
Enabling Low Tail Latency on Multicore Key-Value Stores

Lucas Lersch
TU Dresden & SAP SE
lucas.lersch@sap.com

Ivan Schreter
SAP SE

ivan.schreter@sap.com

Ismail Oukid∗

Snowflake Computing
ismail.oukid@snowflake.com

Wolfgang Lehner
TU Dresden

wolfgang.lehner@tu-dresden.de

ABSTRACT
Modern applications employ key-value stores (KVS) in at
least some point of their software stack, often as a caching
system or a storage manager. Many of these applications
also require a high degree of responsiveness and performance
predictability. However, most KVS have similar design deci-
sions which focus on improving throughput metrics, at times
by sacrificing latency. While latency can be occasionally re-
duced by over provisioning hardware, this entails significant
increase in costs. In this paper we present RStore, a KVS
which focus on low tail latency as its primary goal, while
also enabling efficient usage of hardware resources. To that
aim, we argue in favor of techniques such as an asynchronous
programming model, message-passing communication, and
log-structured storage on modern hardware. Throughout
the paper we discuss these and other design decisions of
RStore that differ from those of more traditional systems.
Our evaluation shows that RStore scales its throughput with
an increasing number of cores while maintaining a robust
behavior with low and predictable latency.

PVLDB Reference Format:
Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner.
Enabling Low Tail Latency on Multicore Key-Value Stores.
PVLDB, 13(7): 1091-1104, 2020.
DOI: https://doi.org/10.14778/3384345.3384356

1. INTRODUCTION
Key-value stores (KVS) comprise a class of systems that

cover a wide range of use-cases. They are more often used for
caching and storage management in applications like websites,
mobile apps, real-time systems, distributed trust, etc. Many
of these applications share characteristics that differ from
those of more traditional OLTP and OLAP systems:

• Many small requests issued by a large number of clients
• Write requests constitute most of the overall workloads
• Low and predictable latency for single-record requests
• High load changes over time requiring scalable behavior

∗Work done while employed by SAP SE.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3384345.3384356

In particular, latency becomes critical in many of these
scenarios. As an example, search engines require extremely
low latency to interactively predict results while the user is
still typing a search term. Other examples include real-time
communication between devices in the context of IoT and a
fluid interaction with the user in the context of augmented
reality. For such cases, having a low average latency is
often not enough and therefore tail latency plays a major
role in the performance analysis of a system. As a short
example to make the case for tail latency, we verified that 26
HTTP requests are required to load the VLDB 2020 website1.
Assuming we require the website to load in less than 1 s in
99% of the cases. However, even if the server has a 99%-ile
latency of 100 ms but at least 10 of the requests must happen
sequentially, the amount of times the 1 s SLA is achieved
drops from 99% to 90%(0.9910). The importance of tail
latency has already been discussed in previous work [16, 17,
22] and acknowledged multiple times in industry23.

Unfortunately, most modern KVS are throughput-oriented,
in the sense that their design decisions mainly focus on in-
creasing the amount of requests processed over time, at times
by sacrificing the latency, as is the usual case of techniques
like batching and group-commit. Furthermore, many other
components of a system have a negative impact on the tail
latency. The operating system scheduler might arbitrarily
preempt threads at undesirable points, introducing addi-
tional overhead for context switches. Traditional network
stack often implies unnecessary movement of data and coarse-
grained locks. Storage devices, such as SSDs, require period-
ical internal reorganization to enable wear-leveling. Garbage
collection and defragmentation is also employed in memory
allocators and compaction and merging in log-structured
systems like LSMs. As a consequence, it is challenging to
adapt traditional KVS to become latency-oriented, since the
overall latency is affected by the latency of each individual
component and usually there is not a single culprit for being
the bottleneck. Therefore, to design a latency-oriented sys-
tem from the ground up it is required to reduce the latency
at each individual component by employing design decisions
different than most traditional systems.

In this paper, we present and discuss the key architectural
decisions of RStore. Our design decisions are guided by two
main goals. First, we want to enable low and predictable
latency. In terms of predictability our goal is to achieve low
tail latency of single requests, as these become critical for

1
http://vldb2020.org/

2
https://twitter.com/tacertain/status/1132391299733000193

3
https://youtube.com/watch?v=lJ8ydIuPFeU

1091

http://vldb2020.org/
https://twitter.com/tacertain/status/1132391299733000193
https://youtube.com/watch?v=lJ8ydIuPFeU

many use-cases. Second, RStore should enable efficient use
of hardware resources such as CPU, memory, and storage.
An efficient use of CPU requires not only achieving a high
throughput, but also a scalable throughput to the number
of cores in the system. In terms of memory and storage the
goal is to achieve a good ratio that enables lower costs while
not harming the tail latency. The main design points that
enable RStore to achieve our goals can be summarized as:

• Asynchronous execution enables cores to be al-
ways doing “useful” work, leading to efficient usage of
CPU resources. This is achieved through asynchronous
message-passing communication and cooperative mul-
titasking, avoiding preemptive scheduling and enabling
RStore to scale with an increasing number of cores.

• Hybrid DRAM+NVM architecture allows a good
balance between cost and performance. Most of the
primary data is stored on NVM, while a small portion
of DRAM is used to hide the higher latency of NVM.

• Log-structured storage enables efficient space uti-
lization for arbitrary large records and robust perfor-
mance even under high memory utilization.

• User-space networking eliminates the typical bot-
tlenecks of the operating systems network stack and
allows zero-copy semantics by directly copying data
between network card buffers and non-volatile memory.

We discuss in more details each one of these aspects and
explain how they interplay with each other, thereby giving a
full overview of the system. The remainder of the paper is
organized as follows: Section 2 presents decision points and
techniques of the RStore architecture on a more conceptual
level, defending our choices through arguments and micro
evaluations. Section 3 gives a more technical overview and
implementation details of the RStore internal components.
Section 4 describes each operation of RStore. Section 5
shows results of an experimental end-to-end evaluation and
comparison to other systems to prove that RStore is able to
achieve both scalable throughput and low predictable latency.
Section 6 discusses related work of systems that share some
of the same design decisions of RStore. Finally Section 7
concludes the paper and elaborates on future work.

2. DESIGN SPACE
The following subsections present core design decisions

of RStore. We survey the design space and argue that, in
order to achieve predictable latency and scalable throughput,
one must make design decisions different than those of more
traditional systems. We make the case for our decisions and,
for some of them, present experiments to back our claims.

2.1 Reactive Systems and Actor Model
RStore aims at the principles of reactive systems [10]:

message driven, resilient, responsive, elastic. These principles
were already identified by early work of Joel Barlett, Jim
Gray, and Bob Horst at Tandem Computers [5] and Joe
Armstrong on the Erlang programming language [2], but it
was not until the recent need for large-scale systems that
they gained more attention, also in database systems [7, 8].

One of the ways to achieve such characteristics is enabling
concurrency through the actor model [24]. An actor (or a
“partition” in RStore) is an independent and isolated logi-
cal entity treated as the universal primitive for concurrent
computation. Since actors are isolated, the only way of com-
munication is by message passing (see more on Section 2.2).

2 4 8 12 16 24
Threads

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

(M
o
p
/
s)

(a) Throughput

Mutex

MPI

2 4 8 12 16 24
Threads

0

500

1000

1500

2000

2500

C
P

U
 C

o
n
su

m
p
ti
o
n
 (

%
) (b) CPU Consumption

Mutex

MPI

Figure 1: Throughput (a) and CPU consumption (b) of
shared-memory (Mutex) and message passing (MPI) syn-
chronization over multiple threads.

This level of isolation also provides resilience by means of
fault containment and localized repair, i.e., the failure of an
actor is not propagated through the whole system. When
combined with replication techniques, the system can achieve
higher availability and responsiveness. Furthermore, the
isolation and independence provide a higher degree of system-
wide elasticity by allowing actors to be easily distributed
and relocated across cores, NUMA nodes, or potentially dif-
ferent machines through the network. Finally, an important
consequence of all these aspects is the simplification of de-
velopment and maintenance of large and complex systems.
As an example, one of the best practices of good program-
ming is eliminating special cases4. The actor model achieves
that by eliminating any differences between local and remote
communication (or between scale-up and scale-out) on a
programming level, i.e., no matter where actors reside, they
communicate in the exact same way (message passing).

2.2 Message Passing
While many fundamental concepts of concurrent and par-

allel programming were introduced in the 1960’s in the con-
text of time sharing in multi-users single-core environments,
it was not until early 2000’s that true parallelism became
widespread thanks to the advent of multicore CPUs. As a
consequence, system architectures and algorithms had to be
revisited to fully exploit the potential of multiple cores.

