
Set-valued Data Publication with Local Privacy:
Tight Error Bounds and Efficient Mechanisms

Shaowei Wang,Yuqiu Qian
∗

, Jiachun Du
Tencent Games

{seawellwang,yuqiuqian,kevinjcdu}@tencent.com

Wei Yang, Liusheng Huang, Hongli Xu
†

University of Science and Technology of China
{lshuang,qubit,xuhongli}@ustc.edu.cn

ABSTRACT
Most user-generated data in online services are presented
as set-valued data, e.g., visited website URLs, recently
used Apps by a person, and etc. These data are of
great value to service providers, but also bring privacy
concerns if collected and analyzed directly. To tackle
potential privacy threatens, local differential privacy (LDP)
attracts increasing attention nowadays. However, existing
approaches only provide sub-optimal error bound for
set-valued data distribution estimation with LDP. Besides,
it is computational expensive and communication expensive
to use for high dimensional set-valued data, considering
large domains in real scenarios. Thus, existing approaches
are unpractical to use on resource-constrained user-side
devices (e.g., smartphones and wearable devices). In this
paper, we propose a utility-optimal and efficient set-valued
data publication method (i.e., wheel mechanism). On the
user side, each user contributes only one numerical value
to represent their privatized data. The computational
complexity is O(min{m logm,meε}) and communication
cost is O(log(meε)) bits, while existing approaches usually
depend on O(d) or O(log d), where m is the number of items
in the set-valued data (m ≡ 1 for categorical data), d is the
domain size (usually d � m) and ε is the privacy budget.
On the server side, the estimator takes numerical values
from users as input and derives an unbiased distribution
estimation. Theoretical results show that estimation error
bounds are improved from previously known Θ(m

2d
nε2

) to

the optimal rate Θ(md
nε2

). Results on extensive experiments
demonstrate that our proposed wheel mechanism is 3-100x
faster than existing approaches, meanwhile has optimal
statistical efficiency.
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1. INTRODUCTION
User data (e.g., personal information, location data, and

service usage data) is the key to the success of many online
services and applications. When represented in bit-vector
forms, these data can be usually deemed as high dimensional
set-valued data (i.e., set-valued data with large size of data
domain), such as a list of website URLs one user clicked [20],
a list of Apps recently used by a user [9], multi-dimensional
personal information [19, 6, 4], etc.

With the help of statistical analyzing and mining meth-
ods, service providers can provide better service to users.
However, it brings privacy concerns at the same time, such
as deriving individual identities from users’ personal infor-
mation, mining social statuses or activities from clicked web-
sites of users [30]. Therefore, several regulations and laws
(e.g., the GDPR regulation [32] in the Europe Union, and
the CCPA act [17] in the state of California) have been en-
acted or activated in recent years. To protect user data’s
privacy and assist in complying with these privacy-related
regulations, it’s an urgent need to study privacy-preserving
data analyzing methods for the benefits of both users and
service providers.

Local differential privacy (LDP) [10] emerges as the de
facto standard for data privacy preserving in computer net-
working systems, which sanitizes user data on their local
machines or devices without trusting any parties (e.g., ser-
vice providers or edge servers). It originates from centralized
differential privacy (DP) [12] for databases, which needs a
trustable data curator to collect and manage raw data from
users (e.g., in [3, 24, 40, 5]). Compared to classic general-
ization or perturbation methods for privacy preserving (e.g.,
k-anonymity [28] and `-diversity [26] in [16, 31, 21]), LDP
approaches are more robust to adversaries with background
knowledge. Besides, if compared to privacy preserving meth-
ods based on secure multi-party computation (e.g., in [8, 7,
22]), the computation and interaction costs of LDP are usu-
ally lower [25]. Therefore, data analyses with LDP have been
widely studied in the community (e.g., mean estimation for
numerical data [10], distribution estimation on categorical
data [10, 2], location data [35] and set-valued data [27]) and
deployed in popular services (e.g., Google Chrome browser
[13, 14] and Apple iOS/Mac OS systems [18, 29]).

1234



Table 1: Comparison of ε-LDP approaches for categorical
data distribution estimation when eε � d.

approaches user user-server server MSE

RR[23] O(1) O(log d) O(n+ d) Θ( d2

n(eε−1)2
)

d-RAPPOR[13] O(d) O( d log(e
ε
2 +1)

e
ε
2 +1

) O(n · d) Θ( eεd

n(eε/2−1)2
)

1-bit[2] O(1) O(d) +O(1) O(n · d) Θ( e2εd
n(eε−1)2

)

k-Subset[34, 38] O(d) O( d log(eε+1)
eε+1

) O(n · d) Θ( eεd
n(eε−1)2

)

Hadamard[1] O(d) O(log d) O(n+ d) Θ( eεd
n(eε−1)2

)

this work O(1) O(log(eε + 1)) O(n · d) Θ( eεd
n(eε−1)2

)

1.1 Existing Approaches
As to high dimensional set-valued data and categorical

data (i.e., one special case of set-valued data), existing ε-
LDP approaches suffer from high computation or high com-
munication costs, which is intolerable for user-side devices.
We here summarize the complexities of representative ε-LDP
distribution estimation approaches for both categorical data
(shown in Table 1) and set-valued data (shown in Table 2).
The parameter ε is called the privacy budget or privacy level
and is usually chosen in (0.01, 3.0]. The user/server columns
show computational complexities on the user/server side
correspondingly, the user-server column shows the commu-
nication complexities between a user and the server, and
the MSE column shows their mean squared error bounds
for distribution estimation as function of the privacy budget
ε: supθ E[|θ̂ − θ|22], where θ and θ̂ represent the true and
estimated item distribution respectively.

Table 2: Comparison of ε-LDP approaches for set-valued
data distribution estimation when ε = O(1).

approaches user user-server server MSE

d-RAPPOR[13] O(d) O(d) O(nd) Θ(m
2d

nε2
)

sampling RR[27] O(m) O(log d) O(n+ d) Θ(m
2d

nε2
)

sampling 1-bit[27] O(m) O(d) +O(1) O(d) Θ(m
2d

nε2
)

PrivSet[33] O(d) O(d) O(nd) -

this work O(m) O(logm) O(nd) Θ(md
nε2

)

Specifically, ε-LDP distribution estimation approaches for
categorical data based on randomized response (e.g., in [10,
14, 34, 38, 1, 36]) usually require O(d) computation com-
plexity on the user side, and sending O(d) bits (e.g. in [10,
13, 14, 36]) or O(log d) bits (e.g., in [34, 23, 38, 1]) from
each user to the server. [2] reduces the communication cost
to only one bit, accompanied by firstly sending Θ(d) bits
from the server to the user. However, the estimation error
in [2] is not optimal for a relatively large privacy budget,
leaves a multiplicative exp(ε) ≥ 1 gap comparing to the op-

timal minimax rate of Θ( eεd
n(eε−1)2

) [38].

