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ABSTRACT
Large volumes of data generated by scientific experiments
and simulations come in the form of arrays, while programs
that analyze these data are frequently expressed in terms
of array operations in an imperative, loop-based language.
But, as datasets grow larger, new frameworks in distributed
Big Data analytics have become essential tools to large-scale
scientific computing. Scientists, who are typically comfort-
able with numerical analysis tools but are not familiar with
the intricacies of Big Data analytics, must now learn to con-
vert their loop-based programs to distributed data-parallel
programs. We present a novel framework for translating
programs expressed as array-based loops to distributed data
parallel programs that is more general and efficient than re-
lated work. We report on a prototype implementation on
top of Spark and evaluate the performance of our system
relative to hand-written programs.
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1. INTRODUCTION
Most data used in scientific computing and machine learn-

ing come in the form of arrays, such as vectors, matrices
and tensors, while programs that analyze these data are fre-
quently expressed in terms of array operations in an imper-
ative, loop-based language. These loops are inherently se-
quential since they iterate over these collections by accessing
their elements randomly, one at a time, using array index-
ing. Current scientific applications must analyze enormous
volumes of array data using complex mathematical data pro-
cessing methods. As datasets grow larger and data analysis
computations become more complex, programs written with
array-based loops must now be rewritten to run on paral-
lel or distributed architectures. Most scientists though are
comfortable with numerical analysis tools, such as MatLab,
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and with certain imperative languages, such as FORTRAN
and C, to express their array-based computations using al-
gorithms found in standard data analysis textbooks, but are
not familiar with the intricacies of parallel and distributed
computing. Because of the prevalence of array-based pro-
grams, a considerable effort has been made to automati-
cally parallelize these loops. Most automated parallelization
methods in High Performance Computing (HPC) exploit
loop-level parallelism by using multiple threads to access the
indexed data in a loop in parallel. But indexed array values
that are updated in one loop step may be used in the next
steps, thus creating loop-carried dependencies, called recur-
rences. The presence of such dependencies complicates the
parallelization of a loop. DOALL parallelization [21] identi-
fies and parallelizes loops that do not have any recurrences,
that is, when statements within a loop can be executed inde-
pendently. Although there is a substantial body of work on
automated parallelization on shared-memory architectures
in HPC, there is very little work done on applying these
techniques to the Big Data analysis systems (with the no-
table exceptions of MOLD [27] and Casper [2]).

In recent years, new frameworks in distributed Big Data
analytics have become essential tools for large-scale machine
learning and scientific discoveries. These systems, which are
also known as Data-Intensive Scalable Computing (DISC)
systems, have revolutionized our ability to analyze Big Data.
Unlike HPC systems, which are mainly for shared-memory
architectures, DISC systems are distributed data-parallel
systems on clusters of shared-nothing computers connected
through a high-speed network. One of the earliest DISC sys-
tems is Map-Reduce [11], which was introduced by Google
and later became popular as an open-source software with
Apache Hadoop [5]. Recent DISC systems, such as Apache
Spark [6] and Apache Flink [4], go beyond Map-Reduce by
maintaining dataset partitions in the memory of the com-
pute nodes. Essentially, in their core, these systems remain
Map-Reduce systems but they provide rich APIs that im-
plement many complex operations used in data analysis and
support libraries for graph analysis and machine learning.

The goal of this paper is to design and implement a frame-
work that translates array-based loops to DISC operations.
Not only do these generated DISC programs have to be se-
mantically equivalent to their original imperative counter-
parts, but they must also be nearly as efficient as programs
written by hand by an expert in DISC systems. If success-
ful, in addition to parallelizing legacy imperative code, such
a translation scheme would offer an alternative and more
conventional way of developing new DISC applications.
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DISC systems use data shuffling to exchange data among
compute nodes, which takes place implicitly between the
map and reduce stages in Map-Reduce and during group-
bys and joins in Spark and Flink. Essentially, all data ex-
changes across compute nodes are done in a controlled way
using DISC operations, which implement data shuffling by
distributing data based on some key, so that data associ-
ated with the same key are processed together by the same
compute node. Our goal is to leverage this idea of data shuf-
fling by collecting the cumulative effects of updates at each
memory location across loop iterations and apply these ef-
fects in bulk to all memory locations using DISC operations.
This idea was first introduced in MOLD [27], but our goal is
to design a general framework to translate loop-based pro-
grams using compositional rules that transform programs
piece-wise, without having to search for program templates
to match (as in MOLD [27]) or having to use a program
synthesizer (as in Casper [2]).

Consider, for example, the incremental update A[e] += v
in a loop, for a sparse vector A. The cumulative effects
of all these updates throughout the loop can be performed
in bulk by grouping the values v across all loop iterations
by the array index e (that is, by the different destination
locations) and by summing up these values for each group.
Then the entire vector A can be replaced with these new
values. For instance, assuming that the values of C were
zero before the loop, the following program

for i = 0, 9 do
C[A[i ]. K] += A[i].V

can be evaluated in bulk by grouping the elements A[i] of
the vector A by A[i].K (the group-by key), and summing up
all the values A[i].V associated with each different group-by
key. Then the resulting key-sum pairs are the new values for
the vector C. If the sparse vectors C and A are represented
as relational tables with schemas (I, V ) and (I,K, V ), re-
spectively, then the new values of C can be calculated as
follows in SQL:

insert into C select A.K as I , sum(A.V) as V
from A group by A.K

For example, from A on the left we get C on the right:

A(I,K, V ) C(I, V )

(3,3,10) (3,23)
(8,5,25) (5,25)
(5,3,13)

These results are consistent with the outcome of the loop,
which can be unrolled to the updates C[3]+=10; C[3]+=13;
C[5]+=25.

Instead of SQL, our framework uses monoid comprehen-
sions [15], which resemble SQL but have less syntactic sugar
and are more concise. Our framework translates the pre-
vious loop-based program to the following bulk assignment
that calculates all the values of C using a bag comprehension
that returns a bag of index-value pairs:

C := {{{ (k,+/v) ||| (i, k, v)← A, group by k }}}.

A group-by operation in a comprehension lifts each pattern
variable defined before the group-by (except the group-by
keys) from some type t to a bag of t, indicating that each
such variable must now contain all the values associated
with the same group-by key value. Consequently, after we

group by k, the variable v is lifted to a bag of values, one
bag for each different k. In the comprehension result, the
aggregation +/v sums up all the values in the bag v, thus
deriving the new values of C for each index k.

A more challenging example, which is used as a running
example throughout this paper, is the product R of two
square matrices M and N such that Rij =

∑
k Mik ∗ Nkj .

It can be expressed as follows in a loop-based language:

for i = 0, d−1 do
for j = 0, d−1 do {

R[i , j ] := 0;
for k = 0, d−1 do

R[i , j ] += M[i,k]∗N[k,j] }

A sparse matrix M can be represented as a bag of tuples
(i, j, v) such that v = Mij . This program too can be trans-
lated to a single assignment that replaces the entire content
of the matrix R with a new content, which is calculated using
bulk relational operations. More specifically, if a sparse ma-
trix is implemented as a relational table with schema (I,J,V),
matrix multiplication between the tables M and N can be
expressed as follows in SQL:

select M.I, N.J, sum(M.V∗N.V) as V
from M join N on M.J=N.I group by M.I, N.J

As in the previous example, instead of SQL, our framework
uses a comprehension and translates the loop-based program
for matrix multiplication to the following assignment:

R := {{{ (i, j,+/v) ||| (i, k,m)←M, (k′, j, n)← N, k = k′,
let v = m ∗ n, group by (i, j)}}}.

Here, the comprehension retrieves the values Mik ∈ M and
Nkj ∈ N as triples (i, k,m) and (k′, j, n) so that k = k′,
and sets v = m ∗ n = Mik ∗ Nkj . After we group the val-
ues by the matrix indexes i and j, the variable v is lifted
to a bag of numerical values Mik ∗ Nkj , for all k. Hence,
the aggregation +/v will sum up all the values in the bag
v, deriving

∑
k Mik ∗Nkj for the ij element of the resulting

matrix. If we ignore non-shuffling operations, this compre-
hension is equivalent to a join between M and N followed
by a reduceByKey operation in Spark.

1.1 Highlights of our Approach
Our framework translates a loop-based program in pieces,

in a bottom-up fashion over the abstract syntax tree (AST)
representation of the program, by translating every AST
node to a comprehension. Matrix indexing is translated as
follows:

M [i, j] = {{{m ||| (I, J,m)←M, I = i, J = j }}}.

