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ABSTRACT
The recent adoption of blockchain technologies and open
permissionless networks suggest the importance of peer-to-
peer atomic cross-chain transaction protocols. Users should
be able to atomically exchange tokens and assets without
depending on centralized intermediaries such as exchanges.
Recent peer-to-peer atomic cross-chain swap protocols use
hashlocks and timelocks to ensure that participants com-
ply to the protocol. However, an expired timelock could
lead to a violation of the all-or-nothing atomicity property.
An honest participant who fails to execute a smart contract
on time due to a crash failure, denial of service attacks or
even network delays might end up losing assets. Although
a crashed participant is the only participant who ends up
worse off, current proposals are unsuitable for atomic cross-
chain transactions in asynchronous environments where
crash failures and network delays are the norm. In this
paper, we present AC3WN, the first decentralized all-or-
nothing atomic cross-chain commitment protocol. The re-
deem and refund events of the smart contracts that exchange
assets are modeled as conflicting events. An open permis-
sionless network of witnesses is used to guarantee that con-
flicting events could never simultaneously occur and either
all smart contracts in an atomic cross-chain transaction are
redeemed or all of them are refunded.
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1 Introduction
The wide adoption of permissionless open blockchain net-
works by both industry (e.g., Bitcoin [22], Ethereum [28],
etc) and academia (e.g., Bzycoin [18], Elastico [19], Bit-
coinNG [11], Algorand [21], etc.) suggests the importance of
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developing protocols and infrastructures that support peer-
to-peer atomic cross-chain transactions. Users, who usu-
ally do not trust each other, should be able to directly ex-
change their tokens and assets that are stored on different
blockchains (e.g., Bitcoin and Ethereum) without depend-
ing on trusted third party intermediaries. Decentralized per-
missionless [20] blockchain ecosystems require infrastructure
enablers and protocols that allow users to atomically ex-
change tokens without giving up trust-free decentralization,
the main reasons behind using permissionless blockchains.
We motivate the problem of atomic cross-chain transactions
and discuss the current available solutions and their limita-
tions through the following example.

Suppose Alice owns X bitcoins and she wants to exchange
them for Y ethers. Luckily, Bob owns ether and he is will-
ing to exchange his Y ethers for X bitcoins. to atomi-
cally exchange assets that reside in different blockchains.
In addition, both Alice and Bob do not trust each other
and in many scenarios, they might not be co-located to do
this atomic exchange in person. Current infrastructures do
not support these direct peer-to-peer transactions. Instead,
both Alice and Bob need to independently exchange their
tokens through a trusted centralized exchange, Trent (e.g.,
Coinbase [3] and Robinhood [4]) either through fiat currency
or directly. Using Fiat, both Alice and Bob first exchange
their tokens with Trent for a fiat currency (e.g., USD) and
then use the earned fiat currency to buy the other token also
from Trent or from another trusted exchange. Alternatively,
some exchanges (e.g., Coinbase) allow their customers to di-
rectly exchange tokens (e.g., ether for bitcoin or bitcoin for
ether) without going through fiat currencies.

These solutions have many drawbacks that make them
unacceptable solutions for peer-to-peer atomic cross-chain
transactions. First, they require both Alice and Bob to trust
Trent. This centralized trust requirement risks to derail the
whole idea of blockchain’s trust-free decentralization [22].
Second, they require Trent to trade in all involved resources
(e.g., bitcoin and ether). This requirement is unrealistic
especially if Alice and Bob want to exchange commodity re-
sources (e.g., transfer a car ownership for bitcoin assuming
car titles are stored in a blockchain [16]). Third, these solu-
tions do not ensure the atomic execution of the transaction
among the involved participants. Alice might trade her bit-
coin directly for ether or through a fiat currency while Bob
has no obligation to execute his part of the swap. Finally,
these solutions significantly increase the number of required
transactions to achieve the intended cross-chain transaction,
and hence drastically increases the imposed fees. One cross-
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chain transaction between Alice and Bob results in either
four transactions (two between Alice and Trent and two be-
tween Bob and Trent) if fiat is used or at best two trans-
actions (one between Alice and Trent and one between Bob
and Trent) if assets are directly swapped.

An Atomic Cross-Chain Transaction, AC2T, is a dis-
tributed transaction that spans multiple blockchains. This
distributed transaction consists of sub-transactions and each
sub-transaction is executed on a blockchain. An Atomic
Cross-Chain Commitment, AC3, protocol is required to ex-
ecute AC2Ts. This protocol is a variation of traditional dis-
tributed atomic commitment protocols (e.g., 2PC [8, 14]).
This protocol should guarantee both atomicity and commit-
ment of AC2Ts. Atomicity ensures the all-or-nothing
property where either all sub-transactions take place or none
of them do. Commitment guarantees that any changes
caused by a cross-chain transaction must eventually take
place if the transaction is decided to commit. Unlike in
2PC and other traditional distributed atomic commitment
protocols, atomic cross-chain commitment protocols are also
trust-free and therefore must tolerate maliciousness [16].

A two-party atomic cross-chain commitment protocol was
originally proposed by Nolan [1,23] and generalized by Her-
lihy [16] to process multi-party atomic cross-chain transac-
tions, or swaps. Both Nolan’s protocol and its generalization
by Herlihy use smart contracts, hashlocks, and timelocks to
execute atomic cross-chain transactions. A smart contract is
a self executing contract (or a program) that gets executed
in a blockchain once all the terms of the contract are satis-
fied. A hashlock is a cryptographic one-way hash function
h = H(s) that locks assets in a smart contract until a hash
secret s is provided. A timelock is a time bounded lock that
triggers the execution of a smart contract function after a
pre-specified time period.

