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ABSTRACT
We study the problem of utilizing human intelligence to cat-
egorize a large number of objects. In this problem, given
a category hierarchy and a set of objects, we can ask hu-
mans to check whether an object belongs to a category,
and our goal is to find the most cost-effective strategy to
locate the appropriate category in the hierarchy for each
object, such that the cost (i.e., the number of questions
to ask humans) is minimized. There are many important
applications of this problem, including image classification
and product categorization. We develop an online frame-
work, in which category distribution is gradually learned
and thus an effective order of questions are adaptively de-
termined. We prove that even if the true category distribu-
tion is known in advance, the problem is computationally
intractable. We develop an approximation algorithm, and
prove that it achieves an approximation factor of 2. We also
show that there is a fully polynomial time approximation
scheme for the problem. Furthermore, we propose an on-
line strategy which achieves nearly the same performance
guarantee as the offline optimal strategy, even if there is no
knowledge about category distribution beforehand. Exper-
iments on a real crowdsourcing platform demonstrate the
effectiveness of our method.
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1. INTRODUCTION
During the past few years, crowdsourcing has emerged as

a major technique for solving large-scale problems that are
considered easy for human beings, but rather difficult for
computers to solve solely [33, 18, 14]. Examples include
comprehending images or videos, translating natural lan-
guages and evaluating search results. Facilitating the inter-
action between humans and machines in order to better har-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 8
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3389133.3389139

ness the human intelligence has becomes a central research
theme. There have been several database systems for incor-
porating human assistance into data processing tasks [21,
27], including sorting [20], computing maximum [31], count-
ing [19] and finding specific items [5]. Moreover, crowdsourc-
ing has also been used in a variety of applications, such as
entity resolution [32, 33, 34, 35], path selection [37], gener-
ating planning queries [11], filtering noisy data [12, 24, 26]
and scheduling crowdsourcing tasks [8].

In this paper, we focus on the object categorization prob-
lem [25, 29], which is another important problem. Given
a set of categories and a set of uncategorized (i.e., unla-
beled) objects, we would like to inquire the crowd to find
the most suitable category (i.e., label) for each object. Each
question incurs a certain amount of monetary cost. If the
number of categories is large (say ≥ 10, 000), usually a lot
of questions are needed to pin down the final category (we
cannot possibly list all 10,000 or more options in a single
multiple-choice question). Hence, our goal is to find the
best question-asking strategy to minimize the overall cost.
We assume that the set of categories forms a hierarchical
structure (for instance, “fish”, “birds” are subcategories of
“animals”), which is known in advance. This assumption is
justified in many real-world applications [25, 29]. Further-
more, the hierarchy naturally defines a set of intuitive (for
humans) questions, each corresponding to a node therein.

Motivating Applications: Alice is a photographer. She
once took a lot of photos during her visit to several cities
in Asia. Now she wants to classify the photos into the ge-
ographical hierarchy, shown in Figure 1. Due to the large
number of photos, she decides to seek help from the crowd.
For each photo, she selects a node from the hierarchy, and
issues a multiple-choice question as depicted in Figure 2.
After collecting the answers, she selects another node and
issues a new question based on them. By repeating the pro-
cedure she can finally identifies the most suitable category
for that photo. Besides the above toy example, our problem
applies to, but is not limited to, the following scenarios:

Product Categorization: Categories of products natu-
rally form a hierarchical structure. Companies seek to op-
timize their product taxonomies, which makes their prod-
ucts easier for consumers to find. To achieve this, we can
ask the crowd to categorize products according to the hi-
erarchy. More concretely, we can post a picture as well as
descriptions of a product, then select a category as the ques-
tion with all of its subcategories as options. Workers on the
crowdsourcing platform should either pick a subcategory for

∗Guoliang Li is the corresponding author.

1221



Asia

East Asia

China

Beijing

Shanghai

Japan South Korea

Seoul

Busan

South Asia

India

Delhi

Mumbai

Maldives

Figure 1: An example of a category hierarchy.

The picture may or may not be 
taken in China. Please choose the 
most suitable option:

(a) It is taken in Beijing;
(b) It is taken in Shanghai;
(c) It is taken in China but not in 
Beijing or Shanghai;
(d) None of  the above: it is not 
taken in China.

Figure 2: An example of a multiple-choice question. This
question corresponds to the “China” node in the hierarchy.

this product, or just click the “None of the above” option
indicating that it does not belong to this category or any of
its subcategories. It is worth noting that Amazon has been
posting product categorization tasks on Amazon Mechanical
Turk (AMT)†, which are similar to what we describe above.

Image Classification: We would like to categorize the im-
ages into the predefined category hierarchy by asking people
questions depicted in Figure 2. The task is crucial in super-
vised learning as it can provide a large amount of labeled
data for training and testing. For example, given the hi-
erarchy in Figure 1 and a set of uncategorized photos, the
simplest strategy is to travel in the original hierarchy in a
top-down manner. Namely, we always ask the first ques-
tion corresponding to the root of the hierarchy (a question
at “Asia”). Depending on the answer, we ask the second
question corresponding to a node in the second level of the
hierarchy. Although this strategy is fairly reasonable, there
may be better ones based on the distribution of categories.
Consider the case where most of the photos are taken in
South Asia. A better strategy would be to first ask the
question at “South Asia” (such strategy incurs an average
cost per photo close to 1, while the previous one at least 2).

From the above example, we can see that it is possible
to design a strategy better than the one suggested by the
original hierarchy, if the category distribution is known be-
forehand. However, in many situations, it is impossible to
know the a-priori distribution (for example, Alice cannot
remember even roughly how many pictures she took in each
country). Moreover, we will see that even if the distribution
is known in advance, it is still quite challenging to come up
with a plan that minimizes the total cost.

Therefore, based on the observations from the examples
above, we propose the following natural but challenging
question: how can we construct a unified plan of asking

†http://www.mturk.com/

questions to minimize the overall cost, even if we have no
knowledge of the category distribution?

Parameswaran et al. [25] proposed to utilize human power
to categorize objects in trees or directed acyclic graphs. Tao
et al. [29] introduced interactive graph search (IGS) prob-
lem, and used heavy path decomposition to reduce the crowd
cost. Our work differs from theirs in the following aspects.
First, we utilize multiple-choice crowdsourcing questions,
which are quite common in practical categorization tasks [6].
Second, we consider the category distribution of the object
set, which is more general and can better reflect the actual
conditions. Third, we develop strategies for online learning.

Our Contributions: The technical contributions of this
paper are summarized as follows:
(1) We propose an online framework for categorizing ob-
jects in a crowdsourcing platform (Section 2). We model
the plan of asking questions as a decision tree construction
problem. Then, we prove that the problem is NP-hard. To
approximate the optimal decision tree, we develop a simple
and intuitive greedy algorithm, and prove that its approxi-
mation ratio is 2. Moreover, we develop a non-trivial fully
polynomial time approximation scheme (FPTAS) ‡ for this
problem (Sections 2 & 3).
(2) We present an online learning algorithm, based on follow-
ing-the-perturbed-leader. The algorithm gradually learns the
true distribution of the object set and can achieve a nearly
optimal performance in the worst case, compared to the best
offline optimal decision tree in hindsight (Section 4).
(3) We propose two extensions: (i) we study how to batch
and issue multiple questions to reduce the latency; (ii) To
better handle the situation where the objects arrive in a
stream fashion and the category distribution changes over
time, we develop methods for adaptively tracking the cur-
rent category distribution (Section 5).
(4) We conduct extensive evaluations on the proposed strate-
gies and compare the performance with the state-of-the-
art method, on both synthetic and real data. Our results
demonstrate that our strategies can lead to more than 40%
cost savings on a real crowdsourcing platform (Section 6).

