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ABSTRACT
Plato provides fast approximate analytics on time series, by
precomputing and storing compressed time series. Plato’s
key novelty is the delivery of tight deterministic error guar-
antees for the linear algebra operators over vectors/time
series, the inner product operator and arithmetic opera-
tors. Composing them allows for evaluating common statis-
tics, such as correlation and cross-correlation. In the of-
fline processing phase, Plato (i) segments each time series
into several disjoint segmentations using known fixed-length
or variable-length segmentation algorithms; (ii) compresses
each segment by a compression function that is coming from
a user-chosen compression function family; and (iii) asso-
ciates to each segment 1 to 3 precomputed error measures.
In the online query processing phase, Plato uses the error
measures to compute the error guarantees. Importantly, we
identify certain compression function families that lead to
theoretically and experimentally higher quality guarantees.
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1. INTRODUCTION
Attention to time series analytics is bound to increase in

the IoT era as cheap sensors can now deliver vast volumes
of many types of measurements. The size of the data is
also bound to increase. E.g., an IoT-ready oil drilling rig
produces about 8 TB of operational data in one day.1 One
way to solve this problem is to increase the expense in com-
puting and storage in order to catch up. However, in many
domains, the data size increase is expected to outpace the
increase of computing abilities, thus making this approach
unattractive [21, 9]. Another solution is approximate ana-
lytics over compressed time series.

1https://wasabi.com/storage-solutions/internet-of-things/
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Figure 1: Example of SQL query using the time se-
ries analytic (TSA) UDF.

Approximate analytics over historical time series data en-
ables fast computation. For example, consider the database
in Figure 1, which has a Temperature table and a Pressure ta-
ble. Each table contains (i) one timeseries column containing
time series data, as a UDT [17] and (ii) several other “dimen-
sion” attributes D, such as geographic locations and other
properties of the sensors that delivered the time series. The
Plato SQL query in Figure 1(c) “returns the top-10 temper-
ature/pressure 5-second cross-correlation scores among all
the (temperature, pressure) pairs satisfying a (not detailed
in the example) condition over the dimension attributes”.
Notice, the first argument of the Time Series Analytic UDF
(TSA) is the expression ccorr($1,$2,5), which does the 5-
second cross-correlation of the first argument (t.timeseries)
and the second argument (p.timeseries). Computing the ac-
curate cross-correlations would cost more than 10 minutes.
However, Plato reduces the runtime to within one second by
computing the approximate correlations. It also delivers de-
terministic error guarantees, which means the error bounds
have 100% confidence. In SQL, the result is a JSON string
encoding the approximate answer and the error guarantee.
The functions approximateAnswer and errorGuarantee extract
the respective pieces.

The success of approximate querying on IoT time series
data is based on an important beneficial property of the
time series data: the points in the sequence of values ex-
hibit continuity. For example, a temperature sensor is very
unlikely to report a 100 degrees increase within a second.
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Figure 2: Plato’s Approximate Querying: off-line
compression and on-line query processing

Therefore, in the signal processing and data mining com-
munities [30, 27, 18, 7], time series data is usually modeled
and compressed by continuous functions in order to reduce
its size. For instance, the Piecewise Aggregate Approxima-
tion (PAA) [30] and the Piecewise Linear Representation
(PLR) [27] adopt polynomial functions (0-degree in PAA
and 1-degree in PLR) to compress the time series; [45] uses
Gaussian functions; [55] applies natural logarithmic func-
tions and natural exponential functions to compress time
series. We will see that Plato’s error guarantee ability is
open to any existing time series compression techniques, as
long as they compute standard error measures.
Architecture. Figure 2 shows the high-level architecture.
During insertion time (which is offline processing, for the
purposes of query evaluation), the provided time series is
compressed. In particular, a compression function family
(e.g., 2nd-degree polynomials) is chosen by the user. In-
ternally, in a simple version, each time series is segmented
(partitioned) first in equal lengths. Then, for each segment
the system finds the best estimation function, which is the
member of the chosen compression function family that best
approximates the values in this segment. The compressed
database stores the parameters of the estimation function
for each segment, which take much less space than the orig-
inal time series data. In the more sophisticated version,
segmentation and estimation are mingled together [34, 28]
to achieve better compression. The result is that the time
series is partitioned into variable-length segments.

Consequently, given a query q with TSA UDF calls, Plato
computes quickly an approximate answer for each TSA call
by using the compressed data. Note, the TSAs may combine
multiple time series; e.g., a correlation or a cross-correlation.

Example 1. Consider a room temperature time series T1

and an air pressure time series T2 in Figure 1 and consider
the TSA(‘Ccorr(T1, T2, 60)’, T1, T2) where ‘Ccorr(T1, T2, 60)’
refers to the 60-seconds cross-correlation of T1 and T2. Both
T1 and T2 have 600 data points at 1-second resolution, are
segmented by variable length segmentation methods and com-
pressed by PLR (1-degree polynomial functions) [19] . The
precise answer is 0.303. But instead of accessing the 1200
(600 × 2) original data points, Plato produces the approx-
imate answer 0.300 (error is 0.003) by accessing just the
function parameters (−0.072, 69.38), (−0.002, 65.77) for T1

and (−0.046, 37.23), (−0.038, 38.04) for T2 in the compressed
database.

The well-known downside of approximate querying is that
errors are introduced. When the example’s user receives the
approximate answer 0.300 she cannot tell how far this an-
swer is from the true answer, i.e., the precise answer. The
major novelty of Plato is the provision of tight (i.e., lower
bound) deterministic error guarantees for the answers, even

when the time series expressions combine multiple series.
In the Example 1, Plato guarantees that the true answer is
within ±0.0032 of the approximate answer 0.300 with 100%
confidence. (Indeed, 0.303 is within ±0.0032 of 0.300.) It
produces these guarantees by utilizing error measures as-
sociated with each segment. The derivation of error guar-
antees is challenging as each time series is segmented and
compressed individually (off-line) before the queries arrive,
which results in (i) time series being segmented in misaligned
ways, and (ii) different compression functions being utilized
in different time series.

The contributions are summarized as follows.

• We deliver tight deterministic error guarantees for the
evaluation of the plus, minus, product and inner prod-
uct vector/timeseries operators over compressed time-
series. These operators, along with the arithmetic op-
erators and the (time)shift operator can be used to
compose more complex statistics (eg, cross-correlation);
we also show how to compute error guarantees for the
compositions. The key challenge is analytics (e.g., cor-
relation and cross-correlation) that combine multiple
time series but it is not known in advance which time
series may be combined. Thus, each time series has
been compressed individually with different compres-
sion methods, much before a query arrives. To make
the problem harder, time series segmentations are gen-
erally misaligned. The guarantees for each TSA oper-
ator are tight in the sense that any attempt to create
a better (i.e., smaller) error guarantee will fail because
we can construct worst-case input time series where the
true error is exactly as large as the error guarantee.

• The provided guarantees apply regardless of the specifics
of the segmentation and compression function family
used during the compression, thus making the provided
deterministic error guarantees applicable to any prior
work on segment-based compression (eg, variable-sized
histograms etc). The only requirements are (i) the com-
mon assumption that the estimation function minimizes
the Euclidean distance between the actual values and
the estimates and (ii) common reconstruction errors for
each segment are precomputed.