The atomic swap between Alice and Bob, explained in
the earlier example, is executed using Nolan’s protocol as
follows. Let a participant be the leader of the swap, say
Alice. Alice creates a secret s, only known to Alice, and a
hashlock h = H(s). Alice uses h to lock X bitcoins in a smart
contract SC1 and publishes SC1 in the Bitcoin network.
SC1 transfers X bitcoins to Bob if Bob provides the secret
s to SC1 where h = H(s). In addition, SC1 is locked with a
timelock t1 that refunds the X bitcoins to Alice if Bob fails
to provide s to SC1 before t1 expires. As SC1 is published
in the Bitcoin network and made public to everyone, Bob
can verify that SC1 indeed transfers X bitcoins to his public
address if he provides s to SC1. In addition, Bob learns h
from SC1. Using h, Bob publishes a smart contract SC2 in
the Ethereum network that locks Y ethers in SC2 using h.
SC2 transfers Y ethers to Alice if Alice provides the secret
s to SC2. In addition, SC2 is locked with a timelock t2 < t1
that refunds the Y ethers to Bob if Alice fails to provide s
to SC2 before t2 expires.

Now, if Alice wants to redeem her Y ethers from SC2,
Alice must reveal s to SC2 before t2 expires. Once s is pro-
vided to SC2, Alice redeems the Y ethers and s gets revealed
to Bob. Now, Bob can use s to redeem his X bitcoins from
SC1 before t1 expires. Notice that t1 > t2 is a necessary
condition to ensure that Bob has enough time to redeem his
X bitcoins from SC1 after Alice provides s to SC2 and before
t1 expires. If Bob provides s to SC1 before t1 expires, Bob
successfully redeems his X bitcoins and the atomic swap is
marked completed.

The case against the current proposals: If Bob fails
to provide s to SC1 before t1 expires due to a crash fail-
ure, a network partitioning, or a network denial of service
at Bob’s site, Bob loses his X bitcoins and SC1 refunds the
X bitcoins to Alice. This violation of the atomicity prop-
erty of the protocol penalizes Bob for a failure that happens
out of his control. Although a crashed participant is the
only participant who ends up being worse off (Bob in this
example), this protocol does not guarantee the atomicity of
AC2Ts in asynchronous environments where crash failures,
network partitioning, and message delays are the norm.

Another important drawback in Nolan’s and Herlihy’s
protocols is the requirement to sequentially publish the
smart contracts in an atomic swap before the leader (Alice in
our example) reveals the secret s. This requirement is nec-
essary to ensure that the publishing events of all the smart
contracts in the atomic swap happen before the redemption
of any of the smart contracts. This causality requirement
ensures that any malicious participant who declines to pub-
lish their payment smart contract cannot take advantage of
the protocol. However, the sequential publishing of smart
contracts, especially in atomic swaps that include many par-
ticipants, proportionally increases the latency of the swap to
the number of sequentially published contracts.

In this paper, we propose AC3WN, the first decentralized
all-or-nothing Atomic Cross-Chain Commitment protocol
that uses an open Witness Network to coordinate AC2T s.
The redemption and the refund events of smart contracts
in AC2T are modeled as conflicting events. A decentral-
ized open network of witnesses is used to guarantee that
conflicting events must never simultaneously take place and
either all smart contracts in an AC2T are redeemed or all of
them are refunded. Unlike in Nolan’s and Herlihy’s proto-
cols, AC3WN allows all participants to concurrently publish
their contracts in a swap resulting in a drastic decrease in
the latency of atomic swaps. Our contributions are summa-
rized as follows:

• We present AC3WN, the first all-or-nothing atomic
cross-chain commitment protocol. AC3WN is decen-
tralized and its correctness does not depend on any
trusted centralized intermediary.

• We prove the correctness of AC3WN showing that
AC3WN achieves both atomicity and commitment of
AC2Ts.

• Finally, we analytically evaluate AC3WN in compari-
son to Herlihy’s [16] protocol. Unlike in Herlihy’s pro-
tocol where the latency of an atomic swap proportion-
ally increases as the number of the sequentially pub-
lished smart contracts in the atomic swap increases,
our analysis shows that the latency of an atomic swap
in AC3WN is constant irrespective of the number of
smart contracts involved.

The rest of the paper is organized as follows. In Section 2,
we discuss the open blockchain data and transactional mod-
els. Section 3 explains the cross-chain distributed trans-
action model and Section 4 presents AC3WN, our atomic
cross-chain commitment protocol. The AC3WN protocol is
analyzed in Section 5. The protocol is evaluated in Section 6
and the paper is concluded in Section 7.
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2 Open Blockchain Models
2.1 Architecture Overview

An open permissionless blockchain system [20] (e.g., Bit-
coin and Ethereum) typically consists of two layers: a stor-
age layer and an application layer. The storage layer
comprises a decentralized distributed ledger managed by an
open network of computing nodes. A blockchain system is
permissionless if computing nodes can join or leave the net-
work of its storage layer at any moment without obtaining
permission from a centralized authority. Each computing
node, also called a miner, maintains a copy of the ledger.
The ledger is a tamper-proof chain of blocks, hence named
blockchain. Each block contains a set of valid transactions
that transfer assets among end-users. The application
layer comprises end-users who communicate with the stor-
age layer via message passing through a client library. End-
users have identities, defined by their public keys, and signa-
tures, generated using their private keys. Digital signatures
are the end-users’ way to generate transactions as explained
later in Section 2.3. End-users submit their transactions to
the storage layer through a client library. Transactions are
used to transfer assets from one identity to another. End-
users multicast their transaction messages to mining nodes
in the storage layer.