If Mij exists, it will return the singleton bag {{Mij}}, other-
wise, it will return the empty bag. Since any matrix access
that normally returns a value of t is lifted to a comprehen-
sion that returns a bag of t, every term in the loop-based
program must be lifted in the same way. For example, the
integer multiplication A ∗ B must be lifted to the compre-
hension {{{ a ∗ b ||| a← A, b← B }}} over the two bags A and B
(the lifted operands) that returns a bag (the lifted result).
Consequently, the term M [i, k] ∗N [k, j] is translated to:

{{{ a ∗ b ||| a← {{{m ||| (I, J,m)←M, I = i, J = k }}},
b← {{{n ||| (I, J, n)← N, I = k, J = j }}}}}},
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which, after unnesting the nested comprehensions and re-
naming some variables, is normalized to:

{{{m ∗ n ||| (I, J,m)←M, I = i, J = k,
(I ′, J ′, n)← N, I ′ = k, J ′ = j }}},

which is equivalent to a join between M and N .
Incremental updates, such as R[i, j] += M [i, k] ∗ N [k, j]

in matrix multiplication, accumulate their values across it-
erations, hence they must be considered in conjunction with
iterations. Consider the following loop, where f(k), g(k),
and h(k) are terms that may depend on k:

for k = 0, 99 do M [f(k), g(k)] += h(k).

Suppose now that there are two values, k1 and k2 6= k1,
that have the same image under both f and g, that is, when
f(k1) = f(k2) and g(k1) = g(k2). Then, h(k1) and h(k2)
should be aggregated together. In general, we need to bring
together all values h(k) that have the same values for f(k)
and g(k). That is, we need to group by f(k) and g(k) and
sum up all h(k) in each group. This is accomplished by the
comprehension:

{{{ ( i, j, +/v ) ||| k ← range(0, 99), v ← h(k),
let i = f(k), let j = g(k), group by (i, j)}}},

where k ← range(0, 99) is an iterator that corresponds to
the for-loop and the summation +/v sums up all h(k) that
correspond to the same indexes f(k) and g(k).

If we apply this method to R[i, j] + = M [i, k] ∗ N [k, j],
which is embedded in a triple-nested loop, we derive:

{{{ ( i, j, +/v ) ||| i← range(0, d− 1),
j ← range(0, d− 1), k ← range(0, d− 1),
v ←M [i, k] ∗N [k, j], group by (i, j)}}}.

After replacing M [i, k] ∗ N [k, j] and unnesting the nested
comprehensions, we get:

{{{ ( i, j, +/v ) ||| i← range(0, d− 1),
j ← range(0, d− 1), k ← range(0, d− 1),
(I, J,m)←M, I = i, J = k, (I ′, J ′, n)← N, I ′ = k,
J ′ = j, let v = m ∗ n, group by (i, j)}}}.

Joins between a for-loop and a matrix traversal, such as

i← range(0, d− 1), (I, J,m)←M, I = i,

can be optimized to a matrix traversal, such as

(i, J,m)←M, inRange(i, 0, d− 1),

where the predicate inRange(i, 0, d − 1) returns true if 0 ≤
i ≤ d− 1. Based on this optimization, the previous compre-
hension becomes:

{{{ ( i, j, +/v ) ||| (i, k,m)←M, inRange(i, 0, d− 1),
(k′, j, n)← N, k = k′,
let v = m ∗ n, group by (i, j)}}},

which is the desired translation of matrix multiplication.
We present a novel framework for translating array-based

loops to DISC programs using simple compositional rules
that translate these loops piece-wise. Our framework trans-
lates an array-based loop to a semantically equivalent DISC
program as long as this loop satisfies some simple syntactic
restrictions, which are more permissive than the recurrence
restrictions imposed by many current systems and can be
statically checked at compile-time. For a loop to be paral-
lelizable, many systems require that an array should not be

both read and updated in the same loop. For example, they
reject the update V [i] := (V [i − 1] + V [i + 1])/2 inside a
loop over i because V is read and updated in the same loop.
But they also reject incremental updates, such as V [i] += 1,
because such an update reads from and writes to the same
vector V . Our framework relaxes these restrictions by ac-
cepting incremental updates of the form V [e1]⊕= e2 in a
loop, for some commutative operation ⊕ and for some terms
e1 and e2 that may contain arbitrary array operations, as
long as there are no other recurrences present. It translates
such an incremental update to a group-by over e1, followed
by a reduction of the e2 values in each group using the opera-
tion ⊕. Operation ⊕ is required to be commutative because
a group-by in a DISC system uses data shuffling across the
computing nodes to bring the data that belong to the same
group together, which may not preserve the original order
of the data. Therefore, a non-commutative reduction may
give results that are different from those of the original loop.
We have proved the soundness of our framework by show-
ing that our translation rules are meaning preserving for
all loop-based programs that satisfy our restrictions (proved
in the extended paper [18]). Given that our translation
scheme generates DISC operations, this proof implies that
loop-based programs that satisfy our restrictions are par-
allelizable. Furthermore, the class of loop-based programs
that can be handled by our framework is equal to the class
of programs expressed in our target language, which consists
of comprehensions (i.e., basic SQL), while-loops, and assign-
ments to variables. Some real-world programs that contain
irregular loops, such as bubble-sort which requires swapping
vector elements, are rejected.

Compared to related work (MOLD [27] and Casper [2]):
1) Our translation scheme is complete under the given re-
strictions as it can translate correctly any program that does
not violate such restrictions, while the related work is very
limited and can work on simple loops only. For example,
neither of the related systems can translate PageRank or
Matrix Factorization. 2) Our translator is faster than re-
lated systems by orders of magnitude in some cases, since it
uses compositional transformations without having to search
for templates to apply (as in [27]) or use a program synthe-
sizer to explore the space of valid programs (as in [2]). 3)
Our translations have been formally verified (the soundness
proof is given in the extended version of this paper [18]),
while Casper needs to call an expensive program validator
after each program synthesis. Our system, called DIABLO
(a Data-Intensive Array-Based Loop Optimizer), is imple-
mented on top of DIQL [17, 12], which is a query optimiza-
tion framework for DISC systems that optimizes SQL-like
queries and translates them to Java byte code at compile-
time. Currently, DIABLO has been tested on Spark [6],
Flink [4], and Scala’s Parallel Collections.

The contributions of this paper are summarized as follows:

• We present a novel framework for translating array-
based loops to distributed data parallel programs that
is more general and efficient than related work.

• We provide simple rules for dependence analysis that
detect recurrences across loops that cannot be handled
by our framework.

• We evaluate the performance of our system relative to
hand-written programs on a variety of data analysis
and machine learning programs.
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2. RELATED WORK
Most work on automated parallelization in HPC is fo-

cused on parallelizing loops that contain array scans with-
out recurrences (DOALL loops) and total reductions (ag-
gregations) [19, 22]. As a generalization of these methods,
DOACROSS parallelization [21] separates the loop compu-
tations that have no recurrences from the rest of the loop
and executes them in parallel, while the rest of the loop is
executed sequentially. Other methods that parallelize loops
with recurrences simply handle these loops as DOALL com-
putations but they perform a run-time dependency analysis
to keep track of the dynamic dependencies, and sequential-
ize some computations if necessary [31]. Most data parallel
languages limit their support to flat data parallelism, which
is not well suited to irregular parallel computations. In flat
data-parallel languages, the function applied over the ele-
ments of a dataset in parallel must be itself sequential, while
in nested data-parallel languages this function too can be
parallel. Blelloch and Sabot [8] developed a framework to
support nested data parallelism using flattening, which is a
technique for converting irregular nested computations into
regular computations on flat arrays. These techniques have
been extended and implemented in various systems, such as
Proteus [25]. DISC-based systems do not support nested
parallelism because it is hard to implement in a distributed
setting. Spark, for example, does not allow nested RDDs
and will raise a run-time error if the function of an RDD
operation accesses an RDD. The DIQL and DIABLO trans-
lators, on the other hand, allow nested data parallel com-
putations in any form, by translating them to flat-parallel
DISC operations by flattening comprehensions and by trans-
lating nested comprehensions to DISC joins [17].

