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ABSTRACT

There is growing interest in graph pattern mining (GPM)
problems such as motif counting. GPM systems have been
developed to provide unified interfaces for programming al-
gorithms for these problems and for running them on par-
allel systems. However, existing systems may take hours to
mine even simple patterns in moderate-sized graphs, which
significantly limits their real-world usability.

We present Pangolin, an efficient and flexible in-memory
GPM framework targeting shared-memory CPUs and GPUs.
Pangolin is the first GPM system that provides high-level
abstractions for GPU processing. It provides a simple pro-
gramming interface based on the extend-reduce-filter model,
which allows users to specify application specific knowledge
for search space pruning and isomorphism test elimination.
We describe novel optimizations that exploit locality, re-
duce memory consumption, and mitigate the overheads of
dynamic memory allocation and synchronization.

Evaluation on a 28-core CPU demonstrates that Pangolin
outperforms existing GPM frameworks Arabesque, RStream,
and Fractal by 49x, 88x, and 80x on average, respectively.
Acceleration on a V100 GPU further improves performance
of Pangolin by 15x on average. Compared to state-of-the-
art hand-optimized GPM applications, Pangolin provides
competitive performance with less programming effort.
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1. INTRODUCTION

Applications that use graph data are becoming increas-
ingly important in many fields. Graph analytics algorithms
such as PageRank and SSSP have been studied extensively
and many frameworks have been proposed to provide both
high performance and high productivity |65} 62, |70l 78]. An-
other important class of graph problems deals with graph
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pattern mining (GPM), which has plenty of applications in
areas such as chemical engineering [29], bioinformatics (5]
25), and social sciences [35]. GPM discovers relevant pat-
terns in a given graph. One example is triangle counting,
which is used to mine graphs in security applications [87].
Another example is motif counting [68} 12|, which counts
the frequency of certain structural patterns; this is useful in
evaluating network models or classifying vertex roles. Fig.
illustrates the 3-vertex and 4-vertex motifs.

Compared to graph analytics, GPM algorithms are more
difficult to implement on parallel platforms; for example, un-
like graph analytics algorithms, they usually generate enor-
mous amounts of intermediate data. GPM systems such as
Arabesque [84], RStream (88|, and Fractal |30] have been
developed to provide abstractions for programmability. In-
stead of the vertex-centric model used in graph analytics
systems [65], Arabesque proposed an embedding-centric pro-
gramming model. In Arabesque, computation is applied
on individual embeddings (i.e., subgraphs) concurrently. It
provides a simple programming interface that substantially
reduces the complexity of application development. How-
ever, existing systems suffer dramatic performance loss com-
pared to hand-optimized implementations. For example,
Arabesque and RStream take 98s and 39s respectively to
count 3-cliques for a graph with 2.7M vertices and 28M
edges, while a custom solver (KClist) [26] counts it in 0.16s.
This huge performance gap significantly limits the usability
of existing GPM frameworks in real-world applications.

The first reason for this poor performance is that exist-
ing GPM systems provide limited support for application-
specific customization. The state-of-the-art systems focus
on generality and provide high-level abstraction to the user
for ease-of-programming. Therefore, they hide as many ex-
ecution details as possible from the user, which substantially
limits the flexibility for algorithmic customization. The com-
plexity of GPM algorithms is primarily due to combinato-
rial enumeration of embeddings and isomorphism tests to
find canonical patterns. Hand-optimizing implementations
exploit application-specific knowledge to aggressively prune
the enumeration search space or elide isomorphism tests or
both. Mining frameworks need to support such optimiza-
tions to match performance of hand-optimized applications.

The second reason for poor performance is inefficient im-
plementation of parallel operations and data structures. Pro-
gramming parallel processors requires exploring trade-offs
between synchronization overhead, memory management,
load balancing, and data locality. However, the state-of-
the-art GPM systems target either distributed or out-of-
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Figure 1: 3-vertex motifs (top) and 4-vertex
motifs (bottom).

core platforms, and thus are not well optimized for shared-
memory multicore/manycore architectures.

In this paper, we present Pangolin, an efficient in-memory
GPM framework that provides a flexible embedding-centric
programming interface. Pangolin is based on the extend-
reduce-filter model, which enables application-specific cus-
tomization (Section . Application developers can imple-
ment aggressive pruning strategies to reduce the enumera-
tion search space, and apply customized pattern classifica-
tion methods to elide generic isomorphism tests (Section [4)).

To make full use of parallel hardware, we optimize parallel
operations and data structures, and provide helper routines
to the users to compose higher level operations. Pangolin
is built as a lightweight layer on top of the Galois [70| par-
allel library and LonestarGPU [1§| infrastructure, targeting
both shared-memory multicore CPUs and GPUs. Pangolin
includes novel optimizations that exploit locality, reduce
memory consumption, and mitigate overheads of dynamic
memory allocation and synchronization (Section ,

Experimental results (Section|6]) on a 28-core CPU demon-
strate that Pangolin outperforms existing GPM frameworks,
Arabesque, RStream, and Fractal, by 49x, 88 x, and 80x on
average, respectively. Furthermore, Pangolin on V100 GPU
outperforms Pangolin on 28-core CPU by 15Xx on average.
Pangolin provides performance competitive to state-of-the-
art hand-optimized GPM applications, but with much less
programming effort. To mine 4-cliques in a real-world web-
crawl graph (gsh) with 988 million vertices and 51 billion
vertices, Pangolin takes ~ 6.5 hours on a 48-core Intel Op-
tane PMM machine [39] with 6 TB (byte-addressable) mem-
ory. To the best of our knowledge, this is the largest graph
on which 4-cliques have been mined. In summary, Pangolin
makes the following contributions:

e We investigate the performance gap between state-of-the-
art GPM systems and hand-optimized approaches, and
point out two key features absent in existing systems:
pruning enumeration space and eliding isomorphism tests.
We present a high-performance in-memory GPM system,
Pangolin, which enables application-specific optimizations
and provides transparent parallelism on CPU or GPU. To
the best of our knowledge, it is the first GPM system that
provides high-level abstractions for GPU processing.

We propose novel techniques that enable the user to ag-
gressively prune the enumeration search space and elide
isomorphism tests.

We propose novel optimizations that exploit locality, re-
duce memory usage, and mitigate overheads of dynamic
memory allocation and synchronization on CPU and GPU.
We evaluate Pangolin on a multicore CPU and a GPU
to demonstrate that Pangolin is substantially faster than
existing GPM frameworks. Compared to hand-optimized
applications, it provides competitive performance while
requiring less programming effort.

Figure 2: An example of the GPM problem.
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Figure 3: System overview of
Pangolin (shaded parts).

2. BACKGROUND AND MOTIVATION

We describe GPM concepts, applications, as well as algo-
rithmic and architectural optimizations in state-of-the-art
hand-optimized GPM solvers. Lastly, we point out perfor-
mance limitations of existing GPM frameworks.

2.1 Graph Pattern Mining

In GPM problems, a pattern P is a graph defined by the
user explicitly or implicitly. An explicit definition specifies
the vertices and edges of the graph, whereas an implicit
definition specifies the desired properties of the graph of in-
terest. Given an input graph G and a set of patterns Sy, the
goal of GPM is to find the embeddings, i.e., subgraphs in G
that are isomorphic to any pattern P € S,. For explicit-
pattern problems (e.g., triangle counting), the solver finds
only the embeddings. For implicit-pattern problems (e.g.,
frequent subgraph mining), the solver needs to find the pat-
terns as well as the embeddings. Note that graph pattern
matching [36] finds embeddings only for a single explicit-
pattern, whereas graph pattern mining (GPM) (3| [84] solves
both explicit-pattern problems and implicit-pattern prob-
lems. In this work, we focus on connected patterns only.

In the input graph in Fig. 2] colors represent vertex la-
bels, and numbers denote vertex IDs. The 3-vertex pattern
is a blue-red-green chain, and there are four embeddings of
this pattern in the input graph, shown on the right of the
figure. In a specific GPM problem, the user may be inter-
ested in some pattern-specific statistical information (i.e.,
pattern frequency), instead of listing all the embeddings.
The measure of the frequency of P in G, termed support, is
also defined by the user. For example, in triangle counting,
the support is defined as the total count of triangles.

There are two types of GPM problems targeting two types
of embeddings. In a wverter-induced embedding, a set of
vertices is given and the subgraph of interest is obtained
from these vertices and the set of edges in the input graph
connecting these vertices. Triangle counting uses vertex-
induced embeddings. In an edge-induced embedding, a set
of edges is given and the subgraph is formed by including all
the endpoints of these edges in the input graph. Frequent
subgraph mining (FSM) is an edge-induced GPM problem.