A mining node validates the transactions it receives and
valid transactions are added to the current block of a mining
node. Miners run a consensus protocol through mining to
agree on the next block to be added to the chain. A miner
who mines a block gets the right to add the mined block
to the chain and multicasts it to other miners. To make
progress, miners accept the first received mined block after
verifying it and start mining the next block1. Sections 2.2
and 2.3 explain the data model and the transactional model
of open blockchain systems respectively.

2.2 Data Model
The storage layer stores the ownership information of as-

sets in the system in the blockchain. The ownership is deter-
mined through identities and identities are typically imple-
mented using public keys. In addition, the blockchain stores
transactions that transfer the ownership of an asset from
one identity to another. Therefore, an asset can be tracked
from its registration in the blockchain, the first owner, to
its last owner in the blockchain. For example, the Bitcoin
blockchain stores the information of the most recent owner
of every bitcoin in the Bitcoin blockchain. A bitcoin that is
linked to Alice’s public key is owned by Alice. Also, new bit-
coins are generated and registered in the Bitcoin blockchain
through mining. Asset ownership transfers are implemented
through transactions.

2.3 Transaction Model
A transaction is a digital signature that transfers the own-

ership of assets from one identity to another. End-users, in
the application layer, use their private keys [26] to digitally
sign assets linked to their identity to transfer these assets to
other identities, identified by their public keys. These digi-
tal signatures are submitted to the storage layer via message
passing through a client library. It is the responsibility of the
miners to validate that end-users can transact only on their
own assets. If an end-user digitally signs an asset that is
not owned by this end-user, the resulting transaction is not

1Forks and fork resolutions are discussed in later sections.

valid and hence rejected by the miners. In addition, min-
ers validate that an asset cannot be spent twice and hence
prevent double spending of assets.

Another way to perform transactions in blockchain sys-
tems is through smart contracts. A smart contract is
a program written in some scripting language (e.g., Solid-
ity for Ethereum smart contracts [5]) that allows general
program executions by a blockchain’s mining nodes. End-
users publish a smart contract in a blockchain through a
deployment message, msg, that is sent to the mining nodes
in the storage layer. A deployment message includes the
smart contract code in addition to some implicit parame-
ters that are accessible to the smart contract code once the
smart contract is deployed. These parameters include the
sender’s public key, accessed through msg.sender, and an
optional asset value, accessed through msg.val. This op-
tional asset value allows end-users to send some of their
blockchain assets to a deployed smart contract. Like trans-
actions, a smart contract is published in a blockchain if it
is included in a mined block in this blockchain. We adopt
Herlihy’s notion of smart contracts as classes in object ori-
ented programming languages [10,17]. A smart contract has
a state, a constructor that is called when a smart contract
is first deployed in the blockchain, and a set of functions
that could alter the state of the smart contract. The smart
contract constructor gets executed once a smart contract
is deployed resulting in instantiating a smart contract ob-
ject in the blockchain. The constructor initializes the smart
contract object and uses the implicit parameters sent along-
side the smart contract deployment message to initialize the
owner of the smart contract and the assets’ value sent to this
smart contract. Miners verify that the end-user who deploys
a smart contract indeed owns these assets. Once assets are
sent to a smart contract, the ownership of these assets is
moved to the smart contract itself. Smart contract assets
can only be transacted on within the smart contract logic
until these assets are unlocked from the smart contract as a
result of a smart contract function call. To execute a smart
contract function, end-users submit their function call ac-
companied by the function parameters through messages to
miners. These messages could include implicit parameters as
well (e.g., msg.sender). Miners execute2 the function on the
current state of the contract and record any contract state
changes in their current block in the blockchain. Therefore,
a smart contract object state might span many blocks after
the block where the smart contract is first deployed.

3 Atomic Cross-Chain Transaction Model

Figure 1: An atomic cross-chain transaction graph to swap
X bitcoins for Y ethers between Alice (A) and Bob (B).

2End-users pay to miners a smart contract deployment fee
plus a function invocation fee for every function call.
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An Atomic Cross-Chain Transaction, AC2T, is a
distributed transaction to transfer the ownership of assets
stored in multiple blockchains among two or more partici-
pants. This distributed transaction consists of
sub-transactions and each sub-transaction transfers an asset
on some blockchain. An AC2T is modeled using a directed
graph D = (V, E) [16] where V is the set of vertexes and
E is the set of edges in D. V represents the participants
in AC2T and E represents the sub-transactions in AC2T. A
directed edge e = (u, v) ∈ E represents a sub-transaction
that transfers an asset e.a from a source participant u ∈ V
to a recipient participant v ∈ V in some blockchain e.BC.
Figure 1 shows an example of an AC2T graph between Al-
ice (A) and Bob (B). As shown, the edge (A, B) represents
the sub-transaction AC2T1 that transfers X bitcoins from A
to B while the edge (B, A) represents the sub-transaction
AC2T2 that transfers Y ethers from B to A.

An atomic cross-chain commitment protocol is required
in order to correctly execute an AC2T. This protocol must
ensure the atomicity and the commitment of all
sub-transactions in AC2T as follows.

• Atomicity: either all or none of the asset transfers of
all sub-transactions in the AC2T take place.