The closest work to ours is MOLD [27]. To the best of
our knowledge, this was the first work to identify the impor-
tance of group-by in parallelizing loops with recurrences in a
DISC platform. Like our work, MOLD can handle complex
indirect array accesses simply using a group-by operation.
But, unlike our work, MOLD uses a rewrite system to iden-
tify certain code patterns in a loop and translate them to
DISC operations. This means that such a system is as good
as its rewrite rules and the heuristic search it uses to apply
the rules. Given that the correctness of its translations de-
pends on the correctness of each rewrite rule, each such rule
must be written and formally validated by an expert. An-
other similar system is Casper [2], which translates sequen-
tial Java code into semantically equivalent Map-Reduce pro-
grams. It uses a program synthesizer to search over the space
of sequential program summaries, expressed as IRs. Unlike
MOLD, Casper uses a theorem prover based on Hoare logic
to prove that the derived Map-Reduce programs are equiva-
lent to the original sequential programs. Our system differs
from both MOLD and Casper as it translates loops directly
to parallel programs using simple meaning preserving trans-
formations, without having to search for rules to apply. The
actual rule-based optimization of our translations is done at
a second stage using a small set of rewrite rules, thus sepa-
rating meaning-preserving translation from optimization.

Another related work on automated parallelization for
DISC systems is Map-Reduce program synthesis from input-
output examples [29], which is based on recent advances
in example-directed program synthesis. Another system is
GRAPE [14], which requires three sequential incremental
programs to derive one parallel graph analysis program, al-

though these programs can be quite similar. Another area
related to automated parallelization for DISC systems is de-
riving SQL queries from imperative code [13]. Unlike our
work, this work addresses aggregates, inserts, and appends
to lists but does not address array updates. Finally, our
bulk processing of loop updates resembles the framework de-
scribed in [20], which rewrites a stored procedure to accept
a batch of bindings, instead of a single binding. That way,
multiple calls to a query under different parameters become
a single call to a modified query that processes all parame-
ters in bulk. Unlike our work, which translates imperative
loop-based programs on arrays, this framework modifies ex-
isting SQL queries and updates.

3. OUR FRAMEWORK

3.1 Syntax of the Loop-Based Language
The syntax of the loop-based language is given in Figure 1.

This is a proof-of-concept loop-based language; many other
languages, such as Java or C, can be used instead. Types of
values include parametric types for various kinds of collec-
tions, such as vectors, matrices, key-value maps, bags, lists,
etc. To simplify our translation rules and examples in this
section, we do not allow nested arrays, such as vectors of
vectors. There are two kinds of assignments, an incremental
update d⊕= e for some commutative operation ⊕, which is
equivalent to the update d := d ⊕ e, and all other assign-
ments d := e. To simplify translation, variable declarations,
var v : t = e, cannot appear inside for-loops. There are
two kinds of for-loops that can be parallelized: a for-loop
in which an index variable iterates over a range of integers,
and a for-loop in which a variable iterates over the elements
of a collection, such as the values of an array. Our cur-
rent framework generates sequential code from a while-loop.
Furthermore, if a for-loop contains a while-loop in its body,
then this for-loop too becomes sequential and it is treated as
a while-loop. Finally, a statement block contains a sequence
of statements.

3.2 Restrictions for Parallelization
Our framework can translate for-loops to equivalent DISC

programs when these loops satisfy certain restrictions de-
scribed in this section. In the extended version of this
paper [18], we provide a proof that, under these restric-
tions, our transformation rules to be presented in Section 3.8
are meaning preserving, that is, the programs generated by
our translator are equivalent to the original loop-based pro-
grams. In other words, since our target language is trans-
lated to DISC operations, the loop-based programs that sat-
isfy our restrictions are parallelizable.

Our restrictions use the following definitions. For any
statement s in a loop-based program, we define the following
three sets of L-values (destinations): the readers RJsK, the
writers WJsK, and the aggregators AJsK. The readers are
the L-values read in s, the writers are the L-values written
(but not incremented) in s, and the aggregators are the
L-values incremented in s. For example, for the following
statement:

V [W [i]] += n ∗ C[i] ∗ C[i + 1],

where i is a loop index, the aggregators areAJsK = {{V [W [i]]}},
the readers are RJsK = {{W [i], n, C[i], C[i+1]}}, and the writ-
ers areWJsK = ∅. Two L-values d1 and d2 overlap, denoted
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Type:
t ::= v basic type (int, float, . . . )
| v[t] parametric type
| (t1, . . . , tn) tuple type
| 〈A1 : t1, . . . , An : tn 〉 record type

Expression:
e ::= d a destination (L-value)
| e1 ? e2 any binary operation ?
| (e1, . . . , en) tuple construction
| 〈A1= e1, . . . , An= en 〉 record construction
| const constant (int, float, . . . )

Destination (L-value):
d ::= v variable

| d.A record projection
| v[e1, . . . , en] array indexing

Statement:
s ::= d⊕= e incremental update
| d := e assignment
| var v : t = e declaration
| for v = e1, e2 do s iteration
| for v in e do s traversal
| while (e) s loop
| if (e) s1 [ else s2 ] conditional
| { s1; . . . ; sn} statement block

Figure 1: Syntax of loop-based programs

by overlap(d1, d2), if they are the same variable, or they are
equal to the projections d′1.A and d′2.A with overlap(d′1, d

′
2),

or they are array accesses over the same array name. The
context of a statement s, context(s), is the set of outer
loop indexes for all loops that enclose s. Note that, each
for-loop must have a distinct loop index variable; if not, the
duplicate loop index is replaced with a fresh variable. For
an L-value d, indexes(d) is the set of loop indexes used in d.

An affine expression [3] takes the form

c0 + c1 ∗ i1 + · · ·+ ck ∗ ik,

where i1, . . . , ik are loop indexes and c0, . . . , ck are constants.
For an L-value d in a statement s, affine(d, s) is true if d
is a variable, or a projection d′.A with affine(d′, s), or an
array indexing v[e1, . . . , en], where each index ei is an affine
expression and all loop indexes in context(s) are used in
d. In other words, if affine(d, s) is true, then d is stored at
different locations for different values of the loop indexes in
context(s).

Definition 3.1 (Affine For-Loop). A for-loop state-
ment s is affine if s satisfies the following properties:

1. for any update d := e in s, affine(d, s);

2. there are no dependencies between any two statements
s1 and s2 in s, that is, if there are no L-values
d1 ∈ (AJs1K ∪ WJs1K) and d2 ∈ RJs2K such that
overlap(d1, d2), with the following exceptions:

(a) if d1 ∈ WJs1K, d1 = d2, and s1 precedes s2;

(b) if d1 ∈ AJs1K, d1 = d2, affine(d2, s2), s1 precedes
s2, and context(s1) ∩ context(s2) = indexes(d1).

Restriction 1 indicates that the destination of any non-incre-
mental update must be a different location at each loop it-
eration. If the update destination is an array access, the
array indexes must be affine and completely cover all sur-
rounding loop indexes. This restriction does not hold for
incremental updates, which allow arbitrary array indexes in
a destination as long as the array is not read in the same
loop. Restriction 2 combined with exception (a) rejects any
read and write on the same array in a loop except when the
read is after the write and the read and write are at the
same location (d1 = d2), which, based on Restriction 1, is
a different location at each loop iteration. Exception (b)

indicates that if we first increment and then read the same
location, then these two operations must not be inside a for-
loop whose loop index is not used in the destination. This is
because the increment of the destination is done within the
for-loops whose loop indexes are used in the destination and
across the rest of the surrounding for-loops. For example,
the following loop:

for i = . . . do { for j = . . . do {V [i] += 1 }; W [i] := V [i] },

increments and reads V [i]. The contexts of the first and
second updates are {{i, j}} and {{i}}, respectively, and their
intersection gives {{i}}, which is equal to the indexes of V [i]. If
there were another statement M [i, j] := V [i] inside the inner
loop, this would violate Exception (b) since their context
intersection would have been {{i, j}}, which is not equal to
the indexes of V [i].

An affine for-loop satisfies the following theorem, which
is proved in the extended version of this paper [18]. It is
used as the basis of our program translations.

Theorem 3.1. An affine for-loop satisfies:

for i = . . . do { s1; s2 }
= { for i = . . . do s1; for i = . . . do s2 }. (1)

In fact, our restrictions in Definition 3.1 were designed in
such a way that all affine for-loops satisfy this theorem and
at the same time are inclusive enough to accept as many
common loop-based programs as possible. In the extended
version of this paper [18], we prove that our program trans-
lations, to be described in Section 3.8, under the restrictions
in Definition 3.1 are meaning preserving, which implies that
all affine for-loops are parallelizable since the target of our
translations is DISC operations.

