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ABSTRACT
We present the first learned index that supports predeces-
sor, range queries and updates within provably efficient time
and space bounds in the worst case. In the (static) context
of just predecessor and range queries these bounds turn out
to be optimal. We call this learned index the Piecewise
Geometric Model index (PGM-index). Its flexible design
allows us to introduce three variants which are novel in
the context of learned data structures. The first variant
of the PGM-index is able to adapt itself to the distribution
of the query operations, thus resulting in the first known
distribution-aware learned index to date. The second vari-
ant exploits the repetitiveness possibly present at the level
of the learned models that compose the PGM-index to fur-
ther compress its succinct space footprint. The third one
is a multicriteria variant of the PGM-index that efficiently
auto-tunes itself in a few seconds over hundreds of millions
of keys to satisfy space-time constraints which evolve over
time across users, devices and applications.

These theoretical achievements are supported by a large
set of experimental results on known datasets which show
that the fully-dynamic PGM-index improves the space oc-
cupancy of existing traditional and learned indexes by up to
three orders of magnitude, while still achieving their same or
even better query and update time efficiency. As an exam-
ple, in the static setting of predecessor and range queries, the
PGM-index matches the query performance of a cache-opti-
mised static B+-tree within two orders of magnitude (83×)
less space; whereas in the fully-dynamic setting, where inser-
tions and deletions are allowed, the PGM-index improves
the query and update time performance of a B+-tree by up
to 71% within three orders of magnitude (1140×) less space.
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1. INTRODUCTION
The ever-growing amount of information coming from the

Web, social networks and Internet of Things severely im-
pairs the management of available data. Advances in CPUs,
GPUs and memories hardly solve this problem without prop-
erly designed algorithmic solutions. Hence, much research
has been devoted to dealing with this enormous amount of
data, particularly focusing on algorithms for memory hi-
erarchy utilisation [6, 35], query processing on streams [13],
space efficiency [24], parallel and distributed processing [19].
But despite these formidable results, we still miss algorithms
and data structures that are flexible enough to work under
computational constraints that vary across users, devices
and applications, and possibly evolve over time.

In this paper, we restrict our attention to the case of in-
dexing data structures for internal or external memory which
solve the so-called fully-dynamic indexable dictionary prob-
lem. This problem asks to properly store a multiset S of
real keys in order to efficiently support the following query
and update operations:

1. member(x) = true if x ∈ S, false otherwise;
2. lookup(x) returns the satellite data of x ∈ S (if any),

nil otherwise;
3. predecessor(x) = max{y ∈ S | y < x};
4. range(x, y) = S ∩ [x, y];
5. insert(x) adds x to S, i.e. S ← S ∪ {x};
6. delete(x) removes x from S, i.e. S ← S \ {x}.

In the following, we use the generic expression “query op-
erations” to refer to any of the previous kinds of pointwise
queries (member , lookup and predecessor), while we refer ex-
plicitly to a range query because of its variable-size output.

A key well-known observation is that the implementation
of any previous pointwise query and range operation boils
down to implement the so-called rank(x) primitive which
returns, for any real value x, the number of keys in S which
are smaller than x. In fact, if the keys in S are stored in
a sorted array A, then member(x) consists of just checking
whether A[rank(x)] = x; predecessor(x) consists of return-
ing A[rank(x)− 1]; and range(x, y) consists of scanning the
array A from position rank(x) up to a key greater than y.

Therefore, from now on, we focus on the implementa-
tion of rank , unless the formal statement of the time-space
bounds requires to refer to the specific operation.

Background and related work. Existing indexing data
structures can be grouped into: (i) hash-based, which range
from traditional hash tables to recent techniques, like Cuckoo
hashing [30]; (ii) tree-based, such as the B-tree and its vari-
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ants [3, 6, 33, 35, 37]; (iii) bitmap-based [10, 38], which allow
efficient set operations; and (iv) trie-based, which are com-
monly used for variable-length keys. Unfortunately, hash-
based indexes do not support predecessor or range searches;
bitmap-based indexes can be expensive to store, maintain
and decompress [36]; trie-based indexes are mostly pointer-
based and, apart from recent results [15], keys are stored un-
compressed thus taking space proportional to the dictionary
size. As a result, the B-tree and its variants remain the
predominant data structures in commercial database sys-
tems for these kinds of queries [31].1

Recently, a new family of data structures, called learned
indexes, has been introduced [22, 16]. The key idea underly-
ing these new data structures is that indexes are models that
we can train to learn the function rank that maps the keys
in the input set S to their positions in the array A [1]. This
parallel between indexing data structures and rank func-
tions does not seem to be a new one, in fact, any of the
previous four families of indexes offer a specific implementa-
tion of it. But its novelty becomes clear when we look at the
keys k ∈ S as points (k, rank(k)) in the Cartesian plane. As
an example, let us consider the case of a dictionary of keys
a, a+ 1, . . . , a+ n− 1, where a is an integer. Here, rank(k)
can be computed exactly as k − a (i.e. via a line of slope
1 and intercept −a), and thus it takes constant time and
space to be implemented, independently of the number n of
keys in S. This trivial example sheds light on the potential
compression opportunities offered by patterns and trends in
the data distribution. However, we cannot argue that all
datasets follow exactly a “linear trend” and, in fact, here it
comes the novel contribution of [1, 22].

These authors proposed Machine Learning (ML) tech-
niques that learn with some “errors” the function rank by
extracting the patterns in the data through succinct models,
ranging from linear to more sophisticated ones. These errors
can be efficiently corrected to return the exact value of rank .
This way, the implementation of rank can be reframed as an
ML problem in which we search for the model that is fast
to be computed, is succinct in space, and best approximates
rank according to some criteria that are detailed below.

This the design goal pursued by [22] with their Recursive
Model Index (RMI), which uses a hierarchy of ML models
organised as a Directed Acyclic Graph (DAG) and trained
to learn the input distribution (k, rank(k)) for all k ∈ S.
At query time each model, starting from the top one, takes
the query key as input and picks the following model in the
DAG that is “responsible” for that key. The output of RMI
is the position returned by the last queried ML model, which
is, however, an approximate position. A final binary search
is thus executed within a range of neighbouring positions
whose size depends on the prediction error of RMI.

One could presume that ML models cannot provide the
guarantees ensured by traditional indexes, both because they
can fail to learn the distribution and because they can be ex-
pensive to evaluate [16, 21]. Unexpectedly, RMI dominated
the B+-tree, being up to 1.5–3× faster and two orders of
magnitude smaller in space [22].

This notwithstanding, the RMI introduces another set of
space-time trade-offs between model size and query time
which are difficult to control because they depend on the dis-
tribution of the input data, on the DAG structure of RMI

1For other related work, we refer to [16, 17, 22]. Here we
mention only the results that are closer to our proposal.
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Figure 1: Linear approximation of a set of keys in
the range [27, 46]. The function fs is defined by two
floats, and thus its storage is independent of the
number of “covered” keys. The key k = 37 is re-
peated three times in the set, and fs errs by ε = 2 in
predicting the position of its first occurrence. Hence
a search in a neighbourhood of size ε is enough to
find the correct position of k.

and on the complexity of the ML models adopted. This
motivated the introduction of the FITing-tree [17] which
uses only linear models, a B+-tree to index them, and it
provides an integer parameter ε ≥ 1 to control the size of
the region in which the final binary search step has to be
performed. Figure 1 shows an example of a linear model
fs approximating 14 keys and its use in determining the ap-
proximate position of a key k = 37, which is indeed fs(k) ≈ 7
instead of the correct position 5, thus making an error ε = 2.
Experimentally, the FITing-tree improved the time per-
formance of the B+-tree with a space saving of orders of
magnitude [17], but this result was not compared against
the performance of RMI. Moreover, the computation of the
linear models residing in the leaves of the FITing-tree is
sub-optimal in theory and inefficient in practice. This im-
pacts negatively on its final space occupancy and slows down
its query efficiency because of an increase in the height of
the B+-tree indexing those linear models.