• Commitment: once the atomic cross-chain commit-
ment protocol decides the commitment of an AC2T,
asset transfers of all sub-transactions in this AC2T
must eventually take place.

An atomic cross-chain commitment protocol is a variation
of the two phase commit protocol (2PC) [8, 14]. Therefore,
we use the analogy of 2PC to explain an abstraction of the
atomic cross-chain commitment protocol. In 2PC, a dis-
tributed transaction spans multiple data partitions and each
partition is responsible for executing a sub-transaction. A
coordinator sends a vote request to all involved data par-
titions. Upon receiving a vote request, a data partition
votes back yes only if it succeeds in executing all the op-
erations of its sub-transaction on the involved data objects.
Otherwise, a data partition votes no to the coordinator. A
coordinator decides to commit a distributed transaction if
all involved data partitions vote yes, otherwise it decides to
abort the distributed transaction. If a commit decision is
reached, all data partitions commit their sub-transactions.
However, if an abort is decided, all data partitions must
abort their sub-transactions. 2PC assumes that the coordi-
nator and the data partitions are trusted. The main chal-
lenge in blockchain systems is how to design a trust-free
variation of 2PC where participants do not trust each other
and a protocol cannot depend on a centralized trusted co-
ordinator.

Consider an AC2T A. An atomic cross-chain commit-
ment protocol requires that for every edge e = (u, v) ∈ E ,
the source participant u locks an asset e.a in Blockchain
e.BC. This asset locking is necessary to temporarily prevent
the participant u from spending e.a through other transac-
tions in e.BC. If every source participant u locks e.a in
e.BC, the atomic cross-chain commitment protocol can de-
cide to commit A. Once the protocol decides to commit A,
every recipient participant v should be able to redeem the
asset e.a. However, if the protocol decides to abort A be-
cause some participants do not comply with the protocol or
a participant requests the transaction to abort, every source

participant u should be able to get a refund of their locked
assets e.a.

In blockchain systems, smart contracts are used to im-
plement this logic. For each edge e = (u, v), participant u
deploys a smart contract SCe in Blockchain e.BC to lock an
asset e.a owned by u in SCe. SCe ascertains to condition-
ally transfer e.a to v if a commitment decision is reached,
otherwise e.a is refunded to u. A smart contract SCe exists
in one of three states: published (P ), redeemed (RD), or
refunded (RF ). A smart contract SCe is published if it gets
deployed to e.BC by u. Publishing the smart contract SCe

serves two important goals towards the atomic execution of
A. First, it represents a yes vote on the sub-transaction
corresponding to the edge e. Second, it locks the asset e.a
in blockchain e.BC. A smart contract SCe is redeemed if
participant v successfully redeems the asset e.a from SCe.
Finally, a smart contract SCe is refunded if the asset e.a is
refunded to participant u.

Now, if for every edge e = (u, v) ∈ E , the participant
u publishes a smart contract SCe in e.BC, it means that
all participants vote yes on A, lock their involved assets in
A, and hence A can commit. However, if some participants
decline to publish their smart contracts, A has to abort. The
commitment of A requires the redemption of every smart
contract SCe in A. On the other hand, if A aborts, this
requires the refund of every smart contract SCe in A.

To implement conditional smart contract redemption and
refund, a cryptographic commitment scheme primitive based
on [12] is used. A commitment scheme allows a user to com-
mit to some chosen value without revealing this value. Once
this hidden value is revealed, other users can verify that the
revealed value is indeed the one that is used in the commit-
ment. A hashlock is an example of a commitment scheme. A
hashlock is a cryptographic one-way hash function h = H(s)
that is used to conditionally lock assets in a smart contract
using h, the lock, until a hash secret s, the key, is revealed.
Once s is revealed, everyone can verify that lock h equals
H(s) and hence unlocks the assets locked in the smart con-
tract.

An atomic cross-chain commitment protocol should en-
sure that smart contracts in A are either all redeemed or all
refunded. For this, a protocol uses two mutually exclusive
commitment scheme instances: a redemption commitment
scheme and a refund commitment scheme. All smart con-
tracts in A commit their redemption action to the redemp-
tion commitment scheme instance and their refund action
to the refund commitment scheme instance. If the protocol
decides to commit A, the protocol must publish the redemp-
tion commitment scheme secret. This allows all participants
in A to redeem their assets. However, if the protocol reaches
an abort decision, the protocol must publish the refund com-
mitment scheme secret. This allows participants in A to
refund the locked assets in every published smart contract.
A protocol must ensure that once the secret of one com-
mitment scheme instance is revealed, the secret of the other
instance cannot be revealed. This guarantees the atomic
execution of A.

Algorithm 1 illustrates a smart contract template that
can be used in implementing an atomic cross-chain com-
mitment protocol. Each smart contract has a sender s and
recipient r (Line 2), an asset a (Line 3) to be transferred
from s to r through the contract, a state (Line 4), and
a redemption and refund commitment scheme instances rd
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and rf (Lines 5 and 6). A smart contract is published in
a blockchain through a deployment message. When pub-
lished, its constructor (Line 7) is executed to initialize the
contract. The deployment message of a smart contract typ-
ically includes some implicit parameters like the sender’s
address (msg.sender, Line 8) and the asset value (msg.val,
Line 9) to be locked in the contract. The constructor initial-
izes the addresses, the asset value, the refund and redemp-
tion commitment schemes, and sets the contract state to P
(Line 11).