For example, the incremental update:

for i = . . . do C[V [i].K] += V [i].D,

which counts all V [i].D in groups that have the same key
V [i].K, satisfies our restrictions since it increments but does
not read C. On the other hand, some non-incremental up-
dates may outright be rejected. For example, the loop:

for i = . . . do V [i] := (V [i− 1] + V [i + 1])/2

will be rejected by Restriction 2 because V is both a reader
and a writer. To alleviate this problem, one may rewrite
this loop as follows:
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for i = . . . do V ′[i] := V [i];
for i = . . . do V [i] := (V ′[i− 1] + V ′[i + 1])/2,

which first stores V to V ′ and then reads V ′ to compute V .
This program satisfies our restrictions but is not equivalent
to the original program because it uses the previous values
of V to compute the new ones. Another example is:

for i = . . . do {n := V [i]; W [i] := f(n) },

which is also rejected because n is not affine as it does not
cover the loop indexes (namely, i). To fix this problem, one
may redefine n as a vector and rewrite the loop as:

for i = . . . do {n[i] := V [i]; W [i] := f(n[i]) }.

Redefining variables by adding to them more array dimen-
sions is currently done manually by a programmer, but we
believe that it can be automated when a variable that vio-
lates our restrictions is detected.

A more complex example is matrix factorization using gra-
dient descent [23]. The goal of matrix factorization is to split
a matrix R of dimension n×m into two low-rank matrices
P and Q of dimensions n × l and l × m, for small l, such
that the error between the predicted and the original ma-
trix R−P ×Q is below some threshold. One step of matrix
factorization that computes the new values P and Q from
the previous values P ′ and Q′ can be implemented using the
following loop-based program:

for i = 0, n−1 do
for j = 0, m−1 do {

pq := 0.0;
for k = 0, l−1 do

pq += P’[i,k]∗Q’[k,j ];
error := R[i , j ]−pq;
for k = 0, l−1 do {

P[i ,k] += a∗(2∗error∗Q’[k,j]−b∗P’[i,k ]);
Q[k,j ] += a∗(2∗error∗P’[i,k]−b∗Q’[k,j ]); }}

where a is the learning rate and b is the normalization factor
used in avoiding overfitting. This program first computes
pq, which is the i, j element of P ′ × Q′, and error, which
is the i, j element of R − P ′ × Q′. Then, it uses error to
improve P and Q. This program is rejected because the
destinations of the assignments pq := 0.0 and error := R[i,j]-
pq do not cover all loop indexes, and the read of pq violates
exception (b) (since the intersection of the contexts of pq
+= P’[i,k]*Q’[k,j] and error := R[i,j]-pq is {i,j}, which is not
equal to the indexes of pq). To rectify these problems, we
can convert the variables pq and error to matrices, so that,
instead of pq and error, we use pq[i,j] and error[i,j].

3.3 Monoid Comprehensions
The target of our translations consists of monoid com-

prehensions, which are equivalent to the SQL select-from-
where-group-by-having syntax. Monoid comprehensions
were first introduced and used in the 90’s as a formal ba-
sis for ODMG OQL [16]. They were recently used as the
formal calculus for the DISC query languages MRQL [15]
and DIQL [17]. The formal semantics of monoid compre-
hensions, the query optimization framework, and the trans-
lation of comprehensions to a DISC algebra, are given in our
earlier work [15, 17]. Here, we describe the syntax only.

A monoid comprehension has the following syntax:

{{{ e ||| q1, . . . , qn }}},

where the expression e is the comprehension head and a
qualifier qi is defined as follows:

Qualifier:
q ::= p← e generator
| let p = e let-binding
| e condition
| group by p [ : e ] group-by

Pattern:
p ::= v pattern variable

| (p1, . . . , pn) tuple pattern.

The domain e of a generator p ← e must be a bag. This
generator draws elements from this bag and, each time, it
binds the pattern p to an element. A condition qualifier e
is an expression of type boolean. It is used for filtering out
elements drawn by the generators. A let-binding let p = e
binds the pattern p to the result of e. A group-by qualifier
uses a pattern p and an optional expression e. If e is missing,
it is taken to be p. The group-by operation groups all the
pattern variables in the same comprehension that are defined
before the group-by (except the variables in p) by the value
of e (the group-by key), so that all variable bindings that
result to the same key value are grouped together. After
the group-by, p is bound to a group-by key and each one
of these pattern variables is lifted to a bag of values. The
result of a comprehension {{{ e ||| q1, . . . , qn }}} is a bag that
contains all values of e derived from the variable bindings in
the qualifiers.

Comprehensions can be translated to algebraic operations
that resemble the bulk operations supported by many DISC
systems, such as groupBy, join, map, and flatMap. In an
earlier work [15], we have presented a general method for
identifying all possible equi-joins in comprehensions, includ-
ing joins across deeply nested comprehensions, and translat-
ing them to joins and coGroups.

3.4 Array Representation
In our framework, a sparse array, such as a sparse vector

or a matrix, is represented as a key-value map (also known
as an indexed set), which is a bag of type {{(K,T )}}, where K
is the array index type and T is the array value type. More
specifically, a sparse vector of type vector[T ] is captured as
a key-value map of type {{(long, T )}}, while a sparse matrix
of type matrix[T ] is captured as a key-value map of type
{{((long, long), T )}}.

Merging two compatible arrays is done with the array
merging operation �, defined as follows:

X � Y = {{{ (k, b) ||| (k, a)← X, (k′, b) ∈ Y, k = k′ }}}
] {{{ (k, a) ||| (k, a)← X, k 6∈ Π1(Y )}}}
] {{{ (k, b) ||| (k, b)← Y, k 6∈ Π1(X)}}},

where Π1(X) returns the keys of X. That is, X � Y is the
union of X and Y , except when there is (k, x) ∈ X and
(k, y) ∈ Y , in which case it chooses the latter value, (k, y).
For example, {{(3, 10), (1, 20)}}� {{(1, 30), (4, 40)}} is equal to
{{(3, 10), (1, 30), (4, 40)}}. On Spark, the � operation can be
implemented as a coGroup.

An update to a vector V [e1] := e2 is equivalent to the
assignment V := V �{{(e1, e2)}}. That is, the new value of V
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is the current vector V but with the value associated with
the index e1 (if any) replaced with e2. Similarly, an update
to a matrix M [e1, e2] := e3 is equivalent to the assignment
M := M � {{((e1, e2), e3)}}.

Array indexing though is a little bit more complex because
the indexed element may not exist in the sparse array. In-
stead of a value of type T , indexing over an array of T should
return a bag of type {{T}}, which can be {{v}} for some value v
of type T , if the value exists, or ∅, if the value does not exist.
Then, the vector indexing V [e] is {{{ v ||| (i, v) ← V, i = e}}},
which returns a bag of type {{T}}. Similarly, the matrix in-
dexing M [e1, e2] is {{{ v ||| ((i, j), v)←M, i = e1, j = e2 }}}.

We are now ready to express any assignment that involves
vectors and matrices. For example, consider the matrices R,
M , and N of type matrix[float]. The assignment:

R[i, j] := M [i, k] ∗N [k, j] (2)

is translated to the assignment:

R := R� {{{ ((i, j),m ∗ n) ||| ((i, k),m)←M, (3)

((k′, j), n)← N, k = k′ }}},

which uses a bag comprehension equivalent to a join between
the matrices M and N . This assignment can be derived from
assignment (2) using simple transformations. To understand
these transformations, consider the product X ∗ Y . Since
both X and Y have been lifted to bags, because they may
contain array accesses, this product must also be lifted to a
comprehension that extracts the values of X and Y , if any,
and returns their product:

X ∗ Y = {{{x ∗ y ||| x← X, y ← Y }}}.

Given that matrix accesses are expressed as:

M [i, k] = {{{m ||| ((I, J),m)←M, I = i, J = k }}}
N [k, j] = {{{n ||| ((I, J), n)← N, I = k, J = j }}},

the product M [i, k] ∗N [k, j] is equal to:

{{{x ∗ y ||| x← {{{m ||| ((I, J),m)←M, I = i, J = k }}},
y ← {{{n ||| ((I, J), n)← N, I = k, J = j }}}}}},

which is normalized as follows by unnesting nested compre-
hensions::

{{{x ∗ y ||| ((I, J),m)←M, I = i, J = k, let x = m,
((I ′, J ′), n)← N, I ′ = k, J ′ = j, let y = n}}}

= {{{m ∗ n ||| ((I, J),m)←M, I = i, J = k,
((I ′, J ′), n)← N, I ′ = k, J ′ = j }}}.