2. CROWD-AIDED CATEGORIZATION
2.1 Problem Formulation

Let O = {o1, . . . , on} be a set of n objects. Let T denote
a given category hierarchy, which can be represented as a
tree, in which each node corresponds to a distinct category.
For ease of presentation, for a node u ∈ T , we also use
u to represent the corresponding category. For any object
o ∈ O, we denote tar(o) as its target (the most suitable)
category, i.e., tar(o) has no suitable descendant category to
which object o belongs. For instance, the target category of
the photo in Figure 2 is “Japan”. For each node u ∈ T , we
use Tu to denote the subtree rooted at u, childT (u) to denote
the set of children of u, fatherT (u) to denote the father node
of u and root(T ) to denote the root of T .
Crowd Question. Next we formally define the form of the
questions to be asked on crowdsourcing platforms:

‡An algorithm A is an FPTAS for an optimization problem P ,
if for any instance I and any constant ε > 0, A computes a
solution S in polynomial time w.r.t. the problem size n and 1/ε,
of which the value of S satisfies |OPT − val(A)| ≤ εOPT, where
OPT stands for the value of the optimal solution and val(A) is
the solution returned by A.
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Definition 1 (Multiple-choice Question). Given
an object o ∈ O and an internal node u ∈ T , we request the
crowd to answer a multiple-choice question on node u, by
selecting an option from the following ones:

• Each v ∈ childT (u) has a corresponding option: The
object belongs to category v (i.e., tar(o) ∈ Tv);

• The object does not belong to any subcategory of u,
but does belong to category u itself (i.e., tar(o) = u);

• (“None of the above” option) The object does not be-
long to Tu (i.e., tar(o) /∈ Tu).

If the option of the second type is selected, the target
category is determined and no more questions are needed.
While for options of the first or third type, we may have to
proceed with further questions to locate the target category.

Example 1. Given the hierarchy depicted in Figure 1,
the question corresponding to node “China” is shown at the
right half of Figure 2 with 4 options, of which the first two
options are of the first type (subcatgories), and the last two
are of the second (itself) and third type (none of the above)
respectively.

A photo of Great Wall should lead to the option (a) Bei-
jing, i.e., its target category is “Beijing”, while a photo of
Oriental Pearl Tower should lead the option (b) Shanghai.
If Alice posts a photo of Terracotta Warriors and Horses,
she would receive the answer (c), which means that the tar-
get category for this photo is “China”. In fact, the photo
was taken in Xi’an, which is a northwestern city in China but
not included in the given hierarchy. Thus “China” should
be the most suitable category. Finally, if the photo is about
Mount Fuji as shown at the left half of Figure 2, which is in
Japan, the correct option would be (d) “None of the above”.
Then a couple of more questions are needed to determine its
target category.

Assume that each question costs a fixed price (for in-
stance, $0.02 per question), the total monetary cost is pro-
portional to the total number of questions needed for cate-
gorizing all objects in O. Hence, our goal is to minimize the
total number of questions.

Problem 1 (Cost Minimization). Find an online
adaptive question-asking strategy to categorize all objects in
O such that the total number of questions is minimized.

Remark: Some nodes in the hierarchy may have a large
number of children (for instance, the “Books” category in
Amazon has more than 30 subcategories). Therefore, it may
be unfriendly for workers to choose among such a large
number of options. In practice, options can be displayed
in groups (for example, every 10 options make a group).
When a worker eliminates all options of a group, another
group comes successively. In this way the practicality of our
framework is guaranteed. Another possible solution is to use
the binary version of our framework, where all questions on
crowd are yes-or-no questions rather than multiple-choice
questions and thus there are no abundant subcategories of
such nodes. We defer the detail of modification to the eval-
uation part (Section 6).

2.2 Framework and Workflow
We face two challenges: (a) the complex structure of the

hierarchy makes it hard to develop a cost-saving strategy,
even if the a-priori probability distribution is already in
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Figure 3: An online framework.

hand; (b) In many scenarios, the a-priori probability distri-
bution is unknown in advance. To address these challenges,
we first present the design of our algorithmic framework,
which is depicted in Figure 3. Our framework takes as input
a set of objects, which can be very large, and a category hi-
erarchy without distribution information, consisting of three
key components: (1) the learning component for learning the
probability distribution, (2) the optimization component for
constructing a question-asking plan given the estimated dis-
tribution, and (3) the crowd responsible for interacting with
crowdsourcing platforms on generating tasks and answers.

Algorithm 1 Framework(O, T )

Input: O: objects; T : category hierarchy
Output: L={(oi, tar(oi))|1 ≤ i ≤ n}: categorized object-

saggregating
1: L ← ∅
2: Set the initial category distribution
3: Generate a plan P of asking questions
4: while there is an uncategorized object o in O do
5: while tar(o) is not determined do
6: Ask a question to the crowd following P
7: Collect answers from the crowd
8: end while
9: L ← L ∪ {(o, tar(o))}

10: Re-estimate the category distribution
11: Reconstruct the plan P
12: end while
13: return L

Algorithm 1 shows the pseudo code of the online frame-
work. Each time the framework takes in an uncategorized
object from O (Line 4). It follows the question-asking plan
constructed by the optimization component, proceeds with
iteratively generated new tasks and collecting answers from
the crowd, until the target category for this object is de-
termined (Lines 5-9). The learning component then re-
estimates the distribution based on the target categories of
the finished objects (Line 10). Finally the optimization com-
ponent adjusts the plan of asking questions according to the
re-estimated distribution to minimize the cost (Line 11).

Note our framework works in the online setting, in the
sense that the question-asking plan for the current object
should only depend on the objects we have processed so far,
regardless of those unprocessed ones. We do not even as-
sume that all objects are given before our framework starts.
They may arrive in an online stream fashion. For each ob-
ject, our question-asking plan can be adaptive. Namely, the
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next question to ask may depend on the results of the pre-
vious ones. In next section, we show this is in fact equiva-
lent to and implemented by constructing a new decision tree
based on the original given hierarchy and results of catego-
rized objects so far.

2.3 Adaptive Strategies and Decision Trees
As stated in Section 2.1, an internal node u ∈ T cor-

responds a multiple-choice question, which may have three
types of options. By resorting to the crowd, we get the an-
swer, and select another node to ask based on the answer. In
fact such interaction with the crowd corresponds the parti-
tioning and pruning operation on the given hierarchy T . Let
us elaborate the process in graph theoretical terms and use
the hierarchy depicted in Figure 1 as an example. Suppose
the internal node u ∈ T (“China”) is selected. If we remove
all the edges incident on it, the hierarchy T is partitioned
by u to the following subtrees:

1. One subtree for each child of u, which corresponds to
the options of the first type in Definition 1: the subtree
“Beijing” and “Shanghai” of size 1.

2. Node u itself, which corresponds to the second type
option: the subtree “China” which contains only itself
of size 1.

3. One remaining subtree containing the parent of u,which
corresponds to the “None of the above” option: the
subtree rooted at “Asia” but in which “East Asia” has
only “Japan” and “South Korea” as its children.