Algorithm 1 An atomic swap smart contract template

abstract class AtomicSwapSC {
1: enum State {Published (P), Redeemed (RD), Refunded

(RF)}
2: Address s, r // Sender and recipient public keys.
3: Asset a
4: State state
5: CS rd // Redemption commitment scheme
6: CS rf // Refund commitment scheme
7: procedure Constructor(Address r, CS rd, CS rf)
8: this.s = msg.sender, this.r = r
9: this.a = msg.val

10: this.rd = rd, this.rf = rf
11: state = P
12: end procedure
13: procedure Redeem(Evidence evdrd)
14: requires(state == P and IsRedeemable(evdrd))
15: transfer a to r, state = RD
16: end procedure
17: procedure Refund(Evidence evdrf )
18: requires(state == P and IsRefundable(evdrf ))
19: transfer a to s, state = RF
20: end procedure
21: procedure IsRedeemable(Evidence evdrd)
22: return verify(rd, evdrd)
23: end procedure
24: procedure IsRefundable(Evidence evdrf )
25: return verify(rf, evdrf )
26: end procedure

}

In addition, each smart contract has a redeem function
(Line 13) and a refund function (Line 17). A redeem func-
tion takes an evidence parameter. This evidence parameter
proves that the decision is to commit AC2T. The redeem
function requires the smart contract to be in state P and
that the provided evidence is a valid redemption commit-
ment scheme secret (Line 14). If all these requirements hold,
the asset a is transferred from the contract to the recipient
and the contract state is changed to RD. However, if any
requirement is violated, the redeem function fails and the
smart contract state remains unchanged.

Similarly, the refund function requires the smart contract
to be in state P and that the provided evidence is a valid
refund commitment scheme secret (Line 18). If all these
requirements hold, the asset a is refunded from the contract
to the sender and the contract state is changed to RF.

The redeem and the refund functions use two helper func-
tions: IsRedeemable (Line 21) and IsRefundable (Line 24).
IsRedeemable verifies that the provided evidence is a valid
redemption commitment scheme secret and hence the smart
contract can be redeemed. Similarly, IsRefundable verifies

that the provided evidence is a valid refund commitment
scheme secret and hence the smart contract can be refunded.

4 AC3: Atomic Cross-Chain Commitment
This section presents AC3WN, an Atomic Cross-Chain
Commitment (AC3) protocol that achieves both atomicity
and commitment of an AC2T. First, Section 4.1 presents
an important building block on how miners of one blockchain
validate the publishing of a transaction or a smart contract
in another blockchain. Second, we present AC3WN, an AC3

protocol that uses a permissionless Witness Network to co-
ordinate AC2Ts in Section 4.2. Also, Section 4.2 explains
how the witness network miners ensure the integrity of a
smart contract code deployed in another blockchain. Us-
ing a permissionless network of witnesses does not require
more trust in the witness network than the required trust
in the blockchains used to exchange the assets in an AC2T.
Furthermore, the AC3WN protocol overcomes the vulnera-
bility of centralized solutions that are subject to failures and
denial of service attacks.

4.1 Cross-Chain Validation
This section explains different techniques for how the min-

ers of one blockchain, the validators, can validate the pub-
lication and verify the state of a smart contract deployed
in another blockchain, the validated blockchain. A simple
but impractical solution is to require all the miners of ev-
ery blockchain to serve as validators of all other blockchains.
A blockchain validator maintains a copy of the validated
blockchain and for every newly mined block, a validator val-
idates the mined block and adds it to its local copy of the val-
idated blockchain. If all mining nodes mine one blockchain
and validate all other blockchains, mining nodes can consult
their local copies of these blockchains to validate the publish-
ing and hence verify the state of any smart contract in any
blockchain. If a participant needs the miners of the valida-
tor blockchain to validate the publishing of a smart contract
in some other validated blockchain, this participant submits
evidence that comprises the block id and the transaction
id of the smart contract in the validated blockchain to the
miners of the validator blockchain. This evidence is easily
verified by the mining node of the validator blockchain by
consulting their copy of the validated blockchain. However,
this full replication of all the blockchains in all the mining
nodes is impractical. Not only does it require massive pro-
cessing power to validate all blockchains, but also it requires
significant storage and network capabilities at each mining
node.

Alternatively, miners of one blockchain, the validators,
can run light nodes [9] of other blockchains, the validated
blockchains. A light node, as defined in [9], is a node that
downloads only block headers of the validated blockchain,
verifies the proof of work of these block headers, and down-
loads only the blockchain branches that are associated with
transactions of interest to this node. This solution requires
the validators to mine for one blockchain and run light nodes
for every validated blockchain. The validators can consult
their local light node copy of the validated blockchain to
validate the publishing and hence verify the state of a smart
contract in the validated blockchain. Although the cost of
maintaining a light node is much cheaper than maintaining a
blockchain full copy, running a light node for all blockchains
does not scale as the number of blockchains increases.
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The previous two techniques put the onus of validating
one blockchain on the miners of another blockchain. In ad-
dition, they require changes in the current infrastructure by
requiring the miners of one blockchain to either maintain a
full copy or a light node of other blockchains.

Figure 2: How miners of one blockchain could validate trans-
actions in another blockchain.