Our contribution. In this paper, we contribute to the
design of provably efficient learned indexes, which are also
compressed, distribution-aware and auto-tuned to any given
space or latency requirements.

Specifically, we design a fully-dynamic learned index, the
Piecewise Geometric Model index (PGM-index), which or-
chestrates an optimal number of linear models based on a
fixed maximum error tolerance in a novel recursive structure
(Sections 2 and 3). According to the lower bound proved
by [32], the PGM-index solves I/O-optimally the predeces-
sor search problem while taking succinct space. Further-
more, its new design makes it a fully-learned index (unlike
RMI and FITing-tree that mix traditional and learned
design elements), and it allows us to introduce novel tech-
niques for making it compressed (Section 4) and adaptive
not only to the key distribution but also to the query dis-
tribution (Section 5). We then show that the PGM-index
can auto-tune itself efficiently to any given space or latency
requirements (Section 6).
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We test the efficiency of the PGM-index on synthetic
and real-world datasets of up to one billion keys (Section 7).
In short, the experimental achievements of the PGM-index
are: (i) better space occupancy than the FITing-tree [17]
by up to 75% and than the CSS-tree [33] by a factor 83×,
with the same or better query time; (ii) uniform improve-
ment of the performance of RMI [22] in terms of query time
and space occupancy, and 15× faster construction, while
requiring no hyperparameter tuning; (iii) better query and
update time than a B+-tree by up to 71% in various dy-
namic workloads while reducing its space occupancy by four
orders of magnitude (from gigabytes to few megabytes).

As a final contribution to academic research, we release
(at https://pgm.di.unipi.it) the implementation of our
learned data structure to foster further studies and the adop-
tion of this new generation of learned data structures in ex-
isting software.

2. PGM-INDEX
Let S be a multiset of n keys drawn from a universe U ,2

the PGM-index is a data structure parametric in an integer
ε ≥ 1 which solves the fully indexable dictionary problem
on S, as defined in Section 1.

Let A be a sorted array storing the (possibly repeated)
keys of S. The first ingredient of the PGM-index is a Piece-
wise Linear Approximation model (PLA-model), namely a
mapping between keys from U and their approximate posi-
tions in the array A. Specifically, we aim to learn a mapping
that returns a position for a key k ∈ U which is at most ε
away from the correct one in A. We say piecewise because
one single linear model (also called a segment) could be in-
sufficient to ε-approximate the positions of all the keys from
U . As a consequence, the PGM-index learns a sequence of
segments, each one taking constant space (two floats and one
key) and constant query time to return the ε-approximate
position of k in A. We show below in Lemma 1 that there
exists a linear time and space algorithm which computes the
optimal PLA-model, namely one that consists of the mini-
mum number of ε-approximate segments. We also observe
that the ε-approximate positions returned by the optimal
PLA-model can be turned into exact positions via a binary
search within a range of ±ε keys in A, thus taking time
logarithmic in the parameter ε, independently of n.

The second ingredient of the PGM-index is a recursive
index structure that adapts to the distribution of the input
keys (see Figure 2 for pictorial example). More precisely, in
order to make the most of the ability of a single segment to
index in constant space and time an arbitrarily long range of
keys, we turn the optimal PLA-model built over the array A
into a subset of keys, and we proceed recursively by building
another optimal PLA-model over this subset. This process
continues until one single segment is obtained, which forms
the root of the PGM-index.

Overall, each PLA-model forms a level of the PGM-index,
and each segment of that PLA-model forms a node of the
data structure at that level. The speciality of this recursive
construction with respect to known learned index proposals
(cf. FITing-tree or RMI) is that the PGM-index is a pure

2U is a range of reals because of the arithmetic operations
required by the linear models. Our solution works for any
kind of keys that can be mapped to reals while preserving
their order. Examples include integers, strings, etc.

learned index which does not hinge on classic data structures
either in its structure (as in the FITing-tree) or as a fall-
back when the ML models err too much (as in RMI). The
net results are three main advantages that impact on its
space-time complexity. First, the PGM-index uses the lin-
ear models (i.e. segments) as constant-space routing tables
at all levels of the data structure, while other indexes (e.g.
FITing-tree, B-tree and variants) use space-consuming
nodes storing a large number of keys which depends on
the disk-page size only, thus resulting blind to the possible
regularity present in the data distribution. Second, these
routing tables of the PGM-index take constant time to re-
strict the search of a key in a node to a smaller subset of
keys (of size 2ε), whereas nodes in the B+-tree and the
FITing-tree incur a search cost that grows with the node
size, thus slowing down the tree traversal during the query
operations. Third, in this paper we observe that computing
the minimum number of segments is a well-known computa-
tional geometry problem which admits an optimal solution
in linear time and space, thus surpassing the sub-optimal
proposals of FITing-tree and RMI.

The following two subsections detail the construction and
the query operations of the PGM-index, while Section 3
discusses insertions and deletions.

2.1 Optimal PLA-model
In this section, we describe how an ε-approximate imple-

mentation of the mapping rank from keys to positions in
A can be efficiently computed and succinctly stored via an
optimal number of segments, which is one of the core design
elements of a PGM-index.

A segment s is a triple (key , slope, intercept) that indexes
a range of U through the function fs(k) = k × slope +
intercept , as depicted in Figure 1. An important character-
istic of the PGM-index is the “precision” ε of its segments.

Definition 1. Let A be a sorted array of n keys drawn
from a universe U and let ε ≥ 1 be an integer. A seg-
ment s = (key , slope, intercept) is said to provide an ε-
approximate indexing of the range of all keys in [ki, ki+r],
for some ki, ki+r ∈ A, if |fs(x)− rank(x)| ≤ ε for all x ∈ U
such that ki ≤ x ≤ ki+r.

We notice that the ε-approximate indexing provided by a
segment does not apply only to the keys in A but to all keys
of U . Therefore, a segment can be seen as an approximate
predecessor search data structure for its covered range of
keys offering O(1) query time and O(1) occupied space.

One segment, however, could be insufficient to ε-approx-
imate the rank function over the whole set of keys in A;
hence, we look at the computation of a sequence of seg-
ments, also termed PLA-model.

Definition 2. Given ε ≥ 1, the piecewise linear ε-approxi-
mation problem consists of computing the PLA-model which
minimises the number of its segments {s0, . . . , sm−1}, pro-
vided that each segment sj is ε-approximate for its covered
range of keys in S. These ranges are disjoint and together
cover the entire universe U .

A way to find the optimal PLA-model for an array A is
by dynamic programming, but the O(n3) time it requires is
prohibitive. The authors of the FITing-tree [17] attacked
this problem via a heuristic approach, called shrinking cone,
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Build-PGM-index(A,n, ε)

1 levels = an empty dynamic array
2 i = 0; keys = A
3 repeat
4 M = Build-PLA-model(keys, ε)
5 levels[i] = M ; i = i+ 1
6 m = Size(M)
7 keys = [M [0].key , . . . ,M [m− 1].key ]
8 until m = 1
9 return levels in reverse order

Query(A,n, ε, levels, k)

1 pos = fr(k), where r = levels[0][0]
2 for i = 1 to Size(levels)− 1
3 lo = max{pos− ε, 0}
4 hi = min{pos+ ε,Size(levels[i])− 1}
5 s = the rightmost segment s′ in

levels[i][lo, hi ] such that s′.key ≤ k
6 t = the segment at the right of s
7 pos = bmin{fs(k), ft(t.key)}c
8 lo = max{pos − ε, 0}
9 hi = min{pos + ε, n− 1}

10 return search for k in A[lo, hi ]

Figure 2: In this PGM-index with ε = 1, we search for the key k = 76 by starting from the root segment
s′ = levels[0][0] = (2, sl00, ic