Lastly, since the value of e in the assignment R[i, j] := e
is lifted to a bag, this assignment is translated to R :=
R�{{{ ((i, j), v) ||| v ← e}}}, that is, R is augmented with an in-
dexed set that results from accessing the lifted value of e. If
e contains a value, the comprehension will return a singleton
bag, which will replace R[i, j] with that value. After substi-
tuting the value e with the term derived for M [i, k]∗N [k, j],
we get an assignment equivalent to the assignment (3).

3.5 Handling Array Updates in a Loop
We now address the problem of translating array updates

in a loop. We classify updates into two categories:

1. Incremental updates of the form d := d ⊕ e, for some
commutative operation ⊕, where d is an update des-
tination, which is also repeated as the left operand of
⊕. It can also be written as d⊕= e. For example,
V [i] += 1 increments V [i] by 1.

2. All other updates of the form d := e.

Consider the following loop with a non-incremental update:

for i = 1, N do V [g(i)] := W [f(i)] (4)

for some vectors V and W , and some terms f(i) and g(i)
that depend on the index i. Our framework translates this
loop to an update to the vector V , where all the elements
of V are updated at once, in a parallel fashion:

V := V � {{{ (g(i), v) ||| i← range(1, N), (5)

(k, v)← V, k = f(i)}}}.

But this expression may not produce the same vector V as
the original loop if there are recurrences in the loop, such as,
when the loop body is V [i] := V [i−1]. Furthermore, the join
between range(1, N) and W in (5) looks unnecessary. We
will transform such joins to array traversals in Section 3.6.

In our framework, for-loops are embedded as generators
inside the comprehensions that are associated with the loop
assignments. Consider, for example, matrix copying:

for i = 1, 10 do for j = 1, 20 do M [i, j] := N [i, j].

Using the translation of the assignment M [i, j] := N [i, j],
the loop becomes:

for i = 1, 10 do (6)

for j = 1, 20 do

M := M � {{{ ((i, j), n) ||| ((I, J), n)← N,

I = i, J = j }}}.

To parallelize this loop, we embed the for-loops inside the
comprehension as generators:

M := M � {{{ ((i, j), n) ||| i← range(1, 10), (7)

j ← range(1, 20),

((I, J), n)← N, I = i, J = j }}}.

Notice the difference between the loop (6) and the assign-
ment (7). The former will do 10*20 updates to M while
the latter will only do one bulk update that will replace all
M [i, j] with N [i, j] at once. This transformation can only
apply when there are no recurrences across iterations.

3.6 Eliminating Loop Iterations
Before we present the details of program translation, we

address the problem of eliminating index iterations, such as
range(1,N) in assignment (5), and range(1, 10) and range(1,
20) in assignment (7). If there is a right inverse F of f such
that f(F (k)) = k, then the assignment (5) is optimized to:

V := V � {{{ (g(F (k)), v) ||| (k, v)←W, (8)

inRange(F (k), 1, N)}}},

where the predicate inRange(F (k), 1, N) returns true if F (k)
is within the range [1, N ]. Given that the right-hand side
of an update may involve multiple array accesses, we can
choose one whose index term can be inverted. For example,
for V [i − 1], the inverse of k = i − 1 is i = k + 1. In
the case where no such inverse can be derived, the range
iteration simply remains as is. One such example is the
loop for i = 1, N do V [i] := 0, which is translated to V :=
V � {{{ (i, 0) ||| i← range(1, N)}}}.
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3.7 Handling Incremental Updates
There is an important class of recurrences in loops that

can be parallelized using group-by and aggregation. Con-
sider, for example, the following loop with an incremental
update:

for i = 1, N do V [g(i)] += W [i]. (9)

It can be translated to a comprehension with a group-by:

V := V � {{{ (k, v + (+/w)) ||| (i, w)←W, inRange(i, 1, N),

group by k : g(i), (j, v)← V, j = k }}},

which groups W by the destination index g(i) and, for each
group, it calculates the aggregation +/w of all values w =
W [i] with the same g(i) value, but also adds the original
value v = V [g(i)] before the group-by.

If the destination of the incremental update is a variable,
such as in n+= W [i], then the group-by is over ( ), since
there are no indexes used in n:

n := {{{n + (+/w) ||| (i, w)←W, inRange(i, 1, N),

group by k : ( )}}}.

This group-by can be eliminated because it forms a single
group; in which case the variable w is lifted to a bag that
contains all the values of W :

n := {{{n + (+/{{{w ||| (i, w)←W, inRange(i, 1, N)}}})}}}.

We will discuss optimizations like this in Section 4.

3.8 Program Translation
The target of our translations is a list of statements, where

a statement c has the following syntax:

Target Code:
c ::= v := e assignment
| while(e, c) loop
| [ c1, . . . , cn ] code block

In the target code, an assignment to a variable v of type t
gets a value e of type {{t}}. An assignment to an array is done
in bulk, by replacing the entire array with a new one. The
while-loop corresponds to the while statement in Figure 1; it
repeats the code c in its body while the condition e is true.
Finally, a code block is like a block of statements that need
to be evaluated in order.

The rules for translating loop-based programs to the tar-
get code are given in Figure 2. They are mainly given in
terms of the semantic functions E and S that translate ex-
pressions and statements, respectively. The syntactic brack-
ets J. . .K enclose syntactic elements, as defined in Figure 1.
The rules for EJeK, given in Equations (10a)-(10g), translate
an expression e of type t to a comprehension term of type
{{t}}. For example, using Equation (10c), M [1, 2] is translated
to:

{{{ v ||| k ← {{{ 1}}}, l← {{{ 2}}}, ((i, j), v)←M, i = k, j = l}}}
= {{{ v ||| ((i, j), v)←M, i = 1, j = 2}}}.

The rules for SJsK(q), given in Equations (14a)-(14h), trans-
late a statement s to a list of target code statements. SJsK(q)
is parameterized by a list of qualifiers q that correspond to
the for-loop iterations, to be embedded in the comprehen-
sions derived from the assignments in the loop body. This
is always possible because of Theorem 3.1. That is, the

for-loops in Equations (14d) and (14e) become qualifiers,
which are propagated to the translation of their body s along
with the current q (where ++ is list concatenation). While-
loops, on the other hand, are translated to while-loop target
statements in Equation (14f) because they are not paral-
lelized. The qualifiers q are propagated to every statement
in a block, as shown in Equation (14h). Equations (14a)
and (14b) translate assignments. An incremental update
d ⊕= e, equal to d := d⊕ e, is translated by Equation (14a).
All other assignments are translated by Equation (14b).
Both Equations (14a) and (14b) use the semantic function
K that derives the destination indexes of the assignment,
and the semantic function U that generates the update as-
sociated with the assignment. More specifically, UJdK(x)
replaces the destination d with the value x by reconstruct-
ing the destination variable from its components, replac-
ing the components reachable from d with x. For example,
UJV [1]K({{(1, 10)}}), which is equal to [V := V � {{(1, 10)}} ],
updates V to be equal to V but with V [1] replaced with
10. The incremental update d ⊕= e is translated by Equa-
tion (14a) to a comprehension with a group-by over the des-
tination index d and an aggregation ⊕/v of all e values as-
sociated with the same group-by key. The value w added
to the aggregation is the initial value of d before the loop.
This value cannot be computed from EJdK because it is cor-
related to the destination index k. Instead, it is derived from
k using the semantic function D.

3.9 Examples of Program Translation
Consider the following statement s:

for i = 1, 10 do V [i] := W [i].

It is translated as follows:

SJsK([ ])
(from Equation (14d))

= SJV [i] := W [i]K([ v1 ← EJ1K, v2 ← EJ10K,
i← range(v1, v2) ])

(using Equation (10g) and after normalization)
= SJV [i] := W [i]K([ i← range(1, 10) ])

(from Equation (14b))
= UJV [i]K({{{ (k, v) ||| i← range(1, 10), v ← EJW [i]K,

k ← KJV [i]K}}})
(from Equations (10c) and (11c))

= UJV [i]K({{{ (k, v) ||| i← range(1, 10),
v ← {{{w ||| (j, w)←W, j = i}}}, k ← {{{ i}}}}}})

(after normalization)
= UJV [i]K({{{ (i, w) ||| i← range(1, 10), (j, w)←W, j = i}}})

(from Equation (13c))
= [V := V � {{{ (i, w) ||| i← range(1, 10),

(j, w)←W, j = i}}} ]
(after eliminating the loop iteration)

= [V := V � {{{ (i, w) ||| (i, w)←W, inRange(i, 1, 10)}}} ].