• We identify broad compression function family groups
(namely, the already known Vector Space family (VS)
and the presently defined Linear Scalable Family (LSF))
that lead to theoretically and practically high quality
guarantees and we provide intuition on the quality dif-
ference by pointing out an Amplitude Independence
(AI) property. Furthermore, the error guarantees are
computed very efficiently, in time proportional to the
number of segments.

• We conduct an extensive empirical evaluation on four
real-life datasets to evaluate the error guarantees pro-
vided by Plato and the importance of the VS and LSF
properties on error estimation. The results show that
the AI error guarantees are very narrow - thus, prac-
tical. Furthermore, we compare to sampling-based ap-
proximation and show experimentally that Plato de-
livers deterministic (100% confidence) error guarantees
using fewer data than it takes to produce probabilis-
tic error guarantees with 95% and 99% confidence via
sampling.
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2. TIME SERIES AND EXPRESSIONS
Time Series A time series T = (a, b, [T [a],T [a+1], ...,T [b]]),
a ∈ N , b ∈ N , is a sequence of data points [T [a],T [a +
1], ...,T [b]] observed from start time a to end time b. Fol-
lowing the assumptions in [43, 10, 56] we assume that time
is discrete and the resolution of any two time series is the
same. Equivalently, we say T is fully defined in the integer
time domain [a, b]. We assume a domain [1, n] is the global
domain meaning that all the time series are defined within
subsets of this domain. When the domain of a time series
T is implied by the context, then T can be simplified as
T = [T [a],T [a+ 1], ...,T [b]].

Example 2. Assume the global domain is [1, 100]. Con-
sider two time series T1 = (1, 5, [61.52, 59.54, 58.64, 59.36,
60.44]) and T2 = (3, 6, [1.02, 1.03, 1.02, 1.02]). Then T1 and
T2 are fully defined in domains [1,5] and [3,6] respectively.
T2[4] = 1.03 refers to the 2nd data point of T2 at the 4-th
position in the global domain.

Time Series Analytic (TSA) Expressions Table 2 shows
the formal definition of the time series analytic (called TSA)
expressions. The TSAs supported are expressions composed
of linear algebra operators and arithmetic operators. Typi-
cally, the TSA has subexpressions that compose one or more
linear algebra operators over multiple time series vectors.

A few examples and intuition behind the operators in Ta-
ble 2: Constant(1.6, 3, 5) produces (3, 5, [1.6, 1.6, 1.6]). Fig-
ure 3(a) visualizes the Shift operator. If, say, T = (1, 3, [1.8,
1.6, 1.6]), then Shift(T , 6) is (7, 9, [1.8, 1.6, 1.6]). Finally,
given time series T1 = (a1, b1, [. . .]) and T2 = (a2, b2, [. . .]),
notice that the T1×T2 is defined in the intersection of [a1, b1]
and [a2, b2]. For example, given T1 = (1, 3, [3.3, 3.5, 3.6]) and
T2 = (0, 2, [0.9, 1.0, 1.2]) then T1 × T2 = (1, 2, [3.3, 4.2]).
Similarly, we define T1 + T2 and T1 − T2.

When the bounds a and b of a Sum(T , a, b) are implied
from the context, we simplify Sum(T , a, b) to Sum(T ). Ta-
ble 1 lists several example TSAs for common statistics.
Scope and Limitations of TSA expressions. The time
series analytic expressions compose the vector operators (+,
−, ×, Shift), the arithmetic operators, the aggregation op-
erator Sum that turns its input vector into a scalar, and the
Constant operator that turns its input scalar into a vector.
As such, Plato queries can express statistics that involve one
time series (e.g., average, variance, and n-th moment) and
statistics that involve multiple time series, such as correla-
tion and cross-correlation; see Table 1.

Note, the generality of TSAs is not to imply that any
vector-based analysis can be expressed just with a TSA
expression. Rather, there are forms of analysis where the
TSA expressions can be building blocks of a larger compu-
tation. One major category of such analytics is cases (e.g.,
Kalman filters) where an algorithm loops and produces, in
each round, a vector Tk by evaluating a TSA expression
that uses the vector Tk−1 computed in the previous round.
While the present work trivially allows for the propagation
of errors from round-to-round, it is a topic of future work
whether the error bound tightness claim will carry over the
loop. Another important category of analytics that are not
expressible just with TSA is anomaly detection and, gener-
ally, analytics that would require extra operators on top of
the basic vector/timeseries and arithmetic of Plato.

Figure 3: Time series Shift and Restriction opera-
tors.

3. INTERNAL, COMPRESSED TIME SERIES
REPRESENTATION

When a user inserts a time series into the database, Plato
physically stores the compressed time series representation
instead of the raw time series. More precisely, the user pro-
vides (i) a time series T , (ii) a choice between fixed-length
segmentation algorithm [14, 20] and variable-length/window-
based segmentation algorithm [34, 28, 29, 5, 22, 39] , and
(iii) the identifier of a compression function family (e.g.,
Polynomial function family).

During offline processing, i.e., before the queries are known,
Plato uses the chosen segmentation algorithm and the cho-
sen compression function family to partition T into a list
of disjoint segments T 1, ..., Tn. For each segment T i =
(a, b, [T i[a], ..., T i[b]]), instead of storing original data points
[T i[a], ..., T i[b]], Plato stores a compressed segment represen-

tation T̃ i = (a, b, f̃∗T ,Φ(T )), where a is the start position, b

is the end position, f̃∗T is the function representation (at the
storage level) of the estimation function f∗T chosen from the
identified function family and Φ(T ) is a set of (one to three,
depending on the function family) error measures.

Overall, for a time series T , Plato physically stores (i) the

list LT=(T̃ 1, ..., T̃n), and (ii) one token (which can simply
be an integer) as the compression function family identifier.

Next, we introduce the segmentation methods employed
by Plato (Section 3.1), the selection of the estimation func-
tion (Section 3.2) and the computation of error measures
(Section 3.3).

3.1 Segmentation Algorithm
Time series segmentation algorithms partition a time se-

ries into several disjoint segments. Existing state-of-the-art
time series segmentation algorithms can be classified into
two categories: (i) Fix-length segmentation (FL) algorithms
partition a time series based on fixed time windows. Thus,
the segments produced by the FL have equal lengths. (ii)
Variable-length segmentation algorithms, which are classi-
fied into three groups: the Top-down methods [38, 47], the
Bottom-up ones [31, 32] and the Sliding-window ones [34,
28, 39, 22]. Among them, the Sliding-window (SW) has
been proven to be more efficient than the Top-down and the
Bottom-up methods [28, 29]. Thus, we choose the Sliding-
window (SW) as the variable length segmentation algorithm.
Figure 1 is produced by the SW method, which produces
variable-length segments.

Note, there is no one-size-fits-all function family that can
best model all kinds of time series data. For example, poly-
nomials and ARMA models are better at modeling data
from physical processes such as temperature [42, 12], while
Gaussian functions are better for modeling relatively ran-
domized data [33] such as stock prices. How to choose
the best function family has been widely studied in prior
work [48, 58, 15, 35] and will continue so. Nevertheless,
as long as the compression techniques produce the common
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Table 1: Example TSA’s for common statistics. Let T1 = (a1, b1, [· · · ]) and T2 = (a2, b2, [· · · ]) be the input time
series in the time series analytic.

