINITION 2.1 (NAW SECTION). An NAW section is a
code section that consists of zero or more NVM writes to unused
space, followed by a set of clwb and a single sfence to persist
lines containing the modified unused space except the line contain-
ing D, and a single NAW to modify an old data item D.
Figure 2 shows an example NAW section. The NAW section first
writes new values to previously unused space U1, U2, and U3. Then
it persists lines B and C. Since U1 is in the same line as D, Line
A is not persisted. Finally, it uses an NAW to modify D to a new
value D′. This NAW persists the entire Line A, which contains the
newly modified U1. D′ typically indicates that the previous unused

1080

U1 Line A

Line B

U3 Line C

U2

D

U1←Value1
U2←Value2
U3←Value3
clwb(Line B)
clwb(Line C)
sfence
D ← New D’
clwb(Line A)
sfence

Persistent Data Structure
in NVM memory

(a) D contains old data,
 U1,U2,U3 are unused (b) NAW section

Write to
unused space

Persist
other lines

NVM Atomic
Write (NAW)

Figure 2: NAW (NVM Atomic Write) section.
U1, U2, and U3 are now taken by new data items. Upon failure, if
the NAW has not yet occurred, D reflects the old state of the data
structure, regarding U1, U2, and U3 as unused space. If the NAW
succeeds, then U1, U2, and U3 must also be written correctly in
NVM. D′ reflects the correct new state.

We formally prove the correctness guarantee of an NAW section:

THEOREM 2.1 (NAW SECTION PERSISTENCE). It is guar-
anteed that upon failure the data structure protected by the NAW
section is either in the old state before the NAW section or in the
new state after the NAW section.

PROOF. When there is a failure, the NAW either succeeds or
fails. If it fails, then the data structure is in the old state because the
writes to unused space do not change the state of the data structure.
If the NAW succeeds, then both the new data items and D′ are
correctly written to NVM. The data structure is in the new state
after the NAW section. Therefore, the data structure is guaranteed
to be either in the old state or in the new state.

What if a state transition requires modifying multiple used loca-
tions? In general, NAW cannot support such complex state transi-
tions. We have to fall back to more costly schemes, such as log-
ging. For some data structures (e.g., B+-Tree leaf nodes [6]), it
is possible to design multiple intermediate recoverable states and
use multiple NAW sections to achieve data persistence. As illus-
trated in Figure 3, the state transition requires to modify k words
D1, · · · , Dk. We reserve 1 bit in D1 to show if the state transition
is ongoing. NAW section 1 sets the ongoing flag in D1. The NAW
section 2–k modify D2, · · · , Dk, respectively. D2, · · · , Dk are all
recoverable. The last NAW section clears the flag and updates D1.
Upon failure, the flag in D1 can be checked to see if the transition
is complete. If it is complete, then the data structure is in the new
state. If the transition is ongoing, then a recovery function rolls
back the data structure to the old state. In this way, multiple NAW
sections can protect complex state transitions.

2.4 Existing NVM Optimized B+-Tree Designs
There are several considerations in designing NVM optimized

persistent B+-Trees in previous studies [5, 6, 18, 3].
First, CPU cache performance is important because the trees are

in main memory. Therefore, NVM optimized B+-Trees are often
based on cache-optimized B+-Trees [19, 4]. The nodes in cache-
optimized B+-Trees are aligned to cache line boundaries. Their
size is one or a few cache lines large.

Second, NVM writes are to be reduced as much as possible.
Chen et al. [5] proposed to make the leaf nodes unsorted with a
bitmap to indicate the valid entries and empty slots. If a leaf node
is not full, then an insertion writes to an empty slot. Compared to
traditional sorted leaf nodes, unsorted leaf nodes reduce the cost of
moving existing valid entries to ensure the key order.

Third, NAW is the preferred scheme to achieve data persistence.
Chen et al. [6] proposed WB+-Tree, whose leaf node structure con-
tains a sorted indirection array to facilitate binary search in unsorted

Old state
NAW section1 to update D1 to D1

Recoverable state1
……
NAW sectionk to update Dk to Dk’
Recoverable statek
NAW sectionk+1 to update D1 to D1’
New state

Set a flag D1 in to show
transition is ongoing

Upon failure, if transition is
ongoing, then roll back to
the old state

Clear the flag in D1 and
modify its value

flag

flag

Figure 3: Using multiple NAW sections to protect a general
state transition when the intermediate states are recoverable.

leaf nodes. However, both the bitmap and the indirection array need
to be modified for an insertion. The solution is to use two NAW sec-
tions with an intermediate state, which is recoverable because the
indirection array can be rebuilt by reading the valid index entries in
the leaf node.

Fourth, non-leaf search can be improved by placing non-leaf
nodes in DRAM as DRAM reads are faster than NVM reads. Oukid
et al. [18] proposed the selective persistence technique to place
non-leaf nodes of FP-Tree in DRAM while keeping leaf nodes in
NVM3. The non-leaf nodes can be rebuilt from the leaf nodes upon
power failure. In this way, the search in the non-leaf part of the tree
can be significantly improved.

Other Considerations. Oukid et al. [18] proposed to compute and
store a 1-byte fingerprint per key in a fingerprint array in every
leaf node in FP-Tree. Then the fingerprint of the search key can
be compared with multiple fingerprints using SIMD instructions to
speed up search in leaf nodes. Moreover, previous studies also con-
sider concurrency control for B+-Trees in NVM. FP-Tree exploits
hardware transactional memory and locking bits in leaf nodes for
concurrency control purpose [18]. In comparison, Arulraj et al. [3]
proposed to use PMwCAS to implement latch free and NVM persis-
tent operations on BzTree.

2.5 Design Principles for 3DXPoint Memory
Our goal is to optimize B+-Tree designs for 3DXPoint memory.

As 3DXPoint conforms to many of the NVM assumptions in pre-
vious studies, we will follow the above design considerations for
NVM optimized B+-Trees as the starting point of our design.

We propose the following three design principles:

• Design principle 1: reduce the number of NVM line writes
rather than NVM word writes. First, according to Observation
1, the number of words written in a cache line does not impact
the NVM write performance. Second, the granularity of per-
sist operations are cache lines, and persist operations are more
costly than NVM writes. Hence, it is important to reduce the
number of NVM line writes. This principle enables a new
type of optimization: performing more NVM word writes per
line in order to reduce the number of NVM line writes.
• Design principle 2: set node size to be a multiple of 256B.

Based on Observation 2, a multiple of 256B best utilizes the
internal data access bandwidth in 3DXPoint modules.
• Design principle 3: completely remove logs and use NAW for

node splits. Existing studies perform NAWs to improve inser-
tions to leaf nodes that are not full. However, they still rely
on logging to support node splits when inserting into full leaf

3The capacity ratio R between NVM and DRAM must be considered. Note
that if the average branching factor is B, then the non-leaf part of the tree in
DRAM takes roughly B times smaller space than the leaf nodes in NVM.
It is advisable to ensure B to be similar to or larger than R. The capacity
of a single DDR4 DRAM DIMM is up to 32GB large. The capacity of a
3DXPoint NVDIMM module is up to 512GB. Hence, R= 16.

1081

DRAM 3DXPoint

S0
S1

Line 1 Line 2 Line 3

14 (8B key, 8B val) entries 2 sibling ptrs

header
14x1B fingerprints

Line 0

lock alt 14bit bitmap

leaf node

non-leaf
node

Figure 4: The LB+-Tree structure with 256B nodes.

nodes. We would like also to improve node split performance
by exploiting NAWs.

In addition, Observation 3 gives a constraint on experimental
setup. We would like to model the situation where the applica-
tion (e.g., DBMS) utilizes a large portion of the available NVM
space. To achieve this, we must set the data set size in the experi-
ments to be at least 1/8 of the 3DXPoint capacity. If the data size
is too small, the measured performance may not be representative
according to Observation 3.