We use ΦT (u) to denote the set of subtrees obtained above.
Hence, the answer from the crowd to the question can help
us to identify which subtree in ΦT (u) contains the target
category. Based on the answer, it is natural to explore the
corresponding subtree and proceed to next node/question in
it if needed, and all other subtrees are thus eliminated. By
repeating the procedure, the size of search space is tightened
iteratively and the target category is determined when there
is only one node left.

Such an adaptive strategy (i.e., implemented in the op-
timization component) can be modeled as a decision tree,
in which each internal node is a (multiple-choice) question
(say it corresponds to u ∈ T ), whose ancestors are the previ-
ously asked questions, and each branch of it directing to one
subtree in ΦT (u) connects to a question therein as a child
node. And all leaves of the decision tree are potential target
categories. For a leaf node l, the root-to-leaf path in the
decision tree represents the sequence of questions leading to
the target category, and the cost spent for the object o with
the leaf node as its target category (tar(o) = l) is the depth
of the leaf node (i.e., the length of the path minus 1) in the
decision tree. Please refer to Figure 4 for an example.

Now, we are ready to formally define the decision tree
constructed by the adaptive strategy.

Definition 2 (Decision Tree). Given the initial hi-
erarchy T , a decision tree D w.r.t. T satisfies:

• Each leaf of D is a category in T ;

• Each internal node v of D corresponds to an internal
node u ∈ T . u partitions T into ΦT (u), and thus v has
|ΦT (u)| children. Each child w ∈ ΦT (u) corresponds
to a subtree in ΦT (u), and Dw (i.e., the subtree of D
rooted at w) represents the decision tree for the corre-
sponding subtree.
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Figure 4: Optimal decision tree to the category tree in
Figure 1. Question nodes are represented by green round
rectangles and leaves (potential target categories) are rep-
resented by purple rectangles. Category probabilities are
labeled below the corresponding leaves.

Based on the definition, it is trivial to see that given any
tree T , the size of its decision tree D is at most twice the size
of T , since every node of T appears as a leaf node (target
category) of D whereas at most all the internal nodes of T
serve as internal nodes (multiple-choice questions) of D.

For ease of presentation, for each internal node v ∈ D, we
fix its leftmost subtree as the decision tree for the subtree
corresponding to the “None of the above” option in Defini-
tion 1, and its rightmost child as the target category corre-
sponding to the question itself (i.e., the second type option).
For instance, in Figure 4, the question node at “India” has
4 children, with the question node “China” as its leftmost
child and the target category “India” as its rightmost child.

Let Lvs(D) denote the set of leaves of D. For ease of
presentation, for any u ∈ T , we also use u to denote the
question (internal) node in D asked at u§. For any u ∈ D,
denote by depD(u) the depth of u in D.

In order to define the cost of a decision tree, we first define
the category distribution as follows: Let Pr be the probabil-
ity distribution over category set T , defined by

Pr(u) , |{tar(o) = u | o ∈ O}|/|O|.

We call Pr the category distribution. For T ′ ⊆ T , we define
Pr(T ′) ,

∑
u∈T ′ Pr(u). Now, we can define our cost metric.

Definition 3 (Cost Metric). Given a decision tree
D, the expected cost, denoted by cost(D), is

cost(D) ,
1

|O|
∑
o∈O

depD(tar(o)) =
∑

u∈Lvs(D)

Pr(u) depD(u)

(1)

Problem 2 (Min-cost Decision Tree (MDT)).
Given (T ,Pr), construct a decision tree D∗ w.r.t. T with
the minimum expected cost.

Remark: By the definition of a decision tree, we can treat
the initial category hierarchy T as a slightly “incomplete”
decision tree. The only difference is that any internal node
in a decision tree has a leaf node as its child corresponding
to the second type option (in Definition 1). Therefore, we
can easily extend T to a decision tree by adding such leaf
nodes. In this decision tree, we always start from the root
of the hierarchy. Therefore, the “None of the Above” option
of any question is unnecessary since it would always lead to

§In the paper, for any category u, we use u as its corre-
sponding node in T , and a question node asked at u in D.
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an empty set. For instance, consider a photo of the Great
Wall and the hierarchy in Figure 1. Alice can consecutively
ask questions at “Asia”, “East Asia”, “China” and finally
obtain “Beijing” as its target category.

Example 2. For an object set with the category distribu-
tion shown in Figure 4, the decision tree directly obtained
from Figure 1 incurs an expected cost of 2.9, while the ex-
pected cost of the optimal decision tree D∗ for this hierarchy
is 1.85, as depicted in Figure 4.

3. DECISION TREE CONSTRUCTION
In this section, we focus on the MDT problem. We assume

the category probability Pr is already known in this section.
We first prove that constructing the optimal decision tree
is computationally intractable. Then we propose a natural
greedy approach and analyze its approximation ratio. Fi-
nally, we propose a non-trivial FPTAS for the problem.

3.1 NP-Hardness
To prove that constructing an optimal decision tree is NP-

hard, we utilize a non-trivial polynomial time reduction from
the Exact Cover by 3-Sets with multiplicity 3 problem (X3C-
3), defined as follows:

Definition 4 (X3C-3). An instance of the X3C-3 prob-
lem I = (X,Y) contains the following:

(a) a finite set X with |X| = 3q for q ∈ N+;

(b) a collection Y of 3-element subsets of X, i.e., Y =
{Y1, . . . , Y|Y|}, and for each i = 1, . . . , |Y|, it holds
that Yi ⊆ X and |Yi| = 3.

(c) each element x ∈ X appears in at most 3 sets of Y.

Definition 5 (X3C-3 Problem). Given an instance
I = (X,Y), the X3C-3 problem decides whether Y contains
an exact cover for X, i.e., a sub-collection Y ′ ⊆ Y such that
members of Y ′ form a disjoint partition of X.

The X3C-3 problem is known to be NP-complete [4]. We
now state the following theorem. Please refer to our techni-
cal report [1] for the complete proof.

Theorem 1. The decision version of MDT problem is
NP-complete.

Proof (Sketch). For any instance I = (X,Y) to the
X3C-3 problem, we can construct a category hierarchy T
correspondingly, which contains |Y| components, (see defini-
tion in the complete proof). Each component contains nodes
associated with elements in Yi and 5 additional nodes. De-
note by S∗ and D∗ the optimal solution to I and the optimal
decision tree to T , respectively. By carefully assigning prob-
abilities to the nodes, we prove that for each component,
there exist only two possible decision components in D∗, ei-
ther including elements of Yi or excluding them. Moreover,
each set Y ′ ∈ S∗ corresponds to a component excluding el-
ements of Y ′ in D∗ while each set Y0 ∈ Y − S∗ corresponds
to a part including elements of Y0 in D∗. By establishing a
close relation between these two problems we can prove that
MDT is NP-complete.