The RAPPOR mechanism [13] can also be employed for
distribution estimation with set-valued data. However, its

computational/communication costs on the user side be-

come both O(d), and its error bound is Θ(m
2·d
nε2

). Later,
[27] proposes to decompose set-valued data into categorical
data by random item sampling, following ordinary categor-
ical ε-LDP approaches (e.g., the randomized response [23]
or the 1-bit [2] mechanism). Though the random-sampling
based approaches are almost efficient as ones for categorical
data, their estimation error bounds depend on a factor of
m2 due to the sampling. A recent work [33] called PrivSet
mechanism randomly responses with a subset for set-valued
data, which needs O(d) computation and O(d) communica-
tion costs on the user side. It shows remarkable empirical
results but lacks theoretical error guarantees. Actually, one
of the most fundamental questions on set-valued data distri-
bution estimation with ε-LDP: where is the minimax lower
error bound? is still not explored in the literature.

1.2 Our Contributions
In summary, existing ε-LDP approaches for set-valued

(and categorical) data distribution estimation suffer from
following drawbacks:

I. Domain dependence: the computational / commu-
nication overheads on the user side and the storage
costs on the server side depend on the item domain size
d, which is inefficient for high-dimensional set-valued
data;

II. Statistical inefficiency: the distribution estimator
suffers from sub-optimal error bounds, and thus more
samples from user population (i.e. larger n) are needed
to achieve desirable estimation accuracy.

In this paper, we propose an efficient and optimal ε-LDP
mechanism (i.e., wheel mechanism) for set-valued/ categori-
cal data distribution estimation. It is domain agnostic (i.e.,
independent of dimension size d) and utility optimal. Specif-
ically, the wheel mechanism maps the set-valued data to one
or multiple points in a circled wheel, and then designs a cal-
ibrated probability distribution that satisfies ε-LDP based
on these points. After that, it samples one numerical value
as the output from the wheel according to the probability
distribution. The mechanism needs only O(log2(eε + 1))
bits communication between a user and the server; Since
the mapping procedure is done by a user-specific hash func-
tion, its computation costs are O(1) for categorical data and
O(m) for set-valued data. By carefully designing the ran-
domization distribution, the server could derive unbiased
item distribution over the data domain with the optimal
error bound.

Our contributions can be summarized as follows:

• We give tight minimax lower bounds of the ε-LDP set-
valued distribution estimation problem, showing that
the mean squared error Θ(md

nε2
) is optimal.

• For categorical data (set-valued data that m ≡ 1)
distribution estimation under ε-LDP, we propose the
wheel mechanism. It only needs O(1) computation
and O(log2(eε + 1)) communication costs on the user
side. We theoretically prove its optimality in terms of
distribution estimation error.

• We extend the proposed wheel mechanism to set-
valued data, which costs min{O(meε), O(m logm)}
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computation and O(log2(eε + 1)) communication re-
sources. The theoretical error bounds for item distri-
bution estimation is improved to the optimal risk of

Θ(md
nε2

) from previously best Θ(m
2d

nε2
).

• Through extensive experiments, we validate the design
of and analyses on the wheel mechanism, demonstrate
its efficiency and effectiveness, and show around 3-100x
running speed boost on the user side.

The remainder of the paper is organized as follows. Sec-
tion 2 formally introduces categorical/set-valued data, local
differential privacy and the distribution estimation frame-
work. Section 3 gives tight lower bounds for set-valued data
under the minimax risk framework. The wheel mechanism
for categorical data along with its theoretical analysis is
shown in section 4. The wheel mechanism is extended to
set-valued data in section 5 with theoretical analysis. Sec-
tion 6 evaluates the wheel mechanism. Finally, section 7
concludes the paper.

2. PRELIMINARIES
We here briefly introduce categorical/set-valued data, lo-

cal differential privacy (ε-LDP) and the framework of ε-LDP
data distribution estimation. Notations across the paper are
summarized in Table 3.

Table 3: List of notations.

Notation Description

X The item domain of user data

d The size of the item domain

i The index of items

m The cardinality of set-valued data

Xm The set of subsets that x ⊆ X with size m

n The number of users or participants

j The index of users

xj The set-valued data of user j

zj The private view from user j

θ User data’s distribution over item domain

θ̂ The estimation of θ

ε The privacy budget (privacy level)

vi The hashed value of item Xi in [0.0, 1.0)

Cvi The coverage area of item Xi

p The length parameter of a coverage area

Pt True coverage probability of each item

Pf False coverage probability of each item

l The total length of the union coverage area

2.1 Categorical/Set-valued Data
Let X = {X1, X2, ..., Xd} denote the item domain, the

categorical data x ∈ X is an item from the domain, and the
set-valued data x ⊆ X is a subset of the domain. In many
practical applications, the size of the item domain d = |X | is
large (e.g., d > 100), such as website URLs, English words,
all possible Apps, and possible values of multi-dimensional
data. Such set-valued is called a high dimensional one.

Let m denote the number of items that appeared in set-
valued data x. For the simplicity of analyses, we assume

Figure 1: The model of ε-LDP set-valued data publication
and distribution estimation with the wheel mechanism.

that the size of each set-valued data (i.e., m) is the same
across all users. Note that categorical data is one special
case of set-valued data, such that m = 1.

2.2 Local Differential Privacy (ε-LDP)
The ε-LDP ensures that privacy attackers can only gain a

limited multiplicative factor over their prior knowledge after
observing a privatized output z. Formally, let K denote a
randomization mechanism that intends to provide ε-LDP.
Assume that each user’s true value x belongs to the input
data domain Xm = {x | x ⊆ X and |x| = m}, the definition
of (non-interactive) ε-LDP is given in the Definition 1.

Definition 1 ((non-interactive) ε-LDP [10]). Let
DK denote the output domain, a randomized mechanism
K satisfies local ε-differential privacy iff for any data pair
s, s′ ∈ Xm, and any output t ∈ DK ,

P[K(s) = t] ≤ exp(ε) · P[K(s′) = t]

stands, where ε is called the privacy level or privacy budget.

Practical values for ε falls in (0.01, 3.0] so that the privacy
attacker’s knowledge cannot grow too much.

If user j adopts a randomization mechanism Kj according
to former outputs {z1, ..., zj−1} instead of a fixed universal
K, we call such randomization mechanism provides interac-
tive ε-LDP (in Definition 2).

Definition 2 (Interactive ε-LDP [10]). Let DKj
denote the output domain of a randomized Kj (j ∈ [1, n]),
the random variable zj is an ε-LDP view of xj. If

sup
t∈D

Kj

P[Kj(s) = t|xj = s, z1 = z1, ..., zj−1 = zj−1]

P[Kj(s′) = t|xj = s′, z1 = z1, ..., zj−1 = zj−1]
≤ exp(ε)

holds for all z1 ∈ DK1 , ..., zj−1 ∈ DKj−1 , any data pair
s, s′ ∈ Xm, and any output t ∈ DKj , we call such mechanism
K = {K1, ...,Kn} satisfies ε-LDP in an interactive setting.

Note that the non-interactive version of ε-LDP (in Defi-
nition 1) is a special case when Kj ≡ K.