3. LB+-TREE DESIGN
We propose the LB+-Tree index, a persistent B+-Tree optimized

for 3DXPoint that minimizes the number of NVM Line writes and
performs Logless insertions. Our LB+-Tree design follows the
proven design choices of previous NVM optimized B+-Trees as
a starting point, and applies the three design principles for 3DX-
Point memory. We set the node size of LB+-Trees to be 256B or a
multiple of 256B (Design principle 2).

In the following, we first present our design for LB+-Trees with
256B nodes in Section 3.1–3.3. We overview the tree structure in
Section 3.1. We describe how the leaf insertion algorithms reduce
the number of NVM line writes (Design principle 1) and achieve
logless leaf node splits (Design principle 3) in Section 3.2 and Sec-
tion 3.3, respectively. Then, we extend the design to support node
sizes that are multiples of 256B in Section 3.4. Finally, we analyze
the cost of LB+-Trees in Section 3.5.

3.1 Overview of LB+-Trees with 256B Nodes
Tree Structure. The tree structure of the 256B-node LB+-Tree is
illustrated in Figure 4. The tree node size is 256B. All nodes are
aligned at 256B boundaries. As 256B is a multiple of cache line
size (64B), an LB+-Tree is a cache-optimized B+-Tree. The tree
consists of two parts: non-leaf nodes and leaf nodes. As 3DXPoint
is slower than DRAM, we follow the FP-Tree to place non-leaf
nodes in DRAM and leaf nodes in 3DXPoint to improve the per-
formance of the non-leaf part of the tree. Note that while non-leaf
nodes are volatile in this design, they can be reconstructed from the
persistent leaf nodes in 3DXPoint during failure recovery.

A 256B leaf node consists of four 64B lines, as depicted in Fig-
ure 4. A (8B key, 8B value) index entry takes 16B. There are four
16B units in every line and 16 units in total in the entire node. We
use 14 of the 16 units to store index entries.

The first unit in Line 0 stores the 16B header. It consists of a 16-
bit bit array and a 14B fingerprint array. The bit array contains a
14-bit bitmap, each bit of which corresponds to an index entry slot.
“1” means that the slot is occupied by a valid entry. “0” means that
the slot is empty. The other two bits are the lock bit for concurrency
control, and the alt bit, which specifies one of the two alternative
sibling pointers. The fingerprint array improves search computa-
tion inside the leaf node. hash(key) computes a 1B fingerprint for
a given key. The 14 1B-fingerprints correspond to the 14 index en-
try slots in the node. Thus, a single 128-bit SIMD instruction can

Algorithm 1: LB+-Tree search.

1 Function LBTreeSearch(Root r, Key k)
2 Again:
3 if xbegin() != XBEGIN STARTED then goto Again;
4 leaf= SearchNonLeaf(r);
5 if leaf.lock == 1 then xabort(); goto Again;
6 match set= SimdSearch(hash(k), leaf.fgprt);
7 found= False; val= 0;
8 foreach slot ∈ match set do
9 if (leaf.bitmap[slot]==1) and

(leaf.entry[slot].key==k) then
10 found=True; val= leaf.entry[slot].val; break;

11 xend();
12 return (found, val);

compare the fingerprint of a search key with the 14 fingerprints to
quickly locate the slots that contain potential matches.

The last unit in Line 3 contains two 8B sibling pointers. The alt
bit in the header chooses which pointer is presently in use. The
effective sibling pointer points to the right sibling of the leaf node,
or NULL if the node is the right-most leaf node in the tree.

Concurrency Control. We follow the FP-Tree to combine hard-
ware transactional memory (HTM) and a lock bit per leaf node for
concurrency control. Our implementation uses primitives of Intel
Transactional Synchronization Extensions (TSX) for HTM. How-
ever, it is straightforward to port the code to other processor archi-
tectures (e.g., IBM Power8, ARM) that support HTM.

Cache line flush instructions (e.g., clwb) cannot be used with
HTM because HTM requires to keep all modified cache lines of a
transaction in CPU cache so that the modifications are hidden from
other processor cores before the transaction commits. However,
such special instructions are necessary to persist data to 3DXPoint
memory. This problem is solved by introducing the lock bit.

An index operation starts an HTM transaction. When it reaches
the leaf level, it checks the lock bit in the leaf node to see if any in-
dex write operation (i.e. insertion or deletion) has locked the node.
It aborts the transaction if lock=1, and continues only if lock=0.
An index read operation then performs the search in the transac-
tion. In contrast, an index write operation sets lock=1, commits the
transaction, and performs the actual writes outside the transaction.

This concurrency control design has the following desired prop-
erties. First, concurrent index read operations can proceed at the
same time because the transactions are read-only without modify-
ing any fields in tree nodes. Second, an index write operation has
exclusive access to its target leaf node. This is because the write
to lock conflicts with the read of lock in concurrent transactions
visiting the same node, and new transactions that see lock = 1 will
abort. Third, clwb can be used outside of HTM transactions.

Basic Operations. The LB+-Tree search algorithm is listed in Al-
gorithm 1. Code line 3, 5, and 11 implement the above concurrency
control design. In Intel TSX, xbegin(), xabort(), and xend()
starts, aborts, and commits the transaction, respectively. Success-
ful xbegin() returns XBEGIN STARTED. When a transac-
tion aborts because of xabort() or because hardware detects con-
flicts, the execution jumps to xbegin() as if it returns an error
code, and the algorithm retries. The search operation first searches
the non-leaf nodes to find a leaf node. Then, it uses SIMD (e.g.,
mm cmpeq epi8) to search the fingerprint array to get a match set

of candidate matches. Finally, it checks each potential match to
verify if the slot is valid and the key is equal to the search key.

1082

S0
S1

Line 1 Line 2 Line 3 Line 0

Insert 6
9 1 5

S0
S1

9 1 5

4

4 6
Insert 3

S0
S1

9 1 5 4 6 3

1 NVM
line write
2 NVM
line writes

Insert 7
S0
S1

9 1 5 4 6 3 1 NVM
line write 7

Figure 5: Inserting into a leaf node with empty slots.

The insertion operation is the focus in our study and will be de-
scribed in detail in the next two sections. The deletion operation is
simpler than the insertion operation. Given an index entry to delete,
it performs a search to find the leaf node and the leaf slot where the
entry is stored. Then it performs an NAW to update the bitmap,
clearing the bit corresponding to the slot. Since only a single NAW
is performed, it is guaranteed that the leaf node will be in a consis-
tent state in NVM memory upon failure. Note that it is expected
that data sets are growing and therefore empty slots resulting from
deletions are likely to be quickly used by insertions. Consequently,
we do not implement the node merge for deletions [14].

Since the deletion operation performs a single NAW, we can
prove the following based on Theorem 2.1:

THEOREM 3.1. The deletion algorithm for LB+-Trees with 256-
byte sized nodes is guaranteed to keep the leaf node in a consistent
state in NVM memory upon failure.

Crash Recovery. The index write operations (i.e. insertions and
deletions) are guaranteed to maintain the linked list of leaf nodes in
a consistent state in 3DXPoint memory, as discussed in the above
and in Section 3.2–3.4. During crash recovery, we scan the linked
list of leaf nodes to build the non-leaf nodes in DRAM.

The scan also checks the lock bit in every leaf node and clears
it if necessary. Note that lock may be set in a leaf node as in the
following scenario. An insertion to the leaf node sets lock = 1
and commits the transaction. The modified cache line is somehow
evicted from CPU cache and written back to NVM. Then there is a
power failure before the insertion finishes.

We measure the time to rebuild the non-leaf nodes during recov-
ery in Section 4.2 and find that the rebuild time can be kept reason-
ably low (e.g., 0.1 second) for a tree that contains 2 billion index
entries. One can further reduce the rebuild time by placing one or
more levels of non-leaf nodes in 3DXPoint. This is an interesting
tradeoff between index performance, complexity and rebuild time.