A GPM algorithm enumerates embeddings of the given
pattern(s). If duplicate embeddings exist (automorphism),
the algorithm chooses one of them as the canonical one
(namely canonical test) and collects statistical information
about these canonical embeddings such as the total count.
The canonical test needs to be performed on each embed-
ding, and can be complicated and expensive for complex
problems such as FSM. Enumeration of embeddings in a
graph grows exponentially with the embedding size (num-
ber of vertices or edges in the embedding), which is com-
putationally expensive and consumes lots of memory. In
addition, a graph isomorphism (GI) test is needed for each



embedding to determine whether it is isomorphic to a pat-
tern. Unfortunately, the GI problem is not solvable in poly-
nomial time [37]. It leads to compute and memory intensive
algorithms [51] that are time-consuming to implement.

Graph analytics problems typically involve allocating and
computing labels on vertices or edges of the input graph
iteratively. On the other hand, GPM problems involve gen-
erating embeddings of the input graph and analyzing them.
Consequently, GPM problems require much more memory
and computation to solve. The memory consumption is not
only proportional to the graph size, but also increases expo-
nentially as the embedding size increases [84]. Furthermore,
GPM problems require compute-intensive operations, such
as isomorphism test and automorphism test on each embed-
ding. Thus, GPM algorithms are more difficult to develop,
and conventional graph analytics systems [34} |76, |60, [53|
45| 123, 41} (92 |27, |28] are not sufficient to provide a good
trade-off between programmability and efficiency.

2.2 Hand-Optimized GPM Applications

We consider 4 applications: triangle counting (TC), clique
finding (CF), motif counting (MC), and frequent subgraph
mining (FSM). Given the input graph which is undirected,
TC counts the number of triangles while CF enumerates all
complete subgraphs EI (i.e., cliques) contained in the graph.
TC is a special case of CF as it counts 3-cliques. MC counts
the number of occurrences (i.e., frequency) of each struc-
tural pattern (also known as motif or graphlet). As listed
in Fig. [1} k-clique is one of the patterns in k-motifs. FSM
finds frequent patterns in a labeled graph. A minimum sup-
port o is provided by the user, and all patterns with support
above o are considered to be frequent and must be discov-
ered. Note that a widely used support for FSM is minimum
image-based (MNI) support (a.k.a. domain support), which
has the anti-monotonic property El It is calculated as the
minimum number of distinct mappings for any vertex (i.e.,
domain) in the pattern over all embeddings of the pattern.
In Fig. |2} the MNI support of the pattern is min{3,2,1} = 1.

Several hand-optimized implementations exist for each of
these applications on multicore CPU |79 4] |31, 17} |83,
GPU [42, 59, 61}, |52], distributed CPU [81} (38, |82], and
multi-GPU [46, |44} |73]. They employ application-specific
optimizations to reduce algorithm complexity. The com-
plexity of GPM algorithms is primarily due to two aspects:
combinatorial enumeration and isomorphism test. There-
fore, hand-optimized implementations focus on either prun-
ing the enumeration search space or eliding isomorphism test
or both. We describe some of these techniques briefly below.

Pruning Enumeration Search Space: In general GPM
applications, new embeddings are generated by extending
existing embeddings and then they may be discarded be-
cause they are either not interesting or a duplicate (auto-
morphism). However, in some applications like CF [26],
duplicate embeddings can be detected eagerly before ex-
tending current embeddings, based on properties of the cur-
rent embeddings. We term this optimization as eager prun-
ing. Eager pruning can significantly reduce the search space.
Furthermore, the input graphs are converted into directed

A k-vertex complete subgraph is a connected subgraph in which each
vertex has degree of k — 1 (i.e., any two vertices are connected).
2The support of a supergraph should not exceed the support of a sub-
graph; this allows the GPM algorithm to stop extending embeddings
as soon as they are recognized as infrequent.
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acyclic graphs (DAGs) in state-of-the-art TC [46], CF [26],
and MC |71] solvers, to significantly reduce the search space.

Eliding Isomorphism Test: In most hand-optimized
TC, CF, and MC solvers, isomorphism test is completely
avoided by taking advantage of the pattern characteristics.
For example, a parallel MC solver, PGD [4], uses an ad-hoc
method for a specific k. Since it only counts 3-vertex and 4-
vertex motifs, all the patterns (two 3-motifs and six 4-motifs
as shown in Fig. [1)) are known in advance. Therefore, some
special (and thus easy-to-count) patterns (e.g., cliques’|) are
counted first, and the frequencies of other patterns are ob-
tained in constant time using the relationship among pat-
ternsﬂ In this case, no isomorphism test is needed, which is
typically an order-of-magnitude faster [4].

Summary: Most of the algorithmic optimizations ex-
ploit application-specific knowledge, which can only be en-
abled by application developers. A generic GPM framework
should be flexible enough to allow users to compose as many
of these optimization techniques as possible, and provide
parallelization support for ease of programming. Pangolin
is the first GPM framework to do so.

2.3 Existing GPM Frameworks

Existing GPM systems target either distributed-memory
[841 [30L |47] or out-of-core [88] 91} [66] platforms, and they
make tradeoffs specific for their targeted architectures. None
of them target in-memory GPM on a multicore CPU or a
GPU. Consequently, they do not pay much attention to re-
ducing the synchronization overheads among threads within
a CPU/GPU or reducing memory consumption overheads.
Due to this, naively porting these GPM systems to run on a
multicore CPU or GPU would lead to inefficient implemen-
tations. We first describe two of these GPM systems briefly
and then discuss their major limitations.

Arabesque [84] is a distributed GPM system. It proposes
“think like an embedding” (TLE) programming paradigm,
where computation is performed in an embedding-centric
manner. It defines a filter-process computation model which
consists of two functions: (1) filter, which indicates whether
an embedding should be processed and (2) process, which
examines an embedding and may produce some output.

RStream [88] is an out-of-core single-machine GPM sys-
tem. Its programming model is based on relational algebra.
Users specify how to generate embeddings using relational
operations such as select, join, and aggregate. It stores
intermediate data (i.e., embeddings) on disk while the input
graph is kept in memory for reuse. It streams data (or table)
from disk and uses relational operations that may produce
more intermediate data, which is stored back on disk.

Limitations in API: Most of the application-specific op-
timizations like pruning enumeration search space and avoid-
ing isomorphism test are missing in existing GPM frame-
works, as they focus on providing high-level abstractions but
lack support for application-specific customization. The ab-
sence of such key optimizations in existing systems results in
a huge performance gap when compared to hand-optimized
implementations. Moreover, some frameworks like RStream
support only edge-induced embeddings but for applications

3Cliques can be identified by checking connectivity among vertices
without generic isomorphism test.

4For example, the count of diamonds can be computed directly from
the counts of triangles and 4-cliques [4].



like CF, the enumeration search space is much smaller using
vertex-induced exploration than edge-induced one.

Data Structures for Embeddings: Data structures
used to store embeddings in existing GPM systems are not
efficient. Both Arabesque and RStream store embeddings
in an array of structures (AoS), where the embedding struc-
tures consists of a vertex set and an edge set. Arabesque also
proposes a space efficient data structure called the Overap-
prozimating Directed Acyclic Graph (ODAG), but it requires
extra canonical test for each embedding, which has been
demonstrated to be very expensive for large graphs [84].

Materialization of Data Structures: The list or array
of intermediate embeddings in both Arabesque and RStream
is always materialized in memory and in disk, respectively.
This has significant overheads as the size of such data grows
exponentially. Such materialization may not be needed if
the embeddings can be filtered or processed immediately.

Dynamic Memory Allocation: As the number of (in-
termediate) embeddings are not known before executing the
algorithm, memory needs to be allocated dynamically for
them. Moreover, during parallel execution, different threads
might allocate memory for embeddings they create or enu-
merate. Existing systems use standard (std) maps and sets,
which internally use a global lock to dynamically allocate
memory. This limits the performance and scalability.

Summary: Existing GPM systems have limitations in
their API, execution model, and implementation. Pangolin
addresses these issues by permitting application-specific op-
timizations in its API, optimizing the execution model, and
providing an efficient, scalable implementation on multicore
CPU and GPU. These optimizations can be applied to ex-
isting embedding-centric systems like Arabesque.

3. DESIGN OF PANGOLIN FRAMEWORK

Fig.[Billustrates an overview of the Pangolin system. Pan-
golin provide a simple API (purple box) to the user for writ-
ing GPM applications. The unified execution engine (orange
box) follows the embedding-centric model. Important com-
mon operations are encapsulated and provided to the user
in the helper routines (blue box), which are optimized for
both CPU and GPU. The embedding list data structure
(green box) is also optimized for different architectures to
exploit hardware features. Thus, Pangolin hides most of the
architecture oriented programming complexity and achieves
high performance and high productivity simultaneously. In
this section, we describe the execution model, programming
interface (i.e., API), and example applications of Pangolin.