Note that, the assignment V := V � . . . is done in paral-
lel, such as replacing an RDD with another RDD in Spark.
Consider the following loop s with an incremental update:

for i = 1, 10 do W [K[i]] += V [i].

Then, from Equation (14d), SJsK([ ]) is equal to:

SJW [K[i]] += V [i]K([ v1 ← EJ1K, v2 ← EJ10K,
i← range(v1, v2) ])

= SJW [K[i]] += V [i]K([ i← range(1, 10) ]).
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EJeK : Translate the expression e to a comprehension term

EJV K = {{{V }}} (10a)

EJe.AK = {{{ v.A ||| v ← EJeK}}} (10b)

EJV [e1, . . . , en]K = {{{ v ||| k1 ← EJe1K, . . . , kn ← EJenK, ((i1, . . . , in), v)← V, i1 = k1, . . . , in = kn }}} (10c)

EJe1 ? e2K = {{{ v1 ? v2 ||| v1 ← EJe1K, v2 ← EJe2K}}} (10d)

EJ(e1, . . . , en)K = {{{ (v1, . . . , vn) ||| v1 ← EJe1K, . . . , vn ← EJenK}}} (10e)

EJ〈A1= e1, . . . , An= en 〉K = {{{ 〈A1= v1, . . . , An= vn 〉 ||| v1 ← EJe1K, . . . , vn ← EJenK}}} (10f)

EJconstK = {{{ const}}} (10g)

KJdK : Derive the destination index from d

KJV K = {{{ ( )}}} (11a)

KJd.AiK = KJdK (11b)

KJV [e1, . . . , en]K = EJ(e1, . . . , en)K (11c)

DJdK(k) : Derive d from the destination index k

DJV K(k) = {{{V }}} (12a)

DJd.AiK(k) = {{{ v.Ai ||| v ← DJdK(k)}}} (12b)

DJV [e1, . . . , en]K(k) = {{{ v ||| ((i1, . . . , in), v)← V,

(i1, . . . , in) = k }}} (12c)

UJdK(x) : Update the destination d with the value x

UJV K(x) = [V := {{{ v ||| (k, v)← x}}} ] (13a)

UJd.AiK(x) = UJdK({{{ (k, 〈A1=w.A1, . . . , Ai= v, . . . , An=w.An 〉) ||| (k, v)← x, w ← DJdK(k)}}}) (13b)

UJV [e1, . . . , en]K(x) = [V := V � x ] (13c)

SJsK(q) : Translate the statement s to a target code block using the list of for-loop qualifiers q

SJd ⊕= eK(q) = UJdK({{{ (k,w ⊕ (⊕/v)) ||| q, v ← EJeK, k ← KJdK,
group by k, w ← DJdK(k)}}}) (14a)

SJd := eK(q) = UJdK({{{ (k, v) ||| q, v ← EJeK, k ← KJdK}}}) (14b)

SJvar V : t = eK(q) = SJV := eK(q) (14c)

SJfor v = e1, e2 do sK(q) = SJsK(q ++ [ v1 ← EJe1K, v2 ← EJe2K, v ← range(v1, v2) ]) (14d)

SJfor v in e do sK(q) = SJsK(q ++ [A← EJeK, (i, v)← A ]) (14e)

SJwhile (e) sK(q) = [ while(EJeK,SJsK(q)) ] (14f)

SJif (e) s1 else s2K(q) = SJs1K(q ++ [ p← EJeK, p ]) ++ SJs2K(q ++ [ p← EJeK, !p ]) (14g)

SJ{ s1; . . . ; sn}K(q) = SJs1K(q) ++ · · ·++ SJsnK(q) (14h)

Figure 2: Rules for translating loop-based programs to target code

To translate W [K[i]] += V [i] using Equation (14a), we need
to derive the destination index using Equation (11c):

KJW [K[i]]K = EJK[i]K = {{{ a ||| (m,a)← K, m = i}}}

and the destination value from the destination index using
Equation (12c):

DJW [K[i]]K(k) = {{{ v ||| (i, v)←W, i = k }}}.

Hence, the loop translation is:

SJW [K[i]] += V [i]K([ i← range(1, 10) ])
(from Equation (14a))

= UJW [K[i]]K({{{ (k,w + (+/v)) ||| i← range(1, 10),
(l, v)← V, l = i, k ← KJW [K[i]]K,
group by k, w ← DJW [K[i]]K(k)}}})

= UJW [K[i]]K({{{ (k,w + (+/v)) ||| i← range(1, 10),
(l, v)← V, l = i, k ← {{{ a ||| (m,a)← K, m = i}}},
group by k, w ← {{{ v ||| (i, v)←W, i = k }}}}}})

= UJW [K[i]]K({{{ (k,w + (+/v)) ||| i← range(1, 10),
(l, v)← V, l = i, (m,a)← K, m = i,
group by a, (j, w)←W, j = a}}})
(from Equation (13c))

= [W := W � {{{w + (+/v) ||| i← range(1, 10),
(l, v)← V, l = i, (m,a)← K, m = i,
group by a, (j, w)←W, j = a}}} ],

which is optimized to the following target code after remov-
ing the loop iteration:

[W := W � {{{w + (+/v) ||| (i, v)← V,
inRange(i, 1, 10), (m,a)← K, m = i,
group by a, (j, w)←W, j = a}}} ].
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4. OPTIMIZATIONS
As discussed in Section 3, incremental updates on vari-

ables of a basic type, such as n+= W [i], can be translated
to total aggregations. This translation is actually an opti-
mization of the default translation. The optimization rule,
for a constant group-by key c, is:

{{{ e ||| q1, group by p : c, q2 }}} (15)

→ {{{ e ||| let p = c, ∀vi : let vi = {{{ vi ||| q1 }}}, q2 }}},

where vi are the pattern variables in q1. For example, con-
sider the assignment n+= W [i], which is translated to:

n := {{{n + (+/w) ||| (i, w)←W, group by k : ( )}}}.

The right-hand side of this assignment is optimized to:

{{{n + (+/w) ||| let k = ( ), let w = {{{w ||| (i, w)←W }}}}}}
= {{{n + (+/{{{w ||| (i, w)←W }}})}}},

which is more efficient because it does not use a group-by.
The same happens when indexes in the destination are con-
stants, such as in M [1, 2] += 1. Then, the group-by on (1, 2)
can be removed using Rule (15):

M � {{{ (k, v + (+/c) ||| let c = 1, group by k : (1, 2),

((i, j), v)←M, i = 1, j = 2}}}
= M � {{{ (k, v + (+/c) ||| let k = (1, 2),

let c = {{{ c ||| let c = 1}}},
((i, j), v)←M, i = 1, j = 2}}}

= M � {{{ ((1, 2), v + 1) ||| ((i, j), v)←M, i = 1, j = 2}}}.

Another optimization is when the group-by key is unique,
that is, when the group-by function is injective. In that
case, each group is a singleton bag. The group-by can be
eliminated using the following rule:

{{{ e ||| q1, group by p : k, q2 }}} (16)

→ {{{ e ||| q1, let p = k, ∀vi : let vi = {{vi}}, q2 }}}.

That is, the group-by is removed and every pattern variable
vi in q1 is lifted to a singleton bag that represents the group,
that is, it contains vi only. For example, the loop:

for i = 1, 10 do V [i] += W [i]

has a default translation, after removing the for-loop:

V � {{{ (k, v + (+/w)) ||| (i, w)←W, inRange(i, 1, 10),

group by k : i, (j, v)← V, j = k }}}.

Here, the group-by key is unique since it is the index of W .
Based on Rule (16), this term is optimized to:

V � {{{ (k, v + (+/w)) ||| (i, w)←W, inRange(i, 1, 10),

let k = i, let w = {{w}}, (j, v)← V, j = k }}}
= V � {{{ (i, v + w) ||| (i, w)←W, inRange(i, 1, 10),

(j, v)← V, j = i}}}.

Inferring whether a group-by key is unique is similar to
inferring whether an assignment destination is affine (Sec-
tion 3.2). A generator (i, w)←W for an array W indicates
that i is unique. If the group-by key is an affine term that
consists of all array indexes in the generators before the
group-by, then it is a unique key.