3.2 Reducing NVM Line Writes for Insertions
Given a new index entry (k, v), the insertion operation searches

for the leaf node that k belongs to. Then, it finds an empty slot to
store the entry and updates the fingerprint and the bitmap in the leaf
header. The number of NVM line writes depends on whether the
selected slot to store the new entry is in the same line (i.e. Line 0) as
the header. The good case is when the slot is in Line 0. The inser-
tion writes only one NVM line. When the slot is in a line different
from Line 0, the insertion incurs two NVM line writes, doubling
the cost. Therefore, we would like to apply Design principle 1 to
increase the chance that there are empty slots in Line 0.

The basic idea of is depicted in Figure 5. After inserting 6, Line
0 is full. The insertion of 3 has to incur two NVM line writes. It
writes Line 0 and Line 1. We take this opportunity to move the
index entries in Line 0 to Line 1 to create empty slots in Line 0.
As a result, the next insertion of 7 becomes the good case. It finds
an empty slot in Line 0, and thus incurs only one NVM line write.
Note that the number of word writes in a line does not impact the

S0
S1

9 4 6 3 b f 0 1 2 8 7 d 5 a next
leaf node

previous
leaf node

(a) The leaf node is full. (suppose alt=0, Salt is used.)

4 6 3 0 1 2 5 next
leaf node

previous
leaf node

(b) Insert c: Step 1 allocates, populates, and persists a new node.
Then, it sets and persists S1-alt to point to the new node.

9 b a 8 d f c S0
S1

7

S0
S1

4 6 3 0 1 2 5 next
leaf node

previous
leaf node

(c) Step 2 updates the bitmap and flips alt with an NAW.
9 b a 8 d f c S0

S1

7

S0
S1

9 b f 8 d a

Figure 6: Logless leaf node split.

performance of NVM line write. This enables the entry moving
optimization, which performs more NVM word writes in order to
reduce the number of NVM line writes for future insertions.

The LB+-Tree insertion algorithm is listed in Algorithm 2. It
distinguishes the good case (Code line 15–20) from the other cases
(Code line 21–32), where it moves as many index entries as possi-
ble from Line 0 to the line that stores the new index entry. An in-
teresting aspect of the algorithm is that it does not directly modify
the leaf header. Instead, it copies the leaf header to a 16B dword
implemented as an array of two 8B words (i.e. 8B unsigned in-
tegers). It performs the fingerprint and bitmap modifications on
dword. Finally, it writes dword back to the leaf header using 8B
word writes. As a result, the leaf header is modified only at judi-
ciously selected places in the code, which makes it easy to reason
about the correctness of the data persistence support.

THEOREM 3.2. If the leaf node has empty slots, the insertion
algorithm for 256B-node LB+-Trees is guaranteed to keep the leaf
node in a consistent state in NVM memory upon failure.

PROOF. We consider the following two cases. Case 1: When
the empty slot to insert the new entry is in Line 0, the algorithm
performs an NAW section that writes the entry to an unused space,
and performs a NAW to the first word in the header. Note that
the first word contains the bitmap and 6 fingerprint slots, which
cover all slots in Line 0. Case 2: When the empty slot is in Line
lineid = 1, 2, or 3, the code performs a number of writes to unused
spaces in Line lineid. Then it writes to the second word in the
header. This write may modify unused fingerprint slots. After that,
it performs an NAW to the first word in the header. This forms an
NAW section. From Theorem 2.1, we know that in both cases the
leaf node will be in a consistent state in NVM memory.

3.3 Logless Node Splits Using NAWs
The splitting performance of leaf nodes has been one of the ma-

jor performance bottlenecks for NVM optimized B+-Tree inser-
tions. Existing designs rely on logging to support node splits, in-
curring extra NVM write and persist overhead.

We propose a logless node split design for LB+-Trees, as illus-
trated in Figure 6. The basic idea is to have two alternative sibling
pointers and use the alt bit in the leaf header to indicate which
pointer is in use. The operation first allocates a new leaf node,
copies half of the index entries from the existing leaf node, and in-
serts the new node into the linked list, using S1 in the existing leaf
node. Since S1 is presently not in use, all these changes write to
previously unused space. Then, we can use an NAW to write the
leaf header, which both sets the alt bit to switch the sibling pointers

1083

Algorithm 2: LB+-Tree insert.

1 Function LBTreeInsert(Root r, Key k, Value v)
2 Again:
3 if xbegin() != XBEGIN STARTED then goto Again;
4 leaf= SearchNonLeaf(r);
5 if leaf.lock == 1 then xabort(); goto Again;
6 leaf.lock= 1;
7 xend();
8 if leaf.isFull() then return LBTreeLeafSplit(leaf, k, v);
9 else

10 dword.word[0,1] = leaf.word8B[0,1];
11 return LBTreeLeafInsert(leaf, dword, k, v)

12 Function LBTreeLeafInsert(Leaf leaf , DWord dword, Key k,
Value v)

13 slot= FindFirstEmptySlot(leaf.bitmap);
14 lineid= WhichLine(slot);
15 if lineid==0 then // slot is in Line 0
16 leaf.entry[slot]= (k, v);
17 word= dword.word[0];
18 word.fgprt[slot]= hash(k); word.bitmap[slot]= 1;
19 leaf.word8B[0]= word;
20 clwb (leaf.line[0]); sfence ();

21 else // slot is in Line 1–3
22 leaf.entry[slot]= (k, v);
23 dword.fgprt[slot]= hash(k); dword.bitmap[slot]=1;
24 line empty set=

FindEmptySlotsInLine(dword.bitmap, lineid);
25 from= 0; // first entry in line 0
26 foreach to ∈ line empty set do // move entries
27 leaf.entry[to]= leaf.entry[from];

dword.fgprt[to]= dword.fgprt[from];
dword.bitmap[to]= 1; dword.bitmap[from]= 0;

28 from ++;

29 clwb (leaf.line[lineid]); sfence ();
30 leaf.word8B[1]= dword.word[1]
31 leaf.word8B[0]= dword.word[0];
32 clwb (leaf.line[0]); sfence ();

33 return DoneInsert;

in effect and clears bits in the bitmap for the empty slots. In this
way, we avoid logging for leaf node splits.

The LB+-Tree leaf node split algorithm is listed in Algorithm 3.
At the beginning, the algorithm allocates a new node, and copies
the largest 7 of the 14 index entries in the full leaf node to the
new node. We store the copied entries in the last two lines so that
future insertions to the new node can use empty slots in Line 0 for
better performance. Then, sibling pointers are changed to insert the
new node into the linked list without changing the current effective
pointer. After that, the algorithm considers two cases. Code line
13–19 supports the case where the new entry to insert belongs to the
new leaf. For the other case where the new entry belongs to the old
leaf, Code line 20–23 persists the new leaf and the sibling pointer,
then calls LBTreeLeafInsert to insert the entry. Note that the
dword parameter to the call reflects the cleared bits in the bitmap
and the flip of alt. Therefore, LBTreeLeafInsert will find an
empty slot using dword and correctly update the leaf header.

THEOREM 3.3. In the case where the leaf node splits, the in-
sertion algorithm for 256B-node LB+-Trees is guaranteed to keep
the leaf nodes in a consistent state in NVM memory upon failure.

Algorithm 3: LB+-Tree leaf node split.