Table 2: Grammar of time series analytic (TSA).

error metrics required by Plato, their compressions can be
utilized by Plato and tight deterministic error guarantees
will be provided.

3.2 Estimation Function Selection and Stor-
age

Choosing an estimation function for a time series segment
has two steps: (i) user identifies the function family, and (ii)
Plato selects the best function in the family, i.e., the function
that minimizes the Euclidean distance between the original
values and the estimated values produced by the function.
For example, if the user had chosen the 1st-degree polyno-
mials as the compression function family, Plato will choose
a polynomial as × i+ bs for each segment s. Consequently,

Plato will store the coefficients as and bs instead of storing
all the values of the segments.
Step 1: Function family selection. The user chooses a
function family F that is used for compressing a time series.
In the present work, Plato uses the same function family
for all the segments of a time series. Thus, the time series
physical representation stores a token τ that identifies the
function family.
Step 2: Estimation function selection. Any function
f in the chosen function family F is a candidate estimation
function. Following the prior work [37, 5], Plato selects the
candidate estimation function that minimizes the Euclidean
distance between the original values and the estimated val-
ues produced by the function to be the final estimation func-
tion. More precisely,

f∗T = arg min
f∈F

( b∑
i=a

(T [i]− f(i))2
)1/2

(1)

Example 3. Given a time series T = (1, 5, [0.2, 0.4, 0.4,
0.5, 0.6]), assume the function family identifier is “p1” (i.e.,
“first-degree polynomial function family”). The functions
f1 = 0.05× i+0.3 and f2 = 0.09× i+0.15 are two candidate
estimation functions. Finally, Plato selects f2 = 0.09 × i +
0.15 as the estimation function since it produces the minimal
Euclidean error, i.e., 0.0837.

Function Representation (Physical) vs. Function
(Logical). Once an estimation function f∗T is selected,

Plato stores the corresponding function representation f̃∗T ,
which includes (i) the coefficients of the function f∗T , and (ii)
the function family identifier τ . 2 For example, the function
representation of the estimation function in Example 3 is f̃∗T
= ((0.09, 0.15) , p1) where p1 is a function family identifier
indicating that the function family is “1-degree polynomial
function family”.

When we talk about the function itself logically, it can be
regarded as a vector that maps time series: given a domain
[a, b], the vector [f(a), f(a + 1), . . . , f(b)] maps a value to
each position in the domain [a, b]. For example, consider

2All the segments in the same time series share one token τ .
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Table 3: Error measures stored for a time series
segment T running from a to b and approximated
with the estimation function f∗T .

the estimation function f∗T = 0.09× i + 0.15 in Example 3.
Then T − f∗T = [0.2 − f∗T (1), 0.4 − f∗T (2), 0.4 − f∗T (3), 0.5 −
f∗T (4), 0.6− f∗T (5)] = [0.2− 0.24, 0.4− 0.33, 0.4− 0.42, 0.5−
0.51, 0.6− 0.6] = [0.04, 0.07,−0.02,−0.01, 0].

3.3 Error Measures
In addition to the estimation function, Plato stores extra

error measures Φ(T ) = {‖εT ‖2, ‖fT ‖2, γT } for each time se-
ries segment T (defined in domain [a, b]) where ‖εT ‖2, ‖fT ‖2,
and γT are defined in Table 3.

Example 4. Consider the time series T = (1, 5, [0.2, 0.4,
0.4, 0.5, 0.6]) in Example 3 again. f∗T = 0.09× i+0.15 is the

estimation function. Thus ‖εT ‖2 =
√∑5

i=1(T [i]− f∗T (i))2 =

0.0837, ‖fT ‖2 =
√∑5

i=1(f∗T (i))2 = 0.9813, and γT =

|
∑5
i=1 T [i]−

∑5
i=1 f

∗
T (i)| = 2.1− 2.1 = 0.

4. ONLINE ERROR GUARANTEE COMPU-
TATION

Error Guarantee Definition. Given a TSA q involving
time series T1, .., Tn, let R be the accurate answer of q by
executing q directly on the original data points of T1, .., Tn.
Let R̂ be the approximate answer of q by executing q on the
compressed time series representations. Then ε = |R̂ − R|
is the true error of q. Notice that ε is unknown since R is
unknown. An upper bound ε̂ (ε̂ ≥ ε) of the true error is
called a deterministic error guarantee of q. With the help of
ε̂, we know that the accurate answer R is within the range
[R̂ − ε̂, R̂ + ε̂] with 100% confidence. Plato provides tight
deterministic error guarantees for each operator defined in
Table 2 (Section 2).
Error Guarantee Decomposition. Recall that the TSA
expression q defined in Table 2 (Section 2) combines one
or more time series aggregation operations via arithmetic
operators, i.e., q = Agg1 ⊗ Agg2 ⊗ · · · ⊗ Aggn where ⊗ ∈
{+,−,×,÷,√ }. In order to provide the deterministic er-
ror guarantee ε̂ of the time series analytic q, the key step is
to calculate the deterministic error guarantee ε̂Aggi of each
aggregation operation Aggi. Once we have ε̂Aggi for each
aggregate expression, it is not hard to combine them to get
the final error guarantee. Let R̂Aggi be the approximate
answer of Aggi and ε̂Aggi be the corresponding error guar-
antee, Figure 4 summarizes the computation of the error
guarantee for each arithmetic operator.

Given a TSA Agg = Sum(T ) and the compressed time

series representation LT = (T̃ 1, ..., T̃ k), when calculating

Operator error guarantee
Agg1 +Agg2 ε̂Agg1 + ε̂Agg2
Agg1 −Agg2 ε̂Agg1 + ε̂Agg2
Agg1 ×Agg2 ε̂Agg1R̂Agg2 + ε̂Agg2R̂Agg1 + ε̂Agg1 ε̂Agg2

Agg1 ÷Agg2
ε̂Agg1R̂Agg2 + ε̂Agg2R̂Agg1

(R̂Agg2 − ε̂Agg2)R̂Agg2√
Agg1

√
R̂Agg1 + ε̂Agg1 −

√
R̂Agg1

Figure 4: Error guarantee computation for arith-
metic operators.

Figure 5: Example of error measures propagation.
Error measures in black color are precomputed of-
fline during insertion time, while error measures in
blue color are computed during the TSA processing
time. The final error guarantees are in red color.

Figure 6: Example of aligned segments.

ε̂Agg, there are two cases depending on whether T is an
input time series or not.

• Case 1. T is an input time series, then ε̂Agg =
∑k
i=1 γT i

where γT i is the reconstruction error in the error mea-
sures of T i. 3

• Case 2. T is a derived time series by applying (recur-
sively) the time series operators, i.e., Constant(υ, a, b),
Shift(T , k), T1 +T2, T1−T2 and T1×T2. In this case,
the aggregation expression Agg = Sum(T ) can be de-
noted as an expression tree. Figure 5 shows an exam-
ple tree of the aggregation operator in the correlation
TSA. In order to compute ε̂Agg, we first add the (pre-
computed) error measures Φ(T ) = (‖εT ‖2, ‖fT ‖2, γT )
for the input time series in the tree and then propagate
the error measures from the bottom time series to the
root, using the tight error bound formulas explained in
this section. Then we return the γT in the Φ(T ) as the
final error guarantee.