3.1 Execution Model

Algorithm [I] describes the execution engine in Pangolin
which illustrates our extend-reduce-filter execution model.
To begin with, a worklist of embeddings is initialized with all
the single-edge embeddings (line 4). The engine then works
in an iterative fashion (line 6). In each iteration, i.e., level,
there are three phases: EXTEND (line 8), REDUCE (line 10)
and FILTER (line 12). Pangolin exposes necessary details in
each phase to enable a more flexible programming interface
(Section than existing systems; for example, Pangolin
exposes the EXTEND phase which is implicit in Arabesque.

The EXTEND phase takes each embedding in the input
worklist and extends it with a vertex (vertex-induced) or
an edge (edge-induced). Newly generated embeddings then
form the output worklist for the next level. The embedding

Algorithm 1 Execution Model for Mining

1: procedure MINEENGINE(G(V,E), MAX_SIZE)
2: EmbeddingList in_wl, out_wl

> double buffering

3: PatternMap p_-map

4: INIT(in-wl) > insert single-edge embeddings
5 level + 1

6: while true do

7 out_wl + 0 > clear the new worklist
8: EXTEND (in-wl, out_wl)

9: p-map « 0 > clear the pattern map
10: REDUCE(out_wl, p-map)

11: in_wl < 0 > clear the old worklist
12: FILTER (out_wl, p-map, in_wl)

13: level + level + 1

14: if level = MAX_SIZE - 1 then

15: break > termination condition
16: return in_wl, p-map

size is increased with level until the user defined maximum
size is reached (line 14). Fig. [4] shows an example of the
first iteration of vertex-based extension. The input worklist
consists of all the 2-vertex (i.e., single-edge) embeddings.
For each embedding in the worklist, one vertex is added
to yield a 3-vertex embedding. For example, the first 2-
vertex embedding {0,1} is extended to two new 3-vertex
embeddings {0,1,2} and {0, 1, 3}.

After vertex/edge extension, a REDUCE phase is used to
extract some pattern-based statistical information, i.e., pat-
tern frequency or support, from the embedding worklist. The
REDUCE phase first classifies all the embeddings in the work-
list into different categories according to their patterns, and
then computes the support for each pattern category, form-
ing pattern-support pairs. All the pairs together constitute
a pattern map (p-map in line 10). Fig. [5| shows an exam-
ple of the reduction operation. The three embeddings (top)
can be classified into two categories, i.e., triangle and wedge
(bottom). Within each category, this example counts the
number of embeddings as the support. As a result, we get
the pattern-map as {[triangle, 2], [wedge, 1]}. After reduc-
tion, a FILTER phase may be needed to remove those embed-
dings which the user are no longer interested in; e.g., FSM
removes infrequent embeddings in this phase.

Note that REDUCE and FILTER phases are not necessary
for all applications, and they can be disabled by the user.
If they are used, they are also executed after initializing
single-edge embeddings (line 4) and before entering the main
loop (line 6). Thus, infrequent single-edge embeddings are
filtered out to collect only the frequent ones before the main
loop starts. Note that this is omitted from Algorithm [
due to lack of space. If REDUCE is enabled but FILTER is
disabled, then reduction is only required and executed for
the last iteration, as the pattern map produced by reduction
is not used in prior iterations (dead code).

3.2 Programming Interface

Pangolin exposes flexible and simple interfaces to the user
to express application-specific optimizations. Listing [1] lists
user-defined functions (APIs) and Algorithm [2| describes
how these functions (marked in blue) are invoked by the
Pangolin execution engine. A specific application can be
created by defining these APIs. Note that all the functions
are not mandatory; each of them has a default return value.

In the EXTEND phase, we provide two functions, toAdd
and toExtend, for the user to prune embedding candidates
aggressively. When they return false, the execution engine
avoids generating an embedding and thus the search space
is reduced. More specifically, toExtend checks whether

1193



graph | ombeddngs | emboddings
Oy lIogologo{ogoicJoioto
KL o006 02630
NN fogofoacl
000 -0 TV EE® e

Flgure 4: An example of vertex extension.

Algorithm 2 Compute Phases in Vertex-induced Mining

1: procedure EXTEND(in_wl, out_wl)

2: for each embedding emb € in_wl in parallel do
3: for each vertex v in emb do

4: if TOEXTEND(emb, v) = true then

5: for each vertex u in adj(v) do

6: if TOADD(emb, u) = true then

7: insert emb U u to out_wl

8: procedure REDUCE(queue, p-map)

9: for each embedding emb € queue in parallel do
10: Pattern pt <— GETPATTERN(emb)

11: Support sp < GETSUPPORT(emb)

12: p-map[pt] < AGGREGATE(p-map[pt], sp)

13: procedure FiLTER(in_wl, p_map, out_wl)

14: for each embedding emb € in_wl in parallel do
15: Pattern pt + GETPATTERN(emb)

16: if TODISCARD(pt, p-map) = false then

17: insert emb to out_wl

bool toExtend(Embedding emb, Vertex v);
bool toAdd(Embedding emb, Vertex u)

3 bool toAdd(Embedding emb, Edge e)

1 Pattern getPattern (Embedding emb)

5 Support getSupport (Embedding emb)

Support Aggregate (Support sl, Support s2)
bool toDiscard(Pattern pt, PatternMap map);

Listing 1: User-defined functions in Pangolin.

a vertex in the current embedding needs to be extended.
Extended embeddings can have duplicates due to automor-
phism. Fig. [f] illustrates automorphism: two different em-
beddings (3,5,4) and (2,5,4) can be extended into the same
embedding (2,5,3,4). Therefore, only one of them (the
canonical embedding) should be kept, and the other (the
redundant one) should be removed. This is done by a canon-
ical test in toAdd, which checks whether the newly gener-
ated embedding is a qualified candidate. An embedding is
not qualified when it is a duplicate or it does not have certain
user-defined characteristics. Only qualified embeddings are
added into the next worklist. Application-specific knowledge
can be used to specialize the two functions. If left undefined,
toExtend returns true and toAdd does a default canoni-
cal test. Note that the user specifies whether the embedding
exploration is vertex-induced or edge-induced. The only dif-
ference for edge-induced extension is in lines 5 to 7: instead
of vertices adjacent to v, edges incident on v are used.

In the REDUCE phase, getPattern function specifies how
to obtain the pattern of an embedding. Finding the canon-
ical pattern of an embedding involves an expensive isomor-
phism test. This can be specialized using application-specific
knowledge to avoid such tests. If left undefined, a canoni-
cal pattern is returned by getPattern. In this case, to
reduce the overheads of invoking the isomorphism test, em-
beddings in the worklist are first reduced using their quick
patterns [84], and then quick patterns are aggregated us-
ing their canonical patterns. In addition, get Support and
Aggregate functions specify the support of an embedding
and the reduction operator for the support, respectively.

Lastly, in the FILTER stage, toDiscard is used to remove

Embeddings 039 @&

_________________________ e W
[P 2]

Figure 5: Reduction operation that calcu-
lates pattern frequency using a pattern map.
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1 // connectivity checking routines
2 bool isConnected(Vertex u, Vertex v)

1 // canonical test routines

5 bool isAutoCanonical (Embedding emb, Vertex v)
bool isAutoCanonical (Embedding emb, Edge e)
Pattern getIsoCanonicalBliss (Embedding emb)
Pattern getIsoCanonicalEigen (Embedding emb)

// to get domain (MNI) support
Support getDomainSupport (Embedding emb)
Support mergeDomainSupport (Support sl, Support s2)

12

Listing 2: Helper routines provided to the user by Pangolin.

uninteresting patterns. This usually depends on the support
for the pattern (that is in the computed pattern map).

Complexity Analysis. Consider an input graph G with
n vertices and maximum embedding size k. In the EXTEND
phase of the last level (which dominates the execution time
and complexity), there are up to O(n*~!) embeddings in the
input worklist. Each embedding has up to k — 1 vertices to
extend. Each vertex has up to dmae neighbors (candidates).
In general, each candidate needs to check connectivity with
k — 1 vertices, with a complexity of O(log(dmaz)) (binary
search). An isomorphism test needs to be performed for each
newly generated embedding (size of k) to find its pattern.
The state-of-the-art algorithm to test isomorphism has a
complexity of O(eV*°9%) [8]. Therefore, the overall worst-
case complexity is O(nk*ll~s2almag;log(dmm)ev kl"gk).