The many programming models that emerged from this
time were classified by Silberschatz et. al. [47] into two dimen-
sions: interprocess communication (message passing vs.
shared memory) and problem decomposition (task par-
allelism vs. data parallelism). Most modern systems employ
shared memory for communication between processes (which
we will refer from now on as threads) and task parallelism,
i.e., distinguished tasks are executed on the same data.

In shared-memory communication, threads must care-
fully coordinate by means of mutual exclusion implemented
through mechanisms such as locks (a.k.a. latches), semaphores,
and lock-free algorithms. To enable algorithms to scale with
many cores, the mutually-exclusive critical sections must be
as small as possible to avoid contention. To achieve that,
these algorithms have to be re-architectured, which often
leads to more complex and less general approaches. On top
of that, the ever increasing number of cores and degrees of
parallelism of modern hardware requires these algorithms to
be constantly revised and optimized. As a consequence, the
programming of large systems becomes significantly more
complex and expensive if one is to leverage this increasing

4
As also anecdotally noted by Linus Torvalds in [50].

1092

read(file1, buffer, 8) // T1
.then(
 [](char* buffer, size_t size) { // Cont1
 int x = buffer[0];
 int y = buffer[4];
 int sum = x + y;
 return write(file2, &sum, sizeof(sum));
 }
).then(
 []() { // Cont2
 count++;
 }
);

...
Task Queue

Cont1

Setup queue

Cleanup queue

T1

Cont2

T2 T3

Cont1t = dequeue()

t.execute()

Figure 2: A single thread executes many tasks through cooperative multitasking in an event-loop.

level of parallelism. In terms of performance, previous work
has shown poor scalability [23] and high number of wasted
CPU cycles [48] in the context of database systems. Finally,
the additional complexity may introduce subtle bugs that
are difficult to find as it is harder to reason about execution
order in the presence of arbitrarily interwoven threads.

In contrast to shared memory, RStore employs asyn-
chronous message-passing for interprocess communica-
tion and data parallelism for problem decomposition. In
other words, similar to systems like HStore [49], each core
runs a single worker thread that only accesses a partition of
the complete dataset. If a given thread requires data residing
on another partition, it must send a message to request the
data from the thread owning that partition.

While message passing may sound heavyweight compared
to shared memory, it allows for a more efficient usage of CPU
resources. To prove this point empirically, Figure 1 compares
both shared memory and message passing approaches when
incrementing a single counter for an increasing number of
cores. For the shared memory scenario, each thread acquires
a mutex, increments the counter and then releases the mutex.
For the message passing case, a single thread owns the counter
and is responsible for incrementing it, while the other threads
send messages to it with a request to increment the counter
on their behalf. It is worth noting that, while incrementing a
counter can be done more efficiently than with a mutex, we
use this example to simulate a high contention scenario. This
scenario is realistic as avoiding contention becomes harder
considering an ever growing number of cores on future CPUs.

In Figure 1a, although message passing presents a higher
throughput for a small number of cores (due to reduced
cache-coherency events), the throughput drops significantly
with more cores, while the shared memory scenario remains
constant. However, in Figure 1b, shared memory consumes
an increasing amount of cycles while providing no additional
performance benefits, i.e., these cycles are wasted while
message passing maintains a constant CPU consumption.

2.3 Cooperative Multitasking
Section 2.2 stated that RStore relies on data parallelism on

a system-wide level. In other words, data is partitioned (by
hash or range) and each core runs a single thread, acting as
an independent KVS instance. However, it is inevitable that
a task (such as processing a client request) will be hindered of
making progress when waiting for blocking events such as a
message reply, storage I/O, or a network request. Therefore,
task parallelism within a single-threaded partition is also
desired to make efficient use of CPU resources. Nonetheless,

allowing many threads on the same core does not only lead
to expensive context switches, but also to unpredictable
behavior, as we have little control over the preemptive task
scheduling employed by the kernel. Alternatively, RStore
employs task parallelism within a partition through a light-
weight user-space cooperative multitasking.

The left-hand side of Figure 2 illustrates the single-threaded
multitasking model of RStore. Each thread has a scheduler
and a task queue. The scheduler runs an event loop that
picks a task from the queue and then executes it to comple-
tion (i.e., non-preemptive). Tasks are expressed by means of
futures, promises, and continuations5. The right-hand side
of Figure 2 shows a minimal example: read two integers from
file1 (4 B each), sum their values, write the sum to file2, and
finally increment a counter. Since file operations are blocking
events, the read() and write() functions will delegate the I/O
to a helper thread and immediately return a future object
to the result. A continuation Cont1 can be chained to this
object through the then() method and the code passed as
argument will only be executed once the I/O result becomes
available. Meanwhile, the single-thread is free to execute the
next task in the queue (T2). Once the read result is available,
the scheduler will eventually execute Cont1. Writing to the
file will return another future object to which the Cont2 is
chained. Therefore, continuations are used to express de-
pendency between tasks that are executed asynchronously.
This model enables full control of the execution flow, as a
context switch can only happen at well-defined parts of the
code (i.e., between tasks and continuations), result in a more
predictable behavior of the overall system.

2.4 Non-volatile Memory Support
Non-volatile memory (NVM) offer persistency combined

with performance characteristics similar to DRAM. Some of
these technologies, such as Intel 3D XPoint [35], are denser
than DRAM, which could lead them to be used as the main
storage in future system architectures. As an example, Intel
officially announced Optane DC Persistent Memory DIMMs
of up to 512 GB [36], which is 4 times larger than today’s
largest DRAM DIMM. Furthermore, they enable the CPU
to directly access the persistent media through its caches,
without the need of copying data to/from DRAM. This
higher degree of flexibility, however, comes at a price.

Reading directly from NVM imposes no issues. However,
guaranteeing the consistency of direct writes is challenging.
To ensure data consistency, systems such as databases require

5
A good definition of these concepts is found in ongoing work by

Miller et. al. at http://dist-prog-book.com/chapter/2/futures.html.

1093

http://dist-prog-book.com/chapter/2/futures.html

full control over when data is persisted (e.g., persisting the log
ahead of a modified page). Unfortunately the programmer
has less control over CPU caches than over a DRAM buffer
pool found in traditional systems. It is not possible to pin
a cache-line, meaning that data can be evicted from the
cache and unintentionally persisted at any point in time.
Furthermore, the CPU might reorder instructions prior to
their execution, which can lead to corrupted data on NVM.

To tackle these limitations, hardware instructions such as
SFENCE and CLFLUSHOPT/CLWB [26] can be used respectively
to enforce the order of writes and eagerly persist data by
flushing cache-lines. Another important consideration is that,
while traffic between NVM and CPU happens at cache-line
granularity (typically 64 B), on x86 architectures only 8 B
stores are guaranteed to complete in a single cycle, meaning
that a cache-line might be evicted and persisted before com-
pleting a write operation larger than 8 B. Based on these
observations, a variety of research projects have explored
algorithms for NVM-resident persistent data structures [13,
55, 38, 54, 29] and database systems [41, 52, 27, 3].

2.5 Log-structured Systems
Log-structuring was first proposed by Mendel Rosenblum

and John Ousterhout in the context of file systems [43]. The
original motivation was to mitigate the bottleneck of hard
disks by exploiting their faster sequential write bandwidth,
while serving most reads from main memory, based on the
increasing main memory capacities by the time.

Flash SSDs reduced the performance gap between sequen-
tial and random I/O, albeit sequential I/O requests may still
be faster as they better exploit the SDD’s inner parallelism.
Nevertheless, writing a block to flash requires erasing it first,
which can only be done at a larger granularity than writing.
This created a new motivation for log-structuring, as new
writes can be directed to fresh blocks and space can be re-
claimed at a later point in time, thereby reducing the amount
of erase cycles required. Most flash translation layers (FTL)
of modern SSDs rely on some sort of log-structuring. At a
system scale, the log-structured design offers additional ben-
efits that are exploited by a wide range of modern systems,
as discussed in the following.

First, systems like RocksDB [19] and SILT [32] use a
log-structured merge-tree (LSM) [40] to reduce the write
amplification by batching writes in memory and writing
them in a log-structured manner to persistent storage. The
reduced write amplification leads to a longer life-time of
SSDs, as these can endure a limited amount of erase cycles.
Other systems like LogBase [51], Hyder [9], and LLAMA [30]
also use log-structured storage in the context of SSDs.

Second, in the context of DRAM and NVM, gains in write
performance might be relatively smaller and one might be
tempted to employ update-in-place strategies. However, log-
structuring enables better memory management in terms of
lower fragmentation and predictable performance in high uti-
lization scenarios. RAMCloud [39] adopted a log-structured
memory allocator [44] to leverage these benefits and allow
robust performance even in face of application changes (e.g.,
expand records of a table from 100 B to 130 B). A similar
concept was applied in the context of NVM [25].