1 Function LBTreeLeafSplit(Leaf leaf , Key k, Value v)
2 newleaf= AllocLeafNode();
3 newleaf.word8B[0,1]= 0;
4 move set= GetSlotsForTopKeys(leaf, 7);
5 dword.word[0,1] = leaf.word8B[0,1];
6 to= 7; // move to slot[7..13] in Line 3 and 4
7 foreach from ∈ move set do // move entries
8 newleaf.entry[to]= leaf.entry[from];

newleaf.fgprt[to]= leaf.fgprt[from];
newleaf.bitmap[to]= 1; dword.bitmap[from]= 0;

9 to ++;

10 newleaf.sibling[0]= leaf.sibling[leaf.alt];
11 dword.alt= 1 - leaf.alt;
12 leaf.sibling[dword.alt]= newleaf;
13 if k > leaf.entry[move set[0]].key then // key in new leaf
14 newleaf.entry[6]= (k, v); newleaf.fgprt[6]= hash(k);

newleaf.bitmap[6]= 1;
15 clwb (newleaf.line[0..3]); clwb (leaf.line[3]);
16 sfence ();
17 leaf.word8B[1]= dword.word[1]
18 leaf.word8B[0]= dword.word[0];
19 clwb (leaf.line[0]); sfence ()

20 else // key in leaf
21 clwb (newleaf.line[0..3]); clwb (leaf.line[3]);
22 sfence ();
23 LBTreeLeafInsert(leaf, dword, k, v)

24 return DoneSplit;

PROOF. From the perspective of the LB+-Tree, the new leaf
node and the pointer leaf.sibling[1− leaf.alt] are unused space.
Therefore, in the first case where the new entry is inserted into the
new node, the code forms an NAW section. It writes to unused
space, persists lines other than Line 0 of the old leaf node, and then
performs a single NAW. In the second case where the new entry
is inserted into the old node, the proof of Theorem 3.2 shows that
LBTreeLeafInsert performs an NAW section in both its code
branches. The leaf split code simply adds more writes to unused
space and persist operations to other lines not containing the NAW
address. There is still a single NAW. Therefore, according to the
Definition 2.1, the resulting code also forms an NAW section. Since
both cases form an NAW section, from Theorem 2.1, we know that
the leaf nodes will be in a consistent state in NVM memory.

3.4 LB+-Trees with Multi-256B Nodes
In this section, we extend the design of LB+-Trees with 256B

sized nodes to support m × 256B sized nodes, where m ≥ 2.
Larger node sizes can be beneficial because (i) the non-leaf part of
the tree takes smaller DRAM space, and (ii) the best performing
node size depends on CPU and memory configurations, such as
memory bandwidth and the memory controller queue size, and can
be larger than 256B. (In fact, our experiments find that 512B nodes
can have better performance than 256B nodes in Section 4.2.)

The first idea that comes to our mind is to employ the structure
of the 256B node for a multi-256B node. That is, the node consists
of a header (with a k-bit bitmap, the lock bit and the alt bit, and
a k × 1B fingerprints), k × 16B index entry slots, and two sibling
pointers at the end, where k = b 256m−16.25

17.125
c. Unfortunately, the

header size increases to 32B, 49B, and 66B when the node size is
512B, 768B, and 1024B, respectively. Thus the number of index
entry slots in the 64-byte Line 0 decreases to two slots, zero slot,

1084

S0
S1

Line 1 Line 2 Line 3 Line 0

H0 H1

1st 256B

2nd 256B

H0 H1 m-th 256B

Figure 7: The m× 256B node with distributed headers.

and zero slot, respectively. This naı̈ve multi-256B node design is
undesirable because our proposed technique of moving entries to
reduce NVM line writes become less effective.

To address the problem of the naı̈ve design, we propose a multi-
256B node design with distributed headers, as illustrated in Fig-
ure 7. In this design, we divide the node into 256B sized blocks.
The centralized header in the naı̈ve design is distributed across the
blocks. Every block has a 16B header in Line 0 and 14 index entry
slots. The header manages the slots in the same block by maintain-
ing a 14-bit bitmap and 14 1B-fingerprints. Like the 256B sized
node, the first block has the lock bit and the alt bit in the header,
and two sibling pointers at the end.

One problem arises: multiple distributed headers may be updated
at node splits. The multiple writes to the headers cannot be handled
by a single NAW, and would require logging. We cope with this
problem by introducing an alternative header at the end of block
2 ∼ m, as shown in Figure 7. We reuse the alt bit to indicate
whether the front or the back headers are active. Then, we can
write to the previously unused header in block 2 ∼ m and perform
a single NAW to the first header to switch both the sibling pointers
and the headers in block 2 ∼ m, thereby achieving logless splits.

We extend the algorithms of 256B-node LB+-Trees to support
multi-256B nodes. The main difference resides in how to process
multiple blocks in leaf nodes. The search algorithm performs the
fingerprint comparison, bitmap check, and key comparison in ev-
ery block. The deletion algorithm updates the header in the block
where the deleted entry is found. The insertion algorithm finds the
first non-full block, and performs insertion into this block. When
all the blocks are full, it performs a leaf node split operation. It
allocates a new node, copies half the entries to the new node, sets
the alternative sibling pointer and the alternative headers, then uses
a single NAW to update the header in Line 0 of the first block,
switching the sibling pointer and the headers in use. Based on the
discussion, it is straightforward to extend the previous proofs to
show the following guarantee:

THEOREM 3.4. The insertion and deletion algorithms of LB+-
Trees with multi-256B nodes are guaranteed to keep the LB+-Tree
leaf nodes in a consistent state in NVM memory upon failure.

3.5 Cost Analysis
We compare the entry moving optimization for insertions pro-

posed in Section 3.2 with the traditional design, which represents
existing NVM optimized B+-Trees.

We consider the general case of inserting into a newly split 256B
node. Note that it is reasonable to assume that after a large num-
ber of insertions, every leaf node in a stable tree is the result of a
leaf node split. We denote the newly allocated node leafn and the
previously full node leaff . As shown in Figure 8(a), there are 15
entries in the two nodes. Depending on which node contains the en-
try causing the split, one node has 8 entries, the other has 7 entries.
We use the superscript to denote the number of entries after split.
We consider leaf7

f , leaf8
f , leaf7

n, and leaf8
n. Suppose insertions

are random. The four situations are equally likely.

insert new
entry w H S 14 entries

H S 7 entries Leaff
 7 H S 8 entries Leafn

 8

Leaff is full

w is in new leaf

H S 8 entries Leaff
 8 H S 7 entries Leafn

 7

w is in old leaf

OR

(a) Four cases after leaf node splits

entries H S empty entries H S empty
(b) Traditional design after split

Leaff
 7

Leaff
 8

Best case layout Leafn
 8

Leafn
 7

H S entries H S empty
(c) Entry moving design after split

Leaff
 7

Leaff
 8

Worst case layout Leafn
 8

Leafn
 7

Known layout

Known layout

Figure 8: Consider four cases after leaf node splits (The new
leaf layout is known. The layout of the old leaf node can be ar-
bitrary. We compare the worst layout for our proposed scheme
with the best layout for the traditional scheme.)

THEOREM 3.5. In a stable tree with 256B nodes, the entry mov-
ing design reduces the number of NVM line writes per insertion of
the traditional design by at least 1.35x.

PROOF. In the traditional design, As shown in Figure 8(b), leafn
is always packed from the beginning such that slots in Line 0 are
occupied. Therefore, any insertion to leaf7

n or leaf8
n incurs two

NVM line writes. For leaff , we consider the best distribution of
empty slots. That is, the empty slots are at the beginning of the
node. Then the first three insertions will take empty slots in Line
0, incurring one NVM line write. The rest will incur two NVM
line writes. Therefore, the average NVM line writes per insertion
is 3×1+4×2

7
= 11

7
for leaf7

f , and 3×1+3×2
6

= 3
2

for leaf8
f . The

overall best-case average NVM line writes per insertion is an aver-
age of the four situations: (2 + 2 + 11

7
+ 3

2
)/4 = 1.77.

In the entry moving design, As shown in Figure 8(c), leafn is al-
ways packed from the end, and the empty slots are in the beginning
(i.e. in Line 0 and Line 1). Then all insertions except one incur one
NVM line write. Therefore, the average NVM line writes per inser-
tion is 6×1+1×2

7
= 8

7
for leaf7

n, and 5×1+1×2
6

= 7
6

for leaf8
n. For

leaff , we consider the worst distribution of empty slots. That is,
Line 0 are fully occupied and the other three lines all have empty
slots. Therefore, three insertions will trigger entry moving to Line
1, 2, and 3, respectively. The average NVM line writes per inser-
tion is 4×1+3×2

7
= 10

7
for leaf7

f , and 3×1+3×2
6

= 3
2

for leaf8
f .

The overall worst-case average NVM line writes per insertion is an
average of the four situations: (8

7
+ 7

6
+ 10

7
+ 3

2
)/4 = 1.31.