For the general scenario where multiple segments are in-
volved in each input time series4 in the expression, there are
two cases depending on whether the segments are aligned
or not: If the i-th segment in T1 has the same domain as
the i-th segment in T2 for all i, then T1 and T2 are aligned,
otherwise, they are misaligned.
3Here we assume the aggregation operator aggregates the
whole time series.
4Input time series means base time series.
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4.1 Warmup: Error Guarantees for T1 + T2,
T1 − T2, Shift and Constant

We first present the (easy to derive) error guarantees for
Constant(υ, a, b), Shift(T , k), T1 + T2 and T1 − T2.

For the time series T=Constant(υ, a, b), the estimation
function is f∗T = υ 5. Then the error measures stored by
Plato are (‖εT ‖2 = 0, ‖fT ‖2 = υ

√
b− a+ 1, γT = 0). Note,

the error guarantee for ε̂Sum(Constant(υ,a,b)) is 0, since γT = 0.
For the time series T=Shift(T, k), we simply propagate

the error measures (‖εT ‖2, ‖fT ‖2, γT ) of the input T .

Given time series T1 = (T 1
1 , ..., T

k1
1 ) and T2 = (T 1

2 , ..., T
k2
2 ),

let (‖εT i
1
‖2, ‖fT i

1
‖2, γT i

1
) and (‖ε

T
j
2
‖2, ‖fT j

2
‖2, γT j

2
) be the

computed error measures for the segments T i1 and T j2 re-
spectively. The error measures for T1 + T2 (and identical

for T1 − T2) are (
∑k1
i ‖εT i

1
‖2 +

∑k2
i ‖εT i

2
‖2,
∑k1
i ‖fT i

1
‖2 +∑k2

i ‖fT i
2
‖2,
∑k1
i γT i

1
+
∑k2
i γT i

2
). Therefore, the error guar-

antee ε̂Sum(T1+T2) =ε̂Sum(T1−T2) =
∑k1
i γT i

1
+
∑k2
i γT i

2
re-

gardless of whether T1 and T2 are aligned or misaligned.

4.2 Error Guarantee of ε̂Sum(T1×T2)

Next, we show how to compute the challenging error guar-
antee ε̂Sum(T1×T2) in both aligned and misaligned cases in
Section 4.3 and Section 4.4 respectively.

In the following derivation and proof of the error guaran-
tees, we use the following definitions and intuitions.

First, the time series T = (a, b, [T [a], ...,T [b]]), the esti-
mation function f∗T of T which provides the vector of es-
timated values [f∗T [a], . . . , f∗T [b]], and the vector of errors
εT = T − f∗T = (a, b, [T [a] − f∗T (a), ...,T [b] − f∗T (b)]) pro-
duced by the estimation function are all considered vectors
of b − a + 1 dimensions. Note that the estimation function
is treated, for the purpose of proving the error guarantees
formulas, as the vector of predicted values and not as the
vector of coefficients. For example, a 1-st degree polynomial
function that estimates values in the range 10 − 20 should
be thought of as an 11-dimension vector and not as a 2-
dimension vector. Nevertheless, this 11-dimension vector is
only conceptually used in the derivation and proof of the er-
ror guarantees formulas. It is never produced in the actual
computations.

Second, given two vectors f1 and f2, we denote by 〈f1, f2〉 =∑b
i=a f1(i)f2(i) the inner product of f1 and f2.
Third, the restriction operator allows us to think of logical

segments, regardless of whether there are respective phys-
ical segments. This will become useful in the derivation
of formulas for misaligned segments. Formally, let V |[a,b]
be the restriction operation, which restricts a vector V to
the domain [a, b]. Recall a time series segment is a subse-
quence of a time series, for which we actually store data.
Thus, a segment is also logically the restriction of a time
series T from a bigger domain [a, b] into a smaller domain
[a′, b′] ⊆ [a, b], denoted as T |[a′,b′]. Figure 3(b) visualizes
the restriction operator. For example, consider a time series
T = (1, 4, [1.2, 1.3, 1.3, 1.2]), then T |[2,3] = (2, 3, [1.3, 1.3]) is
a restriction of T . It is T |[a′,b′][i] = T [i] for all i ∈ [a′, b′].

4.3 Error Guarantee on Aligned Segments
Given two aligned time series T1 = (T 1

1 , ..., T
k
1 ) and T2 =

(T 1
2 , ..., T

k
2 ) where T i1 = T1|[ai,bi] and T i2 = T2|[ai,bi], let

5Under the reasonable assumption that any practical family
will also include the constant function.

(‖εT i
1
‖2, ‖fT i

1
‖2, γT i

1
) and (‖εT i

2
‖2, ‖fT i

2
‖2, γT i

2
) be the com-

puted error measures for segment T i1 and T i2 respectively,
then the error guarantee of Sum(T1 × T2) for any estima-
tion function family, is:

ε =
∣∣∣ b∑
i=a

T1[i]T2[i]−
b∑
i=a

f∗T1
(i)f∗T2

(i)
∣∣∣

=
∣∣∣ k∑
i=1

( bi∑
j=ai

T1[i]T2[i]−
bi∑
j=ai

f∗T1
(i)f∗T2

(i)
)∣∣∣

=
∣∣∣ k∑
i=1

(
〈εT i

1
, f∗T i

2
〉+ 〈εT i

2
, f∗T i

1
〉+ 〈εT i

1
, εT i

2
〉
)∣∣∣

≤
k∑
i=1

(
‖εT i

1
‖2‖εT i

2
‖2 + ‖εT i

1
‖2‖fT i

2
‖2 + ‖fT i

1
‖2‖εT i

2
‖2
)
(2)

The last inequality is obtained by Applying the Hölder in-
equality [11].

Example 5. Consider the two aligned time series in Fig-
ure 6. Both T1 and T2 are partitioned into two segments
in this case, i.e., (T 1

1 , T
2
1 ) and (T 1

2 , T
2
2 ). Plato stores the

error measures Φ(T ji ) for each segment T ji . For instance,
Φ(T 1

1 ) = (‖εT1
1
‖2, ‖fT1

1
‖2, γT1

1
) = (0.023, 0.95, 0). Then the

error guarantee of Sum(T1 × T2) on T1 and T2 is com-
puted as (‖εT1

1
‖2‖εT1

2
‖2 + ‖εT1

1
‖2‖fT1

2
‖2 + ‖fT1

1
‖2‖εT1

2
‖2) +

(‖εT2
1
‖2‖εT2

2
‖2 + ‖εT2

1
‖2‖fT2

2
‖2 + ‖fT2

1
‖2‖εT2

2
‖2) = (0.023×

0.009 + 0.023 × 0.074 + 0.095 × 0.009) + (0.035 × 0.042 +
0.035× 0.068 + 0.163× 0.042) = 0.01346.

4.3.1 Orthogonal projection optimization
If the estimation function family forms a vector space

(VS), 6 then we can apply the orthogonal projection prop-
erty in VS to significantly reduce the error guarantee of
sum(T1 × T2) from Formula 2 to Formula 3.