2.3 Distribution Estimation Framework
Distribution estimation is a fundamental building block

for many statistical analyses (e.g., histogram estimation,
hypothesis testing, causal inference, and building machine
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learning models). In the data distribution estimation frame-
work (shown in Figure 1), every user uj independently ran-
domizes their true value xj to a publishable view zj through
a ε-LDP mechanism and sends it to the service. The server
side then estimates the item distribution over X of all users
based on all collected zj .

Specifically, we denote the true item distribution as θ =
{θ1, θ2, ..., θd}, where

θi =
1

n
·#{xj | j ∈ [1, n] and Xi ∈ xj}, (1)

and θ̂ as the estimated item distribution.
A good ε-LDP mechanism should have low computation

and communication burden on the user side, and minimum
estimation error that matches minimax lower bounds for the
service provider.

3. TIGHT MINIMAX LOWER BOUNDS
As an extension to lower bounds on ε-LDP distribution

estimation problem on categorical data [10, 38], we here
present lower bounds for ε-LDP (non-sparse or sparse) set-
valued data distribution estimation. The intuition behind
is that by decomposing the set-valued data into multiple
categorical data, we can follow a similar procedure for cat-
egorical data in [10, 38].

3.1 Classic minimax risks
Let P denote all possible probability distributions over

the data universe Xm. For each distribution P ∈ P, denote
function θ(P ) ∈ Ψ is the true estimate of interests. Suppose
{x1,x2, ...,xn} are n i.i.d. observations that are drawn ac-

cording to some distribution P ∈ P, and θ̂ : Xm 7→ Ψ is
the estimation of θ(P ). The minimax risk Mn under metric
Φ ◦ ρ can be defined as the following saddle point problem:

Mn(θ(P),Φ◦ρ) := inf
θ̂

sup
P∈P

EP [Φ(ρ(θ̂(x1,x2, ...,xn), θ(P )))],

where ρ : Ψ × Ψ 7→ R+ is a semi-metric function, and Φ :
R+ 7→ R+ is a non-decreasing function with Φ(0) = 0.

For simplicity, our analysis will focus on the squared error
case when ρ is the absolute operator and Φ is the squared
summation operator, that is, Φ ◦ ρ = || · ||22.

3.2 Local private minimax risks
We now move to the definition of local private minimax

risk, which measures the fundamental hardness of an esti-
mation problem under ε-LDP.

Given the privacy budget ε, we denote Kε as the set of all
possible mechanisms K = {K1, ...,Kn} that satisfy interac-
tive ε-LDP. Takes as input samples {xj}nj=1, some mecha-
nism K ∈ Kε can produce a sequence of private observations

{zj}nj=1. If the estimator θ̂ = θ̂(z1, ..., zn) only depends on

these private views {zj}nj=1 while having no access to input

samples {xj}nj=1, the minimax risk as a function of privacy
budget ε can be defined as:

Mn(θ(P),Φ◦ρ, ε) := inf
K∈Kε

inf
θ̂

sup
P∈P

Ep,K[Φ(ρ(θ̂(z1, ..., zn), θ(P )))].

In the following sections, we first theoretically give min-
imax lower bounds for ε-LDP distribution estimation on
set-valued data (in Section 3.3), and then design attainable
mechanisms K(i.e., the wheel mechanism, shown in Section
4 and 5) with efficiency considerations.

3.3 Lower bounds for ε-LDP set-valued data
Motivated by the bounding procedure for ε-LDP categor-

ical distribution estimation in [10], we utilize the Assouad’s
method [39] and its local private form (Lemma 1, [11]) to
derive sharp lower bound of minimax risks for set-valued
data distribution estimation under the interactive ε-LDP.

Assouard’s method [39] transforms an estimation prob-
lem into multiple binary hypothesis testing problems. For
some d ∈ N, it defines a hypercube V = {−1, 1}d and a
family of distributions {Pν}ν∈V indexed by the hypercube.
Assouard’s method says that the distribution family induces
a 2δ-Hamming separation for the loss Φ ◦ ρ if there exists a
vertex mapping (a function κ : θ(P) 7→ {−1, 1}d) satisfying:

Φ(ρ(θ, θ(Pν))) ≥ 2δ

d∑
j=1

1{[κ(θ)]j 6= νj}.

Considering the nature first uniform randomly chooses a vec-
tor V ∈ {−1, 1}d, after which the samples {x1, ...,xn} are
drawn from the distribution pν conditioned on V = ν. These
samples are later taken as input into any interactive ε-LDP
mechanisms K.

The work [11] gives the following private version of As-
souad’s method for lower bounding ε-LDP estimation prob-
lems.

Lemma 1 (Private Assouad bound [11]). Let
P+j = 1

2d−1

∑
ν:νj=1 Pν and P−j = 1

2d−1

∑
ν:νj=−1 Pν , we

have

Mn(θ(P),Φ ◦ ρ) ≥ d · δ[1− (
n(eε − 1)2

2d
FB∞(Xm),P)

1
2 ],

where B∞(Xm) denote the collection of function γ with
supremum norm bounded by 1 as:

B∞(Xm) := {γ : Xm 7→ R | ||γ||∞ ≤ 1},

and maximum possible discrepancy FB∞(Xm),P is defined as:

sup
γ∈B∞(Xm)

d∑
i=1

(

∫
Xm

γ(x)(dP+j(x)− dP−j(x)))2.

Rely on Lemma 1, we can construct a class of 2δ2m2

d2
-

hamming separated distributions and bound the maximum

possible marginal discrepancy FB∞(Xm),P under 8δ2m
d

, hence
give lower bounds (in Theorem 1) for the problem of local
private set-valued data distribution estimation.

Theorem 1. For the set-valued data distribution estima-
tion problem where m ≤ d

2
, for any non-interactive or inter-

active ε-LDP mechanism, there exists a universal constant
c > 0 such that for all ε ∈ [0, 1],

Mn(θ(P), || · ||22, ε) ≥ c ·min{m
2

d
,
dm

nε2
}

Proof. According to Lemma 1, in order to derive a
good lower bound, we need to construct a well hamming-
separated class of distributions, and simultaneously bound
the maximum possible marginal discrepancy to be small.
Our proof contains following 4 steps:

1. Constrain set-valued data to decomposable cases. Fol-
lowing analyzing procedures will utilize this decompos-
ability in set-valued data to simplify analyses to mul-
tiple categorical cases. Specifically, we assume that
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the domain size d is divisible by the cardinality m,
that is, we can define an integer value l := d

m
. We

also assume that l is even (l ≥ 2). We can then sep-
arate d items to m buckets, and the a-th bucket is
Ba = {xa·l+1, ...,xa·l+l} (0 ≤ a ≤ m − 1). As a spe-
cial form of set-valued data, we consider cases when
each bucket Ba has exactly 1 item and call such set-
valued data a decomposable one. Such decomposabil-
ity, along with independence among buckets, allows us
to simplify the proof.