Pangolin also provides APIs to process the embeddings
or pattern maps at the end of each phase (e.g., this is used
in clique-listing, which a variant of clique-finding that re-
quires listing all the cliques). We omit this from Algo-
rithm [2| and Listing [1| for the sake of brevity. To imple-
ment the application-specific functions, users are required to
write C++ code for CPU and CUDA __device__ functions
for GPU (compiler support can provide a unified interface
for both CPU and GPU in the future). Listing [2| lists the
helper routines provided by Pangolin. These routines are
commonly used in GPM applications; e.g., to check connec-
tivity, to test canonicality, as well as an implementation of
domain support. They are available on both CPU and GPU,
with efficient implementation on each architecture.

Comparison With Other GPM APIs: Existing GPM
frameworks do not expose toExtend and getPattern to
the application developer (instead, they assume these func-
tions always return true and a canonical pattern, respec-
tively). Note that existing embedding-centric frameworks
like Arabesque can be extended to expose the same API
functions in Pangolin so as to enable application-specific
optimizations (Section , but this is difficult for relational
model based systems like RStream, as the table join opera-
tions are inflexible to allow this fine-grained control.

3.3 Applications in Pangolin

TC, CF, and MC use vertex-induced embeddings, while
FSM uses edge-induced embeddings. Listings [3] to [f] show
CF, MC, and FSM implemented in Pangolin (we omit TC



1 bool toExtend(Embedding emb, Vertex v)
return (emb.getLastVertex() == v);

{

3}

1 bool toAdd(Embedding emb, Vertex u) {

5 for v in emb.getVertices () except last:
if (!isConnected(v, u)) return false;

return true;

6
8 }
Listing 3: Clique finding (vertex induced) in Pangolin.

1 bool toAdd (Embedding emb, Vertex v) {

2 return isAutoCanonical (emb, Vv);

3}

1 Support getSupport (Embedding emb) { return 1;

5 Pattern getPattern (Embedding emb) ({

6 return getIsoCanonicalBliss (emb);

7}

Support Aggregate (Support sl, Support s2)
return sl + s2;

}
Listing 4: Motif counting (vertex induced) in Pangolin.

}

8

{
9
10

due to lack of space). For TC, extension happens only once,
i.e., for each edge (vo,v1), v1 is extended to get a neighbor
v2. We only need to check whether vy is connected to wvo.
If it is, this 3-vertex embedding (vo, v1,v2) forms a triangle.
For CF in Listing[3] the search space is reduced by extending
only the last vertex in the embedding instead of extending
every vertex. If the newly added vertex is connected to all
the vertices in the embedding, the new embedding forms a
clique. Since cliques can only grow from smaller cliques (e.g.,
4-cliques can only be generated by extending 3-cliques), all
the non-clique embeddings are implicitly pruned. Both TC
and CF do not use REDUCE and FILTER phases.

Listing [4] shows MC. An extended embedding is added
only if it is canonical according to automorphism test. In
the REDUCE phase, the quick pattern of each embedding is
first obtained and then the canonical pattern is obtained
using an isomorphism test. In Section [4.2] we show a way
to customize this pattern classification method for MC to
improve performance. FILTER phase is not used by MC.

FSM is the most complicated GPM application. As shown
in Listing[f] it uses the custom domain support routines pro-
vided by Pangolin. An extended embedding is added only
if the new embedding is (automorphism) canonical. FSM
uses the FILTER phase to remove embeddings whose pat-
terns are not frequent from the worklist. Despite the com-
plexity of FSM, the Pangolin implementation is still much
simpler than hand-optimized FSM implementations [82} |1,
32], thanks to the Pangolin API and helper routines.

4. SUPPORTING APPLICATION-SPECIFIC
OPTIMIZATIONS IN PANGOLIN

In this section, we describe how Pangolin’s API and execu-
tion model supports application-specific optimizations that:
(1) enable enumeration search space pruning and (2) enable
the eliding of isomorphism tests.

4.1 Pruning Enumeration Search Space

Directed Acyclic Graph (DAG): In typical GPM ap-
plications, the input graph is undirected. In some vertex-
induced GPM applications, a common optimization tech-
nique is orientation which converts the undirected input
graph into a directed acyclic graph (DAG) (24, [6]. In-
stead of enumerating candidate subgraphs in an undirected
graph, the direction significantly cuts down the combinato-
rial search space. Orientation has been adopted in triangle
counting [74], clique finding [26], and motif counting [71].
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bool toAdd(Embedding emb, Edge e) {
return isAutoCanonical (emb,e)

}

Support getSupport (Embedding emb) {
return getDomainSupport (emb) ;

}

Pattern getPattern (Embedding emb) {
return getIsoCanonicalBliss (emb);

}

Support Aggregate (Support sl, Support s2)
return mergeDomainSupport (sl, s2);

}

bool toDiscard(Pattern pt, PatternMap map) {
return map[pt] < MIN_SUPPORT;

10
11

12

{

13
14
15 }

Listing 5: Frequent subgraph mining (edge induced).

G’lﬂ

.
p—_—
.

(a) wedge to
4-cycle

(b) triangle to
diamond

Figure 7: Convert an undi-
rected graph into a DAG.

Figure 8: Examples of eliding
isomorphism test for 4-MC.

Fig. [7] illustrates an example of the DAG construction pro-
cess. In this example, vertices are ordered by vertex ID.
Edges are directed from vertices with smaller IDs to ver-
tices with larger IDs. Generally, vertices can be ordered
in any total ordering, which guarantees the input graph is
converted into a DAG. In our current implementation, we
establish the order |44] among the vertices based on their
degrees: each edge points to the vertex with higher degree.
When there is a tie, the edge points to the vertex with larger
vertex ID. Other orderings can be included in the future. In
Pangolin, orientation is enabled by setting a flag at runtime.

Eager Pruning: In some applications like MC and FSM,
all vertices in an embedding may need to be extended before
determining whether the new embedding candidate is a (au-
tomorphism) canonical embedding or a duplicate. However,
in some applications like TC and CF [26], duplicate em-
beddings can be detected eagerly before extending current
embeddings. In both TC and CF, all embeddings obtained
by extending vertices except (the last) one will lead to du-
plicate embeddings. Thus, as shown in Listing [3] only the
last vertex of the current embedding needs to be extended.
This aggressive pruning can significantly reduce the search
space. The toExtend function in Pangolin enables the user
to specify such eager pruning.

4.2 Eliding Isomorphism Test

Exploiting Memoization: Pangolin avoids redundant
computation in each stage with memoization. Memoiza-
tion is a tradeoff between computation and memory usage.
Since GPM applications are usually memory hungry, we only
do memoization when it requires small amount of memory
and/or it dramatically reduce complexity. For example, in
the FILTER phase of FSM, Pangolin avoids isomorphism test
to get the pattern of each embedding, since it has been done
in the REDUCE phase. This recomputation is avoided by
maintaining a pattern ID (hash value) in each embedding
after isomorphism test, and setting up a map between the
pattern ID and pattern support. Compared to isomorphism
test, which is extremely compute and memory intensive,
storing the pattern ID and a small pattern support map is
relatively lightweight. In MC, which is another application
to find multiple patterns, the user can easily enable memo-



1 Pattern getPattern (Embedding emb) {

2 if (emb.size() == 3) {
if (emb.getNumEdges () == 3) return P1l;
A else return PO;

5 } else return getIsoCanonicalBliss (emb) ;
6}
Listing 6: Customized pattern classification for 3-MC.

ization for the pattern id in each level. In this case, when
it goes to the next level, the pattern of each embedding can
be identified with its pattern id in the previous level with
much less computation than a generic isomorphism test. As
shown in Fig. 8] to identify a 4-cycle from a wedge or a di-
amond from a triangle, we only need to check if vertex 3 is
connected to both vertex 1 and 2.

Customized Pattern Classification: In the REDUCE
phase (Fig. [5), embeddings are classified into different cat-
egories based on their patterns. To get the pattern of an
embedding, a generic way is to convert the embedding into
a canonical graph that is isomorphic to it (done in two steps,
as explained in Section . Like Arabesque and RStream,
Pangolin uses the Bliss [51] library for getting the canonical
graph or pattern for an embedding. This graph isomorphism
approach is applicable to embeddings of any size, but it is
very expensive as it requires frequent dynamic memory allo-
cation and consumes a huge amount of memory. For small
embeddings, such as 3-vertex and 4-vertex embeddings in
vertex-induced applications and 2-edge and 3-edge embed-
dings in edge-induced applications, the canonical graph or
pattern can be computed very efficiently. For example, we
know that there are only 2 patterns in 3-MC (i.e., wedge and
triangle in Fig. . The only computation needed to differ-
entiate the two patterns is to count the number of edges
(i.e., a wedge has 2 edges and a triangle has 3), as shown
in Listing @ This specialized method significantly reduces
the computational complexity of pattern classification. The
getPattern function in Pangolin enables the user to spec-
ify such customized pattern classification.