0
0) and computing the position bfs′(k)c = bk · sl00 + ic0

0c = 1 for the next level. We
then search for k in levels[1][1− ε, 1 + ε] among the keys [2, 31, 102] (delimited by the cyan bracket), and we
determine that the next segment responsible for k is s′′ = levels[1][1] = (31, sl11, ic

1
1) because k falls between 31

and 102. Then, we compute the position bfs′′(k)c = 3, and hence we search for k in levels[2][3−ε, 3+ε] among
the keys [31, 48, 71] (delimited by the cyan bracket). This way, we determine that k > 71, and hence the next
segment responsible for k is s′′′ = levels[2][4] = (71, sl24, ic

2
4). Finally, we compute the position bfs′′′(k)c = 17

for the next (leaf) level (i.e. the whole array A), and hence we search for k in A[17 − ε, 17 + ε] among the
keys [73, 74, 76] (delimited by the cyan bracket). Eventually, we find that k is in position 18 since A[18] = 76.
The pseudocodes on the right formalise the construction and query algorithms of the PGM-index.

which is linear in time but does not guarantee to find the op-
timal PLA-model, and indeed it performs poorly in practice
(as we show in Section 7.1).

Interestingly enough, we found that this problem has been
extensively studied for lossy compression and similarity
search of time series (see e.g. [28, 9, 11, 12, 39] and refs
therein), and it admits streaming algorithms which take
O(n) optimal time and space. The key idea of this family of
approaches is to reduce the piecewise linear ε-approximation
problem to the one of constructing a convex hull of a set of
points, which in our case is the set {(ki, rank(ki))} grown
incrementally for i = 0, . . . , n−1. As long as the convex hull
can be enclosed in a (possibly rotated) rectangle of height
no more than 2ε, the index i is incremented and the set is
extended. As soon as the rectangle enclosing the convex hull
is higher than 2ε, we stop the construction and determine
one segment of the PLA-model by taking the line which
splits that rectangle into two equal-sized halves. Then, the
current set of processed elements is emptied and the algo-
rithm restarts from the rest of the input points. This greedy
approach can be proved to be optimal in the size of the
PLA-model and to have linear time and space complexity.
We can rephrase this result in our context as follows.

Lemma 1 (Opt. PLA-model [28]). Given a sequence
{(xi, yi)}i=0,...,n−1 of points that are nondecreasing in their
x-coordinate. There exists a streaming algorithm that in lin-
ear time and space computes the minimum number of seg-
ments that ε-approximate the y-coordinate of each point in
that sequence.

For our application to the dictionary problem, the xis
of Lemma 1 correspond to the input keys ki, and the yis
correspond to their positions 0, . . . , n−1 in the sorted input

array A. The next step is to prove a simple but very useful
bound on the number of keys covered by a segment of the
optimal PLA-model, which we deploy in the analysis of the
PGM-index.

Lemma 2. Given an ordered sequence of keys ki ∈ U and
the corresponding sequence {(ki, i)}i=0,...,n−1 of points in the
Cartesian plane that are nondecreasing in both their coordi-
nates. The algorithm of Lemma 1 determines a (minimum)
number mopt of segments which cover at least 2ε points each,
so that mopt ≤ n/(2ε).

Proof. For any chunk of 2ε consecutive keys ki, ki+1,
. . . , ki+2ε−1 take the horizontal segment y = i+ ε. It is easy
to see that those keys generate the points (ki, i), (ki+1, i +
1), . . . , (ki+2ε−1, i + 2ε − 1) and each of these keys have y-
distance at most ε from that line, which is then an ε-approxi-
mate segment for that range of 2ε-keys. Hence, any segment
of the optimal PLA-model covers at least 2ε keys.

2.2 Indexing the PLA-model
The algorithm of Lemma 1 returns an optimal PLA-model

for the input array A as a sequence M = [s0, . . . , sm−1] of
m segments.3 Now, in order to solve the fully indexable dic-
tionary problem, we need a way to find the ε-approximate
segment sj responsible for estimating the approximate posi-
tion pos of a query key k. This is the rightmost segment sj
such that sj .key ≤ k. When m is large, we could perform a
binary search on the sequence M , or we could index it via
a proper data structure, such as a multiway search tree (as
done in the FITing-tree). In this latter case, a query over
this data structure would take O(logB m+ log(ε/B)) I/Os,

3To simplify the notation, we write m instead of mopt.
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where B is the fan-out of the multiway tree and ε is the
error incurred by a segment when approximating rank(k).

However, the indexing strategy above does not take full
advantage of the key distribution because it resorts to a clas-
sic data structure with fixed fan-out to index M . Therefore,
we introduce a novel strategy which consists of repeating
the piecewise linear approximation process recursively on a
set of keys derived from the sequence of segments. More
precisely, we start with the sequence M constructed over
the whole input array A, then we extract the first key of A
covered by each segment and finally construct another opti-
mal PLA-model over this reduced set of keys. We proceed
in this recursive way until the PLA-model consists of one
segment, as shown in the pseudocode of Figure 2.

If we map segments to nodes, then this approach con-
structs a sort of multiway search tree but with three main
advantages with respect to B-trees (and thus, with re-
spect to FITing-trees): (i) its nodes have variable fan-out
driven by the (typically large) number of keys covered by
the segments associated with those nodes; (ii) the segment
in a node plays the role of a constant-space and constant-
time ε-approximate routing table for the various queries to
be supported; (iii) the search in each node corrects the ε-
approximate position returned by that routing table via a
binary search (see next), and thus it has a time cost that
depends logarithmically on ε, independently of the number
of keys covered by the corresponding segment.

Now, a query operation over this Recursive PGM-index
works as follows. At every level, it uses the segment referring
to the visited node to estimate the position of the searched
key k among the keys of the lower level.4 The real position
is then found by a binary search in a range of size 2ε centred
around the estimated position. Given that every key on the
next level is the first key covered by a segment on that level,
we have identified the next segment to query, and the process
continues until the last level is reached. The pseudocode and
an example of the query operation are depicted in Figure 2.

Theorem 1. Let A be an ordered array of n keys from
a universe U , and ε ≥ 1 be a fixed integer parameter. The
PGM-index with parameter ε indexes the array A in Θ(m)
space and answers rank, membership and predecessor queries
in O(logm + log ε) time and O((logcm) log(ε/B)) I/Os,
where m is the minimum number of ε-approximate segments
covering A, c ≥ 2ε denotes the variable fan-out of the data
structure, and B is the block size of the external-memory
model. Range queries are answered in extra (optimal) O(K )
time and O(K/B) I/Os, where K is the number of keys sat-
isfying the range query.

Proof. Each step of the recursion reduces the number of
segments by a variable factor c which is at least 2ε because of
Lemma 2. The number of levels is, therefore, L = O(logcm),

and the total space required by the index is
∑L

`=0m/(2ε)
` =

Θ(m). For the rank, membership and predecessor queries,
the bounds on the running time and the I/O complexity
follow easily by observing that a query performs L binary
searches over intervals having size at most 2ε. In the case
of range queries, we output the K keys by scanning A from
the position returned by the rank query.

4To correctly approximate the position of a key k falling be-
tween the last key covered by a segment sj and the first key
covered by sj+1, we compute min{fsj (k), fsj+1(sj+1.key)}.

The main novelty of the PGM-index is that its space
overhead does not grow linearly with n, as in the tradi-
tional indexes mentioned in Section 1, but it depends on
the “regularity trend” of the input array A. As stated in
Lemma 2, the number m of segments at the last level of a
PGM-index is less than n/(2ε). Since this fact holds also
for the recursive levels, it follows that the PGM-index can-
not be asymptotically worse in space and time than a 2ε-way
tree, such as a FITing-tree, B+-tree or CSS-tree (just
take c = 2ε = Θ(B) in Theorem 1). Therefore, according
to the lower bound proved by [32], we can state that the
PGM-index solves I/O-optimally the fully indexable dic-
tionary problem with predecessor search, meaning that it
can potentially replace any existing index with virtually no
performance degradation.