Third, log-structuring makes it trivial to perform atomic
writes, as only the head of the log must be updated to reflect
an arbitrarily large group of operations. This becomes even
more convenient in an NVM scenario, as the programmer has

1 2 4 6 8
Threads

0

1

2

3

P
ac

k
ag

es
/s

 (
×1

0
6
)

(a) Throughput

Kernel DPDK

0.2 0.4 0.6 0.8 1.0

Packages/s (×106)

0.0

0.4

0.8

1.2

1.6

L
a
te

n
cy

 (
m

s)

(b) Tail Latency

Kernel/99%
DPDK/99%

DPDK/99.9%
DPDK/99.99%

Figure 3: Throughput (a) and tail latency (b) of HTTP echo
server processing 100 B packages using kernel and DPDK.

little control over CPU caches, which makes it cumbersome to
efficiently implement update-in-place strategies while keeping
data consistent at all times, as mentioned in Section 2.4.

Benefits also entail drawbacks following the no free lunch
conjecture. Unlike update-in-place, a log-structured strat-
egy organizes records by creation time and allows multiple
versions of a record to co-exist. This causes three general
problems. First, since records are appended to the end of
the log, there is low locality for operations such as a sorted
range queries, requiring multiple random accesses. Second,
point lookup operations become more expensive as they may
inspect multiple locations until the most recent version of a
record is found, as it is the case in LSMs. Third, garbage
collection is needed to delete older entries and reclaim space.
However, these problems are less critical in the context of
NVM. The low latency reduces the cost of many random ac-
cesses required by read operations, while the high bandwidth
allows efficient garbage collection, as large portions of live
data must be moved to a new location.

To summarize, not only there is goodness in log-structured
designs, but as already noted by David Lomet [34]:

“Log structured file system has wonderful potential
as the underpinning of a database system, solving a
number of problems that are known to be quite vexing,
and providing some additional important benefits.”

2.6 User-space Networking
In many KVS scenarios multiple parallel requests are re-

ceived from clients through the network and many messages
are exchanged between remote machines. Therefore, the
network plays a major role and is a critical point of optimiza-
tion. Saturating the network bandwidth becomes challenging
while offering low and predictable latencies. While better
bandwidth usage could be achieved by classical techniques
for trading-off latency for higher throughput, they should be
avoided at the network level if one is to offer a system with
robust performance. In common scenarios where the vast
majority of requests have less than 320 B [4] the processing
overhead per package becomes relatively higher.

Operating system kernels offer applications a general-
purpose networking stack. While convenient, kernel network-
ing has issues such as expensive context switches, unnecessary
copy of data between NIC, system cache, and application
buffers, and poor scalability due to large lock granularities.
To circumvent this issues, libraries such as DPDK [33] enable
access to the NIC in the user-space. As a consequence, sys-
tems are able to tailor the network stack to their use-cases
such as zero-copy usage and avoid context switches.

Figure 3 compares the performance between kernel net-
working and DPDK for a micro-benchmark. To isolate the

1094

Server

Core 1

[a..z]

[a..j]

Index

GC Block:

Free
Space
Info.

[k..z]

Alloc.
Table: Log:

Core 2

[k..z]

DRAM

NVM

Core 2

Figure 4: System overview.

impact of DPDK we have implemented an HTTP echo-server
within our system. The server receives parallel HTTP pack-
ages of 100 B from multiple remote clients and send them
back, without further complex processing. Figure 3a shows
how DPDK enables the throughput to scale with an increas-
ing number of cores. Figure 3b shows the tail latencies of a
server with 4 threads using both kernel and DPDK network-
ing while increasing the amount of packages being sent by
clients. At about 400 thousand packages per second the 99%-
ile of kernel networking increases abruptly, which reflects the
throughput achieved with 4 threads in Figure 3a. Meanwhile,
DPDK not only enables a predictable latency behavior (no
abrupt spikes) but even the worst latency (99.99%-ile) is
lower than the 99%-ile of kernel networking. Additional
percentiles of kernel networking are much higher and were
omitted to enable a better visualization of absolute numbers.

For the reasons mentioned above, we opted for using DPDK
on RStore for the client and server communication. While a
simple client-server communication does not leverage DPDK
to its full potential, we believe it is an important building
block for possibly extending the communication to many
servers in a distributed context. In such scenario, multi-
ple messages are exchanged between servers and efficient
networking becomes even more critical.

3. SYSTEM IMPLEMENTATION
In this section we describe details of the overall RStore

architecture. Figure 4 gives a complete overview of the whole
system. In this case, the server spans the whole key range
[a..z] of a dataset. Further to the center of the figure we
have the internal organization of the server. The server
is a 2-core system equipped with DRAM and NVM. The
whole system is internally partitioned on a per-core basis and
communication between cores is done by message-passing,
as previously explained in Section 2.2.

3.1 NVM Allocation on RStore
The log-structured approach significantly facilitates space

management, as arbitrarily sized records are accommodated
naturally by appending to the end of a block without the need
of moving other records for creating space. NVM physical
devices are segmented into 2 MiB chunks, which is the unity
of physical allocation. RStore implements an allocation table
that maps each physical segment to a logical segment within
a logical device. Figure 5 illustrates such organization.

Information of which segments are free and used are stored
in the first physical segment of the device in the form of
an allocation table. Physical segments currently used are
mapped to a single logical segment in a logical device. Since
keeping the consistency of allocation mapping is critical, the

Logical Device 1

Segment 1 (Log)
Segment 2 (Map)

Map Segment 0Restart Restart’

Segment 3 (User Data)

Segment 1 (User Data)
Segment 2 (Log)

Map Segment 0Restart Restart’

Segment 3 (Map)

Logical Device 2

...

...
Allocation Map

Segment 0
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5...

Physical Device

2 MB Logical Device 2
Segment 0 (Map)
Segment 1 (Log)
Segment 2 (Data)

Logical Device 1
Segment 0 (Map)
Segment 1 (Data)
Segment 2 (Log)

Logical Device 2

Figure 5: NVM device allocation.

allocation table is implemented as a persistent data structure
in which updates are guaranteed to be atomically persisted.

While the overhead of an additional indirection from logical
to physical segments can be avoided, it allows each partition
of RStore to be fully independent by accessing an isolated
logical device. It also eases load balancing and reorganization
across physical devices, as segments can be moved simply by
updating the mapping in the allocation table.

Finally, RStore handles logical segments of three different
types: log, data, map. Log segments are used for storing log
records, which are used for durability and recovery. Data
segments can be further divided into smaller blocks of pre-
defined sizes (2 KiB, 16 KiB, 64 KiB, 2 MiB). These blocks
are used for the log-structured storage of records and for over-
flow blocks in case of large values (more on Section 3.4). Map
segments contain entries that are used to track information
of blocks currently allocated in data segments.

3.2 Log-Structured Storage and Indexing
RStore architecture is commonly referred as index+log

approach. Similar to other work [44, 25, 51], the main idea
is to separate the concerns of data access and space manage-
ment by decoupling them. This contrasts with approaches
such as clustered B+Trees and LSMs, in which primary and
indexing data are managed within the same data structure.

RStore employs a log-structured NVM area comprised of
fixed-size blocks (64 KiB). Even if NVM is byte-addressable
and differs from traditional block devices, it is still desirable
to organize data in blocks (or “pages”), as it represents a unit
of space allocation, garbage collection (see Section 3.3), fault
containment/detection, and possibly localized repair [20].
Records are appended to a block until the block becomes full
and is then marked as immutable. Once a record is appended
to this log-structured area, a pointer to it is inserted into a
tree index residing completely in DRAM, enabling a more
efficient access than simply scanning the existing records.

This separation of concerns offers important advantages.
First, there is more flexibility regarding the representation
of persistent and runtime data. For example, any data
structure can easily be integrated to index the records in
NVM. Second, the index structure contains only fixed-size
entries with pointers to the actual data, which simplifies
memory management within the data structure. Third, the
index structure consumes only a small amount of additional
memory. A workload analysis at Facebook [4] shows that
the vast majority of keys are no larger than 20 B, while the
majority of values are at least 300 B. If the index structure
stores whole keys and a pointer to the record on NVM,
its space consumption is less than 10%. Fourth, handling
records in a log-structured manner enables efficient usage of
NVM space by reducing fragmentation and avoiding large
over provisioning (B+Tree nodes are usually kept 75% full
to accommodate future records). This becomes important

1095

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Record Size (Bytes)

0

10

20

30

40

A
v
er

ag
e

T
im

e
(

s)
(a) Scan (100 records)

Index+Log
Index+Log (Prefetch)
Sorted Array

Index
+Log

Index+Log
(Prefetch)

Sorted
Array

0

5

10

15
SELECT TOP 100 *
FROM Users
WHERE Age>20 AND
 Salary>50 AND
 City='Chicago'

(b) Scan with predicate

Figure 6: Average runtime of sorted scans.

since RStore does not make any assumptions about data
format, origin, or schema. While a well-defined schema
enables performance optimizations by the underlying system,
RStore trades these gains for enough flexibility to be used
either as a NoSQL KVS and cache, or as the storage engine
for a more complex relational engine.