Algorithm 2 Greedy(T ,Pr)

Input: T ,Pr
Output: D
1: D ← ∅
2: Queue S ← (T , ∅)
3: while |S| > 0 do
4: (T0, u0)← S.dequeue()
5: v ← ∅
6: min← +∞
7: for u ∈ Int(T0) do
8: t← heaviest weight of ΦT0(u)
9: if t < min then

10: min← t
11: v ← u
12: end if
13: end for
14: if D = ∅ then
15: Assign query(v) as the root of D
16: else
17: Assign query(v) as a child of u0 ∈ D
18: end if
19: for u ∈ childT (v) do
20: if u is a leaf then
21: Assign category u as a leaf child of query(v)
22: else
23: S.enqueue(Tu, query(v))
24: end if
25: end for
26: Assign category v itself as a leaf child of query(v)
27: S.enqueue(T0 − Tv, query(v))
28: end while
29: return D

3.2 Greedy Strategy
To minimize the expected cost, a “good” strategy should

first issue questions at nodes that are capable of partitioning
the category hierarchy fairly evenly (w.r.t. the distribution
Pr). Intuitively, this could avoid the case where a node
with a high probability is located deeply in the decision tree
(which would incur a large cost). For example, if a node u
has probability Pr(u) > 0.9, it is wise to first ask the ques-
tion that can directly lead to u (i.e., the question at node
u if u is an internal node of T , or fatherT (u) if u is a leaf).
A heuristic approach is to choose a question for some cate-
gory u0 which makes the heaviest resulting subtree among
ΦT (u0) as light as possible (regard the total probability of
a subtree as its weight). Formally, given an instance (T ,Pr)
to the problem, denoting by Int(T ) the set of internal nodes
of T , we choose an internal node u0 such that

u0 = arg min
u∈Int(T )

max{Pr(T ′)|T ′ ∈ ΦT (u)} (2)

For ease of analysis, we assume that distinct subtrees of T
have different probabilities, to guarantee the uniqueness of
each choice.
Remarks: (1) This natural greedy algorithm is much simi-
lar to the classic Huffman Algorithm, not only in the prob-
lem formulation, but also in the sense that they both try to
balance the decision tree. The main difference is that our
approach is to construct a tree from top to bottom while
the Huffman tree is constructed in a bottom-up manner.
(2) Prior to our work, Parameswaran et al. [25] proposed
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a graph-based categorization problem, in which they asked
yes-or-no questions and developed algorithms to rule out as
many candidates as possible in each phase locally in order to
save money. However, in this paper, we focus on minimiz-
ing the overall cost, which can be seen as a global objective.
Moreover, they assumed that the category distribution was
uniform while we do not require any knowledge of the cat-
egory distribution.

Please refer to Algorithm 2 for the pseudo-code of the
greedy algorithm. It constructs the greedy decision tree from
top to bottom in a breadth-first manner. We first initialize
an operating queue S in Line 2. The main loop does not
terminate as long as there are subtrees to be partitioned
(Lines 3-28). Each time we obtain a subtree from the queue
(Line 4), traverse all the internal nodes in it, and select the
question asked at v (query(v)) according to Equation (2)
(Lines 5-13), which partitions T0 into |ΦT0(v)| parts. Then
we place query(v) to the appropriate position (Lines 14-18),
For each subtree of Tv (recall the options of the first type
in Definition 1), it is assigned as a leaf node if it is a single
node; otherwise, it is pushed into the queue S for further
operations (Lines 19-25). We also assign the category v
itself (the second type) as a leaf child of query(v), and push
T0 − Tv (the third type) to the queue S as the leftmost
subtree (Lines 26-27).

Time Complexity: Denote by n the size of T . In every
main loop, the weight of each possible resulting subtree in
the sub-hierarchy can be pre-computed in O(n). For any
node u, it takes O(|childT (u)|) time to calculate the weight
of the heaviest resulting subtree. Therefore, we can traverse
the sub-hierarchy once to obtain the question node. Since
there are at most |Int(T )| sub-hierarchies, the running time
of Greedy is O(n2).

Space Complexity: O(n).
The approximation ratio of the greedy algorithm is guar-

anteed by the following theorem, of which the proof is de-
ferred to our technical report [1].

Theorem 2. Given any instance (T ,Pr) to theMDT prob-
lem, let D denote the decision tree constructed by Greedy.
It holds that

cost(D) ≤ 2cost(D∗) (3)

where D∗ is the optimal decision tree to the problem.

3.3 FPTAS
In this section, we present an FPTAS for the problem,

which can achieve (1 + ε) approximation ratio for any ε > 0.
For this purpose, we first develop an exact pseudo-polynomial
time algorithm based on dynamic programming (DP). Then
we show that by rounding the probability of each node in the
category tree, the DP can be transformed into an FPTAS.
Intuitions: A natural idea to tackle the problem with DP
is to first construct the optimal decision tree (the one with
the smallest cost) for all possible subtrees of T and then
somehow merge them into the optimal tree for the entire
problem. For instance, to generate the optimal decision tree
for “Asia” in Figure 1, it would be very tempting to first con-
struct the optimal decision trees for “South Asia” and “East
Asia”, (see Figure 5b, 5c respectively) and then merge them
by taking up the corresponding reserved positions (e.g., “In-
dia” in Figure 5b corresponds to the reserved root node in
Figure 5c) from the other part.

Here we only state the key results. Please refer to the
technical report [1] for details of this section.

India

China

East Asia

South Asia

Asia Maldives South Asia

Japan Korea

Seoul Busan Korea

East Asia

Beijing Shanghai China

Delhi Mumbai India

(a) Optimal decision tree for “Asia”

India

(reserved)

(reserved)

South Asia

(reserved) Maldives South Asia

Delhi Mumbai India

(b) Decision part for “South Asia”

(reserved)

China

East Asia

(reserved)

(reserved)

Japan Korea

Seoul Busan Korea

East Asia

Beijing Shanghai China

(c) Decision part for “East Asia”.

Figure 5: Subproblems of dynamic programming

Theorem 3. Given any instance (T ,Pr), there exists a
pseudo-polynomial time dynamic programming-based algo-
rithm that constructs the optimal decision tree.

Theorem 4. Given any instance (T ,Pr), there exists an
FPTAS for the MDT problem.

4. LEARNING A-PRIORI PROBABILITIES
In this section, we show the mechanism of the learning

component in our framework as depicted in Figure 3. Our
goal is to develop an online learning algorithm which can
gradually learn the category distribution as processing the
objects so that the overall long-term online cost is close to
the offline optimal cost. The learning component and op-
timization component interact with each other in a benefi-
cial way. Each time there comes newly categorized objects
from the optimization component, the learning component
re-estimates the category distribution based on them, which
will be used by the optimization component to construct the
decision tree next time. Thus, we can iteratively improve the
decision tree, and enhance its adaptivity for future objects,
without knowing their actual distribution in advance.

One natural idea for this problem is to use the empirical
category distribution. More precisely, we estimate the prob-
ability of a category u ∈ T as the fraction of the objects
whose target category is u among all the processed ones.
While this approach is intuitive ¶, it may lead to a rather
expensive cost in the worst case with the presence of an ad-
versarial input sequence of objects, which is illustrated in
the following example:

¶If we can randomly permute all the objects, we can show that
the true distribution can indeed be learned according to the law
of large numbers. However, the objects may come in an online
fashion and a random permutation pre-processing step may not
be always possible.
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Figure 6: (a) the input category hierarchy; (b) the decision
tree in odd times; (c) the decision tree in even times;

Example 3. Consider the input hierarchy shown in Fig-
ure 6a. The objects with D or E as target category com-
pose the object set, where the number of objects with tar-
get category D is slightly smaller than that of the others.
The initial estimated category distribution is set as follows:
(Pr(A),Pr(B),Pr(C),Pr(D),Pr(E)) = (0, 0, 0, α, 1 − α) for
some 0 < α < 1

2
.