2. Construct 2δ-Hamming separation distributions. Fol-
low standard procedure of Assuoad method, we set

Va = {−1, 1}
l
2 for each bucket Ba (a ∈ [0,m− 1]) and

define hypercube as V = Πm
a=1Va. Fixing δ ∈ [0, 1], for

ν ∈ V, separately consider each bucket, we define θνa
be the multinomial distribution for bucket Ba as :

θνa :=
m

d
1 + δ

m

d

[
Va
−Va

]
.

Assuming independence among buckets, we then de-
fine the probability distribution over the universe Xm
as a product distribution Πm

a=1θνa . The item distribu-
tion is hence θν = [θν1 θν2 ... θνm ]. For any estimator

θ̂ = [θ̂ν1 θ̂ν2 ... θ̂νm ], by defining ν̂a = sign(θ̂νa − m
d

1)
for a ∈ [0,m− 1], we have lower bound on separation:

||θ̂ − θν ||22 ≥
δ2m2

d2

l/2∑
j=1

m∑
a=1

1{ν̂aj 6= νaj}.

3. Bound maximum discrepancy of induced marginal dis-
tributions. We now turn to bounding sums of integrals∫
Xm γ(x)(dP+j(x)− dP−j(x)), and claim following in-

equality:

sup
γ∈B∞(Xm)

d∑
i=1

(

∫
Xm

γ(x)(dP+j(x)−dP−j(x)))2 ≤ 8δ2m

d
.

Actually, by construction P+j as a joint distribution
Πm
a=1[m

d
1 + mδ

d
[e>j%l − e>j%l]

>{bj/lc = a}] ∈ ∆l and

similarly for P−j , where ej ∈ {0, 1}l/2 denote the j-th
standard basis vector. Due to the interleaving struc-
ture of the m-dimensional distribution P+j and P+j ,
for any γ ∈ [−1, 1]d, we have:

m∑
a=1

l/2∑
j=1

(

∫
Xm

γ(x)(dP+j(x)− dP−j(x)))2 ≤ 8δ2m

d
,

that is, assigning γ ∈ [−1, 1]d according to one of the
dimension maximizes the overall integral.

4. Bound minimax risks. Applying Lemma 1 and substi-

tute the hamming separation parameter δ as δ2m2

d2
, we

have:

max
ν∈V

EPν [||θ̂−θν ||22] ≥ δ2m2

d
[1− (4n(eε−1)2δ2m/d)

1
2 ].

By choosing the parameter δ2 at min{1, d2/(16n(eε −
1)2m)} or min{1/m, d2/(16n(eε − 1)2m2)}, we have
the lower bound of:

Mn(θ(P), || · ||22, ε) ≥ min{m
2

4d
,

dm

64n(eε − 1)2
}.

For understanding the minimax rate, let us consider the
non-private error rate of set-valued data distribution esti-
mation, where we have:

E||θ̂ − θ||22 ≤
d∑
i=1

E||θ̂i − θi||22 ≤
m

n
.

Hence for estimation with `2-norm error, the enforcement of
ε-LDP causes the effective sample size decreases from n to
nε2/d. Compared with the ε-LDP lower bound O( d

nε2
) for

categorical data with domain size d, the mean squared error
lower bound of set-valued data with cardinality m is scaled
by a factor of m. This is hinted by the fact that under
the same domain size, the squared `2-norm of an m-sized
set-valued data is m times of a 1-sized set-valued data’s.

4. CATEGORICAL DATA
We present an attainable mechanism (i.e., the wheel mech-

anism) with optimal error bounds. It is highly efficient in
terms of computation/communication costs on the user side.
Here, we first elaborate it on categorical data (i.e., a special
case of set-valued data that m ≡ 1).

4.1 User-side randomization
From the view of Shannon entropy, existing ε-LDP mech-

anisms that output one item [23] or one item set [34, 38]
need at least O(log(Poly(d))) bits when the privacy budget
is small (i.e., ε approaches 0), because the output approx-
imates uniform random. However, intuitively, the output
is allowed to contain less information about the input as
the privacy budget decreases, and hence we should be able
to convey/transmit the information about the input with
fewer bits. Therefore, we propose a novel wheel mechanism,
which replaces some randomness in the output with pseudo-
randomness by a user-specific hash function and hence re-
duces bits for communication. Besides, the wheel mech-
anism uses a coverage parameter p ∈ (0.0, 0.5) to tweak
true/false coverage probability (in Definition 3 and 4) of an
item, which is a continuous analogy to the standard discrete
true/false positive rate tuning method [34, 38].

Specifically, the wheel mechanism for categorical data (in
Algorithm 1) proceeds with the following three steps, where
the coverage parameter p ∈ (0.0, 0.5) is the length of cover-
age area to control true/false coverage probabilities.

1. Use the user id or a random-generated number as the
seed, the user-specific hash function maps user’s item
x to a numerical value v in the range [0.0, 1.0).

2. To satisfy ε-LDP requirement, the numerical value v is
then randomized with a calibrated probability distri-
bution Q over [0.0, 1.0). The definition of Q with cov-
erage parameter p is given as follows (0.0 ≤ y, v < 1.0):

Q[y|v] =


eε

p·eε+(1−p) ,
for v ≤ y < v + p

or 0 ≤ y < v + p− 1;

1
p·eε+(1−p) .

for y ≥ v + p
or y < v.

(2)

Figure 2 demonstrates the probability distribution on
a wheel, the heavy-weight part of the distribution lies
in the clockwise area begins at v with length p.
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Figure 2: Probability distribution of the private view y
demonstrated over a circled wheel. The coverage area begins
at v clock-wisely with the length of p. The probability mass
in the coverage area is eε

p·eε+(1−p) , while the probability mass

of the rest of the area is 1
p·eε+(1−p) .

3. Sample a value z ∈ [0.0, 1.0) from distribution Q[y|v],
then send it to the server (along with the seed if nec-
essary).

Algorithm 1 Categorical Data Randomization

Input: Categorical data {x} ∈ X 1 = {c | c ⊆ X and |c| =
1}, hash function h : X → [0.0, 1.0) with random seed
s, privacy level ε, the coverage parameter p = 1

eε+1
.

Output: A private view z ∈ [0.0, 1.0) that satisfies ε-LDP.
1: � User-specific hash mapping
2: v = hs(x)
3: � Randomization according to probability distribution

(2)
4: r = UniformRandom(0.0, 1.0)

5: if r < p·eε
p·eε+(1−p) then

6: z = v + r · p·e
ε+(1−p)
eε

7: else
8: z = v + p+ r · (p · eε + (1− p))− p · eε
9: end if

10: z = z mod 1.0
11: return (s, z)

The ε-LDP guarantee of the wheel mechanism is given in
Theorem 2.

Theorem 2. The wheel mechanism in Algorithm 1 sat-
isfies ε-LDP.

Proof. To prove ε-LDP constraints hold for any pair of
items {x}, {x′} ∈ X 1, it’s enough to show that Q(z|v) ≤
Q(z|v′) · eε holds for any pair of numerical values v, v′ ∈
[0.0, 1.0) and for any output z ∈ [0.0, 1.0). According
to the design of probability distribution of Q(z|v), both

Q(z|v) and Q(z|v′) are either eε

p·eε+(1−p) or 1
p·eε+(1−p) , hence

Q(z|v) ≤ Q(z|v′)·eε holds and the wheel mechanism satisfies
ε-LDP.