Table 1 summarises these bounds for the PGM-index
and its competitors both in the Random Access Machine
(RAM) and in the External Memory (EM) model for point-
wise queries. The experimental results of Section 7 further
support these theoretical achievements by showing that the
PGM-index is much faster and succinct than FITing-tree,
B+-tree and CSS-tree because, in practice, mopt � n and
the recursive structure guarantees c� 2ε.

3. DYNAMIC PGM-INDEX
Insertions and deletions in a PGM-index are more dif-

ficult to be implemented compared to traditional indexes.
First and foremost, the fact that a segment could index a
variable and potentially large subset of data makes the clas-
sic B-tree node split and merge algorithms inapplicable,
as indeed they rely on the fact that a node contains a fixed
number Θ(B) of keys. One could indeed force the segments
to cover a fixed number of keys, but this disintegrates the in-
dexing power of the PGM-index. Existing learned indexes
suggest inserting new elements in a sorted buffer for each
node (model) which, from time to time, is merged with the
main index, thus causing the retraining of the correspond-
ing model [17, 22]. This solution is inefficient when a model
indexes many keys (and thus its retraining is slow), or when
the insertions hammer a certain area of the key-space (thus
causing many merges due to the rapid filling of few buffers).
In this section, we propose two improved strategies for han-
dling updates, one targeted to time series, and the other
targeted to more general dynamic scenarios.

If new keys are appended to the end of the array A while
maintaining the sorted order (as it occurs in time series),
the PGM-index updates the last segment in O(1) amor-
tised time [28]. If the new key k can be covered by this last
segment while preserving the ε guarantee, then the inser-
tion process stops. Otherwise, a new segment with key k
is created. The insertion of k is then repeated recursively
in the last segment of the layer above. The recursion stops
when a segment at any level covers k within the ε guaran-
tee, or when the root segment is reached. At that point,
the root segment might need a splitting and the creation
of a new root node with its corresponding segment. Since
the work at each level takes constant amortised I/Os, the
overall number of I/Os required by this insertion algorithm
is O(logcm) amortised.

For inserts that occur at arbitrary positions of A, we
use the logarithmic method proposed in [29, 26] and here
adapted to work on learned indexes. We define a series of
PGM-indexes built over sets S0, . . . , Sb of keys which are
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Table 1: The PGM-index improves the time, I/O and space complexity of the query operations of traditional
external-memory indexes (e.g. B-tree) and learned indexes (i.e. FITing-tree). The integer parameter ε ≥ 1
denotes the error each learned model of the PGM-index guarantees in approximating the positions of the input
keys. We denote with mopt the minimum number of ε-approximate segments for the input keys computed by
Lemma 1 and with mgreedy ≥ mopt the number of segments computed by the greedy algorithm at the core of
the FITing-tree. The learned index RMI is not included in the table because it lacks guaranteed bounds.

Data structure Space RAM model
worst case time

EM model
worst case I/Os

EM model
best case I/Os

Plain sorted array O(1) O(logn) O(log n
B

) O(log n
B

)
Multiway tree (e.g. B-tree) Θ(n) O(logn) O(logB n) O(logB n)
FITing-tree Θ(mgreedy) O(logmgreedy + log ε) O(logB mgreedy) O(logB mgreedy)

PGM-index Θ(mopt) O(logmopt + log ε) O(logcmopt)
c ≥ 2ε = Ω(B)

O(1)

either empty or have size 20, 21, . . . , 2b, where b = Θ(logn).
Each insert of a key x finds the first empty set Si and builds
a new PGM-index over the merged set S0∪· · ·∪Si−1∪{x}.
This union can be computed in time linear in the size of the
merged set because the Sjs are sorted (0 ≤ j < i). The new

sorted set consists of 2i keys (given that 2i = 1 +
∑i−1

j=0 2j).
The new merged set is used as Si, and the previous sets
are emptied. If we consider one key and examine its his-
tory over n insertions, we notice that it can participate in
at most b = Θ(logn) merges, because each merge moves the
keys to the right indexes and the full Slogn might include
all inserted keys. Given that the merges take time linear in
the number of the merged keys, we pay O(1) amortised time
per key at each merge, that is, O(logn) amortised time per
insertion overall.

The deletion of a key d is handled similarly to an insert
by adding a special tombstone value that signals the logical
removal of d. For details, we refer the reader to [29].

For range queries, a search in each of the Sis and a sorted
merge via heaps of size b suffice, and it costs O(logn(logm+
log ε) + K log logn) time, where K is the number of keys
satisfying the range query. If the results of the range query
can be buffered in O(K) space, then the cost is reduced to
O(logn(logm+ log ε) +K) time.

In the EM model with page size B, we define instead b′ =

Θ(logB n) PGM-indexes built over sets of size B0, . . . , Bb′

and follow the ideas of [2, 35]. Summing up, we have proved
the following.

Theorem 2. Under the same assumption of Theorem 1,
the Dynamic PGM-index with parameter ε indexes the dy-
namic array A and answers membership and predecessor
queries in O(logn (logm+ log ε)) time, insertions and dele-
tions in O(logn) amortised time. In the external-memory
model with block size B, membership and predecessor queries
take O((logB n)(logcm)) I/Os, insertions and deletions take
O(logB n) amortised I/Os, where c ≥ 2ε = Ω(B) denotes the
variable fan-out of the data structure. Range queries are an-
swered with the same cost of a predecessor query plus extra
O(K) time and space, and O(K/B) I/Os.

We briefly mention that the bounds of Theorem 2 can be
converted into worst-case bounds by keeping at most three
Si, for 1 ≤ i ≤ b, and by constructing a new Si not all
at once, but spreading the construction work over the next
2i insertions [29]. As a matter of fact, the experiments in
Section 7.3 show that even the simpler amortised version is
sufficient to outperform B+-trees.

4. COMPRESSED PGM-INDEX
Compressing the PGM-index boils down to providing

proper lossless compressors for the keys and the segments
(i.e. intercepts and slopes), which constitute the building
blocks of our learned data structure. In this section, we
propose techniques specifically tailored to the compression
of the segments, since the compression of keys is an orthog-
onal problem for which there exist a plethora of solutions
(see e.g. [23, 24]).

For what concerns the compression of intercepts, we pro-
ceed as follows. Intercepts can be made increasing by using
the coordinate system of the segments, i.e. the one that for
a segment sj = (keyj , slopej , interceptj) computes the po-
sition of a covered key k as fsj (k) = (k − keyj) × slopej +
interceptj . Then, since the result of fsj (k) has to be trun-
cated to return an integer position in A, we store the in-
tercepts as integers binterceptjc.5 Finally, we exploit the
fact that the intercepts are smaller than n and thus use the
succinct data structure of [25] to obtain the following result.

Proposition 1. Let m be the number of segments of a
PGM-index indexing n keys drawn from a universe U . The
intercepts of those segments can be stored using m log(n/m)+
1.92m+ o(m) bits and be randomly accessed in O(1) time.

The compression of slopes is more involved, and we need
to design a specific novel compression technique. The start-
ing observation is that the algorithm of Lemma 1 com-
putes not just a single segment but a whole family of ε-
approximate segments whose slopes identify an interval of
reals. Specifically, let us suppose that the slope intervals
for the m optimal segments are I0 = (a0, b0), . . . , Im−1 =
(am−1, bm−1), hence each original slope slopej belongs to Ij
for j = 0, . . . ,m−1. The goal of our compression algorithm
is to reduce the entropy of the set of these slopes by reduc-
ing their distinct number from m to t. Given the t slopes,
we can store them in a table T [0, t− 1] and then change the
encoding of each original slopej into the encoding of one of

these t slopes, say slope ′j , which is still guaranteed to belong
to Ij but now it can be encoded in dlog te bits (as a pointer
to table T ). As we will show experimentally in Section 7.4,
the algorithm achieves effective compression because t� m.