5. IMPLEMENTATION ON CPU AND GPU

The user implements application-specific optimizations us-
ing the Pangolin API and helper functions, and Pangolin
transparently parallelizes the application. Pangolin provides
an efficient and scalable parallel implementation on both
shared-memory multicore CPU and GPU. Its CPU imple-
mentation is built using the Galois [70] library and its GPU
implementation is built using the LonestarGPU [18] infras-
tructure. Pangolin includes several architectural optimiza-
tions. In this section, we briefly describe some of them: (1)
exploiting locality and fully utilizing memory bandwidth [33|
10, (9]; (2) reducing the memory consumption; (3) mitigating
the overhead of dynamic memory allocation; (4) minimizing
synchronization and other overheads.

5.1 Data Structures for Embeddings

Since the number of possible k-embeddings in a graph in-
creases exponentially with k, storage for embeddings grows
rapidly and easily becomes the performance bottleneck. Most
existing systems use array-of-structures (AoS) to organize
the embeddings, which leads to poor locality, especially for
GPU computing. In Pangolin, we use structure of arrays
(SoA) to store embeddings in memory. The SoA layout
is particularly beneficial for parallel processing on GPU as
memory accesses to the embeddings are fully coalesced.

{0,1,2} L1 L2
O<§§ {0,1,3} idx | vid idx | vid
{0,2,3} 0 > 0|2

O<:8:g {1,2,3} 0 Q 0|3
{1,3,5) 1 N 13

{2,3,5) 1 \ 213
O—@ {254 2 N 2 :
0—0O—® {354 3 N T
O—0 4.5 4 . 6| 4

Figure 9: An example of the embedding list data structure.

Fig. [0 illustrates the embedding list data structure. On
the left is the prefix-tree that illustrates the embedding ex-
tension process in Fig.[d] The numbers in the vertices are
vertex IDs (VIDs). Orange VIDs are in the first level L,
and blue VIDs belong to the second level Ly. The gray level
Lo is a dummy level which does not actually exist but is
used to explain the key ideas. On the right, we show the
corresponding storage of this prefix tree. For simplicity, we
only show the vertex-induced case. Given the maximum size
k, the embedding list contains k — 1 levels. In each level,
there are two arrays, index array (idx) and vertex ID array
(vid). In the same position of the two arrays, an element
of index and vertex ID consists of a pair (idx, vid). In
level L;, idx is the index pointing to the vertex of the same
embedding in the previous level L;_;, and vid is the ¢-th
vertex ID of the embedding.

Each embedding can be reconstructed by backtracking
from the last level lists. For example, to get the first embed-
ding in level Ly, which is a vertex set of {0, 1,2}, we use an
empty vertex set at the beginning. We start from the first
entry (0, 2) in L, which indicates the last vertex ID is ‘2’
and the previous vertex is at the position of ‘0’. We put ‘2’
into the vertex set {2}. Then we go back to the previous
level L1, and get the 0-th entry (0, 1). Now we put ‘1’ into
the vertex set {1,2}. Since L; is the lowest level and its
index is the same as the vertex ID in level Lo, we put ‘0’
into the vertex set {0,1,2}.

For the edge-induced case, the strategy is similar but re-
quires one more column his in each level to indicate the
history information. Each entry is a triplet (vid, his, idx)
that represents an edge instead of a vertex, where his indi-
cates at which level the source vertex of this edge is, while
vid is the ID of the destination vertex. In this way we can
backtrack the source vertex with his and reconstruct the
edge connectivity inside the embedding. Note that we use
three distinct arrays for vid, his and idx, which is also
an SoA layout. This data layout can improve temporal lo-
cality with more data reuse. For example, the first vid in
L, (v1) is connected to two vertices in Ly (v2 & wv3). There-
fore v1 will be reused. Considering high-degree vertices in
power-law graphs, there are lots of reuse opportunities.

5.2 Avoiding Data Structure Materialization

Loop Fusion: Existing GPM systems first collect all the
embedding candidates into a list and then call the user-
defined function (like toAdd) to select embeddings from the
list. This leads to materialization of the candidate embed-
dings list. In contrast, Pangolin preemptively discards em-
bedding candidates using the toAdd function before adding
it to the embedding list (as shown in Algorithm [2)), thereby
avoiding the materialization of the candidate embeddings
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Figure 10: Edge blocking. Figure 11: Inspection-execution.

(this is similar to loop fusion in array languages). This sig-
nificantly reduces memory allocations, yielding lower mem-
ory usage and execution time.

Blocking Schedule: Since the memory consumption in-
creases exponentially with the embedding size, existing sys-
tems utilize either distributed memory or disk to hold the
data. However, Pangolin is a shared memory framework
and could run out of memory for large graphs. In order
to support processing large datasets, we introduce an edge-
blocking technique in Pangolin. Since an application starts
expansion with single-edge embeddings, Pangolin blocks the
initial embedding list into smaller chunks, and processes all
levels (main loop in Algorithm [1)) for each chunk one after
another. As shown in Fig. there are n edges in the initial
embedding list (e9 ~ e,—1). Each chunk contains 4 edges
which are assigned to the 2 threads (o ~ t1) to process. Af-
ter all levels of the current chunk are processed, the threads
move to the next chunk and continue processing until all
chunks are processed. The chunk size C; is a parameter
to tune; Cs is typically much larger than the number of
threads. Blocking will not affect parallelism because there
are a large number of edges in each chunk that can be pro-
cessed concurrently. Note that the FILTER phase requires
strict synchronization in each level, so edge-blocking cannot
be applied for applications that use it. For example, we need
to gather embeddings for each pattern in FSM in order to
compute the domain support. Due to this, all embeddings
needs to be processed before moving to the next level, so we
disable blocking for FSM. Currently, edge-blocking is used
specifically for bounding memory usage, but it is also poten-
tially beneficial for data locality with an appropriate block
size. We leave this for future work.

5.3 Dynamic Memory Allocation

Inspection-Execution: Compared to graph analytics
applications, GPM applications need significantly more dy-
namic memory allocations and memory allocation could be-
come a performance bottleneck. A major source of memory
allocation is the embedding list. As the size of embedding
list increases, we need to allocate memory for the embed-
dings in each round. When generating the embedding list,
there are write conflicts as different threads write to the
same shared embedding list. In order to avoid frequent
resize and insert operation, we use inspection-execution
technique to generate the embedding list.

The generation include 3 steps. In the first step, we only
calculate the number of newly generated embeddings for
each embedding in the current embedding list. We then use
parallel prefix sum to calculate the start index for each
current embedding, and allocate the exact amount of mem-
ory for all the new embeddings. Finally, we actually write
the new embeddings to update the embedding list, accord-
ing to the start indices. In this way, each thread can write
to the shared embedding list simultaneously without con-
flicts. Fig. illustrates the inspection process. At level i,

Table 1: Input graphs (symmetric, no loops, no duplicate edges)
and their properties (d is the average degree).

Graph Source # V # E d Labels
Mi Mico [32] 100,000 2,160,312 22 20
Pa Patents |43 2,745,761 27,930,818 10 37
Yo Youtube |22 7,066,392 114,190,484 16 29
Pdb ProteinDB |82 48,748,701 387,730,070 8 25
Lj LiveJournal |58 4,847,571 85,702,474 18 0
Or Orkut |58 3,072,441 234,370,166 76 0
Tw Twitter |56 21,297,772 530,051,090 25 0
Gsh Gsh-2015 |15 988,490,691 51,381,410,236 52 0

there are 4 embeddings eg, €1, e2, e3 in the embedding list,
which will generate 1, 2, 1, 3 new embeddings respectively.
We get the start indices (0, 1, 3, 4) using prefix sum,
and then allocate memory for the level ¢ + 1 embedding list.
Next, each embedding writes generated embeddings from its
start index in the level 7 + 1 list (concurrently).

Although inspection-execution requires iterating over the
embeddings twice, making this tradeoff for GPU is reason-
able for two reasons. First, it is fine for the GPU to do the
recomputation as it has a lot of computation power. Sec-
ond, improving the memory access pattern to better utilize
memory bandwidth is more important for GPU. This is also
a more scalable design choice for the CPU as the number of
cores on the CPU are increasing.