The computation complexity of Algorithm 1 is O(1). The
communication costs between a user and the server of Algo-
rithm 1 is O(log(1/p)) = O(log(eε + 1)), hence one 32-bit or
64-bit float number or even fewer bits are capable of storing
the value of z with satisfactory precision when ε < +∞.

4.2 Server-side distribution estimation
It can be observed from Figure 2: when the mapped value

of categorical Xi is v, z appears in the coverage area [v, v+p)
or [0, v+ p− 1) with a relatively high probability; when the
true category is not Xi, the probability that z appears in
the coverage area [v, v + p) or [0, v + p − 1) is relatively
low. This implies the server side could estimate the fre-
quency/distribution of each item according to the value of
z.

Formally, if we denote the mapped value of a category Xi
as vi, and the coverage area [vi, vi + p) or [0, vi + p − 1) as
Cvi , we can define the true/false coverage probability in Def-
initions 3 and 4 respectively. The true coverage probability
Pt is always greater than the false coverage probability Pf
when p < 0.5, which further confirms previous observations.

Definition 3 (True Coverage Probability).
When the true category is Xi, the probability that the
private view z ∈ [0.0, 1.0) of Xi shows in the coverage area
Cvi is:

Pt = P[z ∈ Cvi |x = {Xi}] =
p · eε

p · eε + (1− p) .

Definition 4 (False Coverage Probability).
When the true category is Xi′ (i′ 6= i), assume the hash
function hs is perfect, namely h(Xi′) is uniformly random
and is independent from h(Xi), then the expected probability
that the private view z ∈ [0.0, 1.0) of Xi′ shows in the
coverage area of Xi is:

Pf = E[P[z ∈ Cvi |x = {Xi′}]] = p.

Based on the true/false coverage probabilities, let P[z ∈
Cvi ] denote the probability that z shows in the coverage area
of Xi, we have:

P[z ∈ Cvi ] = θi · Pt + (1.0− θi) · Pf . (3)

Consequently, given that the frequency Fi
n

=
∑n
j=1{z

j∈Cvi}
n

is an unbiased estimation of P[z ∈ Cvi ], a linear transforma-
tion of Fi

n
provide an estimator of item distribution (shown

in Algorithm 2). In the algorithm, lines 1 to 10 records
the number of z falling in the coverage area of item Xi for
each item, while lines 12 to 14 recovers unbiased estimation
of item distribution θi from recorded numbers according to
the formula (3). The computation complexity of Algorithm
2 is O(d).

We theoretically prove that the estimator (i.e., Algorithm
2) is unbiased according to Lemma 2.

Lemma 2. The estimator θ̂ in Algorithm 2 is an unbi-
ased estimation of the true item distribution θ, where the
expectation is taken over the (pseudo) randomness of perfect
hash functions and the randomness of sampling in Algorithm
2.

Proof. Proving θ̂ is an unbiased estimation of θ is equiv-
alent to prove that θ̂i is an unbiased estimation of θi. Be-
cause there are n · θi users hold category Xi and the other
n− n · θi users hold a category that is not Xi, the observed
frequency Fi is the summation of n · θi Bernoulli variables
with success probability Pt and n−n · θi Bernoulli variables
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Algorithm 2 Categorical Data Distribution Estimation

Input: Private views and random seeds (S,Z) =
[ (s1, z1), (s2, z2), ..., (sn, zn) ] from n users.

Output: An unbiased estimator θ̂ of the true item distri-
bution θ = {θ1, θ2, ..., θd}.

1: F = {0}d
2: � Record frequencies of items covered by z.
3: for (sj , zj) ∈ (S,Z) do
4: for Xi ∈ X do
5: vji = hsj (Xi)

6: if zj − q < vji ≤ z
j or zj − q + 1 < vji < 1 then

7: Fi = Fi + 1
8: end if
9: end for

10: end for
11: � Estimate item distribution from observed frequencies.
12: for i = 1 to d do
13: θ̂i = 1

n
· Fi−n·Pf

Pt−Pf

14: end for
15: return θ̂

that their expected success probability is Pf . Consequently,
we have:

E[
Fi − n · Pf

Pt − Pf
]

=

∑
j∈[1,n][x

j = {Xi}] · Pt + [xj 6= {Xi}] · Pf − n · Pf
Pt − Pf

=
n · θi · Pt + (n− n · θi) · Pf − n · Pf

Pt − Pf
,

=
n · θi · Pt − n · θi · Pf

Pt − Pf
,

=n · θi,

which concludes that 1
n
· Fi−n·Pf

Pt−Pf
is an unbiased estimation

of the item distribution’s bucket θi.

It’s worth noting that the wheel mechanism’s randomiza-
tion procedure doesn’t need any information about the item
domain X or the number of items d, hence it is domain-
independent. Therefore, the server could derive the distri-
bution of target items on demand, without knowing the de-
tails about the whole domain. It also works even when the
domain changes over time.

4.3 Optimal utility guarantees
The asymptotic maximum absolute error of the distribu-

tion estimator given in Algorithm 2 is O(
√

log(d/β)

ε2n
) with

high probability (See Theorem 3 for detail), which matches
the lower error bound of ε-LDP distribution estimation of
categorical data [2].

Theorem 3 (Maximum Absolute Error). With
privacy budget ε = O(1), for any categorical data domain X
that |X | = d, and any β > 0, the error due to Algorithm 2
is bounded by

max
i∈[1,d]

|θ̂i − θi| = O(

√
log(d/β)

ε2n
)

with probability 1−β over the randomness of the user-specific
hash functions and the randomization in Algorithm 1.

Proof. Consider the i-th element θi of the distribution,
according to Lemma 2, the expectation of θ̂i − θi is hence
0. Furthermore θ̂i − θi is the summation of n independent
random variables, every of which lies in the range of:

[min{ 0− Pf
Pt − Pf

,
0− Pt

Pt − Pf
},max{ 1− Pf

Pt − Pf
,

1− Pt
Pt − Pf

}].

Apply the coverage parameter p at 1
eε+1

, the range is then:

[min{ −2

eε − 1
,
−1− eε

eε − 1
,max{ 2eε

eε − 1
,

1 + eε

eε − 1
}]

and could be written as [O( 1
ε
), O( 1

ε
)]. Therefore, according

to the Hoeffding’s Inequality on strictly bounded random
variables, we have the probability P[|θ̂i − θi| ≤ ρ] ≥ 1 −
exp(− 2n2ρ2

n·O(1/ε2)
). Replace 1−exp(− 2n2ρ2

n·O(1/ε2)
) with 1−β, we

have |θ̂i− θi| ≤ ρ ≤ O(
√

log(1/β)

2nε2
). Further replacing β with

β/d, then with probability 1−β/d, the absolute error of each

bucket |θ̂i − θi| is bounded by O(
√

log(d/β)

ε2n
). Finally apply

the union bound of probabilities to the maximum absolute
error maxi∈[1,d] |θ̂i − θi|, we have the theorem proved.