Each time, we take in one object from the set and iter-
atively ask a question on the crowdsourcing platform until
we find the target category for the object. When the ob-
jects come in the sequence of D,E,D,E, . . ., it can be seen
that we would be totally mislead by the leading object every
single time. That is, the decision tree constructed for odd
times would be the one shown in Figure 6b (category E is
placed at a smaller depth) while that for even times in Fig-
ure 6c. After taking in N objects for some sufficiently large
N , the total cost of this strategy becomes 2N . However,
if we know the a-priori probability in advance, the offline
optimal decision tree is the one shown in Figure 6b, yielding
the cost of 1.5N � 2N .

We modify this strategy by following the perturbed leader
(FPL): we maintain the fraction of each node in the hierar-
chy, and each time we estimate the probability as the frac-
tion plus an exponentially distributed perturbation [10].

The workflow of the algorithm is depicted in Algorithm 3.
In each loop, we take in an uncategorized object, calculate
the weight of each node as the number of categorized objects
on that node plus a random variable ∼ exp(λ) (Lines 2-5)
and normalize the weights as probabilities in Line 6. Then
we construct the decision tree using the greedy algorithm
or the FPTAS in Section 3 (Line 7). We iteratively ask a
question and collect its answer following the decision tree,
until the target category is determined (Lines 8-9). Finally,
we update the corresponding counter in Line 10.

Algorithm 3 PerturbedLeader(T,O, λ)

Input: T,O, λ
1: while there is an uncategorized object in o ∈ O do
2: for u ∈ T do
3: Choose q(u) ∼ exp(λ)
4: w(u)← c(u) + q(u)
5: end for
6: Normalize the weight w of each node as probability
7: Construct the decision tree D by Greedy (or FPTAS)
8: Ask questions on the crowd based on D
9: Collect the target category tar(o)

10: c(tar(o))← c(tar(o)) + 1
11: end while

In fact, Algorithm 3 realizes the online framework in Sec-
tion 2. The time cost for categorizing the object set consists
of two parts: (a) the total latency incurred on the crowd-
sourcing platform; (b) the running time of the decision tree

construction algorithm and FPL, O(n2) per object for Greedy
and poly(n/ε) for the FPTAS given ε > 0.

Recall that the goal of the framework is to adaptively de-
velop efficient algorithms, such that the overall online cost
is close to the overall optimal cost given the a-priori distri-
bution, even in the adversarial setting (e.g., the sequence
in Example 3). Fortunately, when FPL as the learning com-
ponent is combined with the FPTAS as the optimization
component, the expected online cost (on the distribution of
the perturbation) is quite close to the offline optimal total
cost, as shown in the following theorem:

Theorem 5. Given any object set O and any constant
λ > 0, PerturbedLeader (using FPTAS in line 7) achieves:

E{cost} ≤ (1 + λ)offline∗(O) +O

(
n2 lnn

λ

)
(4)

where E{cost} is defined as the expectation of our online cost
and offline∗(O) is the offline optimal total cost.

Please refer to the technical report [1] for the proof.

5. EXTENSIONS
In this section, we discuss some useful extensions to our

basic framework. First, we propose a batched approach to
further reduce the latency. More concretely, instead of ask-
ing one question at a time for the object being processed
and finishing the input objects one by one, we can batch
multiple questions and issue them together. After obtaining
the answers, we can proceed to further questions based on
them. Second, we consider the situation where the category
distribution may change over time.

5.1 Batching Multiple Questions
In this section, we explore two dimensions of batching:

One is that we may process several objects simultaneously
with a shared decision tree, which is called a stage. Let m
denote the number of objects in each stage. The other is to
ask multiple questions about the same object in every round
of interacting with the crowd. Let k denote the number of
questions asked at one object in each round.

For example, consider the hierarchy in Figure 1. For the
first dimension of batching, three questions could be issued
together for three different photos respectively, one about
the Great Wall, one about Mount Fuji, and the last about
the Taj Mahal. For the second dimension, we could ask
questions at “India”, “China” and “Japan” for the same
photo concurrently.

Workflow: Algorithm 4 shows the workflow. During each
stage the framework takes in at most m uncategorized ob-
jects in Line 2, estimates the category distribution using
FPL in Line 3, and adaptively constructs the shared deci-
sion tree using Greedy or the FPTAS in Line 4. Afterwards,
for each object taken in, it generates at most k questions in
each round until the target category is obtained (Lines 5-9).
Finally, it records the results in Line 10.

It is worth noting that an adaptive strategy for asking
multiple questions in each round can once again be modeled
as a decision tree, in which each internal node represents a
set of k questions (each corresponding to a different internal
node in T ). By Theorem 1, given k ≥ 1, to construct the
optimal decision tree in general is NP-hard. In the remainder
of the section, we propose a heuristic algorithm.
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Algorithm 4 BatchedFramework(T ,O, λ,m, k)

Input: T ,O, λ,m, k
1: while there are uncategorized objects in O do
2: Take in at most m objects from O
3: Estimate the distribution by FPL(λ)
4: Construct the decision tree D by Greedy (or FPTAS)
5: while these objects are not finished do
6: Generate k questions for each object based on D
7: Post the questions on the crowdsourcing platform
8: Collect answers
9: end while

10: Record the results of the categorized objects
11: end while

A Greedy Strategy We propose a greedy algorithm sim-
ilar to the one in the previous section: we try to select k
internal nodes that make the heaviest resulting subtree as
light as possible. Let U0 = {u0

1, . . . , u
0
k} denote the set of

selected nodes. The strategy is described as follows:

U0 = arg min
U⊆Int(T ),|U|=k

max{Pr(T ′)|T ′ ∈ ΦT (U)} (5)

where ΦT (U) is the set of subtrees obtained by partitioning
T and removing all the edges incident on any node in U .

However, it is not trivial to select the k question nodes
in each round. A näıve strategy would traverse the whole
search space, incurring at least O(

(
n
k

)
) running time.

To solve the problem, we can first solve a closely related
problem: to select the minimum number of questions (in-
ternal) nodes such that the weight of the heaviest resulting
subtree does not exceed a given constant w ∈ (0, 1]. Rea-
sonably, a larger number of question nodes may result in a
smaller weight of the heaviest resulting subtree. Using the
algorithm for the above problem as a subroutine, we can
solve the original problem by simply performing a binary
search (identifying the smallest w such that the number of

required questions is at most k) ‖.
Formally, the related problem is defined as follows:

Problem 3 (Partition). Given (T ,Pr) and some con-
stant w ∈ (0, 1], select the minimum number of question (in-
ternal) nodes such that for each resulting subtree, its total
probability does not exceed w.

Algorithm 5 shows the pseudo code for the partition prob-
lem, and the input is the triple (T ,Pr, w). It utilizes a
greedy strategy: it traverses the tree from the leaf level (the
level of a node equals its depth plus one.) to the root (Lines
2-10), and the technique of pre-computing weights is utilized
again. Each time it meets a node u, it calculates the total
probability of the subtree Tu and checks if it exceeds the
threshold w (Line 4). If so, it selects u as a question, re-
moves u from the hierarchy T and adjust the corresponding
weights (Lines 5-7).
Time Complexity: For each node u, we only need to calcu-
late the total probability of Tu, which takes O(|childT (u)|).
Therefore, the time complexity is O(n).
Space Complexity: O(n).

The correctness of the algorithm is guaranteed by the fol-
lowing theorem, and the proof is in the technical report [1].

‖We are inspired by the ideas in [25] and [13].