Despite its advantages, the mentioned architecture intro-
duces drawbacks that must be properly addressed. First, the
separation between primary and indexing data is not optimal
in terms of spatial locality. Systems designed for HDDs had
to exploit at maximum the spatial locality since sequential
accesses were significantly faster than random accesses. This
assumption still holds for modern SSDs and DRAM and
exploiting cache-oblivious data structures are relevant [6, 21],
but the performance gap between random and sequential
access is much smaller. This gap can be further reduced by
exploiting lightweight DRAM prefetching techniques [12, 28,
42] that can be directly applied to NVM.

Figure 6 shows the scan performance of a log-structured
storage and of a sorted array through a microbenchmark. We
isolated other components to better understand the trade-offs.
Figure 6a shows the average time (Y axis) for scanning 100
records with varying size (X axis) and copying them to the
network buffer with a single thread. As previously mentioned,
we show how we can reduce the gap between Index+Log and
Sorted Array by firing an asynchronous memory prefetch
for the next record while the current record is being copied
to the network buffer. Figure 6b shows another case in
which a scan of 100 records has a predicate to evaluate,
which introduces additional CPU time, allowing a better
overlapping between execution and prefetching. We argue
that while we trade-off scan performance for other benefits
(such as easy memory management and garbage collection),
we can still improve the worst case, albeit still being slower
than a scan in sorted storage. Nevertheless, in the context of
a system accessed through modern network, the performance
benefits are mostly blurred by higher network latency.

The second disadvantage is that while the space manage-
ment of primary data is made in a log-structured manner, the
space management of indexing data still has to be handled.
Fortunately, index space management is significantly simpli-
fied by using fixed-size index entries, as previously mentioned.
At one extreme, only 8 B pointers to the actual record can be
used as index entries. In such case, index operations become
more costly as every key comparison must go out-of-node to
fetch the actual key from NVM. In the context of a B+Tree
index, we employ techniques such as prefix truncation and
poor man’s normalized keys [21] to keep a copy of a small
portion of the key within the node. In most cases, this small
portion of the key is enough to resolve comparisons without

Level n+1

[a..z]

[a..z]

Level n[d..k]

[e..j]

[d,f,i,k] [e,g,h,j] [d,e,f,g,h,i,j,k]

No overlapping keys No space reclaimed

Figure 7: False overlap leads to inefficient space reclamation
and unnecessary write amplification in merges of LSMs.

accessing out-of-node data. By changing the amount of bytes
dedicated to store the in-node portion of keys, we can trade-
off between memory consumption and access performance,
while keeping fixed size index entries.

Third, while the index can exploit the lower latency of
DRAM, it must be rebuilt in case of failures. We rebuild the
index during startup from the key-value records in the log-
structured storage. Since RStore is composed of independent
partitions, the index for each one of these partitions can
be recovered on-demand, i.e., accessing data during restart
does not require a complete rebuild of all indexes. A similar
approach is used by hybrid NVM-DRAM data structures [38,
54]. To limit speedup recovery, regular snapshots of the index
can be taken by flushing the whole data structure to NVM.

3.3 Garbage Collection
Traditional LSM implementations employ a merge opera-

tion to reclaim space of obsolete records and consequently
reduce the number of persistent components (also called
SSTs) that must be inspected during reads. RStore relies on
a global index to access records, therefore, a read operation
does not have to consider multiple copies of a record, as only
the most recent one is indexed. Nevertheless, the cost of
index operations increases with the size of the index.

LSMs can reduce the cost of inspecting multiple SSTs by
employing Bloom filters. However, in the context of NVM,
two points must be considered. First, memory consumption
of Bloom filters is not negligible for large data, even if the
memory budget is optimally distributed across levels [15].
Second, Bloom filters are used to avoid expensive disk I/O
which incurs high latency. On NVM, accesses incur a much
lower latency and therefore the performance gains of avoiding
these accesses relative to the additional overhead introduced
by Bloom filters are smaller. In other words, probing the
Bloom filter already incurs a memory access, which is a more
similar cost to directly searching the key on NVM.

Figure 7 shows the merge process of an LSM. The merge
starts by selecting a range of records from Level n for merg-
ing with records from Level n+1 that have an overlapping
key range. The problem of relying on overlapping key ranges
for garbage collection is that there is no guarantee of how
much space will be reclaimed. In other words, the key ranges
defined by min and max keys may overlap but the records
themselves might not. As shown in Figure 7, in the worst
case there is no overlap of records and the merge process
is superfluous, thus increasing the write amplification. The
phenomenon is referred to as false overlap and has been
discussed in previous work [31]. Alternatives such as logical
merging through pointer manipulation may help in reduc-

1096

Block 1
(31% free)

Block 2
(73% free) Block n Block n+1

(27% free)...

Free
Space
Heap

Free Space Queue

GC Block

Current block
GC Block

(100% free)

1. Update heap

2. Pick victim

3. Move valid
records

4. Insert GC block into list

5. New GC block

Figure 8: Garbage collection algorithm of RStore.

ing the amount of duplicated records and consequently in
improving lookup performance, but it does not help with
reclaiming space, which is critical when a device is mostly
full. Furthermore, the merge operation is hard to parallelize,
as it depends on the key distribution of the workload. A
uniform distribution allows an easier parallelization of the
merge operation, as disjunct ranges can be merged, while a
skewed distribution causes only a subset of the whole key
range to be merged frequently.

The garbage collection of RStore was designed to be oblivi-
ous to the aforementioned effects caused by using key ranges
as victim-picking strategy. The core idea is to keep live infor-
mation about free space and valid records in each NVM block.
In a way, it resembles the trim command in early SSDs, in
which the user actively provide information about unused
space to facilitate garbage collection by the FTL. Track-
ing this information introduces overhead during runtime,
as blind inserts/updates/deletes are not possible anymore.
Nevertheless, it facilitates garbage collection, which is the
main source of unpredictable performance on many systems.
In other words, RStore takes a small, but predictable, per-
formance hit during normal processing in order to reduce
the unpredictability of garbage collection.

Figure 8 gives an overview of the algorithm. A block
initially has 100% of free space, which is reduced as the
block is filled. When the block is full, it becomes immutable.
Whenever a record is deleted or a new version is inserted,
the free space information of the corresponding block is
updated. The free space heap tracks the free space of each
block, which allows identifying the block that will yield the
largest amount of space when reclaimed. Since free space of
blocks changes frequently, maintaining the heap structure is
expensive. Therefore, whenever the free space of a block is
changed for the first time, a reference to this block to the
free space queue is added. By doing so, the heap is updated
only when garbage collection is required, thereby alleviating
the heap overhead during runtime. When garbage collection
is triggered, the step 1 is to update the free space heap with
blocks in the free space queue, i.e., blocks in which the free
space changed since last garbage collection. With the free
space heap updated, the step 2 is to pick block with largest
amount of free space (in this case Block 2), referred as victim.
Next, valid records from the victim block are moved to a
dedicated garbage collection block in the step 3. Finally, in
step 4 and step 5, the garbage collection block becomes a
new block in the end of the list and the victim block becomes
the new dedicated block to be used by the next iteration of
garbage collection, respectively.

Figure 9 compares our algorithm and traditional LSM
merge (RocksDB). We limit the available space to 16 GB

50% 90% 95% 99% 99.9
%
99.9

9%
Percentile

0.0

0.2

0.4

0.6

L
a
te

n
cy

 (
m

s)

(a) Tail Latency

RocksDB(uniform)
RocksDB(skewed)
RStore(uniform)
RStore(skewed)

0 500 1000
Time (s)

0.0

0.5

1.0

1.5

T
h
ro

u
gh

p
u
t

(M
o
p
/s

)

38% drop

7% drop

(b) Throughput

RStore
RocksDB(Leveled)
RocksDB(Universal)

Figure 9: Tail latency (a) and throughput (b) for full device.

and load it until little space is left in order to force garbage
collection. Both systems run on top of NVM described in
Section 5 and we use leveled compaction in RocksDB. To
isolate the algorithm impact, in Figure 9a we run an update-
only workload for 5 minutes with a single-thread serving
requests sent at a rate of 25000 requests per second (a rate
that both systems can easily sustain). Not only RStore has
lower tail latency, but it is constant and unaffected by skew.
Figure 9b shows the throughput over time including the
load phase (gray area) using 16 threads. In addition to lev-
eled compaction, we run RocksDB with universal compaction.
Universal compaction trades higher read and space amplifi-
cation for lower write amplification and is more cumbersome
(as noted in the first drop during the load phase). It also
requires double the amount of space, which explains the
throughput drop to zero after the load phase: the system
becomes unresponsive since not enough space is available for
compaction. Finally, the absolute throughput number is not
important, instead the focus is on the drop when the device
is full and garbage collection becomes critical. The average
throughput of RocksDB drops by 38% and RStore by 7%.