Let us now describe the algorithm. First, we sort lexi-
cographically the slope intervals Ijs to obtain an array I
in which overlapping intervals are consecutive. We assume

5Note that this transformation increases ε by 1.
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that every pair keeps as satellite information the index of
the corresponding interval, namely j for (aj , bj). Then, we
scan I to determine the maximal prefix of intervals in I that
intersect each other. As an example, say the sorted slope
intervals are {(2, 7), (3, 6), (4, 8), (7, 9), . . . }. The first maxi-
mal sequence of intersecting intervals is {(2, 7), (3, 6), (4, 8)}
because these intervals intersect each other, but the fourth
interval (7, 9) does not intersect the second interval (3, 6)
and thus is not included in the maximal sequence.

Let (l, r) be the intersection of all the intervals in the cur-
rent maximal prefix of I: it is (4, 6) in the running example.
Then, any slope in (l, r) is an ε-approximate slope for each
of the intervals in that prefix of I. Therefore, we choose
one real in (l, r) and assign it as the slope of each of those
segments in that maximal prefix. The process then con-
tinues by determining the maximal prefix of the remaining
intervals, until the overall sequence I is processed.

Theorem 3. Let m be the number of ε-approximate seg-
ments of a PGM-index indexing n keys drawn from a uni-
verse U . There exists a lossless compressor for the segments
which computes the minimum number of distinct slopes t ≤
m while preserving the ε-guarantee. The algorithm takes
O(m logm) time and compresses the slopes into 64t+mdlog te
bits of space.

Proof. The choice performed by the algorithm is to keep
adding slope intervals in lexicographic order and updating
the current intersection (l, r) until an interval (aj , bj) having
aj > r arrives. It is easy to verify that an optimal solution
has slopes within the t intersection intervals found by this
algorithm. The space occupancy of the t distinct slopes in
T is, assuming double-precision floats, 64t bits. The new
slopes slope ′j are still m in their overall number, but each of
them can be encoded as the position 0, . . . , t − 1 into T of
its corresponding double-precision float.

5. DISTRIBUTION-AWARE PGM-INDEX
The PGM-index of Theorem 1 implicitly assumes that

the queries are uniformly distributed, but this seldom hap-
pens in practice. For example, queries in search engines are
very well known to follow skewed distributions such as Zipf’s
law [38]. In such cases, it is desirable to have an index that
answers the most frequent queries faster than the rare ones,
so to achieve a higher query throughput [4]. Previous work
exploited query distribution in the design of binary trees [7],
Treaps [34], and skip lists [5], to mention a few.

In this section, we introduce a variant of the PGM-index
that adapts itself not only to the distribution of the input
keys but also to the distribution of the queries. This turns
out to be the first distribution-aware learned index to date,
with the additional positive feature of being very succinct
in space.

Formally speaking, given a sequence S = {(ki, pi)}i=1,...,n,
where pi is the probability to query the key ki (that is as-
sumed to be known), we want to solve the distribution-aware
dictionary problem, which asks for a data structure that
searches for a key ki in time O(log(1/pi)) so that the av-
erage query time coincides with the entropy of the query
distribution H =

∑
i=1,...,n pi log(1/pi).

According to [28], the algorithm of Lemma 1 can be mod-
ified so that, given a y-range for each one of n points in the
plane, finds also the set of all (segment) directions that inter-
sect those ranges in O(n) time. This corresponds to finding

the optimal PLA-model whose individual segments guaran-
tee an approximation which is within the y-range given for
each of those points. Therefore, our key idea is to define for
every key ki a y-range of size yi = min {1/pi, ε}, and then
to apply the algorithm of Lemma 1 on that set of keys and
y-ranges. Clearly, for the keys whose y-range is ε we can
use Theorem 1 and derive the same space bound of O(m);
whereas for the keys whose y-range is 1/pi < ε we observe
that these keys are no more than ε (in fact, the pis sum
up to 1), but they are possibly spread among all position
in A, and thus they induce in the worst case 2ε extra seg-
ments. Therefore, the total space occupancy of the bottom
level of the index is Θ(m + ε), where m is the one defined
in Theorem 1. Now, let us assume that the search for a
key ki arrived at the last level of this Distribution-Aware
PGM-index, and thus we know in which segment to search
for ki: the final binary search step within the ε-approximate
range returned by that segment takes O(log min{1/pi, ε}) =
O(log(1/pi)) as we aimed for.

We are left with showing how to find that segment in
a distribution-aware manner, namely in O(log(1/pi)) time.
We proceed similarly to the recursive construction of the
PGM-index, but with a careful design of the recursive step
because of the probabilities (and thus the variable y-ranges)
assigned to the recursively defined set of keys.

Let us consider the segment s[a,b] covering the sequence
of keys S[a,b] = {(ka, pa), . . . , (kb, pb)}, denote by qa,b =
maxi∈[a,b] pi the maximum probability of a key in S[a,b], and

by Pa,b =
∑b

i=a pi the cumulative probability of all keys in
S[a,b] (which is indeed the probability to end up in that seg-
ment when searching for one of its keys). To move to the
next upper level of the PGM-index, we create a new set of
keys which includes the first key ka covered by each segment
s[a,b] and set its associated probability to qa,b/Pa,b. Then,
we construct the next upper level of the Distribution-Aware
PGM-index by applying the algorithm of Lemma 1 on this
new set of segments. If we iterate the above analysis for
this new level of “weighted” segments, we conclude that: if
we know from the search executed on the levels above that
ki ∈ S[a,b], the time cost to search for ki in this level is
O(log min{Pa,b/qa,b, ε}) = O(log(Pa,b/pi)).

Let us repeat this argument for another upper level to
understand the influence on the search time complexity. We
denote the range of keys which include ki in this upper
level with S[a′,b′] ⊃ S[a,b], the cumulative probability with
Pa′,b′ , and assign to the first key ka′ ∈ S[a′,b′] the probabil-
ity r/Pa′,b′ , where r is the maximum probability of the form
Pa,b of the ranges included in [a′, b′]. In other words, if [a′, b′]
is partitioned into {z1, . . . , zc}, then r = maxi∈[1,c) Pzi,zi+1 .
Reasoning as done previously, if we know from the search
executed on the levels above that ki ∈ S[a′,b′], the time cost
to search for ki in this level is O(log min {Pa′,b′/r, ε}) =
O(log(Pa′,b′/Pa,b)) because [a, b] is, by definition, one of
these ranges in which [a′, b′] is partitioned.

Repeating this design until one single segment is obtained,
we get a total time cost for the search in all levels of the
PGM-index equal to a sum of logarithms whose arguments
“cancel out” (i.e. a telescoping sum) and get O(log(1/pi)).

As far as the space bound is concerned, we recall that the
number of levels in the PGM-index is L = O(logcm) with
c ≥ 2ε, and that we have to account for the ε extra segments
per level returned by the algorithm of Lemma 1. Conse-
quently, this distribution-aware variant of the PGM-index
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takes O(m + Lε) space, which is indeed O(m) because ε is
a constant parameter.

Theorem 4. Let A be an ordered array of n keys drawn
from a universe U , which are queried with (known) proba-
bility pi, and let ε ≥ 1 be a fixed integer parameter. The
Distribution-Aware PGM-index with parameter ε indexes
the array A in O(m) space and answers queries in O(H) av-
erage time, where H is the entropy of the query distribution,
and m is the number of segments of the optimal PLA-model
for the keys in A with error ε.