Our proposal: Another way to allow miners of one
blockchain, the validators, to validate the publication and
verify the state of a smart contract in another blockchain,
the validated, is to push the validation logic into the code
of a smart contract in the validator blockchain. A smart
contract in the validator blockchain is deployed and stores
the header of a stable block in the validated blockchain. A
stable block is a block at depth d from the current head of
the validated blockchain such that the probability of fork-
ing the blockchain at this block is negligible (e.g., a block
at depth ≥ 6 in the Bitcoin blockchain [2]). A participant
who deploys the smart contract in the validator blockchain
stores the block header of a stable block of the validated
blockchain as an attribute in the smart contract object in
the validator blockchain. When the transaction of the smart
contract of interest takes place in a block in the validated
blockchain and after this block becomes a stable block, at
depth d, a participant can submit evidence of the transac-
tion occurrence in the validated blockchain to the miners
of the validator blockchain. This evidence comprises the
headers of all the blocks that follow the stored stable block
header in the smart contract of the validator blockchain in
addition to the block where the transaction of interest took
place. The evidence is submitted to the validator smart
contract via a function call. This smart contract function
validates that the passed headers follow the header of the
stable block previously stored in the smart contract object
and that the proof of work of each header is valid. In ad-
dition, the function verifies that the transaction of interest
indeed took place and that the block of this transaction is
stable and buried under d blocks in the validated blockchain.

Figure 2 shows an example of a validator blockchain,
blockchain2, that validates the occurrence of transaction
TX1 in the validated blockchain, blockchain1. In this ex-
ample, there exists a smart contract SC that gets deployed
in the current head block of blockchain2 (labeled by num-
ber 2 in Figure 2). SC has an initial state S1 and stores

the header of a stable block, at depth d, in blockchain1 (la-
beled by number 1). This header is represented by a red
rectangle inside SC. SC’s state is altered from S1 to S2 if
evidence is submitted to miners of blockchain2 that proves
that TX1 took place in blockchain1 in some block after the
stored stable block header in SC. When TX1 takes place
in blockchain1 (labeled by number 3) and its block becomes
a stable block at depth ≥ d (labeled by number 4), a par-
ticipant submits the evidence (labeled by number 5) to the
miners of blockchain2 through SC’s function call (labeled
by number 6). This function takes the evidence as a param-
eter and verifies that the submitted blocks took place after
the stored stable block in SC. This verification ensures that
the header of each submitted block includes the hash of the
header of the previous block starting from the stored stable
block header in SC. In addition, this function verifies the
proof of work of each submitted block header. Finally, the
function validates that TX1 took place in some block in the
submitted evidence and that this block has already become
a stable block. If this verification succeeds, the state of SC
is altered from S1 to S2. This technique allows miners of
one blockchain to verify transactions and smart contracts
in another blockchain without maintaining a copy of this
blockchain. In addition, this technique puts the evidence
validation responsibility on the developer of the validator
smart contract.

4.2 AC3WN: Permissionless Witness Network

This section presents AC3WN, an AC3 protocol that uses
a permissionless blockchain network of witnesses to decide
whether an AC2T should be committed or aborted. Miners
of this blockchain are collectively the witnesses on AC2T s.
The main design challenge of the AC3WN protocol is how
to use a permissionless network of witnesses to implement
the redemption and refund commitment scheme instances
used by every smart contract in AC2T. In addition, how to
ensure that the two instances are mutually exclusive.

When a set of participants want to execute an AC2T, they
deploy a smart contract SCw in the witness network where
SCw is used to coordinate the AC2T. SCw has a state that
determines the state of the AC2T. SCw exists in one of three
states: Published (P ), Redeem Authorized (RDauth), or Re-
fund Authorized (RFauth). Once SCw is deployed, SCw is
initialized to the state P . If the witness network decides to
commit the AC2T, the witnesses set SCw’s state to RDauth.
However, if the witness network decides to abort the AC2T,
the witnesses set SCw’s state to RFauth.

Figure 3: Coordinating AC2T s using a permissionless wit-
ness network.
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Figure 3 shows an AC2T that exchanges assets among
blockchains, blockchain1, ..., blockchainn and uses a witness
blockchain for coordination. Also, it illustrates the AC3WN
protocol steps. For every AC2T, a directed graph D = (V, E)
is constructed at some timestamp t and multisigned by all
the participants in the set V generating a graph multisig-
nature ms(D) as shown in Equation 1. The timestamp t
is important to distinguish between identical AC2T s among
the same participants. The order of participant signatures
in ms(D) is not important. Any signature order indicates
that all participants in the AC2T agree on the graph D at
some timestamp t.

ms(D) = sig(..., sig(sig((D, t), p1), p2), ..., p|V|) (1)

A participant registers ms(D) in a smart contract SCw in
the witness network where SCw’s state is initialized to P .
The state P indicates that participants of the AC2T agreed
on D. In addition, participants agree to conditionally link
the redeem and the refund actions of their smart contracts
in the AC2T to SCw’s states RDauth and RFauth respec-
tively. Note that once SCw gets deployed in the witness net-
work, the SCw object gets a unique address that can be used
to reference SCw in the redemption and the refund actions
of smart contracts that transfer assets among participants.
Afterwards, the participants parallelly deploy their smart
contracts in the blockchains, blockchain1, ..., blockchainn, as
shown in Figure 3. After all the participants deploy their
smart contracts in the AC2T, a participant may submit a
state change request to the witness network miners to alter
SCw’s state from P to RDauth. This request is accompa-
nied by evidence that all smart contracts in the AC2T are
deployed and correct. Upon receiving this request, witness
network miners verify that SCw’s state is P and that partic-
ipants of the AC2T have indeed deployed their smart con-
tracts in the AC2T in their corresponding blockchains. In
addition, miners verify that all these smart contracts are in
state P and that the redemption and the refund of these
smart contracts are conditioned on SCw’s states RDauth