Table 1: Compilation time in seconds
test program MOLD Casper DIABLO
Average 172.25 5.75
Conditional Count 20.25 5.75
Conditional Sum 18.75 5.25
Count 9.75 5.75
Equal 11.25 5.75
Equal Frequency 778.00 5.75
String Match 68 806.00 8.50
Sum 10.25 5.00
Word Count 11 102.25 6.50
Histogram 233 10272.00 9.00
Matrix Multiplication 40 fail 8.25
Linear Regression 28 >19 hours 8.75
KMeans 340 fail 9.75
PCA 66 fail 13.25
PageRank 9.50
Matrix Factorization 14.50

5. PERFORMANCE EVALUATION
DIABLO is implemented on top of DIQL [17, 12], which

is a query optimization framework that optimizes and com-
piles queries to Java byte code at compile-time. DIQL can
run on Apache Spark, Apache Flink, Cascading/Scalding,
and Scala Parallel collections. DIABLO compiles loop-based
programs to monoid comprehensions, which in turn are trans-
lated to byte code by the DIQL compiler. DIABLO is cur-
rently implemented on Spark, Flink, and on Scala’s Parallel
Collections. The DIABLO code is available as part of the
DIQL source code on GitHub [12].

We first evaluated the translator efficiency of DIABLO
relative to MOLD [27] and Casper [2] (Table 1). The pro-
grams used in these evaluations are described next in this
section. The translation times for MOLD were taken di-
rectly from the MOLD paper [27] but are not verified, be-
cause at the time of writing, we could not install MOLD due
to software dependency issues. In addition, although both
the binaries and source code of Casper are available at [9],
we were not able to validate some of the results reported
in [2]. More specifically, based on our communication with
the main developer of Casper, we tried many configurations
and libraries, but were not able to compile some of the test
files provided with the source code. The results reported
here were run on Casper 0.1.1, with Sketch 1.7.5 and Dafny
1.9.7. These experiments were done on a 2.7 GHz Intel Core
i5 with 8GB RAM. Each program was run 4 times. Casper
was able to synthesize code for Histogram but its validator
failed to validate the code. For Linear Regression, Casper
was taking too long so we had to abort it after 19 hours.
The fail entries in Table 1 are failures to synthesize code for
the test files; these errors were reported by the Dafny pro-
gram synthesizer. We can see that the DIABLO translator
is far more efficient than both MOLD and Casper and, un-
like these systems, can translate complex programs. In fact,
Casper can only translate trivial flat loops.

Although the focus of our work is on distributed process-
ing, not shared-memory data parallelism, our second set of
experiments was to evaluate a variety of loop-based pro-
grams in two ways: in parallel using Scala’s parallel col-
lections and sequentially using regular lists. That is, each
one of these loop-based programs was compiled to parallel
and to sequential Scala programs, and these two programs
were evaluated over the same data. Scala uses thread-level
shared-memory data parallelism on a multi-core computer to
process parallel collections. For these evaluations, we used
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Figure 3: Performance of DIABLO relative to hand-written Spark code

Table 2: Parallel (par) vs Sequential (seq) evaluation
time in seconds
test program count size (MB) par seq

Conditional Sum 109 61035 9.4 39.2
Equal 5 × 108 20504 8.3 36.2
String Match 5 × 108 20504 6.9 31.9
Word Count 5 × 107 2050 29.5 97.7
Histogram 5 × 107 3338 7.1 31.5
Linear Regression 108 13924 8.6 25.2
Group-By 5 × 107 2766 30.6 73.8
Matrix Addition 3500 × 3500 2710 28.9 154.0
Matrix Multiplication 420 × 420 39 19.7 179.3
PageRank 1500000 279 9.5 37.1
KMeans 500000 70 27.2 30.5
Matrix Factorization 980 × 980 210 9.6 24.3

one server with Xeon E5-2680v3 at 2.5GHz, with 24 cores
and 128GB RAM. The results, shown in Table 2, are based
on the programs and data described next in this section.
Each experiment was evaluated 4 times and the mean value
was used. We can see that all DIABLO parallel programs
are faster than their sequential counterparts.

To evaluate the quality of our generated code on a dis-
tributed platform, we have tested our system on 12 programs
and compared their evaluation against efficient hand-written
programs on Spark. The platform used for our evaluations
was a small cluster of 10 nodes built on the XSEDE Comet
cloud computing infrastructure at SDSC (San Diego Super-
computer Center). Each Comet node has one Xeon E5-
2680v3 at 2.5GHz, with 24 cores, 128GB RAM, and 320GB

SSD. For our experiments, we used Apache Spark 2.2.0 run-
ning on Apache Hadoop 2.6.0. All experiments were done
on random data, stored in Spark RDDs. Each Spark ex-
ecutor was configured to have 4 cores and 23 GB RAM.
Consequently, there were 5 executors per node, giving a to-
tal of 50 executors, from which 2 were reserved for other
tasks. Each program was evaluated over 5 datasets and each
evaluation was repeated 4 times, the first of which was dis-
carded to make sure that the JVM/JIT warm-up time does
not skew the results. Hence, each data point in the plots in
Figure 3 represents the mean value of these 3 evaluations.
The dataset size was calculated by multiplying the dataset
length by the size of a dataset element when is serialized to
bytes using Java serialization. Each program was evaluated
in 3 different ways: as a loop-based program translated by
DIABLO to the Spark Core API (RDDs) (the lines tagged
“DIABLO”), as an equivalent efficient program in Spark
Core written by us (the lines tagged “hand-written”), and
as a loop-based program translated by Casper to Spark
Core, when such translation is possible (the lines tagged
“Casper”). The programs are available on GitHub [12].

Conditional Sum filters a dataset V of type RDD[Double]
that contains random data and aggregates the result. The
Spark code is V. filter ( < 100).reduce( + ). The largest
dataset used had 109 elements and size 7.45 GB. Equal,
String Match, and Word Count used the same dataset of
type RDD[String] that contains random strings of size 4 so
that there were 1000 different strings. The largest dataset
used had 2 × 108 elements and size 1.49 GB. Equal checks
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whether all the strings in the dataset are equal. String
Match checks whether the dataset contains “key1”, “key2”,
or “key3”. For each different string in the dataset, Word-
Count counts how many times this string occurs. Histogram
scans a dataset P of RGB pixels of type RDD[(Int,Int,Int)],
and for each one of the RGB components, it creates a his-
togram. For instance, the Spark code for the red component
is P.map( .1).countByValue(). The largest dataset used had
2×108 elements and size 10.99 GB. Linear Regression takes
a dataset of 2-D points of type RDD[(Double,Double)] and
calculates the intercept and the slope coefficient that mod-
els the dataset. The data used were points (x+ dx, x− dx),
where x is a random double between 0 and 1000 and dx is a
random double between 0 and 10. The largest dataset used
had 2 × 108 elements and size 27.99 GB. Group By groups
a dataset of type RDD[(Long,Double)] by it first component
and sums up the second component. The keys were random
long integers with 10 duplicates on the average. The largest
dataset used had 2 × 108 elements and size 8.75 GB. We
can see that programs generated by DIABLO have perfor-
mance comparable to the hand-written programs and are
faster than those by Casper.

Matrix addition and multiplication: The matrices used
in our experiments have type RDD[((Long,Long),Double)].
Although sparse, all matrix elements were provided, were
placed in random order, and were filled with random val-
ues between 0.0 and 10.0. The matrices used for addition
and multiplication were pairs of square matrices of the same
size. The largest matrices used in addition had 8000× 8000
elements and size 13.83 GB each, while those in multiplica-
tion had 4000× 4000 elements and size 3.46 GB each. The
results are shown in Figures 3.H and I. We can see that
here too programs generated by DIABLO have performance
comparable to the hand-written programs.

PageRank: The PageRank program computes one itera-
tion of the page-rank algorithm that assigns a rank to each
vertex of a graph, which measures its importance relative to
the other vertices in the graph. The graphs used in our ex-
periments were synthetic data generated by the RMAT (Re-
cursive MATrix) Graph Generator [10] using the Kronecker
graph generator parameters a=0.30, b=0.25, c=0.20, and
d=0.25. The number of edges generated were 10 times the
number of graph vertices. The largest graph used had 2×107

vertices, 2 × 108 edges, and had size 36.32 GB. The results
are shown in Figure 3.J. The pagerank step in the hand-
written program was simply a join between the graph and
the current pagerank, followed by a reduceByKey. The gen-
erated DIABLO program though used a triple join among
the graph, the current pagerank, and the node fan-out vec-
tor, followed by a reduceByKey.