6. THE MULTICRITERIA PGM-INDEX
Tuning a data structure to match the requirements of an

application is often a difficult and error-prone task for a soft-
ware engineer, not to mention that these needs may change
over time due to mutations in data distribution, devices, re-
source requirements, and so on. The typical approach is a
grid search on the various instances of the data structure
to be tuned until the one that matches the application’s re-
quirements is found. However, not all data structures are
flexible enough to adapt at the best to these requirements,
or conversely the search space can be so huge that an opti-
misation process takes too much time [14, 20].

In the rest of this section, we exploit the flexible design of
the PGM-index to show that its tuning to any space-time
requirements by an underlying application can be efficiently
automated via an optimisation strategy that: (i) given a
space constraint outputs the PGM-index that minimises
its query time; or (ii) given a query-time constraint outputs
the PGM-index that minimises its space footprint.

The time-minimisation problem. According to Theo-
rem 1, the query time of a PGM-index can be described as
t(ε) = δ (log2εm) log(2ε/B), where B is the page size of the
external-memory model, m is the number of segments in the
last level, and δ depends on the access latency of the mem-
ory. For the space, we introduce s`(ε) to denote the min-
imum number of segments needed to have precision ε over
the keys available at level ` of the PGM-index and com-
pute the overall number of segments as s(ε) =

∑L
`=1 s`(ε).

By Lemma 2, we know that sL(ε) = m ≤ n/(2ε) for any
ε ≥ 1 and that s`−1(ε) ≤ s`(ε)/(2ε). As a consequence,

s(ε) ≤
∑L

`=0m/(2ε)
` = (2εm− 1)/(2ε− 1).

Given a space bound smax, the “time-minimisation prob-
lem” consists of minimising t(ε) subject to s(ε) ≤ smax.6

The main challenge here is that we do not have a closed for-
mula for s(ε) but only an upper bound. Section 7.5 shows
that in practice we can model m = sL(ε) with a simple
power-law having the form aε−b, whose parameters a and b
are properly estimated on the dataset at hand. The power-
law covers both the pessimistic case of Lemma 2 and the
best case in which the dataset is strictly linear.

Clearly, the space decreases with increasing ε, whereas
the query time t(ε) increases with ε since the number of
keys on which a binary search is executed at each level is
2ε. Therefore, the time-minimisation problem reduces to
the problem of finding the value of ε for which s(ε) = smax

because it is the lowest ε that we can afford. Such value of

6For simplicity, we assume that a disk page contains ex-
actly B keys. This assumption can be relaxed by putting
the proper machine- and application-dependent constants in
front of t(ε) and s(ε).

ε could be found by a binary search in the bounded inter-
val E = [B/2, n/2], which is derived by requiring that each
model errs at least a page size (i.e. 2ε ≥ B) since lower ε
values do not save I/Os, and by observing that one model
is the minimum possible space (i.e. 2ε ≤ n, by Lemma 2).
Furthermore, provided that our power-law approximation
holds, we can speed up the search of that “optimal” ε by
guessing the next value of ε rather than taking the mid-
point of the current search interval. In fact, we can find the
root of s(ε)−smax, i.e. the value εg for which s(εg) = smax.
We emphasise that such εg may not be the solution to our
problem, as it may be the case that the approximation or the
fitting of s(ε) by means of a power-law is not precise. Thus,
more iterations of the search may be needed to find the opti-
mal ε. Nevertheless, we guarantee to be always faster than a
binary search by gradually switching to it. Precisely, we bias
the guess εg towards the midpoint εm of the current search
range via a simple convex combination of the two [18].

The space-minimisation problem. Given a time bound
tmax, the “space-minimisation problem” consists of minimis-
ing s(ε) subject to t(ε) ≤ tmax. As for the problem above,
we could binary search inside the interval E = [B/2, n/2] for
the maximum ε that satisfies the time constraint. Addition-
ally, we could speed up this process by guessing the next
iterate of ε via the equation t(ε) = tmax, that is, by solving
for ε the equation δ (log2ε sL(ε)) log(2ε/B) = tmax in which
sL(ε) is replaced by the power-law approximation aε−b for
proper a and b, and δ is replaced by the measured memory
latency of the given machine.

Although effective, this approach raises a subtle issue,
namely, the time model could not be a correct estimate of
the actual query time because of hardware-dependent fac-
tors such as the presence of several caches and the CPU
pre-fetching. To further complicate this issue, we note that
both s(ε) and t(ε) depend on the power-law approximation.

For these reasons, instead of using the time model t(ε)
to steer the search, we measure and use the actual average
query time t(ε) of the PGM-index over a fixed batch of ran-
dom queries. Also, instead of performing a binary search in-
side the whole E , we run an exponential search starting from
the solution of the dominating term c log(2ε/B) = tmax, i.e.
the cost of searching the data. Finally, since t(ε) is subject
to measurement errors (e.g. due to an unpredictable CPU
scheduler), we stop the search of the best ε as soon as the
searched range is smaller than a given threshold.

7. EXPERIMENTS
We experimented with an implementation in C++ of the

PGM-index (available at github.com/gvinciguerra/PGM-
index) on a machine with a 2.3 GHz Intel Xeon Gold and
192 GiB memory. We used the following three standard
datasets, each having different data distributions, regulari-
ties and patterns:

• Web logs [22, 17] contains timestamps of about 715M
requests to a web server;

• Longitude [27] contains longitude coordinates of about
166M points of interest from OpenStreetMap;

• IoT [22, 17] contains timestamps of about 26M events
recorded by IoT sensors installed throughout an aca-
demic building.
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Table 2: Space savings of PGM-index with respect to a FITing-tree for a varying ε on six synthetic datasets
of 1 billion keys (improvements range from 20% to 75%) and the three real-world datasets (from 30% to
63%). We notice that these improvements are obtained without impairing the construction time because the
asymptotic complexity of the two approaches is the same in theory (i.e. linear in the number of keys) and in
practice (a couple of seconds, up to hundreds of millions of keys).

Dataset
ε

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Uniform u = 222 33.8 51.0 59.4 64.0 66.5 68.1 68.6 67.4 68.8 75.4 66.7 33.3
Uniform u = 232 65.8 67.5 68.3 68.8 68.9 69.0 69.4 69.4 68.7 68.5 66.7 75.0
Zipf s = 1 47.9 54.7 59.0 61.5 62.8 60.3 44.7 33.7 29.0 28.5 27.9 28.0
Zipf s = 2 45.3 44.7 40.2 31.5 24.2 21.8 20.8 20.5 21.6 19.7 21.3 20.8
Lognormal σ = 0.5 66.1 67.6 68.5 68.8 68.8 68.0 62.1 46.4 35.6 32.5 30.0 29.9
Lognormal σ = 1.0 66.1 67.6 68.4 68.8 69.0 68.1 61.9 43.5 34.5 32.2 30.1 30.3

Weblogs 40.1 45.7 49.8 52.7 54.3 54.3 53.7 51.0 46.1 46.1 44.7 35.1
Longitude 59.3 63.3 62.2 56.2 49.9 45.8 43.4 40.6 38.4 38.8 38.0 39.0
IoT 46.1 48.5 50.7 47.9 46.8 41.0 37.7 44.0 43.4 34.7 30.3 58.3

We also generated some synthetic datasets according to
the uniform distribution in the interval [0, u), to the Zipf
distribution with exponent s, and to the lognormal distri-
bution with standard deviation σ.

7.1 Space occupancy of the PGM-index
In this set of experiments, we estimated the size of

the optimal PLA-model (see Section 2.1) returned by
our implementation of [39], which provides the segments
stored in the bottom level of the PGM-index, and com-
pared it against the non-optimal PLA-model computed
with the greedy shrinking cone algorithm used in the
FITing-tree [17]. This comparison is important because
the size of a PLA-model is the main factor impacting the
space footprint of a learned index based on linear models.