Therefore, comparing the worst-case average of the entry mov-
ing design and the best-case average of the traditional design, we
see that the entry moving design is at least 1.77/1.31 = 1.35x
better than the traditional design.

We can extend this analysis to m × 256B nodes. In the LB+-
Tree node, every 256B block contains a header and 14 slots. There
are 14m slots. 3m slots are in Line 0. After a leaf node split,
one of leaff and leafn contains 7m entries, the other contains
7m + 1 entries. It is easy to adapt the above analysis to compute
the average NVM line writes per insertion. In the traditional design,
the centralized header becomes larger as the node size increases,
leaving fewer slots in Line 0. We can show that the overall best-
case average NVM line writes per insertion is (2 + 2 + 2− 3

7m
+

2 − 3
7m−1

)/4 ≥ 1.77. In the entry moving design, the overall
worst-case average NVM line writes per insertion is (8

7
+ 8m−1

7m−1
+

1+ 3
7m

+1+ 3
7m−1

)/4 ≤ 1.31. Therefore, we have the following.

1085

Table 1: Machine configuration.
CPU Intel Cascade Lake-SP, Dual-socket,

28 cores at 2.5 GHz (Turbo Boost at 3.8GHZ)
L1 Cache 32 KB iCache & 32 KB dCache (per-core)
L2 Cache 1 MB (per-core)
L3 Cache 39 MB (shared)
Total DRAM 394 GB
NVMM Spec Intel Optane DC 2666 MHz QS (000006A)
Total NVMM 512 GB [2 (socket) x 2 (channel) x 128 GB]
Linux Kernel 4.9.135
CPUFreq Governor Performance
Hyper-Threading Disabled
NVDIMM Firmware 01.01.00.5253, App direct mode
Power Budget Avg. 15W, Peak 20W

THEOREM 3.6. In a stable tree with m×256B nodes, the entry
moving design reduces the number of NVM line writes per insertion
of the traditional design by at least 1.35x.
Space Overhead. In a multi-256B node, the space overhead of
all the metadata (including all headers and sibling pointers) is 32B
per 256B sized block, i.e. 12.5%. Each 256B sized block contains
a 16B alternative header except the first block. Thus, the space
overhead of the alternative headers is less than 16B/256B = 6.25%.

4. EXPERIMENTAL EVALUATION
In this section, we compare LB+-Tree with state-of-the-art NVM

optimized index structures on a real machine equipped with 3DX-
Point memory. We describe the experimental setup in Section 4.1.
Then, we perform micro-benchmarks to measure the performance
of the index structures in Section 4.2. After that, we investigate the
benefits of our solution in two real-world systems in Section 4.3–
4.4: (i) X-Engine [12], an optimized storage engine for large scale
OLTP processing, and (ii) Memcached [16], a popular open source
in-memory key-value store.

4.1 Experimental Setup
Machine Configuration. The machine is equipped with two In-
tel Cascade Lake-SP CPUs. Each CPU has 28 cores and a shared
39MB L3 cache. There are a 32KB L1I cache, a 32KB L1D cache,
and a 1MB L2 cache per core. The system is equipped with 394GB
DRAM and 512GB 3DXPoint memory. The 512GB 3DXPoint
memory consists of four 128GB NVDIMMs. Each CPU has two
NVDIMMs. Every pair of NVDIMMs attached to a CPU is con-
figured to be a single 256GB module. From the perspective of a
CPU, one of the 256GB module is local, the other is remote. There
are NUMA effects for 3DXPoint memory accesses. In our experi-
ments, we avoid the NUMA effects by setting the CPU affinity of
our programs to run on CPU 0, and making sure that the programs
only access DRAM and 3DXPoint memory local to the CPU.

The machine is running Linux with 4.9.135 kernel. The two
256GB 3DXPoint modules are shown as two special devices in
Linux. File systems are installed on the 3DXPoint modules using
the fsdax mode. Then we use PMDK to map files into the virtual
address space of our programs and access 3DXPoint using load
and store instructions. We use clwb and sfence to persist data to
3DXPoint memory.
B+-Tree Structures to Compare. We compare three B+-Tree
structures in the micro-benchmarks and in Memcached experiments:
(i) WB+-Tree [6] (“wb-tree”), (ii) FP-Tree [18] (“fp-tree”), and (iii)
our proposed solution LB+-Tree (“lb-tree”).

WB+-Tree and FP-Tree are state-of-the-art NVM-optimized B+-
Tree structures. Our proposed LB+-Tree builds on the ideas of
WB+-Tree and FP-Tree, and focuses on improving the insertion
performance in light of the distinctive features of real NVM mem-
ory hardware (i.e. 3DXPoint). First, we propose entry moving in

DRAM
/

/

/ dram-skiplist

divided-skiplist

3DXPoint
/

/

/

DRAM
/

3DXPoint
/

/

nvm-skiplist

Figure 9: Three skip list designs.
leaf nodes to reduce the number of NVM line writes. In contrast,
both WB+-Tree and FP-Tree insert a new entry into an empty slot
in a leaf node without moving existing entries. Second, we achieve
logless leaf node splits by using alternative sibling pointers and
alternative headers, while WB+-Tree and FP-Tree perform costly
write-ahead logging for leaf node splits.

Apart from the insertion algorithms, the three trees have differ-
ent leaf node designs. First, both WB+-Tree and FP-Tree’s leaf
nodes have centralized headers. In comparison, LB+-Tree’s multi-
256B leaf nodes contain distributed headers. This design maxi-
mizes the number of entries that co-locate in the same lines as
the headers. Hence, after entry moving, more insertions will en-
joy a single NVM line write. Second, FP-Tree and LB+-Tree’s
leaf nodes employ a fingerprint array to support SIMD compari-
son, while WB+-Tree’s leaf node contains an indirection array to
support binary search. We quantify the impact of the two designs
on leaf node search performance in Section 4.2.

We make the implementation details as close as possible for the
three trees to make the comparison fair. First, the non-leaf nodes
of all the trees are in DRAM and the leaf nodes are in 3DXPoint
memory. Second, the trees all have the same node sizes. Third,
they use the same memory allocation routines, which pre-allocate
large memory buffers then serve tree node allocation requests from
the pre-allocated buffers, thereby minimizing the overhead for call-
ing allocation functions in libc and PMDK. Finally, we employ
the same concurrency control mechanism for all three trees, which
combines Intel TSX transactions and a lock bit per leaf node.

Incorporating LB+-Tree into Real-World Systems. We incor-
porate LB+-Tree into two real-world systems: X-Engine [12] and
Memcached [16]. X-Engine uses the skip list as its main index
structure. The core index structure in Memcached is a hash index.
In both cases, the index structures expose a key-value interface to
the systems. The keys and values are variable sized strings.

To support the two systems, we modify LB+-Tree to store (8B
key pointer, 8B value pointer) entries. We store the keys and val-
ues outside the index structure in NVM memory. Key comparison
is performed with memory comparison instead of integer compari-
son. Then, we modify the interface functions to call the LB+-Tree
search, insertion, or deletion methods. We modified less than 150
lines of code in either of the two systems.

NVM Optimized Skip List. X-Engine uses skip lists as its in-
memory index structure. Therefore, we compare LB+-Trees and
skip lists in the X-Engine experiments.