3.4 Logging and Recovery
In addition to the log-structured storage, each partition of

RStore has a local recovery log. Since operations to the log-
structured storage are easily made atomic, one may consider
that it obviates the need for separated logging. However, the
log acts as a central component which can be used by third-
party systems for state machine replication through protocols
such as RAFT [37]. In this case, log records are send to
remote replicas and the network bandwidth becomes the
bottleneck. Therefore, we use redo-only logical logging, which
has smaller log records compared to traditional physiological
logging, thus better leveraging network bandwidth.

An initial concern is that the recovery log doubles the
write-amplification. However, decoupling logging from stor-
age facilitates replication of higher level operations. As
an example, while the log-structured storage only operates
through basic single record operations such as insert, delete,
and update, the recovery log allows multi-record operations,
such as deletion of multiple keys based on a given prefix, to
be transmitted as a single log record. Furthermore, to allevi-
ate the write-amplification introduced by logging, large keys
and values are stored only once in an overflow block which
is then referred by both log record and key-value record.
Figure 10 illustrates this case in which a value larger than
2 KiB is inserted. The larger part of the value is stored in
the overflow block which is referred by both the respective
log record and key-value record.

Another concern is that latency of writes is doubled, since

1097

Allocation Map
Segment 0
Segment 1
Segment 2
Segment 3

...

Physical Device Logical Device
Segment 0 (Map)
Segment 1 (Data)
Segment 2 (Log)

64 KB64 KB64 KB
64 KB64 KB
2 KB

Log records
Log-structured Storage

Overflow Block

Figure 10: Large values are stored only once in an overflow
block, reducing write amplification.

every write must be flushed twice to NVM: one to the log,
another one to storage. However, only writes to the log must
be eagerly persisted. Writes to storage do not have to be
flushed right away and can be amortized by CPU caches.
Since storage is log-structured, no data is overwritten. In
case of a crash before a record is evicted from the cache, it
can be recovered by replaying the recovery log.

After a system failure, recovery starts by rebuilding the
in-memory index and free space information from the records
present in the log-structured storage. The recovery log is then
analyzed and any missed operations are replayed. Since each
partition of RStore is independent, this process is completely
parallelizable and a partition can start to serve client requests
without waiting for a complete system recovery.

4. SYSTEM OPERATIONS
In this section we describe the steps of basic operations.

Unlike other systems, RStore does not support blind op-
erations, since free space information must be tracked for
garbage collection. Each operation is initially assigned to
the partition spanning the range that covers the given key.

An insertion of a record starts by searching the index
for the given key. If they key already exists the operation
fails. Otherwise a log record corresponding to the operation
is written to the log, and the record itself is written to the
log-structured storage. An entry containing the key and
pointer to record is then inserted in the index structure.

The update of a record is similar to an insertion, with two
main differences. First, the operation fails if the key does not
exist. Second, the update is done by inserting a new version
of the record which invalidates the old one. Therefore, the
corresponding pointer in the index must be updated to point
to the new record and the old record must be invalidated by
resetting a validity bit. Validity bits of records are kept in-
memory and must be rebuilt during restart, since immutable
blocks of the log-structured storage cannot be updated in-
place. Additionally, the size of the old record is added to the
free space information of the block containing it. A deletion
works like an update in which a special tombstone record
with no value is inserted and the corresponding entry in the
index is deleted rather than updated.

The point lookup of a record traverses the indexing
structure to find the record for the given key. If the full
key is stored in the index, the lookup makes a single access
to NVM to retrieve the full record (if it exists). If fixed-
size partial keys are used for indexing, the lookup might
require additional accesses to records on NVM to compare
the full keys in case the partial key is not enough to resolve
a comparison when traversing inner nodes.

Range lookups may span multiple partitions. Therefore,
a partition is chosen to coordinate the operation. It then

forwards the range lookup operation by sending a message
to all other partitions that span key ranges overlapping
with the one specified by the operation. Each partition
then independently executes the range lookup locally by
traversing the index data structure. Even if the records are
not sorted on the log-structured storage, their corresponding
index entries are, enabling the records to be retrieved in
sorted order. Once a local range lookup is completed, the
partition replies the results to the coordinating partition,
which is responsible for collecting the multiple results and
issuing the final reply of the operation.

5. EVALUATION
In this section we present performance results of an end-to-

end evaluation of systems. The metrics we are most interested
in are the throughput scalability and low tail latency.

5.1 Methodology
We run all systems on a single machine and use a second

client machine sending a high number of parallel requests.
The indicated number of threads is the same for both server
and client. To overload the server, each client thread opens
8 connections to the server and issues asynchronous requests
(at any point in time a client thread has 8 in-flight requests).

We measure throughput and latency on the client side. For
throughput, we collect the amount of operations completed
every 1 second. At the end of the execution we use the list of
operations completed per second for calculating the average
throughput as well as the standard deviation. For tail la-
tency, measuring each individual request would introduce too
much compute and memory overhead, therefore we randomly
sample up to 500 thousand requests every 1 second and use
the total amount of samples to plot the latency percentiles.

5.2 Environment
The server has an Intel Xeon Platinum 8260L CPU, 96 GiB

of DRAM (6x 16 GiB DIMMS), and 1.5 TiB of Intel Optane
DC Persistent Memory (6x 256 GiB modules). The client
has an Intel Xeon CPU E5-2699 v4 and 128 GiB of DRAM
(8x 16 GiB DIMMS). Both client and server use a 10 GbE
Intel Ethernet Controller X540-AT2. The network cards are
accessed through DPDK(v17.02) The Linux version is 5.3
on both machines The NVM modules are combined into a
single namespace in fsdax mode and accessed through an ext4
file system with the DAX option enabled. All the systems
benchmarked rely on Intel Optane DC Persistent memory for
storage. It is either accessed as an SSD replacement through
the regular file system API, or accessed directly as persistent
memory (in the case of NVM-aware systems, like RStore).

5.3 Other Systems
In addition to RStore, we benchmark three popular KVS:

memcached(v1.5.16), Redis(v5.0.5), and RocksDB(v6.2.2).
We also compare to FASTER(v2019.11.18.1) [11], a recent
system which employs more modern techniques. Both mem-
cached and Redis are often used as a web cache. While they
enable flushing memory contents to persistent media as a
background task, the default scenario is purely in-memory.
We disable their caching behavior to guarantee that records
loaded by the client are not arbitrarily discarded by the LRU
policy. The available memory is set to 32 GiB. Finally, it is
worth noting that Redis is a single-thread system.

1098

0

1

2

1
00

0
 B

y
te

s
T

h
ro

u
g
h
p
u
t

(M
o
p
/s

)

Network Limit

(a) Read-heavy (90% reads, 10% writes)

Network Limit

(b) Balanced (50% reads, 50% writes)

Network Limit

(c) Write-heavy (10% reads, 90% writes)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Threads

0

1

2

1
00

 B
y
te

s
T

h
ro

u
g
h
p
u
t

(M
o
p
/s

) (d) Read-heavy (90% reads, 10% writes)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Threads

(e) Balanced (50% reads, 50% writes)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Threads

(f) Write-heavy (10% reads, 90% writes)

Redis FASTER memcached RocksDB RStore (IM) RStore

Figure 11: Throughput scalability for YCSB workloads with values of 1000 B (top) and 100 B (bottom) over multiple threads.

RocksDB is an LSM persistent KVS to make efficient use
of SSDs. To enable a fairer comparison, we run RocksDB
on top of NVM as well. We disable Bloom filters and com-
pression of values, since other systems do not employ them.
Furthermore, since I/O to NVM is faster than to SSD, the
overhead of compressing data prior to writing to persistent
storage is relatively higher and the gains of avoiding I/O with
Bloom filters are relatively lower. The compression of keys is
kept. We use a block cache of 6 GiB. Additional parameters
were changed according to the tuning guide available at the
official repository6. We make the complete settings avail-
able7. RocksDB does not have networking, so we adapted
the same network layer of memcached. Finally, it is worth
noting that RocksDB does not explore the byte-addessability
of NVM, using it as a faster SSD. Previous work improved
RocksDB to better leverage NVM [18], but these changes are
not available in the main repository. Finally, while compar-
ing absolute throughput numbers may not be completely fair,
the comparison of overall system behavior is still relevant.