Table 2 shows that on synthetic datasets of 109 keys the
improvements (i.e. relative change in the number of seg-
ments) ranged from 20% to 75%. The same table confirms
these trends also for real-world datasets, on which the im-
provements ranged from 30% to 63%. For completeness,
we report that the optimal algorithm with ε = 8 built a
PLA-model for Web logs in 2.59 seconds, whereas it took
less than 1 second for Longitude and IoT datasets. This
means that the optimal algorithm of Section 2.1 can scale
very fast to even larger datasets.

Since it appears difficult to prove a mathematical rela-
tionship between the number of input keys and the num-
ber of ε-approximate segments (other than the rather loose
bound we proved in Lemma 2), we pursued an empirical in-
vestigation on this relation because it quantifies the space
improvement of learned indexes with respect to classic in-
dexes. Figure 3 shows that, even when ε is as little as 8, the
(minimum) number m of segments is at least two orders of
magnitude smaller than the original datasets size n. This
reduction gets impressively evident for larger values of ε,
reaching five orders of magnitude.

7.2 Query performance of the PGM-index
We evaluated the query performance of the PGM-index

and other indexing data structures on Web logs dataset,
the biggest and most complex dataset available to us (see
Table 2). We have dropped the comparison against the
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Figure 3: A log-log plot with the ratio between
the number of segments m, stored in the last level
of a PGM-index, and the size n of the real-world
datasets as a function of ε. For comparison, the plot
shows with a dashed line the function 1/(2ε) which
is the fraction of the number of keys stored in the
level above the input data of B+-tree with B = 2ε
(see text). Note that m is 2–5 orders of magnitude
less than n.

FITing-tree, because of the evident structural superiority
of the PGM-index and its indexing of the optimal (mini-
mum) number of segments in the bottom level. Nonethe-
less, we investigated the performance of some variants of
the PGM-index to provide a clear picture of the improve-
ments determined by its recursive indexing, compared to
the classic approaches based on multiway search trees (à la
FITing-tree), CSS-tree [33] or B+-tree.

In this experiment, the dataset was loaded in memory as
a contiguous array of integers represented with 8 bytes and
with 128 bytes payload. Slopes and intercepts were stored
as double-precision floats. Each index was presented with
10M queries randomly generated on-the-fly. The next three
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Figure 4: The (recursive) PGM-index, depicted as
a pentagon, had better space and time performance
than all the other configurations. For ε > 256 all
the three configurations behaved similarly because
the index was so small to fit into the L2 cache.

paragraphs present, respectively, the query performance of
the three indexing strategies for the PGM-index, a compar-
ison between the PGM-index and traditional indexes, and
a comparison between the PGM-index and the RMI [22]
under this experimental scenario.

PGM-index variants. The three indexing strategies ex-
perimented for the PGM-index are binary search, multiway
tree (specifically, we implemented the CSS-tree) and our
novel recursive construction (see Section 2.2). We refer to
them with PGM◦BIN, PGM◦CSS and PGM◦REC, respec-
tively. We set ε` = 4 for all but the last level of PGM◦REC,
that is the one that includes the segments built over the
input dataset. Likewise, the node size of the CSS-tree
was set to B = 2ε` for a fair comparison with PGM◦REC.
Figure 4 shows that PGM◦REC dominates PGM◦CSS for
ε ≤ 256, and has better query performance than PGM◦BIN.
The advantage of PGM◦REC over PGM◦CSS is also evi-
dent in terms of index height since the former has five levels
whereas the latter has seven levels, thus PGM◦REC experi-
ences a shorter traversal time which is induced by a higher
branching factor (as conjectured in Section 2.2). For ε > 256
all the three strategies behaved similarly because all indexes
were so small that they fit into the L2 cache.

PGM-index vs traditional indexes. We compared the
PGM-index against the cache-efficient CSS-tree and the
B+-tree. For the former, we used our implementation. For
the latter, we chose a well-known library [8, 17, 22].

The PGM-index dominated these traditional indexes, as
shown in Figure 5 for page sizes of 4–16 KiB. Performances
for smaller page sizes were too far (i.e. worse) from the main
plot range and thus are not shown. For example, the fastest
CSS-tree in our machine had page size of 128 bytes, occu-
pied 341 MiB and was matched in query performance by a
PGM◦REC with ε = 128 which occupied only 4 MiB (82.7×
less space). As another example, the fastest B+-tree had
page size of 256 bytes, occupied 874 MiB and was matched
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Figure 5: The PGM-index improved uniformly
RMI with different second-stage sizes and tradi-
tional indexes with different page sizes over all pos-
sible space-time trade-offs. Traditional indexes with
smaller page sizes are not shown because they are
too far from the plot range. For example, the fastest
CSS-tree occupied 341 MiB and was matched in
performance by a PGM-index of only 4 MiB (83×
less space); the fastest B+-tree occupied 874 MiB
and was matched in performance by a PGM-index
which occupied only 87 KiB (four orders of magni-
tude less space). The construction times of CSS-tree
and PGM-index were similar (1.2 and 2.1 seconds,
respectively), whereas RMI took 15× more time.

in query performance by a PGM◦REC with ε = 4096 and
occupying 87 KiB (four orders of magnitude less space).

What is surprising in those plots is the improvement in
space occupancy achieved by the PGM-index which is four
orders of magnitude with respect to the B+-tree and two
orders of magnitude with respect to the CSS-tree. As
stated in Section 1, traditional indexes are blind to the data
distribution, and they miss the compression opportunities
which data trends offer. On the contrary, the PGM-index
is able to uncover previously unknown space-time trade-offs
by adapting to the data distribution through its optimal
PLA-models. For completeness, we report that on the 90.6
GiB of key-payload pairs the fastest CSS-tree took 1.2 sec-
onds to construct, whereas the PGM-index matching its
performance in 82.7× less space took only 0.9 seconds more
(despite using a single-threaded and non-optimised compu-
tation of the PLA-model).

PGM-index vs known learned indexes. Figure 4 and
Table 2 have shown that the PGM-index improves the FIT-
ing-tree (see also the discussion at the beginning of this
section). Here, we complete the comparison against the
other known learned index: namely, the 2-stage RMI which
uses a combination of linear models in its two stages. Fig-
ure 5 shows that the PGM-index dominates RMI, it has
indeed better latency guarantees because, instead of fix-
ing the structure beforehand and inspecting the errors af-
terwards, it is dynamically and optimally adapted to the
input data distribution while guaranteeing the desired ε-
approximation and using the least possible space. The most
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Figure 6: The Dynamic PGM-index was 13–71%
faster than the B+-tree in the vast majority of work-
loads, and it reduced the space of the four B+-trees
by 3891×, 2051×, 1140×, 611×, respectively.

compelling evidence is the Mean Absolute Error (MAE) be-
tween the approximated and the predicted position, e.g., the
PGM-index with ε = 512 needed about 32K segments and
had MAE 226±139, while an RMI with the same number of
second stage models (i.e. number of models at the last level)
had MAE 892±3729 (3.9×± 26.8× more). This means that
RMI experienced a higher and less predictable latency in
the query execution. We report that the fastest RMI took
30.4 seconds to construct, whereas the PGM-index took
only 2.1 seconds (14.5× less).

Discussion. Overall, the experiments have shown that
the PGM-index is fast in construction (less than 3 seconds
to index a real-world table of 91 GiB with 715M key-value
pairs) and has space footprint that is up to 75% lower than
what is achieved by a state-of-the-art FITing-tree. More-
over, the PGM-index dominated in space and time both
the traditional and other learned index structures (e.g. the
RMI). In particular, it improved the space footprint of the
CSS-tree by a factor 82.7× and of the B+-tree by more
than four orders of magnitude, while achieving the same or
even better query efficiency.