K-Means clustering: The KMeans program computes one
iteration step of the K-Means clustering algorithm, which
finds the K centroids of a set of 2-D points on a plane. The
datasets used in our experiments are random points on a
plane inside a 10×10 grid of squares, where each square has
a top-left corner at (i ∗ 2 + 1, j ∗ 2 + 1) and bottom-right
corner at (i ∗ 2 + 2, j ∗ 2 + 2), for i ∈ [0, 9] and j ∈ [0, 9].
That is, there should be 100 centroids, which are the square
centers (i∗2 + 1.5, j ∗2 + 1.5). The initial centroids were set
to be the points (i ∗ 2 + 1.2, j ∗ 2 + 1.2). The largest dataset
used had 107 data points and size 1.36 GB. The results are
shown in Figure 3.K. The hand-written program broadcasts
the initial centroids to all workers so that each worker keeps

a copy in its memory, and then uses a map followed by a
reduceByKey, in which the shuffled data were very small
and of constant size. On the other hand, DIABLO stores
the centroids into an RDD and uses Spark joins to correlate
points with centroids, making the entire process expensive.

Matrix factorization: The last program to evaluate is one
iteration of matrix factorization using gradient descent [23].
The loop-based program was given in Section 3.2. For our
experiments, we used the learning rate a = 0.002 and the
normalization factor b = 0.02. The matrix to be factorized,
R, was a square sparse matrix n∗n with random integer val-
ues between 1 and 5, in which only the 10% of the elements
were provided (the rest were implicitly zero). The derived
matrices P and Q had dimensions n ∗ 2 and 2 ∗ n, respec-
tively, and were initialized with random values between 0.0
and 1.0. The largest matrix R used had 8000×8000 elements
and size 13.65 GB. The results are shown in Figure 3.L.

From these experiments, we can see that, except K-Means
and Matrix Factorization, the programs generated by DI-
ABLO have performance comparable to the hand-written
programs. K-Means and Matrix Factorization are far more
complex than the other programs, causing DIABLO to gen-
erate some unnecessary joins. These joins could have been
eliminated by a more sophisticated query optimizer. The
focus of our current work is on generating correct DISC pro-
grams from array loops. We are planning to explore more
effective query optimization techniques in a future work.

6. CONCLUSION
We have addressed the problem of automated paralleliza-

tion of array-based loops by translating them to compre-
hensions, which can then be translated and optimized to
distributed data parallel operations. The efficiency of our
translations would mostly depend on the effectiveness of
code optimization after translation, which we are planning
to address more thoroughly in a future work. We are also
planning to look at cost-based optimizations, such as deter-
mining whether an array is small enough to fit in a worker’s
memory in order to broadcast it to all workers, thus speed-
ing up joins over this array. One source of inefficiency in our
translations is the large number of generated joins. When
two arrays are used together in a program, such as in A[i] ∗
B[i], this term is translated to a join between A and B.
This join can be avoided if we co-partition these two vectors
using the same partitioner. Then, A[i] ∗ B[i] can be imple-
mented using the zipPartitions operation in Spark, which
does not cause any shuffling. As a future work, we are also
planning to experiment with more platforms as the target
of DIABLO, such as Spark SQL, which supports cost-based
optimizations. A more effective way to represent arrays is
to encode them as distributed bags of tiles, where each tile
is a fixed-size array chunk. It is well known in ML and
data management communities that such tiled representa-
tions largely outperform basic sparse tuple representations.
As a future work, we are planning to extend our framework
to generate code that processes tiled arrays.

Acknowledgments: Our evaluations were performed at
the XSEDE Comet cloud computing infrastructure at the
San Diego Supercomputer Center (SDSC), www.xsede.org,
supported by NSF.

1259



7. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, et al. TensorFlow: A

System for Large-Scale Machine Learning. In USENIX
Conference on Operating Systems Design and
Implementation (OSDI), pages 265–283, 2016.

[2] M. B. S. Ahmad and A. Cheung. Automatically
Leveraging MapReduce Frameworks for
Data-Intensive Applications. In ACM SIGMOD
International Conference on Management of Data,
pages 1205–1220, 2018.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd
Edition). Chapter 11: Optimizing for Parallelism and
Locality, Addison Wesley, 2007.

[4] Apache Flink. http://flink.apache.org/, 2020.

[5] Apache Hadoop. http://hadoop.apache.org/, 2020.

[6] Apache Spark. http://spark.apache.org/, 2020.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
Data Processing in Spark. In ACM SIGMOD
International Conference on Management of Data,
pages 1383–1394, 2015.

[8] G. E. Blelloch and G. W. Sabot. Compiling
Collection-Oriented Languages onto Massively Parallel
Computers. In Journal of Parallel and Distributed
Computing (JPDC), 8:119–134, 1990.

[9] Casper. http://casper.uwplse.org/, accessed in
January 2020.

[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A Recursive Model for Graph Mining. In SIAM
International Conference on Data Mining (SDM),
pages 442–446, 2004.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Symposium on
Operating Systems Design and Implementation
(OSDI), 2004.

[12] DIQL: A Data Intensive Query Language.
https://github.com/fegaras/DIQL, 2020.

[13] K. V. Emani, K. Ramachandra, S. Bhattacharya, and
S. Sudarshan. Extracting Equivalent SQL from
Imperative Code in Database Applications. In ACM
SIGMOD International Conference on Management of
Data, pages 1781–1796, 2016.

[14] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng,
B. Zhang, Y. Cao, and C. Tian. Parallelizing
Sequential Graph Computations. In ACM SIGMOD
International Conference on Management of Data,
pages 495–510, 2017.

[15] L. Fegaras. An Algebra for Distributed Big Data
Analytics. Journal of Functional Programming, special
issue on Programming Languages for Big Data,
Volume 27, 2017.

[16] L. Fegaras and D. Maier. Optimizing Object Queries
Using an Effective Calculus. ACM Transactions on
Database Systems (TODS), 25(4):457–516, 2000.

[17] L. Fegaras and M. H. Noor. Compile-Time Code
Generation for Embedded Data-Intensive Query
Languages. In IEEE BigData Congress, 2018.

[18] L. Fegaras and M. H. Noor. Translation of
Array-Based Loops to Distributed Data-Parallel

Programs (extended paper). arXiv:2003.09769, 2020.
[19] A. L. Fisher and A. M. Ghuloum. Parallelizing

Complex Scans and Reductions. ACM SIGPLAN
Notices, 29(6):135–146, 1994.

[20] R. Guravannavar and S. Sudarshan. Rewriting
Procedures for Batched Bindings. PVLDB,
1(1):1107–1123, 2008.

[21] A. R. Hurson, J. T. Lim, K. M. Kavi, and B. Lee.
Parallelization of DOALL and DOACROSS Loops – a
Survey. Advances in Computers, vol 45, pages 53–103,
1997.

[22] P. Jiang, L. Chen, and G. Agrawal. Revealing Parallel
Scans and Reductions in Recurrences through
Function Reconstruction. In International Conference
on Parallel Architectures and Compilation Techniques
(PACT), pages 1–13, 2018.

[23] Y. Koren, R. Bell, and C. Volinsky. Matrix
Factorization Techniques for Recommender Systems
IEEE Computer, 42(8):30–37, August 2009.

[24] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and
M. Takeichi. Automatic Inversion Generates
Divide-and-Conquer Parallel Programs. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 146–155,
2007.

[25] D. W. Palmer, J. F. Prins, and S. Westfold.
Work-Efficient Nested Data-Parallelism. In
Symposium on the Frontiers of Massively Parallel
Processing, 1995.

[26] S. Papadopoulos, K. Datta, S. Madden, and T.
Mattson. The TileDB Array Data Storage Manager.
PVLDB, 10(4):349–360, 2016.

[27] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan.
Translating Imperative Code to MapReduce. In ACM
International Conference on Object Oriented
Programming Systems Languages & Applications
(OOPSLA), pages 909–927, 2014.

[28] The SciDB Development Team. Overview of SciDB:
Large Scale Array Storage, Processing and Analysis.
In ACM SIGMOD International Conference on
Management of Data, pages 963–968, 2010.

[29] C. Smith and A. Albarghouthi. MapReduce Program
Synthesis. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 326–340, 2016.

[30] E. Soroush, M. Balazinska, and D. Wang. ArrayStore:
A Storage Manager for Complex Parallel Array
Processing. In ACM SIGMOD International
Conference on Management of Data, pages 253–264,
2011.

[31] A. Venkat, M. S. Mohammadi, J. Park, H. Rong,
R. Barik, M. M. Strout, and M. Hall. Automating
Wavefront Parallelization for Sparse Matrix
Computations. In International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC), Article No. 41, pages 1–12, 2016.

[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

1260