FASTER also has a log+index architecture, using a lock-
free hash table for indexing and epochs for concurrency
control. Unlike RStore, in FASTER keys are not part of the
index, which reduces its memory footprint. Furthermore, it
requires that the amount of hash buckets is a power of 2. For
100 B and 1000 B values we set the amount of hash buckets
to 226 and 223 which gives an average of 2.3 and 1.9 records
per bucket and 4 GiB and 0.5 GiB memory consumption,
respectively. We limit the log size to 32 GiB. FASTER
does not offer networking, therefore we adapted it to work
with memcached network stack. We show results for the in-
memory version of FASTER. We omit the persistent version
as it showed lower performance and does not access NVM
directly, therefore the results could be unfair and misleading.
Consequently, we have also disabled checkpointing.

RStore keeps the index completely in DRAM, which con-
tains keys (approx. 25 B) and pointers to the complete
records on NVM (8 B). We apply hash partitioning to RStore
and set the amount of available memory to 32 GiB. In ad-
dition to the persistent version, we also benchmark a fully
in-memory variant of RStore (tagged with IM).

6
https://github.com/facebook/rocksdb/wiki/

7
https://gist.github.com/llersch/6a6fd515b9db8a87ed860573e3417961

5.4 Throughput Scalability
In this section we measure the throughput when increasing

the number of threads at the server side. It is worth noting
that each client thread sends up to 8 parallel requests to the
server at any point in time. We run the Yahoo! Cloud Serving
Benchmark [14], issuing Put and Get requests. Our Put
operations are done on existing records (updates), therefore
the dataset size does not increase. We vary the ratio between
these requests to simulate different workload scenarios: read-
heavy (90% Get, 10% Put), balanced (50% Get, 50% Put),
and write-heavy (10% Get, 90% Put). Following workload
trends [4], we set the key size to approximately 20 B with
an additional prefix of 4 B while having large value (1000 B)
and small value (100 B) scenarios.

We analyze two load scenarios that achieve 16 GB of pay-
load data. In other words, for 1000 B values 16 million records
are inserted, while for 100 B values 160 million records are
inserted. After the load phase we run each workload for 5
minutes. Figure 11 shows the results for 1000 B (top) and
100 B (bottom) payloads. The shaded part indicates the
hyper-threading zone. We make three observations.

First, both Redis and RocksDB perform worst than the
others. This is expected, since, as previously mentioned,
Redis is a single-thread system and therefore the X-axis
represents only the amount of clients sending requests. One
of the main reasons RocksDB presents a lower performance is
the fact that it does not fully leverages the byte-addressability
potential of NVM, simply accessing it like a faster SSD.
Nevertheless, it is worth noting how RocksDB performs
better than Redis for the read-heavy scenarios since it is able
to leverage multiple threads. As soon as the amount of write
operations increase, RocksDB is exposed to the higher write
latency of NVM during flushing and compaction.

Second, the performance of RStore and memcached de-
grades when the amount of write operations increase. For
RStore, write operations expose the higher NVM write la-
tency, as well as it triggers garbage collection due to the log-
structured organization. The in-memory variant, RStore(IM),
is able to scale better and saturate the network limit with
fewer cores since it is not affected by NVM. For memcached,
no additional allocation is required because only existing
records are updated. However, it introduces additional over-
head when acquiring a coarse-grained mutex every time a

1099

https://github.com/facebook/rocksdb/wiki/
https://gist.github.com/llersch/6a6fd515b9db8a87ed860573e3417961

0.0
0.5
1.0
1.5
2.0
2.5

R
ea

d
-h

ea
v
y

20k ops/s 80k ops/s 160k ops/s 320k ops/s 500k ops/s

0.0
0.5
1.0
1.5
2.0
2.5

B
al

a
n
ce

d

min
50

%
90

%
99

%
99

.9%
99

.99
%
max

0.0
0.5
1.0
1.5
2.0
2.5

W
ri

te
-h

ea
v
y

min
50

%
90

%
99

%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max

Percentile

L
a
te

n
cy

 (
m

s)
Redis FASTER memcached RocksDB RStore (IM) RStore

Figure 12: Tail latency of YCSB workloads with values of 1000 bytes and 4 threads. Each column indicates the rate at which
clients send operations to the server (label at the top). Each row indicates the workload (label at the left).

record is updated. FASTER and RStore(IM) scale well and
have a similar behavior, as both saturate the network in
(a)-(c) and scale almost linearly in (d)-(f).

The throughput of RStore is slightly higher than mem-
cached with 1000 B and slightly lower with 100 B, but both
scale similarly across many threads. Furthermore, it is worth
noting that RStore stores most of its data on NVM, which
introduces a higher latency as a trade-off for lower costs.
Nevertheless, RStore still achieves a good performance due
the combination of the techniques mentioned previously. Fi-
nally, it is possible to see the impact NVM has on RStore,
since RStore(IM) saturates the network with fewer cores in
(a)-(c) while offering higher throughput in (d)-(f).

5.5 Tail Latency
We analyze the tail latency in form of latency percentiles

to evaluate the predictability of the systems. However, tail
latency is a metric that does not live on its own. It must be
considered in the context of the pressure being put on the
server by the clients. Even if the throughput of the system
scales linearly, the more overloaded the system is, the higher
the tail latency percentiles are. In other words, one should
ask the question: “How fast can I go before the tail latency
is affected?”. Therefore we set a fixed number of 16 threads
on the client and throttle the rate at which requests are sent
to control the pressure we put on the server side. The server
runs with 4 threads, since the throughput of the systems is
not too different at this point, as seen in Figure 11.

Figure 12 and Figure 13 show the tail latency for the read-
heavy, balanced, and write-heavy workloads (rows) and
the rate of requests being sent by the client (columns) which
increases across plots from left to right. We omit rates higher
than 500 thousand op/s because none of the systems can
sustain higher throughput at 4 threads, as seen before.

At the end of the run phase we have a list of all observed
requests and sort them by latency. This sorted list is used
to plot the minimum, maximum, and percentiles of latency
for these requests. We set a high-level goal of achieving
sub-millisecond tail latency, marked by the gray area in each
plot. Therefore, systems with good tail latency must have a
curve as straight and low as possible inside the gray area.

As previously mentioned, the higher the pressure being
put by the client, the higher the tail latency is. That means
that not only the curves become steeper but also higher
overall, as can be seen in the behavior of Redis in Figure12
for the read-heavy workload when comparing 80k op/s and
160k op/s, for example. Another observation is that the
behavior of systems do not change after a certain point, as
is the case of RocksDB for all workloads in Figure 13 after
160k op/s. The reason is that at this point the pressure
being put on the server is higher than the throughput it can
deliver, causing the client to reach its maximum amount of
outstanding requests while waiting for the server. In other
words, at this point we consider that the tail latency of the
server has already reached an undesirable behavior.

For most scenarios RocksDB has the worst tail latency,
since it accesses NVM through the regular file system inter-
face. Redis, memcached and FASTER have a good behavior
for low pressure scenarios such as 20k op/s for all workloads
in Figure 12. After this point, Redis becomes more unpre-
dictable. The exception is the write-heavy scenario at 320k
op/s and 500k op/s, in which the behavior of all systems ex-
cept RStore and RStore(IM) become worse. Overall RStore
has a higher tail latency , since it requires at least one access
to NVM per operation. However, RStore also has a straighter
line at high load scenarios (500k op/s) with write operations,
this being a consequence of log-structuring and asynchronous
message-passing communication. RStore(IM) has a similar
behavior, but is able to keep a lower tail latency.

Figure 13 shows the same scenarios for smaller requests
(100 B value). The main observation is that RStore(IM) be-
haves better than other systems in more cases. The overhead
of package processing is relative to the size of the package,
therefore RStore in general has an additional benefit in these
cases by being the only system using DPDK. This is seen
more notably for most workloads at 320k op/s and 500k op/s.

Figure 14 presents the experiments with 16 threads on the
server side. We compare RStore only to memcached, since
it is the system with better tail latency behavior among all
the other systems. We consider two pressure scenarios: 1
million (light color) and 2 million (dark color) operations per
second. In all cases, while memcached has a better behavior

1100

0.0
0.5
1.0
1.5
2.0
2.5

R
ea

d
-h

ea
v
y

20k ops/s 80k ops/s 160k ops/s 320k ops/s 500k ops/s

0.0
0.5
1.0
1.5
2.0
2.5

B
al

a
n
ce

d

min
50

%
90

%
99

%
99

.9%
99

.99
%
max

0.0
0.5
1.0
1.5
2.0
2.5

W
ri

te
-h

ea
v
y

min
50

%
90

%
99

%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max min

50
%

90
%

99
%
99

.9%
99

.99
%
max

Percentile

L
a
te

n
cy

 (
m

s)
Redis FASTER memcached RocksDB RStore (IM) RStore

Figure 13: Tail latency for YCSB workload with values of 100 bytes values and 4 threads. Same organization as Figure 12.