ε =
∣∣∣ k∑
i=1

(
〈εT i

1
, f∗T i

2
〉︸ ︷︷ ︸

=0 in V S

+ 〈εT i
2
, f∗T i

1
〉︸ ︷︷ ︸

=0 in V S

+〈εT i
1
, εT i

2
〉
)∣∣∣

≤
k∑
i=1

(
‖εT i

1
‖2‖εT i

2
‖2
)

(3)

Example 6. Consider the two aligned time series in Fig-
ure 6 again. The estimation function family is polynomial
function family, which is in VS. Based on Formula 3, the
error guarantee for Sum(T1 × T2) is ‖εT1

1
‖2 × ‖εT1

2
‖2 +

‖εT2
1
‖2×‖εT2

2
‖2= 0.023× 0.009 + 0.035× 0.042 = 0.001677.

This error guarantee is about 8× smaller than that in Ex-
ample 5 (i.e., 0.01346), where we did not take into account
that the function family is VS.

Example 6 indicates the power of the orthogonal projec-
tion optimization. Lemma 1 is the key step to proving For-
mula 3.

6A vector space is a set that is closed under finite vec-
tor addition and scalar multiplication. http://mathworld.
wolfram.com/VectorSpace.html.
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Figure 7: (a) shows the estimation function for three
data points. (b) visualizes the orthogonal projection
of the three data points onto the 2-dimensional plane
F.

Lemma 1. (Orthogonal Projection Property) Let F be a
function family that forms a vector space VS and f∗T ∈ F
be the estimation function of time series T . Then f∗T is the
orthogonal projection of T onto F [44].

Lemma 1 implies that εT is orthogonal to any function
fT ∈ F, which means 〈εT ,fT 〉 = 0. Therefore, given any
two aligned segments T i1 and T i2 , as both f∗

T i
1

and f∗
T i
2

are

in VS, it follows that 〈εT i
1
, f∗
T i
2
〉 = 0 and 〈εT i

2
, f∗
T i
1
〉 = 0.

Thus we managed to remove two of the three terms of the
first line in Equation 2. The benefit we got was much more
than 3 times - it was about 8 times. The reason is that the
remaining formula in Equation 3 is Amplitude-Independent
(AI). An error guarantee is called amplitude-independent
(AI) if it does not directly use ‖fT ‖2 or, more generally,
does not use a quantity that grows with the size of the fT
as opposed to growing with the size of the error. Since the
value of ‖fT ‖2 reflects the absolute values of the data points
in T , it is normal to be much larger than the ‖εT ‖2. Thus,
non-AI error guarantees usually are much more loose than
AI error guarantees. In summary, the importance of VS is
that it allows the orthogonal projection optimization.

Given the importance of the orthogonal property, we vi-
sualize the intuition behind it. Consider a time series with
three data points T = (1, 3, [3.0, 4.8, 5.4]) and let F be the 1-
degree polynomial function family (i.e., 2-dimensional). The
estimation function that minimizes the error to the orig-
inal data is f∗T = 1.2 × i + 2 (Figure 7(a)). As shown
in Figure 7(b), f∗T is the orthogonal projection of T onto
F. The error vector is εT = (−0.2, 0.4,−0.2). Based on
Lemma 1, for any candidate estimation function f = α×i+β
(α, β ∈ R), we have 〈εT ,f〉 = 0.8α−0.8α+0.4β−0.4β = 0.
Elimination of γT . We can get an extra benefit from the
orthogonal projection property: saving space. The error
measure γT can be avoided as it is guaranteed to be 0. This
is because γT = 〈T − f∗T , 1〉 and 1 is a constant function in
the function family in VS. According to Lemma 1, we know
〈T − f∗T , 1〉 = 0. Therefore, we have γT = 0.

4.4 Error Guarantee on Misaligned Segments
The time series involved in TSA expressions are usually

misaligned due to the following two reasons: First, variable
length segmentation leads to better compression but vari-
able length segments of different time series are generally
misaligned. Thus operations, like corrrelation and cross-
correlation that use multiple input time series will need to
produce good error guarantees despite the misalignment.
Second, the cross-correlation and the auto-correlation re-
quire time shifting the time series. Even when the origi-

nal time series segmentations are aligned, they will be mis-
aligned after time shifting. Given the big application of
cross-correlation in mining cases where a first process is
causing (with a time shift) a second process, it is paramount
that the Plato techniques also provide guarantees for mis-
aligned segments.

Let ΠT,[a,b] be the set of segments in T covering the do-
main [a, b]. For example, consider the two misaligned time
series T1 and T2 and the segments T 1

2 and T 2
2 in T2 cover the

domain [a1
1, b

1
1], then ΠT2,[a

1
1,b

1
1] = {T 1

2 , T
2
2 } . If any kinds of

compression function families are allowed, i.e., the functions
belong in ANY, the error guarantee ε̂ of Sum(T1 × T2) on
misaligned time series is shown in Formula 4. Formula 4
is a stepping stone towards producing the final formula as
the computation of |〈εT1 , εT2〉| (Formula 4 2©) has not been
given yet. It will be discussed in Section 4.4.1. Section 4.4.2
discusses how to apply the orthogonal property optimization
to improve Formula 4 1©.

4.4.1 Segment combination selection
To compute |〈εT1 , εT2〉|, a straightforward method (called

IS) is to use the domains of segments in T1 and T2 indepen-
dently, then choose the one with minimal value. Let’s first
see how to compute |〈εT1 , εT2〉| with the domains of seg-
ments in T1.

|〈εT1 , εT2〉| ≤
k1∑
i=1

∣∣〈εT1|[ai
1,bi1]

, εT2|[ai
1,bi1]
〉
∣∣

=

k1∑
i=1

∣∣〈εT i
1
, εT2|[ai

1,bi1]
〉
∣∣

≤
k1∑
i=1

(
‖εT i

1
‖2(

∑
j∈Π

T2,[ai
1,bi1]

‖ε
T

j
2
‖22)

1
2
)

In the last step of the above Formula, T2|[ai1,bi1] is not a

segment that Plato precomputed in T2. Thus, we need to
use all the segments in T2 covering [ai1, b

i
1], i.e., ΠT2,[a

i
1,b

i
1].

Similarly, we can compute |〈εT1 , εT2〉| according to the do-
mains of segments in T2. Finally, IS chooses the minimal
one between them. However, IS does not produce tight
guarantees. The reason is that among all possible segmen-
tations, it arbitrarily chooses to use the segmentation of T1

as the driver - as it becomes apparent from the outer sum-
mation over k1. Thus Plato does not use it. Next, we show
the tight computation called OS, which is used by Plato.
Optimal strategy (OS) OS (Algorithm 1) first computes
an error distribution array ET1 (resp. ET2) for T1 (resp. T2)
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Algorithm 1: Optimal segment combination (OS)

Input: Compressed segment representations LT1
, LT2

Output: A segment combination OPT
1 ε1 = 0, ε2 = 0, ii = 0, i2 = 0, start = 0, OPT = ∅,

current = ∅;
2 Compute ET1

and ET2
;

3 while i1 < k1 or i2 < k2 do

4 if bi11 ≤ bi22 then
5 ε1+ = ET1

[i1 ++];

6 else
7 ε2+ = ET2 [i2 ++] ;

8 if ε1 ≤ ε2 AND bi11 ≥ bi22 then

9 current = [start, bi11 ];
10 OPT ← OPT ∪ {current};
11 start = bi11 + 1;
12 ε2 ← ε1;