To further guarantee the performance of the wheel mecha-
nism, we here give exact mean squared error bound on distri-
bution estimation in Theorem 4. When the privacy budget
is ε = O(1), the error bound matches the lower bound in
Theorem 1 with m = 1. More generally, for any privacy
budget ε in the practical regime (e.g., when eε � d), the er-

ror bound matches the estimation lower bound Θ( eεd
n(eε−1)2

)

given by [38]. Thus we can conclude that the wheel mecha-
nism is optimal for categorical data distribution estimation.

Theorem 4 (Mean Squared Error Bound). For
any categorical data domain X that |X | = d, the error due
to Algorithm 2 is bounded by

∑
i∈[1,d]

E[|θ̂i − θi|2] ≤ 1

n
+

4eεd

n(eε − 1)2
,

the expectation is taken over the randomness of user-specific
hash functions and the randomization in Algorithm 1.

Proof. Firstly we write the mean squared error of distri-
bution estimation as a formulation of Pt and Pf . Recall that
the observed frequency Fi in Algorithm 2 is the summation
of n · θi Bernoulli variables with success probability Pt and
n−n·θi Bernoulli variables that their expected success prob-
ability is Pf . Further apply Lemma 2 and

∑
i∈[1,d] θi = 1,
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then we have:∑
i∈[1,d]

E[|θ̂i − θi|2]

=
∑
i∈[1,d]

E[|θ̂i − E[θ̂i]|2] = Var(θ̂i)

=
∑
i∈[1,d]

Var(
1

n
· Fi − n · Pf

Pt − Pf
)

=
1

n2 · (Pt − Pf )2

∑
i∈[1,d]

Var(Fi)

=
∑
i∈[1,d]

n · θiPt(1− Pt) + (n− n · θi)Pf (1− Pf )

n2 · (Pt − Pf )2
.

=
(
∑
i∈[1,d] θi)Pt(1− Pt) + (d−

∑
i∈[1,d] θi)Pf (1− Pf )

n · (Pt − Pf )2
.

=
Pt(1− Pt) + (d− 1)Pf (1− Pf )

n(Pt − Pf )2
.

Apply the coverage parameter p = 1
1+eε

, we have Pt = 1
2

and Pf = p, hence the total variance error is then:∑
i∈[1,d]

E[|θ̂i − θi|2] =
e2ε + eε(4d− 2) + 1

(eε − 1)2

=
1

n
+

4eεd

n(eε − 1)2
,

which gives the final error bound.
Actually, a slightly better choice of p could be deduced by

directly minimize the former equation, the differential func-
tion of which in terms of p is quadratic. Though we can
derive closed-formed optimal p∗, its form is quite compli-
cated. Here p = 1

1+eε
is near to the p∗ when privacy budget

is not too large.

When considering the Bloom filter size l as a dynamic pa-
rameter in the RAPPOR [13], a.k.a. the O-RAPPOR mech-
anism for open alphabet in the work of [23], the inverse of
the Bloom filter size: 1/l is an analogy to the coverage pa-
rameter p in the wheel mechanism. However, the works of
[13, 23] provide no theoretical guidance/performance guar-
antee on choosing l. Essentially, the wheel mechanism is
also like a continuous analogy of the k-Subset mechanism in
[34, 38].

5. SET-VALUED DATA
We here extend the design of the wheel mechanism to

set-valued data with m items (m > 1) and prove its opti-
mality for item distribution given the minimax lower bounds
in Theorem 1. The mechanism is similar to the one for cat-
egorical data, except that extra post-processing is needed
when items’ coverage areas are overlapping. Hence, it still
has the advantage of being domain-independent and highly
efficient on the user side.

5.1 User-side randomization
Suppose each user uj holds set-valued data xj =
{X1, ..., Xm}, the wheel mechanism for xj follows similar
steps as for categorical data, except using a user-specific
hash function h : X → [0.0, 1.0) to map every item Xi ∈ xj

to vi.
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Figure 3: Probability distribution of the private view y
demonstrated over a circled wheel when coverage areas are
disjoint. The union coverage area begins at every vi with the
clockwise length of p. The probability mass in the coverage
area is eε

m·p·eε+(1−m·p) , while the probability mass of the rest

area is 1
m·p·eε+(1−m·p) .

The randomization distribution Q[y|v = {v1, .., vm}] is
now defined as follows:

Q[y|v] =

 eε

Ω
,

if y ∈ [vi, vi + p) or [0, vi + p− 1)
for any i ∈ [1,m];

Ω−l·eε
(1−l)Ω , otherwise.

(4)
where Ω := m · p · eε + (1−m · p) is called normalization
factor, and l is the length (measure) of the union coverage
area Cv (y ∈ [0, 1.0)):

Cv = {y | if y ∈ [vi, vi+p) or [0, vi+p−1) for any i ∈ [1,m]}.

Figure 3 and Figure 4 show examples that the probability
distribution over the wheel with disjoint/overlapping cover-
age areas respectively.

Practically, by sorting neighboring areas [15] firstly, the
union of coverage areas Cv can be merged in Θ(m logm)
time. Subsequent computing of the length l and drawing a
uniform sample from the disjoint coverage ranges will further
cost O(m) time. Hence the total computation complexity of
the naive wheel mechanism implementation for set-valued
data is Θ(m logm).

Alternatively, considering that the coverage range of each
Cvi is of the same length p on the wheel, we can thus reduce
the complexity to Θ(d 1

p
e) = Θ(meε) by dividing [0.0, 1.0)

into d 1
p
e buckets (as shown in Algorithm 3). For the b-th

bucket, we record the current start/end point of coverage
areas in the bucket as leftb/rightb respectively. At first,
the start point is the maximum value in the bucket and
the end point is the minimum value in the bucket, which
implies the bucket is empty (with no coverage area). When
a new coverage area Cvi comes, the start/end point of two
corresponding buckets will be updated. Finally we merge
continuous areas based on start/end points of neighboring
buckets.

The whole algorithm has following four steps:

1. Divide [0.0, 1.0) to d 1
p
e buckets, each of which holds

one part with length of p except the last one. Use
leftb/rightb to denote the start/end point of the b-th
bucket respectively.
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Figure 4: Probability distribution of the private view y
demonstrated over a circled wheel when coverage areas are
overlapping. The probability mass in the coverage area
is eε

m·p·eε+(1−m·p) , while the probability mass of the rest

area is Ω−l·eε
(1−l)Ω . The dashed circle represents the mass of

1
m·p·eε+(1−m·p) , which is lower than Ω−l·eε

(1−l)Ω .

2. For each p-length coverage range Cvi , record the
start/end points of corresponding neighboring buckets
(see lines 6 to 14).

3. For each bucket, merge ranges when the end point is
lower than the start point, and then split the covered
areas into disjoint ranges (see lines 15 to 21).

4. Given disjoint covered ranges and their relative weights
against non-covered ranges (computed using the union
coverage length l), draw a random sample as the out-
put.