Scalable Allocators: Pattern reduction in FSM is an-
other case where dynamic memory allocation is frequently
invoked. To compute the domain support of each pattern,
we need to gather all the embeddings associated with the
same pattern (see Fig. [2)). This gathering requires resizing
the vertex set of each domain. The C++ standard std li-
brary employs a concurrent allocator implemented by using
a global lock for each allocation, which could seriously limit
performance and scalability. We leverage the Galois mem-
ory allocator to alleviate this overhead. Galois provides an
in-built efficient and concurrent memory allocator that im-
plements ideas from prior scalable allocators [13, |67, |75].
The allocator uses per-thread memory pools of huge pages.
Each thread manages its own memory pool. If a thread has
no more space in its memory pool, it uses a global lock to add
another huge page to its pool. Most allocations thus avoid
locks. Pangolin uses variants of std data structures pro-
vided by Galois that use the Galois memory allocator. For
example, this is used for maintaining the pattern map. On
the other hand, our GPU infrastructure currently lacks sup-
port for efficient dynamic memory allocation inside CUDA
kernels. To avoid frequent resize operations inside kernels,
we conservatively calculate the memory space required and
pre-allocate bit vectors for kernel use. This pre-allocation re-
quires much more memory than is actually required, and re-
stricts our GPU implementation to smaller inputs for FSM.

5.4 Other Optimizations

GPM algorithms make extensive use of connectivity op-
erations for determining how vertices are connected in the
input graph. For example, in k-cliques, we need to check
whether a new vertex is connected to all the vertices in the
current embedding. Another common connectivity opera-
tion is to determine how many vertices are connected to
given vertices vop and v, which is usually obtained by com-
puting the intersection of the neighbor lists of the two ver-
tices. A naive solution of connectivity checking is to search
for one vertex vp in the other vertex vi’s neighbor list se-
quentially. If found, the two vertices are directly connected.
To reduce complexity and improve parallel efficiency, we



Table 2: Execution time (sec) of applications in GPM frameworks on 28-core CPU (option: minimum support for 3-FSM; k for others).
AR, RS, KA, FR, and PA: Arabesque, RStream, Kaleido, Fractal, and Pangolin respectively. ‘-’: out of memory or disk, or timed out
in 30 hours. FR for Yo is omitted due to failed execution. FR does not contain TC. TKA results are reported from their paper.

Mi Pa Yo
App Option | AR RS KAT FR PA | AR RS KAT FR PA AR RS KAT PA
TC 30.8 2.6 0.2 0.02 | 100.8 7.8 0.5 0.08 | 601.3 39.8 2.2 0.3
3 32.2 7.3 0.5 247 0.04 | 978 39.1 0.6 350.2 0.2 | 617.0 862.3 2.2 0.7
CF 4 41.7  637.8 39 306 1.6 | 108.1 62.1 1.1 410.1 0.4 | 1086.9 - 7.8 3.1
5 311.9 - 183.6 488.9  60.5 | 108.8 76.9 1.5 463.5 0.5 | 1123.6 - 19.0 7.3
MC 3 36.1 7137.5 14 412 0.2 | 101.6 3886.9 47 236.3 0.9 | 5384 89387.0 35.5 5.5
4 353.0 - 1982 2432 175.6 | 779.8 - 152.3 561.1 209.1 | 5132.8 - 4989.0 4405.3
300 104.9 56.8 74 7805 3.9 | 340.7  230.1 255 720.3 14.7 | 666.9 1415.1  132.6 96.9
3-FSM 500 72.2 57.9 8.2 773.1 3.6 | 433.6  208.6 264 817.0 15.8 | 576.5 1083.9  133.3 97.8
1000 48.5 52.9 7.8 697.2 3.0 | 347.3  194.0 287 8199 18.1 | 693.2 1179.3  136.2 98.0
5000 36.4 35.6 3.9 396.3 2.4 | 366.1  172.2 31.5 9155 27.0 | 758.6 1248.1 155.0 102.2

generalize the binary search approach proposed for TC [46|
to implement connectivity check in Pangolin. This is par-
ticularly efficient on GPU, as it improves GPU memory effi-
ciency. We provide efficient CPU and GPU implementations
of these connectivity operations as helper routines, such as
isConnected (Listing , which allow the user to easily
compose pruning strategies in applications.

In summary, when no algorithmic optimization is applied,
programming in Pangolin should be as easy as previous
GPM systems like Arabesque. In this case, performance
gains over Arabesque is achieved due to the architectural
optimizations (e.g., data structures) in Pangolin. To incor-
porate algorithmic optimizations, the user can leverage Pan-
golin API functions (e.g., toExtend and toAdd) to express
application-specific knowledge. While this involves slightly
more programming effort, the user can get an order of mag-
nitude performance improvement by doing so.

6. EVALUATION

In this section, we compare Pangolin with state-of-art
GPM frameworks and hand-optimized applications. We also
analyze Pangolin performance in more detail.

6.1 Experimental Setup

We compare Pangolin with state-of-the-art GPM frame-
works: Arabesque [84], RStream [88], G-Miner [19], Kaleido
[91], Fractal [30], and AutoMine [66]. Arabesque, G-Miner,
and Fractal support distributed execution, while the rest
support out-of-core execution. None of them support GPU
execution. Kaleido and AutoMine results are reported from
their papers because they are not publicly available. We also
compare Pangolin with the state-of-the-art hand-optimized
GPM applications |11} 44} |26, 4| 73| [82] |83} |52].

We test the 4 GPM applications discussed in Section [3.3]
ie.,, TC, CF, MC, and FSM. k-MC and k-CF terminate
when subgraphs reach a size of k vertices. For k-FSM, we
mine the frequent subgraphs with £ — 1 edges. Table [1] lists
the input graphs used in the experiments. We assume that
input graphs are symmetric, have no self-loops, and have no
duplicated edges. We represent the input graphs in memory
in a compressed sparse row (CSR) format. The neighbor list
of each vertex is sorted by ascending vertex ID.

The first 3 graphs — Mi, Pa, and Yo — have been previ-
ously used by Arabesque, RStream, and Kaleido. We use the
same graphs to compare Pangolin with these existing frame-
works. In addition, we include larger graphs from SNAP
Collection 58] (Lj, Or), Koblenz Network Collection [56]
(Tw), DistGraph [82](Pdb), and a very large web-crawl |15]
(Gsh). Except Pdb, other larger graphs do not have vertex

labels, therefore, we only use them to test TC, CF, and MC.
Pdb is used only for FSM.

Unless specified otherwise, CPU experiments were con-
ducted on a single machine with Intel Xeon Gold 5120 CPU
2.2GHz, 4 sockets (14 cores each), 190GB memory, and 3TB
SSD. AutoMine was evaluated using 40 threads (with hyper-
threading) on Intel Xeon E5-2630 v4 CPU 2.2GHz, 2 sockets
(10 cores each), 64GB of memory, and 2TB of SSD. Kaleido
was tested using 56 threads (with hyperthreading) on Intel
Xeon Gold 5117 CPU 2.0GHz, 2 sockets (14 cores each),
128GB memory, and 480GB SSD. To make our comparison
fair, we restrict our experiments to use only 2 sockets of our
machine, but we only use 28 threads without hyperthread-
ing. For the largest graph, Gsh, we used a 2 socket ma-
chine with Intel’s second generation Xeon scalable processor
with 2.2 Ghz and 48 cores, equipped with 6TB of Intel Op-
tane PMM [39] (byte-addressable memory technology). Our
GPU platforms are NVIDIA GTX 1080Ti (11GB memory)
and Tesla V100 (32GB memory) GPUs with CUDA 9.0. Un-
less specified otherwise, GPU results reported are on V100.

RStream writes its intermediate data to the SSD, whereas
other frameworks run all applications in memory. We ex-
clude preprocessing time and only report the computation
time (on the CPU or GPU) as an average of 3 runs. We also
exclude the time to transfer data from CPU to GPU as it is
trivial compared to the GPU compute time.

6.2 GPM Frameworks

Table[2]reports the execution time of Arabesque, RStream,
Kaleido, Fractal, and Pangolin. The execution time of G-
Miner and AutoMine is reported in Table and Table E|
respectively (because it does not have other applications or
datasets respectively). Note that Kaleido and AutoMine re-
sults on 28-core and 20-core CPU, respectively, are reported
from their papers. We evaluate the rest on our 28-core CPU,
except that we evaluate Pangolin for gsh on 48-core CPU.
Fractal and AutoMine use DFS exploration [89, 50|, whereas
the rest use BFS. Pangolin is an order-of-magnitude faster
than Arabesque, RStream, Fractal, and G-Miner. Pangolin
outperforms Kaleido in all cases except 4-MC on patent.
Pangolin on CPU is comparable or slower than AutoMine
but outperforms it by exploiting the GPU.