7.3 Dynamic PGM-index
To experiment with insertions and deletions, we gener-

ated a dataset of 109 unique 8-byte keys from u(0, 1012) and
associated with each key an 8-byte value. We simulated a
dynamic scenario by generating a random batch of 10M op-
erations of which a fraction are queries, and the remaining
fraction is split equally between inserts and deletes. All in-
serts are of new keys. For both queries and deletes, half of
them refers to keys in the dataset and the other half to newly
inserted items. Similarly to what we did in Section 7.2, we
randomly pick the next operation from the batch instead of
processing the batch sequentially. This avoids the unreal-
istic scenario in which all operations are known in advance
and the processor speculatively executes the following oper-
ations in the batch. We fixed the ε of the PGM-index to 64
and compared it against the B+-tree (since both the RMI
and the CSS-tree do not support insertions and deletions).
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Figure 7: Slope compression reduced the space
taken by the slopes by up to 81%. Longitude is
the only dataset on which compression did not help
for ε ≥ 29 because of its special features.

Figure 6 shows that the Dynamic PGM-index improved
by 13–71% the latency of the B+-tree for the vast majority
of query frequencies. The only query frequencies on which
it was slower than the best-performing B+-tree, i.e. the
one with 512-byte pages, were 0.8 (1.0% slower) and 0.9
(15.2% slower). Overall, it is interesting to notice the la-
tency trends of both data structures. On the one hand, in
write-heavy workloads, the Dynamic PGM-index is better,
whilst the B+-tree pays the cost of node splits and merges.
On the other hand, in read-heavy workloads, the B+-tree
is less penalised by those node operations and reaches simi-
lar, if not better, performance to the Dynamic PGM-index.
The only exception to this latency trend occurs for a batch
of only queries, on which the Dynamic PGM-index out-
performs the B+-tree because it is equivalent to a static
PGM-index on the bulk-loaded input data.

Finally, we report that on average over the eleven query
frequencies, the Dynamic PGM-index occupied 1.38 MiB,
while B+-trees with 128-, 256-, 512- and 1024-byte pages
occupied 5.26 GiB (3890.8× more), 2.77 GiB (2050.6×),
1.54 GiB (1140.2×) and 0.83 GiB (611.1×), respectively.

7.4 Compressed PGM-index
We investigated the effectiveness of the compression tech-

niques proposed in Section 4. Table 3 shows that the slope
compression algorithm reduced the number of distinct slopes
significantly, up to 99.94%, while still preserving the same
optimal number of segments. As far as the space occupancy
is concerned, and considering just the last level of a PGM-
index which is the largest one, the reduction induced by
the compression algorithm was up to 81.2%, as shown in
Figure 7. Note that in the Longitude datasets for ε ≥ 29

the slope compression is not effective enough. As a result,
the mapping from segments to the slopes table causes an
overhead that exceeds the original space occupancy of the
segments. Clearly, a real-world application would turn off
slope compression in such situations.

Afterwards, we measured the query performance of the
Compressed PGM-index in which compression was acti-
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vated over the intercepts and the slopes of the segments
of all the levels. Table 4 shows that, with respect to the
corresponding PGM-index, the space footprint is reduced
by up to 52.2% at the cost of moderately slower queries (no
more than 24.5%).

Table 3: Reduction in the number of distinct slopes
by the slope compression algorithm of Theorem 3.

Dataset
ε

8 32 128 512 2048

Weblogs 99.9 99.5 96.9 85.7 56.6
Longitude 99.2 89.0 52.6 12.8 1.3
IoT 98.4 93.2 80.7 68.0 54.4

Table 4: Query performance of the Compressed
PGM-index with respect to the PGM-index.

ε = 64 128 256 512 1024 2048

Space saving (%) 52.2 50.8 48.5 46.0 41.5 35.5
Time loss (%) 13.7 22.6 24.5 15.1 11.7 9.9

7.5 Multicriteria PGM-index
Our implementation of the Multicriteria PGM-index op-

erates in two modes: the time-minimisation mode (shortly,
min-time) and the space-minimisation mode (shortly, min-
space), which implement the algorithms described in Sec-
tion 6. In min-time mode, inputs to the program are smax

and a tolerance tol on the space occupancy of the solution,
and the output is the value of the error ε which guarantees
a space bound smax± tol . In min-space mode, inputs to the
program are tmax and a tolerance tol on the query time of
the solution, and the output is the value of the error ε which
guarantees a time bound tmax± tol in the query operations.
We note that the introduction of a tolerance parameter al-
lows us to stop the search earlier as soon as any further step
would not appreciably improve the solution (i.e., we seek
only improvements of several bytes or nanoseconds). So tol
is not a parameter that has to be tuned but rather a stopping
criterion like the ones used in iterative methods.

To model the space occupancy of a PGM-index, we stud-
ied empirically the behaviour of the number of segments
mopt = sL(ε) forming the optimal PLA-model, by vary-
ing ε and by fitting ninety different functions over about
two hundred points (ε, sL(ε)) computed beforehand on our
real-world datasets. Looking at the fittings, we chose to
model sL(ε) with a power-law having the form aε−b. As fur-
ther design choices we point out that: (i) the fitting of the
power-law was performed with the Levenberg-Marquardt al-
gorithm, while root-finding was performed with Newton’s
method; (ii) the search space for ε was set to E = [8, n/2]
(since a cache line holds eight 64-bit integers); and finally
(iii) the number of guesses was set to 2dlog log Ee.

The following experiments were executed by addressing
some use cases in order to show the efficacy and efficiency
of the Multicriteria PGM-index.

Experiments with the min-time mode. Suppose that a
database administrator wants the most efficient PGM-index

for the Web logs dataset that fits into an L2 cache of 1 MiB.
Our solver derived a PGM-index with minimum query la-
tency and that space bound by setting ε = 393 and taking
10 iterations in 19 seconds. This result was obtained by
approximating sL(ε) with the power-law 46032135 · ε−1.16

which guaranteed a mean squared error of no more than
4.8% over the range ε ∈ [8, 1024].

As another example, suppose that a database administra-
tor wants the most efficient PGM-index for the Longitude
dataset that fits into an L1 cache of 32 KiB. Our solver de-
rived a PGM-index with minimum query latency and that
space bound by setting ε = 1050 and taking 14 iterations in
9 seconds.

Experiments with the min-space mode. Suppose that
a database administrator wants the PGM-index for the IoT
dataset with the lowest space footprint that answers any
query in less than 500 ns. Our solver derived an optimal
PGM-index matching that time bound by setting ε = 432,
occupying 74.55 KiB of space, and taking 9 iterations and a
total of 6 seconds.

As another example, suppose that a database adminis-
trator wants the most compressed PGM-index for the Web
logs dataset that answers any query in less than 800 ns. Our
solver derived an optimal PGM-index matching that time
bound by setting ε = 1217, occupying 280.05 KiB of space,
and taking 8 iterations and a total of 17 seconds.

Discussion. In contrast to the FITing-tree and the RMI,
the Multicriteria PGM-index can trade efficiently query
time with space occupancy, making it a promising approach
for applications with rapidly-changing data distributions and
space/time constraints. Overall, in both modes, our ap-
proach ran in less than 20 seconds.

8. CONCLUSIONS AND FUTURE WORK
We have introduced the PGM-index, a learned data struc-

ture for the fully-dynamic indexable dictionary problem that
improves the query/update performance and the space oc-
cupancy of both traditional and modern learned indexes
up to several orders of magnitude. We have also designed
three variants of the PGM-index: one that improves its
already succinct space footprint using ad-hoc compression
techniques, one that adapts itself to the query distribution,
and one that efficiently optimises itself within some user-
given constraint on the space occupancy or the query time.

We leave as future work the implementation and experi-
mentation of the Distribution-Aware PGM-index and the
study of a mapping between the input keys and the space oc-
cupancy of the resulting index (which besides the theoretical
importance would boost the performance of our Multicrite-
ria PGM-index). Additional opportunities include the in-
tegration and the experimentation of the PGM-index into
a real DBMS, especially in the external-memory scenario,
and the study of alternative implementations (e.g. with the
use of SIMD instructions in the search/update algorithms).
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