Algorithm 5 Partition(T ,Pr, w)

Input: T ,Pr, w
Output: U
1: U ← ∅
2: for i := maximum level in T → 1 do
3: for node u on the i-th level do
4: if Pr(Tu) > w then
5: U ← U ∪ {u}
6: childT (fatherT (u))← childT (fatherT (u))−{u}
7: Adjust the corresponding weights
8: end if
9: end for

10: end for
11: return U

Theorem 6. Given any instance (T ,Pr, w), Partition cor-
rectly solves the partition problem.

The pseudo-code of the greedy algorithm is shown in Algo-
rithm 6: We construct the greedy decision tree in a breadth-
first manner (Lines 3-22). For each subtree T0, if the num-
ber of internal nodes is no more than k, then we simply
select all of them as question nodes (Lines 5-8). Other-

wise, we perform the binary search procedure (here pmax ,
max{Pr(u)|u ∈ T0}) until we find the k question nodes
which best balance the partitions (Lines 9-19). We group
them together as one internal node in the decision tree D
and ask the questions for the nodes selected (Line 20). At
last, we push the resulting subtrees into the queue for fur-
ther operations if necessary (Line 21).
Time Complexity: For each loop, the number of binary
searches is O(logn), each taking O(n) time. There are at
most n loops and thus the running time is O(n2 logn).
Space Complexity: O(n).

Algorithm 6 MultiGreedy(T ,Pr, k)

Input: T ,Pr, k
Output: D
1: D ← ∅
2: Queue S ← (T , ∅)
3: while |S| > 0 do
4: (T0, U)← S.dequeue()
5: if |Int(T0)| ≤ k then
6: Ask questions for all the internal nodes in T0
7: continue
8: end if
9: s← pmax, t← Pr(T0), mid← s+t

2
10: V ← Partition(T0,Pr,mid)
11: while |V | 6= k do
12: if |V | > k then
13: s← mid
14: else
15: t← mid
16: end if
17: mid← s+t

2
18: V ← Partition(T0,Pr,mid)
19: end while
20: Ask questions for each node in V
21: Push the resulting partitions into S
22: end while
23: return D
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5.2 Handling Evolving Category Distribution
For practical applications, it is quite common that objects

arrive in a stream fashion, and their category distribution
may evolve with time. For instance, Alice wants to catego-
rize 1,000 photos into the hierarchy in Figure 1, of which
the first 400 photos she crowdsourced were taken in China,
and the remaining 600 photos in Japan.

In this case, we would like our online framework to be
able to capture the evolving category distributions. For this
purpose, we extend our basic online approach by only keep-
ing the information within a fixed size window (i.e., FPL
with a window, FPLW). Consider the basic setting where
we only process one object in each stage ∗∗, and denote by
o1, o2, . . . , on the sequence of objects, and by α the fixed
window size which serves as a parameter. The pseudocode
of this strategy is shown in Algorithm 7. The only difference
between FPLW and FPL appears when t > α, where FPLW
deletes the categorized results outside the window while FPL
keeps all the previous information.

Algorithm 7 FPLW(T,O, λ, α)

Input: T,O, λ, α
1: t← 1
2: while t ≤ |O| do
3: Take in ot from O
4: t← t+ 1
5: for u ∈ T do
6: Choose q(u) ∼ exp(λ)
7: w(u)← c(u) + q(u)
8: end for
9: Normalize the weight w of each node as probability

10: Construct the decision tree D by Greedy (or FPTAS)
11: Ask questions on the crowd based on D
12: Collect the target category tar(ot)
13: c(tar(ot))← c(tar(ot)) + 1
14: if t > α then
15: c(tar(ot−α))← c(tar(ot−α))− 1
16: end if
17: end while

6. EXPERIMENTAL EVALUATION
In this section, we perform an extensive experimental study

and the goals of our experiments are: (a) to validate the
framework we proposed in the paper; (b) to compare our
algorithms with other approximation algorithms. In Sec-
tion 6.1, we introduce the setup of the experiment. In Sec-
tion 6.2, we perform synthetic data evaluation to examine
the effectiveness of our decision tree algorithm and the pro-
posed framework. Finally in Section 6.3, we evaluate our ap-
proaches on a real crowdsourcing platform figure-eight.com.

6.1 Evaluation Setup
Configuration: All the algorithms were implemented in
Python and the experiments were run in memory on an Intel
i7-4870HQ CPU at 2.5GHz with 16 GB RAM.

Data Set: We used two real datasets.
Amazon [23] is a large product dataset with more than 15

million items. Each record in the metadata file (https://
nijianmo.github.io/amazon/index.html) contains infor-
mation such as title, price, description and category of a
product sold on Amazon. The attribute “category” is a
∗∗This could be trivially extend to the batched algorithm.

Table 1: Hierarchy statistics

dataset depth #leaves
avg leaf
depth

avg internal
node degree

max
degree

Amazon 9 18477 4.60 5.22 155
ImageNet 12 21479 5.84 4.44 402

top-down path starting from the root of the hierarchy. After
preprocessing, we constructed the category tree from all the
paths which turned out to have 22,857 nodes.

ImageNet†† [6] is a large-scale hierarchical image dataset
with over 12 million labeled images. ImageNet uses the hi-
erarchical structure of WordNet(wordnet.princeton.edu/)
and the structure file is available at www.image-net.org/

api/xml/structure_released.xml. Each category (formally
called a “synonym set” or “synset”) in the hierarchy is de-
scribed by multiple words/synonyms in the attribute words
expressing a distinct concept. We extract all categories ex-
cept the one with wnid “fall11misc” which lacks compliance
with WordNet structure. This hierarchy has 27,714 nodes.

Statistics of the two hierarchies are listed in Table 1.

Decision Tree Algorithms: We compared the expected
cost of the greedy algorithm to those of other algorithms
executed on the same input hierarchy and the category dis-
tribution. In each round, k questions are asked for each
object. We implemented the following algorithms:

Greedy: The proposed greedy algorithm in this paper, of
which the strategy is to choose k questions to minimize the
heaviest resulting group.

GreedyBinary: In Greedy, each question is a multiple-choice
question with several options, while in IGS, all questions only
have two options (Yes/No). Readers may find it somehow
unfair when comparing the cost of Greedy and IGS without
considering the number of options because Greedy can obtain
more information from the answer of a multiple-choice ques-
tion. Thus, we also evaluate the performance of the binary
version of Greedy, to eliminate such doubts. The basic idea
of this version is also to greedily select k nodes to produce
questions to ask. In the original Greedy, all edges incident
on selected (internal) nodes are removed, while in binary
version for each selected node (a leaf node is also legitimate
here) only the edge connected to its father is removed, and
thus each node corresponds to a yes-or-no question. The cri-
terion remains the same, i.e., to make the heaviest resulting
subtree as light as possible.

IGS: [29] The state-of-the-art algorithm of interactively
querying on a hierarchy, of which the basic idea is to take
advantage of heavy-path decomposition.

Framework Variations: As described in Sections 4 and 5,
we proposed FPL and its extension FPLW. Moreover, various
decision tree algorithms can be used in the framework.

Framework Parameters: The parameters of our frame-
work evaluated in the experiments are as follows: Number
of questions k asked for one object at each round (Sec-
tion 5). Number of arriving objects at each stage m (Sec-
tion 5). Memory Window Size α: The range is [5K, 40K]
(Section 5).Coefficient of the exponential distribution λ: The
default value is 8. The range is [0.25, 64] (Section 4).