For small inputs (e.g., TC and 3-CF with Mi), Arabesque
suffers non-trivial overhead due to the startup cost of Gi-
raph. For large graphs, however, due to lack of algorithmic
(e.g., eager pruning and customized pattern classification)
and data structure optimizations, it is also slower than Pan-
golin. On average, Pangolin is 49x faster than Arabesque.

For RStream, the number of partitions P is a key perfor-
mance knob. For each configuration, we choose P to be the
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Table 3: Execution time (sec) of Pangolin (PA) and hand-optimized solvers (o: minimum support). PA-GPU and DistTC-GPU are on
V100 GPU; PGD-GPU is on Titan Black GPU; rest are on 28-core CPU. TPGD-GPU results are reported from their paper.

(a) TC. GM: G-Miner. (b) 4-CF. (c) 3-MC.

Input [ G-Miner GAP PA-CPU DistTC-GPU PA-GPU Input | KClist PA-CPU PA-GPU Input | PGD PA-CPU PGD-GPU' PA-GPU
Lj 5.2 0.5 0.6 0.07 0.06 Lj 1.9 26.3 2.3 Lj 12.7 19.5 ~1.4 1.7
or 13.3 4.2 3.9 0.3 0.2 Or 4.1 82.3 4.3 Oor 46.9 175 ~T.7 18.0
Tw 1067.7  40.1 38.8 43 2.9 Tw 628 28165 1509 Tw 1883 9388 1163

d) 3-FSM. DG: DistGraph.
(d) p (e) 4-FSM for Patent.
Mico Patent Youtube PDB
s | DG PA-CPU PA-GPU | DG PA-CPU PA-GPU | DG PA-CPU PA-GPU | DG PA-CPU PA-GPU o DG PA-CPU

300 | 52.2 3.9 0.6 | 19.9 47 2.7 96.9 2814 63.7 - 15K | 129.0 4389
500 | 52.9 3.6 0.5 | 18.7 15.8 2.7 97.7 279.5 65.6 20K 81.9 224.7

1000 | 59.1 3.0 0.4 | 18.6 18.1 2.7 98.0 274.5 73.4

5000 | 58.1 2.4 0.2 | 184 27.0 1.7 102.3 322.9 145.3 30K | 262 31.9

Table 4: Execution time (sec) of Pangolin (PA) and AutoMine
(AM). Pangolin for Gsh is evaluated on Intel Optane-PMM ma-
chine. TAutoMine results are reported from its paper.

(a) Mi. (b) Gsh.
AM' PA-CPU PA-GPU AN DA
TC | 0.04 0.02 0.001
3MC | 0.12 0.20 0.02 TC | 4966 139.3
LMC | 220 175.6 5.3 3-CF - 659.3
5-CF | 114 60.5 9.7 4-CF | 45399 23475

Table 5: Lines of code in Pangolin (PA) and hand-optimized
(HO) applications (implementation name in parenthesis).
T CF MC FSM

(RCTist) 304 (PGD) 2,538 (DistGraph) 17,450
36 82 252

HO
PA

(GAP) 89
26

best performing one among 10, 20, 50, and 100. RStream
only supports edge-induced exploration and does not sup-
port pattern-specific optimization. This results in extremely
large search spaces for CF and MC because there are many
more edges than vertices. In addition, RStream does not
scale well because of the intensive use of mutex locks for
updating shared data. Lastly, Pangolin avoids inefficient
data structures and expensive redundant computation (iso-
morphism test) used by RStream. Pangolin is 88x faster
than RStream on average (Kaleido |91] also observes that
RStream is slower than Arabesque).

On average, Pangolin is 2.6x faster than Kaleido (7.4x,
3.3x, 2.4x, and 1.6x for TC, CF, MC, and FSM respec-
tively). This is mainly due to DAG construction and cus-
tomized pattern classification in Pangolin.

Pangolin is on average 80x faster than Fractal. Frac-
tal is built on Spark and suffers from overheads due to it.
More importantly, some optimizations in hand-optimized
DFS-based applications like PGD [4] and KClist [26] are
not supported in Fractal, which limits its performance.

AutoMine uses a key optimization [4} [26] to remove re-
dundant computation that can only be enabled in DFS-
based exploration. Due to this, when pattern size k is large
like in 5-CF and 4-MC, AutoMine is faster than Pangolin.
However, since Pangolin uses BFS-based exploration which
easily enables GPU acceleration, Pangolin on GPU is on
average 5.8x faster than AutoMine. It is not clear how
to enable DF'S mode for GPU efficiently, especially when k
is large. Note that for all the applications, AutoMine can
only do counting but not listing, because it has no automor-
phism test during extension (instead it uses post-processing
to address the multiplicity issue). FSM in AutoMine uses
frequency (which is not anti-monotonic) instead of domain
support, and thus it is not comparable to FSM in Pangolin.

6.3 Hand-Optimized GPM Applications

We compare hand-optimized implementations with Pan-
golin on CPU and GPU. We report results for the largest
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datasets supported on our platform for each application.
Note that all hand-optimized applications involve substan-
tially more programming effort than Pangolin ones. As
shown in Table [5| hand-optimized TC has 4x more lines of
code (LoC) than Pangolin TC and the other hand-optimized
applications have one or two orders of magnitude more LoC
than Pangolin ones. The Pangolin code for MC is shown in
Listings [4 and [f] The lines in the other Pangolin applica-
tions are as simple as that in MC. Hand-optimized solvers
must handle parallelism, synchronization, memory alloca-
tion, etc, while Pangolin transparently handles all of that,
making it easier for the user to write applications.

In Table [3a] we compare with GAP [11] and DistTC [44],
the state-of-the-art TC implementations on CPU and GPU,
respectively. It is clear from Table [2] and Table [3a] that TC
implementations in existing GPM frameworks are orders of
magnitude slower than the hand-optimized implementation
in GAP. In contrast, Pangolin performs similar to GAP on
the same CPU. Pangolin is also faster than DistTC on the
same GPU due to its embedding list data structure, which
has better load balance and memory access behavior.

Tablecompares our 4-clique with KClist [26], the state-
of-the-art CF implementation. Pangolin is 10 to 20x slower
than KClist on the CPU, although GPU acceleration of
Pangolin significantly reduces the performance gap. This is
because KClist constructs a shrinking local graph for each
edge, which significantly reduces the search space. This opti-
mization can only be enabled in the DFS exploration. In Ta-
ble we observe the same trend for 3-MC compared with
PGD, the state-of-the-art MC solver for multicore CPU [4]
and GPU [73]. Note that PGD can only do counting, but not
listing, as it only counts some of the patterns and the other
patterns’ counts are calculated directly using some formu-
las. In contrast, MC in Pangolin can do both counting and
listing. Another limitation of PGD is that it can only han-
dle 3-MC and 4-MC, while Pangolin handles arbitrary k. As
PGD for GPU (PGD-GPU) [73] is not released, we estimate
PGD-GPU performance using their reported speedup |73] on
Titan Black GPU. Pangolin-GPU is 20% to 130% slower.

Table [3d] and Table [3¢] compares our 3-FSM and 4-FSM,
respectively, with DistGraph |82} 83]. DistGraph supports
both shared-memory and distributed platforms. DistGraph
supports a runtime parameter o, which specifies the min-
imum support, but we had to modify it to add the max-
imum size k. On CPU, Pangolin outperforms DistGraph
for 3-FSM in all cases, except for Pa with support 5K. For
graphs that fit in the GPU memory (Mi, Pa), Pangolin on
GPU is 6.9%x to 290x faster than DistGraph. In compari-
son, the GPU implementation of DistGraph is only 4x to
9x faster than its CPU implementation [52] (we are not
able able to run their GPU code and we cannot compare
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ory cost brings substantial performance improvement, we
believe Pangolin makes a reasonable trade-off.

6.6 Impact of Optimizations

- We evaluate the performance improvement due to the op-
/ timizations described in Section [ and Section[Bl Due to lack
e of space, we present these comparisons only for the CPU
implementations, but the results on the GPU are similar.
Fig. shows the impact of orientation (DAG) and user-
defined eager pruning (Prune) on 4-CF. Both techniques
significantly improve performance for TC (not shown) and
CF. Fig. demonstrates the advantage of using Galois
memory allocators instead of std allocators. This is par-
ticularly important for FSM as it requires intensive memory
allocation for counting support. Fig.[I6dillustrates that cus-
tomized pattern classification used in MC and FSM yields
huge performance gains by eliding expensive generic isomor-
phism tests. Fig. shows that materialization of tem-
porary embeddings causes 11% to 37% slowdown for MC.
This overhead exists in every application of Arabesque (and
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Figure 12: Strong scaling using Figure 13: Execution time for
Yo graph. 0=500 for FSM. RMAT graphs (log-log scale).

with their reported results as they do not evaluate the same
datasets). For 4-FSM, Pangolin is 22% to 240% slower than
DistGraph. The slowdown is mainly due to the algorith-
mic differences: DistGraph adopts DFS exploration and a
recursive approach which reduces computation and memory
consumption, while Pangolin does BF'S exploration.