The ε-LDP guarantee of the randomization process for
set-valued data is given in Theorem 5.

Theorem 5. The wheel mechanism for set-valued data
in Algorithm 3 satisfies ε-LDP.

Proof. The output of Algorithm 3 follows the probabil-
ity distribution in Equation (4), hence to prove its ε-LDP

guarantee, it’s enough to show that 1
Ω
≥ Ω−l·eε

(1−l)Ω ≥
e2ε

Ω
.

Given that l ≤ m · p, for any ε ≥ 0.0, we have Ω−l·eε
(1−l)Ω ≥

eε

Ω
,

and obviously 1 − l + l · eε ≤ 1 − m · p + m · p · eε, which
further implies 1

Ω
≥ Ω−l·eε

(1−l)Ω .

5.2 Server-side distribution estimation
Similar to the categorical data case, we now define

true/false coverage probability in Definitions 5 and 6 re-
spectively for the wheel mechanism of set-valued data.

Definition 5 (True Coverage Probability).
When the category Xi in the set-valued data x, the proba-
bility that the private view z ∈ [0.0, 1.0) of Xi shows in the
coverage area Cvi is:

Pt = Q(z ∈ Cvi |Xi ∈ x) =
p · eε

m · p · eε + (1−m · p) .

Definition 6 (False Coverage Probability).
When the Xi is truly included in the set-valued data. When
the true category is not Xi, assume the hash function hs
is perfect, the expected probability that the private view
z ∈ [0.0, 1.0) of Xi′ (i′ 6= i) shows in the coverage area of
Xi is:

Pf = E[Q(z ∈ Cvi |Xi′ /∈ x)] = p.

Given the true/false coverage probabilities of items, the
estimator of the item distribution for set-valued data is the
same as Algorithm 2. The estimator is unbiased according
to Theorem 2, and its computation complexity is O(n · d).

5.3 Optimal utility guarantees
We here give mean squared error bounds on distribution

estimation of the wheel mechanism (shown in Theorem 6).
Note that the error bound proved here is O(md

nε2
), which

significantly improves state-of-art results (i.e., Θ(m
2d

nε2
) in

[27]) by a factor of Θ(m).

Theorem 6 (Mean Squared Error Bound). With
privacy budget ε = O(1), for any set-valued data domain
Xm that |X | = d, the distribution estimation error due to
Algorithms 3 and 2 is bounded by:∑

i∈[1,d]

E[|θ̂i − θi|2] = O(
md

nε2
),

where the expectation is taken over the randomness of user-
specific hash functions and randomization in Algorithm 3.

Proof. We firstly give mean squared error bounds as a
formulation of the true/false coverage probabilities. Recall
that the observed frequency Fi in Algorithm 2 is the sum-
mation of n · θi Bernoulli variables with success probability
Pt and n−n · θi Bernoulli variables that their expected suc-

cess probability is Pf . Because θ̂i is an unbiased estimation
of θi, and we have

∑
i∈[1,d] θi = m for set-valued data, then

the total variance error is as follows:∑
i∈[1,d]

E[|θ̂i − θi|2]

=Var(θ̂i) =
∑
i∈[1,d]

Var(
1

n
·
Fi − n · Pf

Pt − Pf
)

=
1

n2 · (Pt − Pf )2

∑
i∈[1,d]

Var(Fi)

=
∑
i∈[1,d]

n · θiPt(1− Pt) + (n− n · θi)Pf (1− Pf )

n2 · (Pt − Pf )2
.

=
(
∑
i∈[1,d] θi)Pt(1− Pt) + (d−

∑
i∈[1,d] θi)Pf (1− Pf )

n · (Pt − Pf )2
.

=
m · Pt(1− Pt) + (d−m)Pf (1− Pf )

n(Pt − Pf )2
.

Apply the coverage parameter p = 1
2m−1+meε

, we have

Pt = eε

m−1+2meε
and Pf = p, hence the total variance error

is then:∑
i∈[1,d]

E[|θ̂i − θi|2] = Θ(
d(3m− 1)2(3m− 2)

(eε − 1)2(meε +m− 1)2
).

Given that eε ≈ ε + 1 when ε = O(1), we finally have∑
i∈[1,d] E[|θ̂i − θi|2] = O(md

nε2
).

The error bound mentioned above is data-independent. It
holds for any possible set-valued samples with any true item
distribution θ. Given the claim in [10] that the population
minimax rate (shown in Theorem 1) lower bounds condi-
tional sample risk (shown in Theorem 6) up to some multi-
plicative constant, we can conclude that the wheel mecha-
nism is minimax optimal. Furthermore, combining Equation
(3.3) and above bounds, we conclude that the minimax error
bounds in Theorem 1 are tight.
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Algorithm 3 Set-valued Data Randomization

Input: Set-valued data x ∈ Xm = {c | c ⊆ X and |c| = m},
hash function h : X → [0.0, 1.0) with random seed s,
privacy level ε, the coverage parameter p = 1

2m−1+meε
.

Output: A private view z ∈ [0.0, 1.0) that satisfies ε-LDP.
1: � User-specific hash mapping
2: v = {v1, .., vm} = hs(x)
3: � Merge coverage ranges
4: left = {min{b · p, 1.0} | b ∈ [1, d 1

p
e]}

5: right = {(b− 1) · p | b ∈ [1, d 1
p
e]}

6: for vi ∈ v do
7: b = d vi

p
e

8: leftb = min{vi, leftb}
9: if b < d 1

p
e then

10: rightb+1 = max{vi + p, rightb+1}
11: else
12: right1 = max{vi + p− 1, right1}
13: end if
14: end for
15: b = d 1

p
e

16: leftb = max{leftb, rightb}
17: rightb = right1 + 1
18: for b ∈ [1, d 1

p
e − 1] do

19: leftb = max{leftb, rightb}
20: rightb = rightb+1

21: end for
22: � Randomization according to coverage ranges
23: l =

∑
b∈[1,d 1

p
e](rightb − leftb)

24: r =UniformRandom(0.0, 1.0)
25: a = 0.0
26: for b ∈ [1, d 1

p
e] do

27: a = a+ eε(rightb−leftb)

Ω
28: if a > r then
29: z = rightb −

(a−r)Ω
eε

30: break
31: end if

32: a = a+
(Ω−l·eε)(left

b%d 1
p
e+1

+bb·pc−rightb)

(1−l)Ω
33: if a > r then
34: z = leftb%d 1

p
e+1 −

(a−r)(1−l)Ω
Ω−l·eε

35: break
36: end if
37: end for
38: z = z mod 1.0
39: return (s, z)

Table 4: Parameters for the experiment.

Parameter Enumerated values

domain size d 256, 512, 1024, 2048

cardinality m 1, 2, 4, 16

number of users n 10000, 100000, 1000000

privacy budget ε 0.001, 0.01, 0.1, 0.2, 0.8, 1.0, 1.5, 2.0, 3.0

The wheel mechanism could be deemed as a continuous
analogy of the PrivSet mechanism. Through the continu-
ous design, it enjoys a theoretical-guaranteed optimal utility,
meanwhile substantially reducing computation and commu-
nication costs. The PrivSet mechanism may also have the

optimal utility, however it is extremely hard to be proved
due to the discreteness of its parameter k. Thus such a con-
tinuous analogy of the previous mechanisms with discrete
parameters (e.g., in [13, 23, 33, 34, 38]) not only reduces
computation/communication costs, but also facilitates the-
oretical analysis on error bounds.