0.0
0.5
1.0
1.5
2.0
2.5

R
ea

d
-h

ea
v
y

1000 Bytes 100 Bytes

0.0
0.5
1.0
1.5
2.0
2.5

B
al

an
ce

d

min
50% 90% 99% 99.

9%
99.

99%max

Percentiles

0.0
0.5
1.0
1.5
2.0
2.5

W
ri

te
-h

ea
v
y

min
50% 90% 99% 99.

9%
99.

99%max

Percentiles

L
at

en
cy

 (
m

s)

memcached@1M op/s
memcached@2M op/s

RStore@1M op/s
RStore@2M op/s

Figure 14: Tail latency for YCSB workloads with values of
1000 bytes and 100 bytes and 16 threads.

at 1M op/s, this behavior is not sustained when the pressure
is increased to 2M op/s. On the other hand, RStore has a
slightly worse behavior at 1M op/s but is able to keep it
more stable for the 2M op/s case, having both of its curves
between the memcached curves.

5.6 Scans
The operations that suffer the most from the index+log

architecture are sorted range scans. Even if scans are less
common for the use-cases that we target with RStore (like
web-caching), we still consider important to support it to
some extent. We discussed in Section 3.2 the limitations
and possible improvements. Here we show an end-to-end
evaluation of ranged scans on RStore.

Small scans are more common for our use-cases and they
are unlike to span more than one or two partitions. Figure 15
shows the throughput (X axis) for different scan sizes (num-
ber of records) for records of 100 B over multiple threads (Y
axis). It is worth nothing that scans are bandwidth intensive
and therefore network quickly becomes the bottleneck. The

1 2 4 6 8 10 12 14 16
Threads

0.00

0.25

0.50

0.75

1.00

T
h
ro

u
gh

p
u
t

(M
op

s) Scan Size
(# records)

100

300

500

1000

Figure 15: Scan performance over multiple threads.

colored dashed-lines show the point at which the network
bandwidth is saturated for each scan size. We can see that
for 100 records, we are able to saturate the bandwidth with
only 8 cores. For scan sizes of 300, 500, and 1000 records, we
saturate the bandwidth with 6, 6, and 4 cores, respectively.

5.7 Memory Consumption
One of the goals of RStore is to have reduced costs by

using cheaper NVM for storage, in contrast to completely
in-memory systems. We collected the amount of memory con-
sumed (DRAM and NVM) by each system after loading them
with 16 million records with 1000 B payload and 160 million
records with 100 B bytes payload. Figure 16 shows these num-
bers with the raw size indicated by the gray area. Since each
record has a key and additional overhead space introduced
by each system, the scenario with 100 B payload requires
more space. With 1000 B payload, all systems have a similar
memory consumption (DRAM for memcached, Redis and
FASTER; NVM for RStore and RocksDB). The additional
DRAM consumption of RStore is due to the index, while in
RocksDB it is caused by the 6 GiB block cache and memtable.
With 100 B payload, Redis requires more DRAM than mem-
cached and RStore requires more NVM than RocksDB. As
mentioned previously, RocksDB compresses keys, which al-
lows a lower space consumption on NVM. It is also worth
noting that with a larger amount of records, RStore requires
more DRAM for the index than RocksDB. Moreover, since
RStore requires the index to be completely in DRAM, it is
less flexible in tuning the memory budget.

Finally based on the memory consumption and current

1101

RSt
or

e

m
em

ca
ch

ed
Red

is

Roc
ks

DB

FA
ST

ER
0
8

16
24
32

G
ig

ab
y
te

s
(a) 16M records of 1000 Bytes

RSt
or

e

m
em

ca
ch

ed
Red

is

Roc
ks

DB

FA
ST

ER

(b) 160M records of 100 Bytes
NVM DRAM Raw Size

Figure 16: Memory consumption of each system.

Table 1: Approximate cost (in US$) of each system based
solely on their memory consumption depicted in Figure 16.

Value Size RStore memcached Redis RocksDB FASTER

1000 B 98$ 207$ 200$ 160$ 195$
100 B 227$ 335$ 361$ 187$ 342$

prices of DRAM (1500$ for 128 GiB) and NVM (695$ for
128 GiB) modules [1], we have anecdotally calculated the
memory and storage price of each system in Table 1. Fig-
ure 17 shows the throughput of the balanced workload, shown
before in Figure 11, divided by the respective costs of Table 1.
These values serve as an initial expectation of the rate of
costs between the systems considering their performance.
While RStore has a throughput similar to memcached and
lower than FASTER in Figure 11b, it has a much better
performance when we compare the throughput relative to
the cost of storage, as shown in fig. 17a. In Figure 17b,
the throughput relative to cost of RStore is much closer to
the other systems, showing no significant advantage for the
scenario with 100 B values.

6. RELATED WORK
The concepts presented in this paper were already explored

to some extent in other systems. Related work was partially
covered for each aspect of of RStore in their respective sec-
tions, therefore here we elaborate on more recent complete
systems that share some of the same design decisions.

RAMCloud [39] is a KVS acting as a distributed hash table
that relies on large amounts of DRAM to store all of its data
with the goal of achieving extremely low latency. RStore
target similar goals of not only low latency, but predictable
latency. It also explores modern storage hardware (NVM)
for reduced storage costs.

Anna [53] is a distributed KVS that also relies on a thread-
per-core model and message passing rather than shared mem-

1 4 8 16 24 30
Threads

0

4

8

12

16

T
h
ro

u
gh

p
u
t(

×1
0

3
 o

p
/s

)/
$

(a) 1000 Bytes

1 4 8 16 24 30
Threads

(b) 100 Bytes

Redis FASTER memcached RocksDB RStore

Figure 17: Rate of throughput divided by cost for workload
Balanced (higher is better).

ory communication. While this paper focus more on the in-
ternal organization and storage aspects of RStore in a single
node context, Anna uses a standard C++ hash table for
storing records and focus more on the distributed aspects.

FASTER [11] is a persistent KVS that also relies on a log-
structured organization of records while enabling update-in-
place for in-memory regions. RStore does not allow updates-
in-place, since records are written directly to persistent stor-
age and updating data in-place could lead to corruption and
inconsistencies between replicas that could not be undone by
our roll-forward recovery method. FASTER uses a lock-free
hash table for indexing and epochs for concurrency control
of operations such as garbage collection, index resizing, page
flushing, and checkpointing. The index in RStore can be
either a hash table or a search tree, in which case it also
supports range scans. On one hand, FASTER does not keep
the keys in the index, which reduces its DRAM footprint, on
the other hand RStore saves memory by storing records on
NVM. FASTER is able to leverage SSDs through its hybrid
log, while RStore does not support SSD but supports NVM.

ScyllaDB [45] is a distributed database compatible with
Apache Cassandra. It also focuses on low and predictable
latency and implements an asynchronous execution model
through future-promise-continuation concepts offered by the
Seastar Framework [46]. The framework also offers user-space
networking through DPDK for efficient package processing.

The project Orleans at Microsoft Research [7] offers a
toolset for building cloud-native systems. It shares some of
the high-level goals of RStore, such as following an actor-
based model to enable easier development and scaling of
largely distributed systems.

Different than RStore, that still implements logical log-
ging separated from log-structured storage, LogBase [51]
also implements a log-structured storage but relies on the
atomicity of writes to completely get rid of write-ahead log.
Nevertheless, LogBase manages the log-structured storage
through files on SSD and delegates replication to HDFS.

7. CONCLUSION
In this paper we have presented the internal architecture of

RStore and how our design decisions were guided by develop-
ing a KVS with the goal of achieving scalable throughput and
low tail latency. We have discussed design principles such as
actor-based model, message-passing communication, cooper-
ative multitasking, log-structured storage, modern storage
devices (NVM), and user-space networking. We have com-
pared RStore to popular KVSs and showed how it achieves
similar throughput to completely in-memory systems while
keeping predictable and low tail latency under high loads.
RStore provides a solid foundation upon which future work
can extend its concepts to a distributed environment.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback.
We also thank Badrish Chandramouli, Ryan Stutsman and
Chinmay Kulkarni for their help in tuning FASTER and
comments on benchmark results. Finally, we thank Thomas
Willhalm, Otto Bruggeman and Heinrich Teiken for providing
the hardware and technical support for the experiments.

1102

8. REFERENCES
[1] P. Acorn. Intel Optane DIMM Pricing: $695 for

128GB, $2595 for 256GB, $7816 for 512GB.
https://www.tomshardware.com/news/

intel-optane-dimm-pricing-performance,39007.

html, 2019. Accessed: September 01, 2019.

[2] J. Armstrong. Making reliable distributed systems in
the presence of software errors. PhD thesis, The Royal
Institute of Technology, 2003.

[3] J. Arulraj, M. Perron, and A. Pavlo. Write-Behind
Logging. PVLDB, 10(4):337–348, 2016.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale
Key-Value Store. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 53–64. ACM,
2012.