6.4 Scalability and GPU Performance

Although Pangolin is an in-memory processing system,
Pangolin can scale to very large datasets by using large mem-
ory systems. To demonstrate this, we evaluate Pangolin on
the Intel Optane PMM system and mine a very large real-
world web crawl, Gsh. As shown in Table [db] TC and 3-CF
only take 2 and 11 minutes, respectively. 4-CF is much more
compute and memory intensive, so it takes ~ 6.5 hours.

Fig. [12]illustrates how the performance of Pangolin appli-
cations scales as the number of threads increases for different
applications on Yo. Pangolin achieves good scalability by
utilizing efficient, concurrent, scalable data structures and
allocators. For TC, we observe near linear speedup over
single-thread execution. In contrast, FSM’s scalability suf-
fers due to the overheads of computing domain support.

To test weak scaling, we use the RMAT graph genera-
tor [53] to generate graphs with vertices |V| from 220 to 22°
and average degree d = 20. Fig. reports the execution
time normalized to that of rmat20 (log-log scale). The ex-
ecution time grows exponentially as the graph size increases
because the enumeration search space grows exponentially.

Fig. [I4] illustrates speedup of Pangolin applications on
GPU over 28-core CPU. Note that due to the limited mem-
ory size, GPUs fail to run some applications and inputs. On
average, 1080Ti and V100 GPUs achieve a speedup of 6x
and 15x respectively over the CPU. Specifically, we observe
substantial speedup on CF and MC. For example, the V100
GPU achieves 50x speedup on 4-MC for Yo, demonstrating
the suitability of GPUs for these applications.

6.5 Memory Consumption

The peak memory consumption for Arabesque, RStream,
and Pangolin on the same 28-core CPU platform is illus-
trated in Fig. We observe that Arabesque always re-
quires the most memory because it is implemented in Java
using Giraph [40| which allocates a huge amount of memory.
In contrast, Pangolin avoids this overhead and reduces mem-
ory usage. Since Pangolin does in-memory computation, it
is expected to consume much more memory than RStream
which stores its embeddings in disk. However, we find that
the difference in memory usage is trivial because aggressive
search space pruning and customized pattern classification
significantly reduce memory usage. Since this small mem-
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RStream), and is avoided in Pangolin. In Fig. we eval-
uate the performance of our proposed embedding list data
structure with SoA layout and inspection-execution. Com-
pared to the straight-forward embedding queue (mimic the
AoS implementation used in Arabesque and RStream), the
k-MC performance is 2.1x to 4.7x faster. Another opti-
mization is employing binary search for connectivity check.
Fig. shows that binary search can achieve up to 6.6x
speedup compared to linear search. Finally, Fig. illus-
trates the last level cache (LLC) miss counts in the vertex
extension phase of k-CF. We compare two data structure
schemes for the embeddings, AoS and SoA. We observe a
sharp reduction of LLC miss count by switching from AoS
to SoA. This further confirms that SoA has better locality
than AoS, due to the data reuse among embeddings.

7. RELATED WORK

GPM Applications: Hand-optimized GPM applications
target various platforms. For triangle counting, Shun et al.
|79] present a parallel, cache-oblivious TC solver on multi-
core CPUs that achieves good cache performance without
fine-tuning cache parameters. TriCore [46] is a multi-GPU
TC solver that uses binary search to increase coalesced mem-
ory accesses, and it employs dynamic load balancing. There
are several distributed TC solvers [81}, [38] |44] too.

Chiba and Nishizeki (C&N) [24] proposed an efficient k-
clique listing algorithm which computes the subgraph in-
duced by neighbors of each vertex, and then recurses on the
subgraph. Danisch et al. [26] refine the C&N algorithm for
parallelism and construct DAG using a core value based or-
dering to further reduce the search space. PGD [4] counts
3 and 4-motifs by leveraging a number of proven combina-
torial arguments for different patterns. Some patterns (e.g.,
cliques) are counted first, and the frequencies of other pat-
terns are obtained in constant time using these combina-
torial arguments. Escape [71] extends this approach to 5-
vertex subgraphs and leverages DAG to reduce search space.

gSpan [90] is an efficient sequential FSM solver which
does depth-first search (DFS) based on a lexicographic or-
der. GraMi [32] proposes an approach that finds only the
minimal set of instances to satisfy the support threshold and
avoids enumerating all instances. DistGraph [82] parallelizes
gSpan for both shared-memory and distributed CPUs. Each
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worker thread does the DF'S walk concurrently. It introduces
a customized dynamic load balancing strategy which splits
tasks on the fly and recomputes the embedding list from
scratch after the task is sent to a new worker. Scalemine |1]
solves FSM with a two-phase approach, which approximates
frequent subgraphs in phase-1, and uses collected informa-
tion to compute the exact solution in phase-2. There are
other GPM applications e.g. maximal cliques [21], maxi-
mum clique [63] . and subgraph listing . ., . .,
64, [57]. All the above hand- optimized solvers employ vari-
ous optimizations to reduce computation and improve hard-
ware efficiency. However, they achieve high performance at
the cost of tremendous programming efforts, while Pangolin
provides a unified model for ease of programming.

GPM Frameworks: For ease-of-programming, GPM
systems such as Arabesque , RStream [88 . G-Miner |1
and Kaleido [91] have been proposed They provide a uni-
fied programmmg interface to the user which simplifies ap-
plication development. However, their interface is not flexi-
ble enough to enable application specific optimizations. In-
stead of the BF'S exploration used in these frameworks, Frac-
tal [30] employs a DFS strategy to enumerate subgraphs,
Wthh reduces memory footprint. AutoMine |66 - is a com-
piler based system using DF'S exploration. In contrast, Pan-
golin uses the BFS approach that is inherently more load-
balanced, and is better suited for GPU acceleration.

Approximate GPM: There are approximate solvers for

C (86} [72, [85), CF [69} [48], MC [80} [16], and FSM [7].

1201

EmbQueue 1 EmbList &==—3

Linear C—1 Binary 1

5 — T T T 7 T T E—— T
s ! e s
:0 IS
& 2 g 3
s nH i i
L T
0 0
3-Mi 3-Pa 3Yo 4-Mi 4-Pa 3-lj 3-Or 3w 4-lj 4-Or
(a) (b)
Figure 17: k-MC speedup of (a) using embedding list

(SoA+inspection-execution) over using embedding queue (AoS)
and (b) binary search over linear search.

— 2.15
S E T T T T L T T ]
2 15 Fpos /= 1
S 1, [SoA 3 ]
[ ]
9 3
g o3 }
2 ob o mlko [ EREsEES ]
3-Mi 3-Pa 3o 4-Mi 4-Pa 4Yo 5-Mi 5-Pa 5o
Figure 18: LLC miss counts in the vertex extension phase of

k-CF using AoS and SoA for embeddings.

ASAP is an approximate GPM framework that reduces
computation at the cost of less than 5% error. Chen and
Lui propose another approximate GPM system based
on random walk. Compared to approximate solutions, Pan-
golin focuses on exact GPM and achieves high performance
without sacrificing accuracy.

8. CONCLUSION

We present Pangolin, a high-performance, flexible GPM
system on shared-memory CPUs and GPUs. Pangolin pro-
vides a simple API that enables the user to specify eager
enumeration search space pruning and customized pattern
classifications. To exploit locality, Pangolin uses an effi-
cient structure of arrays (SoA) for storing embeddings. It
avoids materialization of temporary embeddings and blocks
the schedule of embedding exploration to reduce the memory
usage. It also uses inspection-execution and scalable mem-
ory allocators to mitigate the overheads of dynamic memory
allocation. These application-specific and architectural opti-
mizations enable Pangolin to outperform prior GPM frame-
works, Arabesque, RStream, and Fractal, by 49x, 88x, and
80x, on average, respectively, on the same 28-core CPU.
Moreover, Pangolin on V100 GPU is 15x faster than that on
the CPU on average. Thus, Pangolin provides performance
competitive with hand-optimized implementations but with
much better programming experience.
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