13 if ε2 ≤ ε1 AND bi22 ≥ bi11 then

14 current = [start, bi22 ];
15 OPT ← OPT ∪ {current};
16 start = bi22 + 1;
17 ε1 ← ε2;

18 Return OPT ;

(line 2) according to the domains of the segments as follows:

ET1 =
{
‖εT i

1
‖2 ×

( ∑
j∈Π

T2,[ai
1,bi1]

‖εT i
2
‖22
) 1

2
∣∣∣1 ≤ i ≤ k1

}

ET2 =
{
‖εT i

2
‖2 ×

( ∑
j∈Π

T1,[ai
2,bi2]

‖εT i
1
‖22
) 1

2
∣∣∣1 ≤ i ≤ k2

}
Then OS increases ε1 (resp. ε2) by adding the values from

ET1 (resp. ET2) (lines 4-7) and checks whether the current
domain achieves the minimal errors (lines 8-17). If yes, OS
adds the current domain (either [start, bi11 ] or [start, bi22 ]) to
the final segment combination list. After that, OS starts
from a new domain and repeats the previous steps until all
the segments are processed. The time complexity of OS is
O(k1 + k2).

Let OPT (LT1 , LT2) be the segment combination returned
by OS. Then |〈εT1 , εT2〉| is computed as follows:

OS provides the optimal segment combination that pro-
duces the minimum |〈εT1 , εT2〉|.

4.4.2 Orthogonal projection optimization
In this part, we present how to apply orthogonal prop-

erty optimization to improve Formula 4 1©. Recall that in
the aligned case (if the function family is in VS) we can
apply the orthogonal property optimization to guarantee
〈εT i

1
, f∗T2
|[ai1,bi1]〉 = 0. This is because f∗T2

|[ai1,bi1] = f∗
T i
2
,

which is a function in the family. However, in the mis-
aligned case 〈εT i

1
, f∗T2
|[ai1,bi1]〉 cannot be guaranteed to be 0

since f∗T2
|[ai1,bi1] may not be a function in the family. In-

deed, the restriction of the estimation function f∗T2
to this

sub-domain f∗T2
|[a11,b11] may not be a function in the family

anymore.

Figure 8: Function family groups and examples.

To guarantee the restriction of the function from a bigger
domain to a smaller domain is still in the same function fam-
ily, we identify a function family group called linear scalable
function family (LSF), which is subset of VS but superset of
the polynomial function family.

Linear Scalable Function Family (LSF). Informally, a
linear scalable family is a function family such that for any
function f in that family and any shift a − a′, there is a
function f ′ in that family such that f ′(x+a−a′) = f(x) for
all x in the domain. Definition 1 gives the formal definition.

Definition 1 (Linear scalable family (LSF)). Let
F be a function family defined in domain [a, b]. F is a lin-
ear scalable family if for any function f ∈ F and any range
[a′, b′] ⊆ [a, b], there exists a function f ′ ∈ F such that
Shift(f |[a′,b′], a− a′) = f ′|[a,a+b′−a′].

Lemma 2. The polynomial family belongs to the linear
scalable family.

Proof. Let F = {
∑
i αit

i |αi ∈ R} be a polynomial func-
tion family defined on [a, b]. The restriction of f ∈ F on
[a′, b′] ⊆ [a, b] is f |[a′,b′] = (a′, b′, [

∑
i αi(a

′)i, ...,
∑
i αi(b

′)i]).
The shift of f |[a′,b′] to a − a′ steps is Shift(f |[a′,b′], a − a′)
= (a, a+ b′− a′, [

∑
i αi(a

′)i, ...,
∑
i αi(b

′)i]). [
∑
i αi(a

′)i, ...,∑
i αi(b

′)i] can be transformed into [
∑
i βi(a)i, ...,

∑
i βi(a+

b′ − a′)i] such that βi = αi(a
′+k)i

(a+k)k
for all i ∈ [a, a+ b′ − a′].

Let f ′ =
∑
i βit

i be a function in F. Thus f ′|[a,a+b′−a′] =

[
∑
i βi(a)i, ...,

∑
i βi(a+b′−a′)i] = Shift(f |[a′,b′], a−a′).

In this paper, we study and distinguish three different
function family groups, i.e., ANY, VS, and LSF. Figure 8
shows the relation of the three function family groups and
also provides example function families for each group.

In the following, we present how to use the orthogonal pro-
jection optimization in the misaligned case to improve For-
mula 4 1©. Let fT1 (resp. fT2) be the function created from
the concatenation of the individual estimation functions on
the segments T i1 (i ∈ [1, k1]) (resp. T j2 (j ∈ [1, k2])). That
is fT1 |[ai

1,b
i
1]

= f∗
T i
1

for all i ∈ [1, k1] and fT2 |[ai
2,b

i
2]

= f∗
T i
2

for all i ∈ [1, k2]. Then the Equation 4 1© in the misaligned
environment can be reduced as follows. We highlight the
parts that would disappear if the segments were aligned.

k1∑
i=1

(
‖εT i

1
‖2 ×

=0 if aligned︷ ︸︸ ︷
‖fT2 |[ai

1,b
i
1]
− f∗

T i
1
‖2
)

+

k2∑
i=1

(
‖εT i

2
‖2 ×

=0 if aligned︷ ︸︸ ︷
‖fT1 |[ai

2,b
i
2]
− f∗

T i
2
‖2
)

(5)

The proof of the tightness is in Appendix G [6].
Elimination of ‖fT ‖2. If T is compressed by a function in
LSF 7, then ‖fT ‖2 can be safely eliminated. This is because
7And we know that it many only be combined with other
segments compressed by a function in LSF.
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Table 4: Error guarantees for the time series analytic (TSA) Sum(T1 � T2) where � ∈ {×,+,−} on both aligned
and misaligned time series compressed by estimation functions in different families. We assume T1 and T2

have k1 and k2 segments respectively. In the aligned case, we have k1 = k2 = k. OPT (LT1 , LT2) is the optimal
segment combination returned by the algorithm OS in Section 4.4.1

Table 5: Data Characteristics

avg # of data points # of
resolution

in each time series time series
HF 126, 059, 817 15 millisecond
HI 2, 676, 311 14 second
HB 1, 669, 835 16 minute
HA 1, 587, 258 11 minute

Table 6: Number of coefficients and error measures

# of coefficients # of error measures
Polynomial 2 1
Gaussian 4 3

Table 7: Compression time (in milliseconds).

104 points 105 points 106 points 107 points
FL 0.78 7.09 61.74 586.33
SW 1.47 11.02 105.95 1009.25

the error guarantees provided by LSF can get rid of ‖fT ‖2
while those given by ANY or VS rely on ‖fT ‖2. Notice that,
getting rid of ‖fT ‖2 makes the produced error guarantees
to be Amplitude-independent (AI). Thus we highly suggest
users to choose function families in LSF when compressing
time series.

Table 4 summarizes the error guarantees for TSAs on both
aligned and misaligned time series.