and RFauth respectively (via SCw’s unique address). Fi-
nally, witness network miners verify the integrity of each
deployed smart contract in AC2T through a multi-step pro-
cess. Since each smart contract is a class and each smart
contract deployment is an object instantiation of this class,
witness network miners need to verify that the object at-
tributes match their corresponding description in the graph
D and the object functions have not been tampered with
by the smart contract deployer (asset sender). First, wit-
ness network miners verify that the attributes of each smart
contract such as sender, recipient, and asset amount match
the attribute values of the edge corresponding to this smart
contract ∀e = (u, v) ∈ D.E . Then, witness network miners
must ensure that the recipient of each transfer smart con-
tract has signed the smart contract functions and that this
signature is included in one of the attributes of the smart
contract object. This ensures that each recipient has verified
the smart contract transfer functions and that the deployer
(the sender) of each transfer smart contract cannot tamper
with the agreed upon smart contract functions (e.g., redeem
and refund functions).

If this verification succeeds for every smart contract in
AC2T, witness network miners record SCw state change to
RDauth in their current block. Once a block that reflects

the state change of SCw to RDauth is mined in the wit-
ness network, the commitment of the AC2T is decided and
participants can use this block as commitment evidence to
redeem their assets in the smart contracts of the AC2T. The
commit decision is illustrated in Figure 3 using the vertical
dotted line.

Similarly, if some participants decline to deploy their smart
contracts in the AC2T or a participant changes her mind be-
fore the commitment of the AC2T, a participant can submit
a state change request to the witness network miners to alter
SCw’s state from P to RFauth. The miners of the witness
network only verify that SCw’s state is P . If this verification
succeeds, the miners of the witness network record SCw’s
state change to RFauth in their current block. Once a block
that reflects the state change of SCw to RFauth is mined in
the witness network, the AC2T is considered aborted and
the participants can use this block as evidence of the abort
to refund their assets in the deployed smart contracts of the
AC2T. Note that SCw is programmed to ensure that SCw’s
state can only be changed either from P to RDauth or from
P to RFauth but no other state transition is allowed. This
ensures that SCw’s states RDauth and RFauth are mutually
exclusive. Miners use the cross-chain evidence validation
techniques presented in Section 4.1 to validate the deploy-
ment of smart contracts in other blockchains.

Algorithm 2 presents the details of SCw. SCw consists
of four functions: Constructor (Line 6), AuthorizeRedeem
(Line 12), AuthorizeRefund (Line 16), and VerifyContracts
(Line 20). The Constructor initializes SCw with the partic-
ipants’ public keys, the multisigned graph of the AC2T, and
the headers of stable blocks in all the involved blockchains
in AC2T. This information is necessary for the witness net-
work miners to later verify the correctness and the deploy-
ment of all smart contracts in the AC2T. AuthorizeRedeem
alters SCw’s state from P to RDauth. To call AuthorizeRe-
deem, a participant provides evidence of the deployment of
all the smart contracts in the AC2T (Line 12). Authoriz-
eRedeem first verifies that SCw’s state is currently P . In
addition, AuthorizeRedeem verifies that all smart contracts
in the AC2T are published and correct through a VerifyCon-
tracts function call (Line 13). If this verification succeeds,
SCw’s state is altered to RDauth (Line 14). On the other
hand, AuthorizeRefund verifies only that the state of SCw

is P (Line 17). If true, SCw’s state is altered to RFauth

(Line 18).

VerifyContracts validates that all smart contracts in the
AC2T are published and correct. For every edge e = (u, v) ∈
D.E , VerifyContracts first verifies the evidence evde cor-
responding to the edge e (Line 25) as explained in Sec-
tion 4.1. Then, VerifyContracts finds the matching smart
contract SCe in evde. Then, VerifyContracts ensures that
SCe matches its description in the edge e by checking that
the smart contract sender is u, the recipient is v, the as-
set value is e.a, and the redeem and refund commitment
schemes are set to SCw’s states RDauth and RFauth respec-
tively (Lines 27 - 29). Also, VerifyContracts checks the in-
tegrity of SCe’s functions by checking that the code of SCe’s
functions matches the signature of the recipient v stored in
SCe (Line 30). If any verification step fails, VerifyContracts
fails and sets the return value to false (Line 32). However,
if all smart contracts in the provided list are correct, Ver-
ifyContracts sets the return value to true (Line 21). Veri-
fyContracts ensures that AuthorizeRedeem cannot be exe-
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Algorithm 2 Witness network smart contract as an AC2T
Coordinator.
class WitnessSmartContract {
1: enum State {Published (P), Redeem Authorized

(RDauth), Refund Authorized (RFauth)}
2: Address [] pk // Addresses of all participants in AC2T
3: Mutlisignature ms // The multisigned graph D
4: State state
5: Header[] h // Stable block headers of blockchains in
AC2T

6: procedure Constructor(Address[] pk, MS ms(D),
Header[] h)

7: this.pk = pk
8: this.ms = ms(D)
9: this.state = P

10: this.h = h
11: end procedure
12: procedure AuthorizeRedeem(Evidence evd )
13: requires (state == P and VerifyContracts(evd))
14: this.state = RDauth // Commit Decision
15: end procedure
16: procedure AuthorizeRefund
17: requires (state == P)
18: this.state = RFauth // Abort Decision
19: end procedure
20: procedure VerifyContracts(Evidence evd)
21: valid = true
22: D = decrypt(ms, pk)
23: for each e = (u, v) ∈ D.E do
24: let evde ∈ evd be e’s evidence
25: Verify PoW and hash integrity of each block

header in evde to ensure they follow h[e] // h[e] is the
header of the stable block of e’s blockchain e.BC.