We consider three skip list designs as shown in Figure 9: (i)
dram-skiplist, which is the original skiplist implementation in X-
Engine, (ii) nvm-skiplist, which is the original skiplist placed in
3DXPoint memory, and (iii) divided-skiplist. For divided-skiplist,
we generalize the selective persistence technique of B+-Trees to

1086

0

100

200

300

tim
e

(m
s)

number of keys

(a) lookup,70%full

0

100

200

300

tim
e

(m
s)

number of keys

(b) delete,70%full

wb-tree fp-tree lb-tree

0

0.4

0.8

1.2

256 512 1024

tim
e

(s
)

nodesize

(a) rebuild, one thread

0

0.4

0.8

1.2

0 4 8 12 16

tim
e

(s
)

number of threads

(b) rebuild, 256B node

0

200

400

600

lookup insert delete

th
ro

ug
hp

ut
(K

op
/s

)

dram-skiplist divided-skiplist nvm-skiplist

0
30
60
90

120
150
180

lookup, 70% full insert, 70% full insert, 100% full

th
ro
ug
hp
ut
(K
op
/s
)

wb-tree fp-tree lb-tree

Figure 10: Performance comparison of three skiplist designs.

optimize skip lists. The key idea is that we can put the part of a
data structure in DRAM for better performance if it can be rebuilt
during recovery and is small enough. We store the bottom layer as
an ordered linked list in 3DXPoint and the upper layers as a skip list
in DRAM. Each element that is higher than one level in the original
skip list is divided into a bottom element and an upper element with
one fewer level. Then the upper element contains a pointer to point
to the bottom element in the bottom layer in 3DXPoint memory. In
this way, search in the upper layer enjoys fast DRAM reads. The
upper layer can be rebuilt from the persistent bottom layer upon
crash recovery.

Figure 10 compares the performance of the three skip list de-
signs using micro-benchmarks. We bulkload the skip lists with 2
billion (8B key, 8B value) entries, then perform random lookups,
insertions, and deletions using a single thread. The figure reports
the throughput of the index operations without persisting the data.
From the figure, we see that while it is slightly slower than dram-
skiplist, divided-skiplist is about 1.5x (computed as the ratio of the
throughput) faster than nvm-skiplist. This is mainly because it is
faster to visit the upper levels in DRAM.

We choose divided-skiplist as the persistent skip list design in
3DXPoint memory. To achieve data persistence, we use NAWs to
write pointer changes of the bottom layer back to 3DXPoint mem-
ory. During crash recovery, the upper skip list in DRAM can be
rebuilt from the bottom elements.

4.2 Micro-Benchmark Experiments
In this section, we run micro-benchmark experiments to com-

pare the three B+-Tree structures. In the experiments, we generate
random keys for bulkloading the trees and for the index operations.
We make sure that the total size of the bulkloaded index entries
is 32GB unless otherwise noted. In this way, the tree size is at
least 1/8 of the 256GB 3DXPoint memory module, satisfying the
requirement of Observation 3 in Section 2.1. Moreover, we ensure
that the deletion keys exist and the insertion keys do not exist in the
bulkloading keys. Therefore, the insertion and the deletion opera-
tions will modify the trees.

Insertion Performance Varying Number of Operations. In this
set of experiments, we bulkload a tree with 2 billion (8B key, 8B
value) entries 70% or 100% full, then perform random insertions
and dense insertions. Dense insertions model skewed index ac-
cesses. Index entries with similar keys are inserted (e.g., new tweets
are indexed on the tweet send time), forming a hot spot in the index.
For this experiment, the operation keys are monotonically increas-
ing and are larger than the maximum key in the bulkloaded tree so
that the operations all visit the right-most leaf node.

Figure 11 reports execution time in ms. The lower the better.
From the figure, we see the following points:

• When leaf nodes are 70% full, insertions often find empty slots
in leaf nodes. LB+-Tree achieves 1.20–1.24x and 1.12–1.21x
speedups over WB+-Tree and FP-Tree, respectively. The im-
provement mainly comes from the entry moving optimization.

• When leaf nodes are 100% full, insertions often incur leaf node
splits. LB+-Tree performs logless leaf node split, while WB+-
Tree and FP-Tree relies on logging to ensure persistence. As a
result, LB+-Tree achieves 2.55–2.92x and 2.31–2.45x speedups
over WB+-Tree and FP-Tree, respectively.
• For dense insertions, the right-most leaf node sees a large num-

ber of insertions. Since multiple keys are inserted into the same
node, more later insertions can benefit from the entry moving
operations of previous insertions. Moreover, when the node
is to split, LB+-Tree exercises logless node splits. In this sce-
nario, LB+-Tree achieves 2.31–2.69x and 2.22–2.33x speedups
over WB+-Tree and FP-Tree, respectively.

Overall, LB+-Tree achieves 1.20–2.92x and 1.12–2.45x speedups
over WB+-Tree and FP-Tree for insertions, respectively.

Insertion Performance Varying Number of Threads. Figure 12
reports the insertion throughput while increasing the number of
threads from 1 to 16. We bulkload a tree with 2 billion (8B key, 8B
value) entries 70% or 100% full. Then every thread performs 100K
insertions. For dense insertions, every thread focuses on inserting
to a different hot spot in the tree, modeling concurrent skewed in-
dex accesses. The Y-axis is throughput in million operations per
second. The higher the better.

We see that all three trees show almost linear performance scal-
ing as the number of threads increases from 1 to 16. This shows
the effectiveness of the concurrency control mechanism combining
HTM and lock bits.

Overall, the performance comparison shows similar trends as in
Figure 11. When the leaf nodes are 70% full, LB+-Tree achieves
1.17–1.30x and 1.22–1.38x speedups over WB+-Tree and FP-Tree,
respectively. When the leaf nodes are 100% full, LB+-Tree achieves
2.35–2.69x and 2.10–2.53x speedups over WB+-Tree and FP-Tree,
respectively. For dense insertions, LB+-Tree achieves 1.90–2.38x
and 1.89–2.55x speedups over WB+-Tree and FP-Tree, respec-
tively. The entry moving and logless node split optimizations work
effectively for multiple threads.

Insertion Performance Varying Node Size. Figure 13 reports
insertion performance while varying tree node size from 256B to
1024B. We run the same experiments as in Figure 11. From the
figure, we see that LB+-Tree achieves the best throughput in all the
cases of different node sizes and insertion workloads.

Comparing the different node sizes, we see that 512B is slightly
better than the other sizes when nodes are 70% full, as shown in
Figure 13(a). However, when nodes are 100% full or in the case
of dense insertions, 256B is significantly better than the other node
sizes, as shown in Figure 13(b) and (c). The larger the leaf node,
the lower the insertion throughput. This is because the larger the
leaf node, the more index entries are copied during leaf node split
and the more NVM writes are performed.

Overall, 256B is a good choice of leaf node size for LB+-Tree.

Search and Deletion Performance. As shown in Figure 14, we see
that LB+-Tree, FP-Tree, and WB+-Tree have similar index search
and deletion performance.

A search operation reads a node at every level from the tree root
to the leaf level. It incurs DRAM reads for non-leaf nodes and
NVM reads for a leaf node. While the leaf search operations of the
three trees differ, the dominant cost is the memory read cost. As a
result, the three trees have similar search performance.

We quantify the search time within a leaf node by running a large
number of search operations in a fixed leaf node. WB+-Tree em-
ploys a sorted indirection array to perform a binary search, while
FP-Tree and LB+-Tree perform a SIMD comparison using the fin-
gerprint array to quickly filter out unmatched entries. On average,

1087

0.0

0.5

1.0

1.5

w f l w f l w f l w f l
256B 512B 768B 1024B

th
ro

ug
hp

ut
 (M

op
/S

)

(a) random insert, 70% full

0.0

0.5

1.0

1.5

w f l w f l w f l w f l
256B 512B 768B 1024B

(b) random insert, 100% full

0.0

0.5

1.0

1.5

w f l w f l w f l w f l
256B 512B 768B 1024B

(c) dense insert, 70% full

0
100
200
300
400

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(a) random insert,70% full

0
200
400
600
800

1000

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(b) random insert,100%full

0
200
400
600
800

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(c) dense insert, 70% full

wb-tree fp-tree lb-tree
Figure 11: Insertion performance varying the number of operations. (We bulkload a tree with 2 billion (8B key, 8B value) entries
70% or 100% full, then perform 50K–300K random insertions, or dense insertions to the right-most leaf node in a single thread.)