6.2 Synthetic Data Evaluation
In this section, we demonstrate the performance of pro-

posed algorithms on synthetic data. When generating work-

††http://image-net.org/
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Figure 7: Overall performance on Amazon
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Figure 8: Overall performance on ImageNet

load, let the a-priori probability of the hierarchy be the frac-
tion of objects (products/images) recorded at each node.

Overall performance evaluation: We first compare the
overall performance of different decision tree algorithms.
The workload consists of randomly sampled 100,000 objects
from each dataset. The metrics used in this experiment
are round and cost, i.e., the number of rounds (remember
k questions are issued in each round) and the number of
all questions asked for one object until its target category
is determined. It is clear that when k = 1 (one question
per round), these two metrics are the same. By feeding the
workload to the tested algorithms, the averages of round and
cost over all objects demonstrate the overall performance
which is of great importance. To simulate the real scenario,
Greedy and GreedyBinary use FPL framework, where algo-
rithms start from zero knowledge of the category distribu-
tion of the workload. By setting m = 1, 000 and λ = 8,
the framework gradually learns the distribution underlying
the workload, and the average round and cost in the online
scenario are reported.

Figures 7 and 8 show the overall performance on two
datasets. In Figure 7a, Greedy takes only a small number of
rounds to finish the workload of Amazon compared to IGS,
and when k = 1, the ratio is below 15%. When both al-
gorithms issue yes-or-no questions, GreedyBinary still needs
fewer rounds (about 60% of IGS). It’s natural that the num-
ber of rounds goes smaller with a larger k, as more questions
are issued every time. Now we can turn to Figure 7b which
shows the cost. The same result can be drawn that Greedy
needs just a small cost compared to IGS, and GreedyBinary
takes no more than 70% of cost of IGS. The cost exhibits an
increasing trend as k goes from 1 to 5, due to the limited
effect of reducing rounds by batching multiple questions. It
would be wise of requesters to select a good k to reach the
balance of latency (a larger k leads to fewer rounds) and
monetary cost (a smaller k comes with fewer questions).

Figure 8 demonstrates the similar results. When tested
on ImageNet, the round and cost ratio of Greedy to IGS are
averagely 23.7% and 24.8%, and the ratios of GreedyBinary
to IGS are 72.9% and 79.8%. Our proposed algorithms still
have an evident advantage. Note that the ratios in ImageNet

Table 2: Statistics (*: × 105; #: coefficient of variation)

dataset max frac 20% prop mean* std* cv
#

Amazon 0.012 91.0% 4.4 24 5.5
ImageNet 0.00031 63.6% 3.6 4.6 1.3
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Figure 9: Evaluation on different distributions

become slightly larger compared to results on Amazon, which
can be partly explained by the distribution characteristics.
Considering the whole workload, if we take the fraction of
objects recorded at each node as its probability, a work-
load distribution is produced. The statistical information
of two datasets is listed in Table 2. The largest fraction
(the fraction of the most common category) on Amazon is
0.012, while that on ImageNet is only 0.00031. Moreover,
the 20% most common categories in Amazon hold 91.0%
objects while such categories in ImageNet hold only 63.7%
objects. the mean, std (standard deviation) and coefficient
of variation (cv, the ratio of std to mean) of the workload
distribution on two datasets are also displayed. In Amazon,
cv is larger than that of ImageNet, which reveals the distri-
bution are more uneven, and this is where our framework
demonstrates its power to capture a dispersive distribution
and make full use of it to give a satisfactory performance.

We have also conducted experiments with different a-priori
distributions, to check the performance of our framework in
various scenarios. The a-priori Distributions interested here
are uniform, exponential, Gaussian and Zipf distributions.
Given the hierarchy T with n nodes, by traversing T in an
in-order way (within an depth-first search, we record the
first half of the subtrees of the current node, then the cur-
rent node itself, and finally the second half), a sequence
of n nodes is obtained. For discrete distributions like uni-
form and Zipf (with exponent s = 1), we just assign corre-
sponding probability to each node and sample 100,000 ob-
jects. For exponential (with coefficient λ = 1) and Gaussian
(with mean µ = 0 and variance σ2 = 1) distribution, we se-
lect the interval which covers 99.73% probabilities ([0, 5.91)
and [−3, 3) respectively), cut it into n equi-length parts and
match each part to a node in the obtained sequence in order.
By sampling from the interval 100,000 times, we get 100,000
corresponding objects as our workload.

We set k = 1 and report the results in Figure 9, in which
the distribution with the fractions as the a-priori probabili-
ties mentioned at the beginning of this subsection is named
origin. It is clear that under different distributions, our
framework Greedy always gives the smallest cost. Moreover,
GreedyBinary maintains its edge over IGS, but the cost ra-
tio between them may vary with the distribution and/or
hierarchy structure, from 45.4% (Amazon, Zipf) to 94.0%
(ImageNet, uniform). A probable trend can be observed that
a more skewed distribution like Zipf can help GreedyBinary
acquire larger superiority, and hierarchy structure can have
an influence on its performance.
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Figure 10: Evaluation on Amazon (horizontal: offline cost)
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Figure 11: Evaluation on ImageNet (horizontal: offline cost)

Framework evaluation: This experiment aims to figure
out how FPL+Greedy/GreedyBinary (i.e., using FPL as the
learning component and Greedy/GreedyBinary as the opti-
mization component) captures the underlying distribution
of workload and approaches the offline near-optimal per-
formance. By using different parameters, a deeper view of
algorithm performance is unveiled. All experiments in this
section are set k = 1, and thus we only report the cost. By
Theorem 1, retrieving the offline optimal cost is NP-hard.
Thus, we use the offline cost (obtained by initializing the
category distribution from the whole workload) incurred by
our algorithm to approximate its offline optimal cost.

First by fixing λ = 8, we change the value of m from 100
to 100,000, and report the result. Please refer to Figure 10a
for result on Amazon with the horizontal line as the offline
cost. The online cost of the framework increases as m in-
creases. It’s clear to see that marginal effect of updating
the estimated distribution more frequently is, indeed, quite
limited when m ≤ 5, 000 (i.e, distribution are updated at
least 19 times), and surprisingly the online cost of Greedy is
even smaller than the offline cost in this range! So a small
number of updates are sufficient to produce a satisfactory
result. Thus we set m = 1, 000 (1% of total population)
by default. Even no updates are conducted (m = 100, 000)
the resulting online cost of Greedy (4.22) and GreedyBinary
(24.77) maintain an obvious edge over IGS (27.66).

Figure 10b shows the result of varying λ with m = 1, 000.
The online cost decreases first and then slightly goes up
(Greedy) or reaches a plateau (GreedyBinary). When λ = 8,
the online cost of Greedy reaches a minimum and costs are
smaller than the offline cost. Figure 11 demonstrate the
results on ImageNet, which have similar trends. By setting
proper values of m and λ, the online cost of our framework
can approach to the offline cost or performs even better.

Robustness evaluation: We vary the workload sequence
to evaluate the robustness of our framework (FPL and FPLW)
with Greedy as the optimization component. We set param-
eters as: k = 1, m = 1, 000 and λ = 8.