5. EXPERIMENTS

5.1 Environment and Setting
All experiments were conducted on a computer with a

4th Intel i7-4770 processor (3.6 GHz), 16 GB RAM, running

Ubuntu 14.04.1. The algorithms were implemented in C++
and were compiled with g++ 4.8.4.
Dataset. We evaluated all the error guarantee methods on
four real-life datasets: Historical Forex Data (HF), Histori-
cal IoT Data (HI), Historical Bitcoin Exchanges Data (HB),
and Historical Air Quality Data (HA). Table 5 summarizes
the data characteristics 8. The detailed description of each
dataset is presented in Appendix I in the full version [6].

Segmentation algorithms. We adopt the fixed-length
segmentation (FL) and the sliding window algorithm (SW).
The segments produced by the FL have equal lengths, and
will be utilized in our aligned experiments, while the seg-
ments created by the SW have variable lengths and are used
in our misaligned experiments.

Estimation function families. Following the prior work
lessons [27, 45], we choose the 1-degree polynomial function
family ({ax+ b|a, b ∈ R}) and the Gaussian function family

({a exp
(
−(x−b)2

2c2

)
+ d|a, b, c, d ∈ R}) as representatives to

compress the time series. Notice that the Gaussian func-
tion family is in ANY, while the polynomial function family
is in LSF (also in VS). Table 6 summarizes the number of
coefficients and error measures stored for each segment com-
pressed by the corresponding estimation functions.

Queries We evaluate the correlation TSA over all the time
series pairs in each dataset. The corresponding SQL queries
are shown in Appendix I [6]. All the error guarantees and
true errors reported in the following are the average values
(including the standard variances) across all correlations in
a dataset.

8The number of error measures for Polynomial functions
is 1 since both ‖fT ‖2 andγT can be elimated. ‖fT ‖2 can
be elimated as Polynomial funcitons are in LSF. γT can be
removed as it is 0.
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Figure 9: True errors and error guarantees in
aligned (FL) and misaligned cases (SW). The True-
Error(SW) are 0.0132 and 0.00508 in (a) and (b).

5.2 Experimental Results
We evaluate the error guarantees for TSAs over aligned,

fixed-length time series segmentations and also misaligned,
variable-length time series segmentations. In order to pro-
vide a fair comparison, we fix the space cost for both cases,
i.e., they have the same compression ratios.
Performance of compression algorithms Table 7 re-
ports the compression time for two different compression
algorithms, i.e., FL and SW 9. To make sure the segment
lists produced by SW and FL have the same compression
ratios, we created segment lists as follows: (i) We first run
SW for each time series. Let M be the number of segments
created by SW; (ii) Then we run FL by setting the segment
sizes to be N/M where N is the number of data points in
the original time series. In this way, the compression ratios
in both cases are the same. The compression ratio is cM

N
where c is the total number of the coefficients and the error
measures. As shown both FL and SW are efficient, which
indicates that compressing time series can be done online.
The result is consistent with [28]. FL is slightly faster than
SW, but as we show later (in Figure 9), the error guarantees
produced by SW is 10× ∼ 20× smaller than those produced
by FL.
Error Guarantees Quality Figure 9 reports the absolute
true errors and the error guarantees of the correlation TSAs
in the aligned/fixed-length (FL) and misaligned/variable-
length (SW) cases using the polynomial function family.
Since the TSAs are correlations, the approximate results
may range between 1 (perfect correlation) and -1 (perfect
reverse correlation), with 0 meaning no correlation at all.

Under the same compression ratio 10 the variable-length
error guarantees are much smaller than the fixed-length er-
ror guarantees. In Figure 9, the misaligned Error-Guarantee
(SW) is 10× ∼ 20× smaller than the aligned Error-Guarantee
(FL) on the average (fixing the compression ratio to 1000).
This is mainly because variable-length allows for much bet-
ter estimation. Indeed, notice the misaligned true errors are

9SW uses the incremental update optimization.
10Compression ratio is the size of the original data over the
size of the compressed data.

Figure 10: Runtime of TSAs in aligned and mis-
aligned cases as a function of compression ratio.

also much smaller than the aligned true errors. For exam-
ple, In Figure 9, True-Error(SW) is 6× ∼ 11× smaller than
True-Error(FL) on the average.

Importantly, the error guarantees are close to the true
errors, especially for the misaligned error guarantees, which
matter most practically. In particular, Error-Guarantee(SW)
is only 1.08× ∼ 1.11× larger than the True-Error(SW) in
HF and HI respectively (on the average). Furthermore, they
are very small in absolute terms. This indicates the high
quality and practicality of AI (Amplitude-independent) er-
ror guarantees.
Run time performance Figure 10 reports the total run-
ning time of the correlation TSAs over (i) the original time
series (Original), (ii) the time series segmented into a fixed
length, aligned segments (Plato-FL) and (iii) time series seg-
mented into misaligned, variable-length segments by SW
(Plato-SW). The estimation function family is the poly-
nomial family. The x-axis is the compression ratio (from
10000 to 100). Both Plato-FL and Plato-SW outperform
vastly the Original in all the datasets. For example, when
the compression ratio is 1000, Plato-FL and Plato-SW are
about three orders of magnitude faster than Original. Plato-
SW is about 1.8× slower than Plato-FL due to the intri-
cacy of the segment combination selection algorithm. How-
ever, a mere 80% penalty is a minor price to pay for the
orders-of-magnitude superior error guarantees delivered by
misaligned/variable-length segmentations.
Comparison with sampling In this part, we compare (i)
the space cost and (ii) the runtime performance of Plato
with the sampling methods when providing similar error
guarantees. We use a uniform random sampling scheme
with a global seed in order to create a sample database.
We also assume knowledge of minimums and maximums.
That is, let X1, ..., Xn be the random variables such that
dmin ≤ Xi ≤ dmax for all i where Xi = dT1

i × d
T2
i , dmin =

min{dT1
i } ×min{dT2

i }, and dmax = max{dT1
i } ×max{dT2

i }.
Let R =

∑n
i=1 Xi and ε be the error guarantee. Using the

Chernoff bounds [24], we can obtain the minimal sample size
needed in order to achieve the desired error guarantee with
certain confidence.
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Figure 11: Space cost of sampling and Plato when
providing the same error guarantees.

Figure 12: Runtime of sampling and Plato when
providing the same error guarantees.

Table 8: True errors and error guarantees for various
TSAs.

TSA TrueError Plato |Plato−TrueError|
TrueError

Average 0.00 0.00 0.00%
Standard Deviation 0.00842 0.00842 0.00%

Cross-correlation 0.01409 0.01417 0.56%
Auto-correlation 0.00643 0.00645 0.31%

Figure 11 reports the sizes (as percentage to the original
data size) of sampled data points in order to provide similar
error guarantees with the Plato-FL (the error guarantee of
TSAs over aligned, fixed-length time series produced by FL)
and Plato-SW (the error guarantee of TSAs over misaligned
time series produced by SW) with 1000 compression ratio in
HF respectively. Figure 12 shows the corresponding runtime
cost. To achieve similar error guarantees, sampling needs
more space and more time than Plato. We define “similar”
to mean 90%, or 95% or 99% confidence - in contrast to
Plato’s deterministic, 100% confidence guarantees.
Evaluation of different TSAs. Table 8 reports the true
errors (TrueError) and the error guarantees provided by
Plato (Plato) and also the ratios (in the third column) for
different TSAs including the average, the standard devia-
tion, the cross-correlation and the auto-correlation in HF
dataset. As shown, for TSAs on single time series, i.e., “Av-
erage” and “Standard Deviation”, Plato produces the same
error guarantees to the true errors (i.e., the ratios are 0.00%)
as Plato can directly use the stored error measures γT and
‖εT ‖2 respectively. Even for TSAs over multiple time series,
i.e., “Cross-correlation” and “ Auto-correlation” here, Plato
produces very close error guarantees to the true errors, say-
ing the ratios are all with 1%, which verifies the high-quality
of the error guarantees provided by Plato.