6. EXPERIMENTS
This section includes an experimental evaluation of both

computational efficiency and statistical efficiency. Chosen
values of parameters are summarized in Table 4.

6.1 Experimental settings
Datasets. Since existing set-valued mechanisms are data-
independent, we generate several datasets by sampling m-
sized data from a d-sized domain using reservoir sampling.
Competitors. We compare the wheel mechanism with two
state-of-the-art mechanisms: the RAPPOR mechanism [13]
with Bloom filter size d and the PrivSet mechanism [33].
PrivSet mechanism is equivalent to k-Subset mechanism [34,
38] for categorical data (m ≡ 1), which means it has best-
so-far error bounds for both categorical and set-valued data
distribution estimation.

It should be noted that the scaled distribution θ
m

lies
in the probability simplex, while the distribution estimator
θ̂
m

given by all LDP approaches may not. With the prior
knowledge that m =

∑
i∈[1,d] θi, the estimated distributions

during each simulation can be optimized by mapping to the
probability simplex [37]. All results here are computed based
on post-processed distribution estimators.
Evaluation Metrics. The average running time is used
to measure the computational cost of the data randomiza-
tion procedure on the user side. The performance metrics
regarding data utility (distribution estimation accuracy) in-
clude the total variation error (TVE, a.k.a. `1-norm error)

|θ̂ − θ|1 =
∑
i∈[1,d]

|θ̂i − θi|,

and the maximum absolute error (MAE, a.k.a. `∞-norm
error)

|θ̂ − θ|∞ = max
i∈[1,d]

|θ̂i − θi|.

All results are the average value of 200 independent repeti-
tions. Experimental results on extremely low/high privacy
regimes (e.g., ε = 0.0001 or ε = 10.0) are presented in Table
5 as a complement to the following results.

Table 5: Experimental TVE results under extremely
low/high privacy budgets.

Mechanisms ε = 0.0001 ε = 1.0 ε = 10.0

RAPPOR 7.21 4.43 0.94

PrivSet 7.20 3.42 0.18

Wheel 7.20 3.73 0.25

We here omitted experiments on communication costs of
different approaches, given that their communication com-
plexities have been analyzed in Table 1 and Table 2, and nec-
essary bits of transmitting are theoretically determinable.

6.2 Computational efficiency evaluation
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Figure 5: Experimental results on n = 100 000 users, domain size d = 512 and the set cardinality m ranges from 1 to 16.
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Figure 6: Experimental results on n = 100 000 users, domain size d = 256 and the set cardinality m ranges from 1 to 16.
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Figure 8: Total randomization time on n = 1000 users,
domain size d = 1024 and the set cardinality m = 1 or 16.
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Figure 7: Total randomization time on n = 1 000 users,
domain size d = 512 and the set cardinality m = 1 or 16.

6.2.1 Vary item cardinality m
Figure 7 presents the decadic logarithm of user-side run-

ning time of three mechanisms varying item cardinality m.
We can see that the wheel mechanism is extremely fast;
every user finishes data randomization procedure in a few
milliseconds, while other mechanisms need tens of millisec-
onds. The wheel mechanism is 3-10x faster than other mech-
anisms.

6.2.2 Vary domain size d
We here study how the computational costs vary with

domain size d. Results of the user-side running time are
shown in Figures 8 and 11, when the domain size is 1024
and 2048 respectively. Compared with results in Figure 7,
it can be observed that the costs of wheel mechanism are
domain-size independent, while the costs of RAPPOR and
PrivSet mechanisms grow at least linearly with the domain
size. The wheel mechanism is 5 − 100x faster than other
mechanisms.

6.3 Statistical efficiency evaluation

6.3.1 Vary item cardinality m
Simulated with 100000 users and the item domain size

at 512, Figures 5a and 5b show the natural logarithm of
TVE errors and MAE errors for distribution estimation re-
spectively. The wheel mechanism achieves close estimation
accuracy to the cost-intensive PrivSet mechanism. Except
for cases when the privacy budget is extremely low (and the
estimated distribution is almost non-informative), the errors
of the wheel mechanism grow with

√
m, as contrast errors

of the RAPPOR mechanism grow with m.

6.3.2 Vary domain size d
Simulated with 100000 users, Figures 6a and 6b show nat-

ural logarithm of TVE errors and MAE errors for distribu-
tion estimation respectively when the item domain size is
256, Figure 9a and 9b show results when the item domain
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Figure 9: Experimental results on n = 100 000 users, domain size d = 1024 and the set cardinality m ranges from 1 to 16.
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Figure 10: Experimental results on n = 10 000 users, domain size d = 1024 and the set cardinality m ranges from 1 to 16.
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Figure 11: Total randomization time on n = 1 000 users,
domain size d = 2048 and the set cardinality m = 1 or 16.

size is 1024. The TVE and MAE errors of the wheel mech-
anism grow roughly with

√
d.

6.3.3 Vary number of users n
Simulated with 10000 users and the item domain size at

512, Figures 10a and 10b show logarithm of TVE errors and
MAE errors for distribution estimation respectively. Com-
pared to the results in Figures 5a and 5b, the estimation

errors of all mechanisms increase roughly by
√

100000
10000

.

6.4 Summary
Through these experiments, we can conclude that the

wheel mechanism only puts domain-independent and mini-
mum computational overheads on the user side, meanwhile

achieves theoretic-guaranteed optimal utility for item distri-
bution estimation on the server side. These experimental
results confirm our theoretical error bounds O( dm

nε2
) (the

TVE/ MAE is usually proportional to the root of mean
squared error). It seems that practically the PrivSet mech-
anism also has excellent statistical efficiency, but its compu-
tation / communication overheads on the user side are much
higher than the wheel mechanism. Hence for set-valued data
distribution estimation under local differential privacy, the
Wheel mechanism has great theoretical and practical advan-
tages over existing approaches.

7. CONCLUSION
For set-valued data distribution estimation with ε-LDP,

this work gave tight minimax error bounds and proposed an
efficient & optimal mechanism: the wheel mechanism. The
mechanism has the advantage of being domain-independent.
Besides, it needs only O(min{m logm,meε}) computational
costs on the user side and O(log(meε)) communication costs
between a user and the server. Compared with existing ap-
proaches depending on O(d) or O(log d), the proposed wheel
mechanism is practical for large-scale set-valued data aggre-
gation in online services. On the service provider side, the
mechanism provides an unbiased distribution estimator with

much-improved error bounds from the previous Θ(m
2d

nε2
) to

the optimal rate of Θ(md
nε2

). Experimental results validated
the computational/statistical efficiency of the mechanism;
specifically, it has 3-100x speedup on user-side running time.
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