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(a) random insert, 70% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

th
ro

ug
hp

ut
 (M

op
/S

) (a) random insert, 70% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

(b) random insert, 100% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

(c) dense insert, 70% full

0
100
200
300
400

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(a) random insert, 70% full

0
200
400
600
800

1000

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(b) random insert, 100%full

0
200
400
600
800

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(c) dense insert, 70% full

wb-tree fp-tree lb-tree

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(b) random insert, 100% full

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(c) dense insert, 70% full

wb-tree fp-tree lb-tree
Figure 12: Insertion performance varying the number of threads from 1 to 16. (We bulkload a tree with 2 billion (8B key, 8B value)
entries 70% or 100% full. Then every thread performs 100K random insertions, or a different group of 100K dense insertions.)

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(a) random insert, 70% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

th
ro

ug
hp

ut
 (M

op
/S

) (a) random insert, 70% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

(b) random insert, 100% full

0.0
0.3
0.6
0.9
1.2

w f l w f l w f l w f l
256B 512B 768B 1024B

(c) dense insert, 70% full

0
100
200
300
400

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(a) random insert, 70% full

0
200
400
600
800

1000

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(b) random insert, 100%full

0
200
400
600
800

50K 100K150K200K250K300K

tim
e

(m
s)

number of keys

(c) dense insert, 70% full

wb-tree fp-tree lb-tree

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(b) random insert, 100% full

0
5

10
15
20

0 4 8 12 16th
ro

ug
hp

ut
(M

op
/S

)

number of threads

(c) dense insert, 70% full

wb-tree fp-tree lb-tree

Figure 13: Insertion performance varying node size. (We bulkload a tree with 2 billion (8B key, 8B value) entries 70% full, then
perform 100K random back-to-back insertions in a single thread. w: wb-tree, f: fp-tree, l: lb-tree.)

0

100

200

300

ti
m

e
(m

s)

number of keys

(a) lookup,70%full

0

100

200

300

ti
m

e
(m

s)

number of keys

(b) delete,70%full

wb-tree fp-tree lb-tree

0.0

0.5

1.0

1.5

w f l w f l w f l w f l

256B 512B 768B 1024B

th
ro

ug
hp

ut
(M

op
/S

)

(a) insert,70% full

0.0

0.5

1.0

1.5

w f l w f l w f l w f l

256B 512B 768B 1024B

(b)insert,100% full

0

0.4

0.8

1.2

256 512 1024

ti
m

e
(s

)

nodesize

(a) rebuild, one thread

0

0.4

0.8

1.2

0 4 8 12 16

ti
m

e
(s

)

number of threads

(b) rebuild, 256B node

0

100

200

300

400

50K 100K 150K 200K 250K 300K

ti
m

e
(m

s)

number of keys

(a) insert,70% full

0

500

1000

50K 100K 150K 200K 250K 300K

ti
m

e
(m

s)

number of keys

(b) insert,100%full

2

4

6

8

ti
m

e
(m

s)

Figure 14: Search and deletion performance varying the num-
ber of operations. (We bulkload a tree with 2 billion (8B key, 8B
value) entries 70%, then perform 50K–300K random search or
deletion operations in a single thread.)

WB+-Tree takes 27ns to search the leaf node. FP-Tree and LB+-
Tree reduce this time to 21ns. However, the tree is 10 levels high.
The root-to-leaf search time is on average 823ns, which overshad-
ows the improvement in the search time inside the leaf node.

A deletion first performs a search to locate the target entry in a
leaf node. It deletes the entry by using a single NAW to clear the
corresponding bit in the leaf bitmap. Since they perform this same
procedure, the three trees have similar deletion performance.

Non-leaf Rebuild Time During Recovery. Figure 15 shows the
time to rebuild the non-leaf nodes of a tree containing 2 billion
entries. As shown in Figure 15(a), the rebuild time decreases as
the leaf node size increases. This is expected because the non-leaf

0

100

200

300

tim
e

(m
s)

number of keys

(a) lookup,70%full

0

100

200

300

tim
e

(m
s)

number of keys

(b) delete,70%full

wb-tree fp-tree lb-tree

0

0.4

0.8

1.2

256 512 1024

tim
e

(s
)

nodesize

(a) rebuild, one thread

0

0.4

0.8

1.2

0 4 8 12 16

tim
e

(s
)

number of threads

(b) rebuild, 256B node

0

200

400

600

lookup insert delete

th
ro

ug
hp

ut
(K

op
/s

)

dram-skiplist divided-skiplist nvm-skiplist

0
30
60
90

120
150
180

lookup, 70% full insert, 70% full insert, 100% full

th
ro
ug
hp
ut
(K
op
/s
)

wb-tree fp-tree lb-tree

Figure 15: Non-leaf rebuild time during recovery. (During re-
covery, leaf nodes contain 2 billion (8B key, 8B value) entries
70% full. We vary the node size and the number of threads for
rebuilding the non-leaf nodes.)

rebuild cost is proportional to the number of leaf nodes. As the
node size increases, the total number of leaf nodes for storing 2
billion entries decreases, leading to shorter rebuild time.

As shown in Figure 15(b), we can use multiple threads to build
the non-leaf nodes in parallel. During normal execution, we record
the NVM locations of a few tens of leaf nodes that are roughly
equally spaced across the leaf level. (These locations are checked
and updated in the rare event that a leaf node becomes completely
empty and gets deleted.) They divide the leaf nodes into multiple
disjoint segments. During recovery, multiple threads each build a
subtree on a leaf segment, then the main thread puts the subtrees
into a single tree by merging the subtree roots. From the figure, we
see that as the number of threads increases from 1 to 16, the rebuild
time for 256B nodes reduces from 1.2s to 0.1s.

1088

0

100

200

300

1G 2G 4G 8G 16G24G32G40G48Gth
ro

ug
hp

ut
(K

op
/S

)

Data size

(a) 1thread, Get Randomly

0

100

200

300

1G 2G 4G 8G 16G 24G 32G 40G 48Gth
ro

ug
hp

ut
(K

op
/S

)

Data size

(b) 1thread, Put Sequentially

0

100

200

300

1G 2G 4G 8G 16G24G32G40G48Gth
ro

ug
hp

ut
(K

op
/S

)

Data size

(c) 1 thread, Put Randomly

0
2
4
6
8

1G 2G 4G 8G 16G24G32G40G48Gth
ro

ug
hp

ut
(M

op
/S

)

Data size

(d) 16 threads, Get Randomly

0
2
4
6
8

1G 2G 4G 8G 16G24G32G40G48Gth
ro

ug
hp

ut
(M

op
/S

)

Data size

(e) 16 threads, Put Sequentially

0
2
4
6
8

1G 2G 4G 8G 16G24G32G40G48Gth
ro

ug
hp

ut
(M

op
/S

)

Data size

(f) 16 threads, Put Randomly

skiplist_dram lb‐tree_nvm

divided-skiplist lb-tree
Figure 16: X-Engine performance with LB+-Tree vs. skip list. (Before the experiments, we bulkload an index to have 1GB, 2GB, ...,
48GB data. Then we perform 100K Get operations randomly, 100K Put operations sequentially, or 100K Put operations randomly
in every thread. We use db bench to produce (8B key, 20B value) entries. The number of threads is either 1 or 16.)

From the figure, we conclude that the non-leaf rebuild time can
be kept reasonably low (e.g., with 16 threads) during recovery.

4.3 X-Engine Experiments
X-Engine is a storage engine for supporting OLTP transactions

on Alibaba’s backbone e-commerce platform [12]. It implements
an LSM-tree design with a tiered storage. We run X-Engine on the
test machine with DRAM and 3DXPoint memory. Our experiments
focus on the in-memory part of X-Engine without performing any
storage I/O operations. The general goal is to explore the potential
design point where the 3DXPoint memory capacity is sufficiently
large to fit the entire database into NVM main memory.

As described in Section 4.1, the main index structure in X-Engine
is the skip list. We replace it with either our LB+-Tree or divided-
skiplist, a persistent skip list design for 3DXPoint memory. We use
X-Engine’s test tool, db bench, to evaluate the engine throughput
through its key-value interfaces.