[5] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in
tandem computer systems. In The Evolution of
Fault-Tolerant Computing. Springer, 1987.

[6] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious b-trees. SIAM Journal on Computing,
35(2):341–358, 2005.

[7] P. A. Bernstein, S. Bykov, A. Geller, G. Kliot, and
J. Thelin. Orleans: Distributed virtual actors for
programmability and scalability. MSR-TR-2014–41,
2014.

[8] P. A. Bernstein, M. Dashti, T. Kiefer, and D. Maier.
Indexing in an Actor-Oriented Database. In 8th
Biennial Conference on Innovative Data Systems
Research (CIDR), 2017.

[9] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - A
Transactional Record Manager for Shared Flash. In 5th
Biennial Conference on Innovative Data Systems
Research (CIDR), 2011.

[10] J. Bonér, D. Farley, R. Kuhn, and M. Thompson. The
Reactive Manifesto.
https://www.reactivemanifesto.org/, 2014.
Accessed: September 01, 2019.

[11] B. Chandramouli, G. Prasaad, D. Kossmann, J. J.
Levandoski, J. Hunter, and M. Barnett. FASTER: A
Concurrent Key-Value Store with In-Place Updates. In
Proceedings of the 2018 International Conference on
Management of Data, pages 275–290. ACM, 2018.

[12] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching.
ACM Transactions on Database Systems (TODS),
32(3):17, 2007.

[13] S. Chen and Q. Jin. Persistent B+-Trees in
Non-Volatile Main Memory. PVLDB, 8(7):786–797,
2015.

[14] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), 2010.

[15] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey:
Optimal Navigable Key-Value Store. In Proceedings of
the 2017 International Conference on Management,
pages 79–94. ACM, 2017.

[16] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 56:74–80, 2013.

[17] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-value Store.
In Proceedings of the 21st Symposium on Operating
Systems Principles, pages 205–220. ACM, 2007.

[18] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe,
S. Dong, K. Hazelwood, C. Petersen, A. Cidon, and
S. Katti. Reducing DRAM Footprint with NVM in
Facebook. In Proceedings of the Thirteenth EuroSys
Conference, page 42. ACM, 2018.

[19] Facebook. RocksDB. https://rocksdb.org/.
Accessed: September 01, 2019.

[20] G. Graefe and H. Kuno. Definition, Detection, and
Recovery of Single-Page Failures, a Fourth Class of
Database Failures. PVLDB, 5(7):646–655, 2012.

[21] G. Graefe and P.-A. Larson. B-Tree Indexes and CPU
Caches. In Proceedings of the 17th International
Conference on Data Engineering, pages 349–358. IEEE
Computer Society, 2001.

[22] B. Gregg. Systems Performance: Enterprise and the
Cloud. Prentice Hall Press, 1st edition, 2013.

[23] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP Through the Looking Glass,
and What We Found There. In Proceedings of the 2008
International Conference on Management of Data,
pages 981–992. ACM, 2008.

[24] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence.
IJCAI, 1973.

[25] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda.
Log-Structured Non-Volatile Main Memory. In
USENIX Annual Technical Conference, pages 703–717.
USENIX Association, 2017.

[26] Intel. Intel Architecture Instruction Set Extensions
Programming Reference. https:
//software.intel.com/en-us/isa-extensions, 2018.
Accessed: September 01, 2019.

[27] H. Kimura. FOEDUS: OLTP Engine for a Thousand
Cores and NVRAM. In Proceedings of the 2015
International Conference on Management of Data,
pages 691–706. ACM, 2015.

[28] O. Kocberber, B. Falsafi, and B. Grot. Asynchronous
Memory Access Chaining. PVLDB, 9(4):252–263, 2015.

[29] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh.
WORT: Write Optimal Radix Tree for Persistent
Memory Storage Systems. In Proceedings of the 15th
USENIX Conference on File and Storage Technologies,
pages 257–270. USENIX Association, 2017.

[30] J. Levandoski, D. Lomet, and S. Sengupta. LLAMA: A
Cache/Storage Subsystem for Modern Hardware.
PVLDB, 6(10):877–888, 2013.

[31] H. Lim, D. G. Andersen, and M. Kaminsky. Towards
Accurate and Fast Evaluation of Multi-Stage
Log-structured Designs. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies,
pages 149–166. USENIX Association, 2016.

[32] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
Silt: A memory-efficient, high-performance key-value
store. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages
1–13. ACM, 2011.

[33] Linux Foundation. DPDK. https://www.dpdk.org/.
Accessed: September 01, 2019.

1103

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.reactivemanifesto.org/
https://rocksdb.org/
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions
https://www.dpdk.org/

[34] D. Lomet. The Case for Log Structuring in Database
Systems. In Intl Workshop on High Performance
Transaction Systems, 1995.

[35] Micron. 3D XPoint Technology.
https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology, 2018.
Accessed: September 01, 2019.

[36] N. Mott. Intel Announces Optane DC Persistent
Memory Is Sampling Now, With Broad Availability In
2019. https://www.tomshardware.com/news/
intel-announces-optane-dc-persistent-memory,

37145.html, 2018. Accessed: September 01, 2019.

[37] D. Ongaro and J. K. Ousterhout. In Search of an
Understandable Consensus Algorithm. In USENIX
Annual Technical Conference, pages 305–319. USENIX
Association, 2014.

[38] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory. In
Proceedings of the 2016 International Conference on
Management of Data, pages 371–386. ACM, 2016.

[39] J. K. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. M. Rumble, R. Stutsman, and
S. Yang. The RAMCloud Storage System. ACM
Transactions on Computer Systems, 33(3):7:1–7:55,
2015.

[40] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The
Log-Structured Merge-Tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

[41] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge.
Storage Management in the NVRAM Era. PVLDB,
7(2):121–132, 2013.

[42] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with Coroutines: A Practical Approach for
Robust Index Joins. PVLDB, 11(2):230–242, 2017.

[43] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[44] S. M. Rumble, A. Kejriwal, and J. K. Ousterhout.
Log-structured Memory for DRAM-based Storage. In

Proceedings of the 12th USENIX Conference on File
and Storage Technologies, pages 1–16. USENIX
Association, 2014.

[45] ScyllaDB Inc. ScyllaDB. https://www.scylladb.com/.
Accessed: September 01, 2019.

[46] ScyllaDB Inc. Seastar. http://seastar.io/. Accessed:
September 01, 2019.

[47] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts Essentials. John Wiley & Sons, Inc.,
2014.

[48] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki.
Micro-architectural Analysis of In-memory OLTP. In
Proceedings of the 2016 International Conference on
Management of Data, pages 387–402. ACM, 2016.

[49] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The End
of an Architectural Era (It’s Time for a Complete
Rewrite). VLDB, pages 1150–1160, 2007.

[50] TED Talk. The mind behind linux. https://www.ted.
com/talks/linus_torvalds_the_mind_behind_linux,
2016.

[51] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C.
Ooi. LogBase: A Scalable Log-structured Database
System in the Cloud. PVLDB, 5(10):1004–1015, 2012.

[52] T. Wang and R. Johnson. Scalable Logging through
Emerging Non-Volatile Memory. PVLDB,
7(10):865–876, 2014.

[53] C. Wu, J. M. Faleiro, Y. Lin, and J. M. Hellerstein.
Anna: A KVS For Any Scale. In Proceedings of the
34th International Conference on Data Engineering.
IEEE Computer Society, 2018.

[54] F. Xia, D. Jiang, J. Xiong, and N. Sun. HiKV: A
Hybrid Index Key-Value Store for DRAM-NVM
Memory Systems. In USENIX Annual Technical
Conference, pages 349–362. USENIX Association, 2017.

[55] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He. NV-Tree: Reducing Consistency Cost for
NVM-based Single Level Systems. In Proceedings of the
13th USENIX Conference on File and Storage
Technologies, pages 167–181. USENIX Association,
2015.

1104

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.tomshardware.com/news/intel-announces-optane-dc-persistent-memory,37145.html
https://www.tomshardware.com/news/intel-announces-optane-dc-persistent-memory,37145.html
https://www.tomshardware.com/news/intel-announces-optane-dc-persistent-memory,37145.html
https://www.scylladb.com/
http://seastar.io/
https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux
https://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

	Introduction
	Design Space
	Reactive Systems and Actor Model
	Message Passing
	Cooperative Multitasking
	Non-volatile Memory Support
	Log-structured Systems
	User-space Networking

	System Implementation
	NVM Allocation on RStore
	Log-Structured Storage and Indexing
	Garbage Collection
	Logging and Recovery

	System Operations
	Evaluation
	Methodology
	Environment
	Other Systems
	Throughput Scalability
	Tail Latency
	Scans
	Memory Consumption

	Related Work
	Conclusion
	References