For the first part, we sampled 80,000 objects under the
heaviest top category (“Clothing, Shoes & Jewelry” in Ama-
zon and “artifact” in ImageNet) as informative objects and
20,000 objects from other categories as noise objects accord-
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Figure 12: Robustness evaluation on Amazon, with the hor-
izontal line as the offline cost
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Figure 13: Robustness evaluation on ImageNet, with the
horizontal line as the offline cost

ing to Pareto principle. By changing the positions of noise
objects, four different sequences are generated: 1) Normal:
all objects randomly distributed; 2) Noise Tail: noise objects
are at the end of the workload sequence; 3) Noise Two-end:
the head and tail part of the sequence are noise objects of
equal length; 4) Noise Head: noise objects as the head of
the workload sequence. By feeding the workload sequence
to FPL, the average cost of each object is reported.

It can be observed from Figure 12a that for the Normal se-
quence, the framework gradually learns the distribution, in-
curs a smooth cost curve, and finally converges to the offline
cost (the grey horizontal line). While for other sequences,
the framework has a good beginning but when confronted
with a different distribution it first incurred a lot of addi-
tional costs to absorb new information and quickly adapted
itself to such change and finally approached to near the of-
fline cost. This phenomenon provides convincing evidence
that our framework is robust to variable sequences.

Next we made workload sequences of total 100,000 ob-
jects in a similar way to evaluate the performance of FPLW.
Randomly sampled objects from the two heaviest categories
constitute 50% and 30% of the sequence respectively with
the rest from other categories. Two kinds of sequences are
evaluated: 1) Random: all objects are in a random position;
2) Serial: Objects are orderly from the heaviest, the second
heaviest and other categories. Performance of FPLW with
different window size (α ∈ [5, 000, 40, 000] ) are reported.

Figure 12b shows the result of FPL and FPLW on Amazon.
With Random sequence as workload, FPL incurred a good
final cost near the offline cost, and for Serial workload, it
made even better result. The most surprising part is that
FPLW can adapt more quickly to new distributions and re-
sult in an exhilaratingly smaller cost compared to the offline
one (e.g,, final cost of FPLW with window size α = 5, 000 is
3.55 vs offline cost 4.24).

Taken result on ImageNet in Figure 13 into consideration
together, it’s natural to see that the optimal window size
may vary w.r.t dataset distribution (α = 10, 000 incurred
the smallest cost in ImageNet). By carefully setting α, our
framework can achieve a promising low online cost.
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Table 3: Performance on real crowdsourcing platforms

Algorithm Overall Accuracy Avg Crowd Cost
Greedy 92% 22.65

GreedyBinary 84% 86.83
IGS 80% 151.88

6.3 Evaluation on Crowdsourcing Platforms
In this section we evaluated our proposed algorithms on

a real crowdsourcing platform figure-eight.com, to demon-
strate the effectiveness in real scenarios.

Data and Workload. We used the Amazon dataset due
to its richness. To be efficient, we examined all leaf level
categories (categories corresponding to leaf nodes on hierar-
chy), counted the number of products under each of them
and randomly selected 100 products from all the products
under the top 100 most popular categories as the workload.

Algorithms. As in Section 6.2, experiments are conducted
on three algorithms: Greedy, GreedyBinary (both with FPL)
and IGS. The parameters for Greedy and GreedyBinary are
set: k=1, m=20 and λ=8000. All products are divided into
5 stages, when all 20 products of one stage are finished, dis-
tribution of Greedy and GreedyBinary are re-estimated and
a new decision tree is constructed to proceed to next stage.

Crowdsourcing Platform. Figure-eight.com is a crowd-
sourcing platform with a great number of workers from all
over the world. By exploiting the built-in functionalities of
the platform the crowd quality can be controlled to a con-
vincing degree: 1) Every worker has to pass a qualification
test with accuracy no less than 85% before beginning to
work on our tasks; 2) Every question is answered by at least
5 workers, and more answers are requested until a maxi-
mum of 9 answers or the minimum confidence score (0.7)
is reached. Though other quality control techniques which
are supplementary to our work can be used, we trade off
between accuracy and cost by such platform configurations.
Majority voting is adopted to aggregate answers.

Metrics. We used two metrics to characterize the perfor-
mance: 1) accuracy: the rate of successfully categorized
products; 2) crowd cost: the total number of answers col-
lected for one product until its target category is determined.
Note that each question may have 5-9 answers.

Result. Table 3 shows the overall performance of the tested
algorithms. All algorithms have relatively high accuracy un-
der the proper quality control, and our proposed algorithms
(especially Greedy) achieve higher accuracy (92%) because
fewer questions are needed and the chance of reaching in-
correct categories is smaller. When we examine the average
crowd cost of the successfully categorized products, our al-
gorithms are confirmed to save a lot. Again, Greedy costs
little and GreedyBinary saves more than 40% cost compared
to IGS, which conform to the results on synthetic data.

Let’s take a closer look at the performances of our frame-
work at different stages in Figure 14. The average crowd
cost of Greedy in all stages stay low, and there is an obvious
decline trend of that of GreedyBinary due to the continuously
refined distribution estimation learned from every finished
stage. While IGS lacks the ability to learn from the past, it
always issues a larger number of questions and performs the
worst. Particularly in the last stage, the average crowd cost
of IGS is about three times that of GreedyBinary.

In summary, our algorithms demonstrated the fair power
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Figure 14: Cost of successfully categorized products in dif-
ferent stages on a real crowdsourcing platform

of estimating the category distribution from continuous learn-
ing, which brings large cost savings in a real scenario.

7. RELATED WORK
Comprehending images and natural languages are fairly

easy for human beings, but in contrast hard for comput-
ers. Parameswaran et al. [25] proposed a model of utilizing
human power to find target node(s) in a directed acyclic
graph, which could be used for labeling large-scaled dataset
in many applications. Their methods focus on shrinking the
candidate set in an offline setting. Recently Tao et al. [29] in-
troduced interactive graph search (IGS), an online problem
in contrast to [25]. In IGS, the heavy path decomposition is
creatively applied on the directed acyclic graph to produce
an efficient question-asking strategy with appropriate inter-
action with the crowd. Our framework differs from theirs
in the sense that we consider the category distribution of
the object set and by continues learning we adaptively con-
struct a decision tree to generate the plan of asking questions
suited to the object set. To acquire labeling results of high
quality with only a limited budget, existing studies [17, 9]
considered to allocate redundant resources on the same ob-
ject in exchange for increasing quality. Others [3, 2, 28, 16,
36, 22, 30, 15, 39, 40, 7, 38] built various workflows to utilize
crowdsourcing for constructing category hierarchies.

8. CONCLUSION AND FUTURE WORK
We have studied the crowd-aided categorization problem.

We modeled it as a decision tree construction problem and
proved that constructing the optimal decision tree is NP-
hard, even if the true category distribution is known. We
proposed a natural greedy algorithm with an approxima-
tion ratio of 2, and also derived a fully polynomial time
approximation scheme. We developed an online strategy
to adaptively learn the category distribution of which the
cost is near the offline optimal one. Experimental results
demonstrated that our framework evidently outperformed
the start-of-the-art method.

There are several interesting future directions. One promis-
ing direction is to utilize various machine learning algo-
rithms to pre-classify the objects, which may narrow the
search space and bring further savings. By modeling and
exploiting the similarity between objects, we can reduce the
number of tasks. Also, more task interfaces and query meth-
ods can be introduced to facilitate the cooperation between
humans and machines. On the theoretical side, the approx-
imability for constructing the optimal decision tree in the
multiple-question setting remains an open problem.
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