Before the experiments, we bulkload an index to have 1GB–
48GB data. We vary the index data size to cover a wide range of
application scenarios. Then we perform 100K Get operations ran-
domly, 100K Put operations sequentially, or 100K Put operations
randomly in every thread. We use db bench to produce (8B key,
20B value) entries. The number of threads is either 1 or 16.

As shown in Figure 16, in the single thread experiments, com-
pared to divided-skiplist, LB+-Tree achieves 1.31–1.54x speedups
for Get operations, 1.44–1.80x speedups for sequential Put opera-
tions, and 1.46–1.83x speedups for random Put operations. In 16-
thread experiments, LB+-Tree achieves 1.25–1.40x speedups for
Get operations, 1.35–1.64x speedups for sequential Put operations,
and 1.28–1.46x speedups for random Put operations.

We conclude that LB+-Tree has better performance than skip list
on 3DXPoint memory.

4.4 Memcached Experiments
Memcached is a popular open-source in-memory key-value store.

The key data structure of Memcached is a hash index in memory,
which serves the key-value requests, such as Get and Set.

In this set of experiments, we replace the hash index in Mem-
cached 1.4.17 to use the three B+-Trees, i.e. WB+-Tree, FP-Tree,
and LB+-Tree. In this way, with proper communication interface
(not yet implemented), the modified Memcached would be capa-
ble of serving range scan queries efficiently, and protect the cached
key-value entries against power failures.

0

100

200

300

tim
e

(m
s)

number of keys

(a) lookup,70%full

0

100

200

300

tim
e

(m
s)

number of keys

(b) delete,70%full

wb-tree fp-tree lb-tree

0

0.4

0.8

1.2

256 512 1024

tim
e

(s
)

nodesize

(a) rebuild, one thread

0

0.4

0.8

1.2

0 4 8 12 16
tim

e
(s

)

number of threads

(b) rebuild, 256B node

0

200

400

600

lookup insert delete

th
ro

ug
hp

ut
(K

op
/s

)

dram-skiplist divided-skiplist nvm-skiplist

0
30
60
90

120
150
180

lookup, 70% full insert, 70% full insert, 100% full

th
ro
ug
hp
ut
(K
op
/s
)

wb-tree fp-tree lb-tree
Figure 17: Memcached performance with three B+-Tree struc-
tures as its core index. (We bulkload a tree with 50 million
entries 70% full or 100% full, and use mc-benchmark to get
(lookup) or set (insert) 500K random keys. The keys are 20-
byte random strings.)

We bulkload a tree with 50M entries 70% full or 100% full, and
use mc-benchmark to get or set 500K random keys. The keys
are 20-byte random strings. Figure 17 reports the throughput of
the three operations for the trees. We see that LB+-Tree achieves
the best performance in all cases. LB+-Tree achieves 1.05-1.29x
higher throughput than WB+-Tree, and 1.06–1.22x higher through-
put than FP-Tree. The memcached experiments confirm our find-
ings in the micro-benchmark experiments.

5. CONCLUSION
In this paper, we study persistent B+-Tree structure for 3DX-

Point memory. Based on the observations of 3DXPoint features,
we propose LB+-Tree. We introduce three techniques to improve
LB+-Tree’s insertion performance: (i) Entry moving, (ii) Logless
node split, and (iii) Distributed headers. Micro-benchmark results
and experiments in two real-world systems (i.e. X-Engine and
Memcached) show that LB+-Tree achieves significantly better per-
formance than state-of-the-art NVM optimized B+-Trees for inser-
tions while obtaining similar search and deletion performance.

6. ACKNOWLEDGMENTS
This work is partially supported by National Key R&D Program

of China (2018YFB1003303), NSFC (61572468), Alibaba collabo-
ration project (XT622018000648), and K.C.Wong Education Foun-
dation. Shimin Chen is the corresponding author.

1089

7. REFERENCES
[1] Intel optane dc persistent memory architecture overview.

https://techfieldday.com/video/intel-optane-dc-persistent-
memory-architecture-overview/.

[2] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang,
D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong,
A. Driskill-Smith, and M. Krounbi. Spin-transfer torque
magnetic random access memory (STT-MRAM). JETC,
9(2):13:1–13:35, 2013.

[3] J. Arulraj, J. J. Levandoski, U. F. Minhas, and P. Larson.
Bztree: A high-performance latch-free range index for
non-volatile memory. PVLDB, 11(5):553–565, 2018.

[4] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving index
performance through prefetching. In Proceedings of the 2001
ACM SIGMOD international conference on Management of
data, Santa Barbara, CA, USA, May 21-24, 2001, pages
235–246, 2001.

[5] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In CIDR 2011, Fifth
Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 21–31, 2011.

[6] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main
memory. PVLDB, 8(7):786–797, 2015.

[7] S. Cho and H. Lee. Flip-n-write: a simple deterministic
technique to improve PRAM write performance, energy and
endurance. In 42st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-42 2009),
December 12-16, 2009, New York, New York, USA, pages
347–357, 2009.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009, pages 133–146, 2009.

[9] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and
K. Mohanram. Compression architecture for bit-write
reduction in non-volatile memory technologies. In
IEEE/ACM International Symposium on Nanoscale
Architectures, NANOARCH 2014, Paris, France, July 8-10,
2014, pages 51–56, 2014.

[10] D. H. Graham. Intel optane technology products - what’s
available and what’s coming soon.
https://software.intel.com/en-us/articles/3d-xpoint-
technology-products.

[11] Y. Guo, Y. Hua, and P. Zuo. DFPC: A dynamic frequent
pattern compression scheme in nvm-based main memory. In
2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23,
2018, pages 1622–1627, 2018.

[12] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang,
F. Li, S. Wang, W. Cao, and Q. Li. X-engine: An optimized
storage engine for large-scale e-commerce transaction
processing. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.,
pages 651–665, 2019.

[13] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor,
J. Zhao, and S. Swanson. Basic performance measurements
of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[14] T. Johnson and D. E. Shasha. Utilization of b-trees with
inserts, deletes and modifies. In Proceedings of the Eighth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, March 29-31, 1989, Philadelphia,
Pennsylvania, USA, pages 235–246, 1989.

[15] J. Liu and S. Chen. Initial experience with 3d xpoint main
memory. In 35th IEEE International Conference on Data
Engineering Workshops, ICDE Workshops 2019, Macao,
China, April 8-12, 2019, pages 300–305, 2019.

[16] Memcached. http://memcached.org/.
[17] C. Mohan, D. Haderle, B. G. Lindsay, H. Pirahesh, and P. M.

Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[18] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner.
Fptree: A hybrid SCM-DRAM persistent and concurrent
b-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 371–386, 2016.

[19] J. Rao and K. A. Ross. Making b+-trees cache conscious in
main memory. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May
16-18, 2000, Dallas, Texas, USA., pages 475–486, 2000.

[20] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. Chen,
H. Lung, and C. H. Lam. Phase-change random access
memory: A scalable technology. IBM Journal of Research
and Development, 52(4-5):465–480, 2008.

[21] A. F. Webster and S. E. Tavares. On the design of s-boxes. In
Advances in Cryptology - CRYPTO ’85, Santa Barbara,
California, USA, August 18-22, 1985, Proceedings, pages
523–534, 1985.

[22] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu. A low
power phase-change random access memory using a
data-comparison write scheme. In International Symposium
on Circuits and Systems (ISCAS 2007), 27-20 May 2007,
New Orleans, Louisiana, USA, pages 3014–3017, 2007.

[23] J. J. Yang and R. S. Williams. Memristive devices in
computing system: Promises and challenges. JETC,
9(2):11:1–11:20, 2013.

[24] V. Young, P. J. Nair, and M. K. Qureshi. DEUCE:
write-efficient encryption for non-volatile memories. In
Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, Istanbul, Turkey, March
14-18, 2015, pages 33–44, 2015.

[25] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In 36th International Symposium on Computer
Architecture (ISCA 2009), June 20-24, 2009, Austin, TX,
USA, pages 14–23, 2009.

1090