5.2.1 Effects of Individual Factors
In this part, we study the effects of (i) compression ratios,

Figure 13: Effect of compression ratios.

Figure 14: Effect of estimation function families.

(ii) estimation function families, (iii) orthogonal optimiza-
tions, and (iv) segment combination selection strategies.
Compression ratios In order to isolate the effect of the
compression ratios, 11 we fix the estimation function family
to be polynomials and fix the segment list building algorithm
to be SW. In Figure 13, we change the compression ratios
from 10, 000 to 100 by controlling the error threshold values
and report the corresponding true errors (True-Error(SW))
and the error guarantees (Error-Guarantee(SW)).

Naturally, higher compression ratios lead to smaller true
errors and error guarantees. For example, in Figure 13(a),
the true error and error guarantee with 100 compression
ratio are 13.32× and 15.58× smaller than those with 10, 000
compression ratio on the average. Importantly, the error
guarantees provided by Plato are close to the true error in
all the datasets and are generally small in absolute terms
(with the relative exception of 10, 000 compression on HF).
Again, this indicates the high quality of the error guarantees
provided by Plato.

Estimation function families In order to isolate the effect
of the estimation function families, we fix the segmentation
algorithm to be SW and fix the compression ratio to 1000.
Figure 14 presents the true errors and the error guarantees
for TSAs over time series compressed by polynomial func-
tions (True-Error(Poly), Error-Guarantee(Poly)) and Gaus-
sian functions (True-Error(Gau), Error-Guarantee(Gau)) re-
spectively. The error guarantees with estimation functions

11Compression ratio is the size of the original data over the
size of the compressed data.
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from LSF (polynomials) are significantly smaller than those
with estimation functions in ANY (Gaussians). In Fig-
ure 14(a), Error-Guarantee(Poly) (in LSF and VS) is about
10× smaller than Error-Guarantee(Gau) (in ANY) on the
average and in Figure 14(b), Error-Guarantee(Poly) (in LSF
and VS) is about 160× smaller than Error-Guarantee(Gau)
(in ANY) on the average. Notice that the error guaran-
tees provided by Plato-Poly is AI, while those of Plato-Gau
are not. So the results show that AI error guarantees are
practical while non-AI error guarantees are not. Interest-
ingly, True-Error(Gau) is smaller than True-Error(Poly) in
the HF dataset, which indicates that Gaussian functions
model HF data better than the polynomial functions - not
surprising given the more random movements of financial
data. The guarantees produced by the polynomials are far
better thanks to AI.

Effect of Orthogonal Optimization and LSF To mea-
sure the effect on error guarantees of the orthogonal op-
timization (and its extension to misaligned segmentations,
enabled by LSF) we fix the estimation function family to the
polynomials, which are LSF and, trivially, are also in ANY.
We use both the general error guarantees of ANY (Error-
Guarantee(ANY)) and the specialized error guarantees of
LSF (Error-Guarantee(LSF)) for TSAs over misaligned seg-
ments compressed by polynomial functions (using variable-
length segmentations with the SW algorithm). We fix the
compression ratio to 1000. As shown in Figure 15, the error
guarantee for LSF certifies that the true result is just within
±0.0137 in HF and within ±0.0052 in HI.

Segment combination selection strategies To isolate
the quality effect of employing the optimal segment combi-
nation selection strategy (OS) we compare it with IS strat-
egy (the straightforwad method mentioned in Section 4.4.1)
on a case of variable-length compression with an LSF func-
tion family (polynomials). Figure 16 shows that Plato-OS
is about 5× smaller than Plato-MS on the average. In ad-
dition, the runtime of Plato-IS and Plato-OS are close. For
example, the running time of Plato-IS and Plato-OS are
0.536 and 0.548 seconds in HF respectively.

6. RELATED WORK
AQP with probabilistic error guarantees. Approxi-
mate query processing using sampling [8, 54, 46, 4] com-
putes approximate answers by appropriately evaluating the
queries on small samples of the data, e.g., STRAT [8], Sci-
BORQ [54], BlinkDB [4], and Druid[1]. In particular, the
BlinkDB shows the probabilistic error guarantees in the user
interface. Such approaches typically leverage statistical in-
equalities and the central limit theorem to compute the con-
fidence interval (or variance) of the computed approximate
answer. As a result, their error guarantees are probabilistic
- as opposed to this work’s deterministic (100% confidence)
ones. Note however that, unlike sampling, our compression-
based techniques are tuned for time series and continuous
data.
AQP with deterministic error guarantees. Approxi-
mately answering queries while providing deterministic error
guarantees has been successfully applied in many applica-
tions [13, 23, 40, 51, 36, 50]. However, existing work in the
area has focused on simple aggregation queries that involve
only a single time series (or table) and aggregates such as
SUM, COUNT, MIN, MAX and AVG. Our work extends

Figure 15: Effect of orthogonal optimization.

Figure 16: Effect of segment combination selection
strategies.

the prior work, as it addresses analytics over multiple com-
pressed time series such as correlation, cross-correlation.
Data summarizations and compressions The database
community has mostly focused on creating summarizations
(also referred to as synopses or sketches) that can be used
to answer specific queries. These include among others his-
tograms [49, 25, 57, 53] (e.g., EquiWidth and EquiDepth
histograms [49], V-Optimal histograms [25], and Hierarchi-
cal Model Fitting (HMF) histograms [57]), used among
other for cardinality estimation [25] and selectivity estima-
tion [50]. The signal processing community produced a va-
riety of methods that can be used to compress time series
data and thus are more relevant to the present work, as they
provide the underlying compressions. These include among
others the Piecewise Aggregate Approximation (PAA) [30],
and the Piecewise Linear Representation (PLR) [27], and
the new piecewise compression technique proposed in [16].
Plato is orthogonal to those data summarization and com-
pression techniques.
Other time series management system There are ex-
isting time series management systems sovling orthogonal
problems. For example ModelarDB [26] focuses on apply-
ing models to store sensor data; [52] proposes an adaptive
algorithm to choose the most compact function to compress
time series; [41] studies similarity queries over compressed
time series; and both CrateDB[2] and Timescale[3] make
SQL scalable for time-series data. They are orthogonal to
Plato as Plato focuses on providing error guarantees for on-
line analytic queries over multiple compressed time series.

7. SUMMARY AND FUTURE DIRECTION
This work indicates that deterministic error guarantees

are feasible and practical, given the appropriate combina-
tion of error measures and estimation function family. Fu-
ture work may develop such combinations for other impor-
tant families also. Note that the tightness results of this pa-
per do not preclude the future development of practical and
theoretically-sound deterministic error guarantees for fam-
ilies that are currently outside the LSF. Researchers may
come up with other interesting properties of function fami-
lies outside LSF (or VS) and deliver good error guarantees.
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