26: Let SCe ∈ evde be the smart contract of e
27: Verify SCe.s == u, SCe.r == v, SCe.a == e.a
28: Verify SCe.rd links to this smart contract state
29: Verify SCe.rf links to this smart contract state
30: Verify v’s signature on SCe functions
31: if any verification fails then
32: valid = false
33: end if
34: end for
35: return valid
36: end procedure

}

cuted unless all smart contracts in the AC2T are deployed
and correct and hence a commit decision can be reached.

Algorithm 3 presents a smart contract class inherited from
the smart contract template in Algorithm 1 in order to use
SCw’s state as redemption and refund commitment scheme
secrets. The commitment scheme is represented as a pair
(SCw, d) where SCw is the address of the witness network
coordination smart contract and d is required depth to en-
sure that SCw and its state transition are stable. IsRe-
deemable returns true if SCw’s state is RDauth (Line 8),
while IsRefundable returns true if SCw’s state is RFauth

(Line 14). As the witness network is permissionless, forks
could possibly happen resulting in two concurrent blocks
where SCw’s state is RDauth in the first branch and SCw’s
state is RFauth in the second branch. To avoid atomicity
violations, participants cannot use a witness network block
where SCw’s state is RDauth or RFauth in their smart con-

Algorithm 3 Smart contract for permissionless AC3.

class PermissionlessSC extends AtomicSwapSC {
1: Signature sigr // Recipient integrity signature on Smart

Contract function codes.
2: procedure Constructor(Address r, SC SCw, Depth

d, Signature sigv)
3: this.rd = this.rf = (SCw, d)
4: this.sigr = sigv
5: super(r, this.rd, this.rf) // parent constructor
6: end procedure
7: procedure isRedeemable(Evidence evd)
8: if evd is valid, the state of SCw ∈ evd is RDauth,

and SCw’s state update block is at depth≥ d then
9: return true

10: end if
11: return false
12: end procedure
13: procedure isRefundable(Evidence evd)
14: if evd is valid, the state of SCw ∈ evd is RFauth,

and SCw’s state update block is at depth≥ d then
15: return true
16: end if
17: return false
18: end procedure

}

tract redemption and refund respectively unless this block is
buried under at least d blocks in the witness network. As the
probability of a fork at depth d (e.g., 6 blocks in the Bitcoin
network [2]) is negligible, SCw’s state eventually converges
to either RDauth or RFauth.

The following steps summarizes the AC3WN protocol
steps to execute the AC2T shown in Figure 1:

1. Alice and Bob construct the AC2T ’s graph D and mul-
tisign (D, t) to generate ms(D).

2. Either Alice or Bob registers ms(D) in a smart con-
tract SCw and publishes SCw in the witness network
setting SCw’s state to P . SCw follows Algorithm 2.

3. Afterwards, Alice publishes a smart contract SC1 us-
ing Algorithm 3 to the Bitcoin network that states the
following:

• Move X bitcoins from Alice to Bob if Bob provides
evidence that SCw’s state is RDauth.

• Refund X bitcoins from SC1 to Alice if Alice pro-
vides evidence that SCw’s state is RFauth.

• SC1 contains Bob’s signature on the code of SC1’s
functions: Redeem, Refund, IsRedeemable, and
IsRefundable.

4. Concurrently, Bob publishes a smart contract SC2 to
the Ethereum network using Algorithm 3 stating the
following:

• Move Y ethers from Bob to Alice if Alice provides
evidence that SCw’s state is RDauth.

• Refund Y ethers from SC2 to Bob if Bob provides
evidence that SCw’s state is RFauth.

• SC2 contains Alice’s signature on the code of
SC2’s functions: Redeem, Refund, IsRedeemable,
and IsRefundable.
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5. After both SC1 and SC2 are published, any partici-
pant can submit a state change request of SCw from P
to RDauth to the witness network miners. This request
is accompanied by evidence that SC1 and SC2 are pub-
lished in the Bitcoin and the Ethereum blockchains
respectively. The witness network miners first verify
that SCw’s state is currently P . Then, they verify that
both SC1 and SC2 are published and correct in their
corresponding blockchains. If these verifications suc-
ceed, the miners of the witness network record SCw’s
state change to RDauth in their current block. Once a
block that reflects the state change of SCw to RDauth

is mined and gets buried under d blocks in the witness
network, Alice and Bob can use this block as evidence
to redeem their assets from SC2 and SC1 respectively.

6. If a participant declines to publish a smart contract,
the other participant can submit a state change request
of SCw from P to RFauth to the witness network min-
ers. The witness network miners verify that SCw’s
state is currently P . If true, miners record SCw’s
state change to RFauth in their current block. Once a
block that reflects the state change of SCw to RFauth

is mined and gets buried under d blocks in the witness
network, Alice and Bob can use this block as evidence
to refund their assets from SC1 and SC2 respectively.

This protocol uses two blockchain techniques to ensure
that SCw’s states RDauth and RFauth are mutually exclu-
sive. First, it uses the smart contract programmable logic
to ensure that SCw’s state can only be altered from P to
RDauth or from P to RFauth. Second, it uses the longest
chain fork resolution technique to resolve forks in the wit-
ness network blockchain. This ensures that in the rare case
of forking where one branch has SCw’s state of RDauth and
the other branch has SCw’s state of RFauth, the fork is even-
tually resolved resulting in either SCw’s state is RDauth or
SCw’s state is RFauth but not both.

5 AC3WN Analysis
This section analyzes the AC3WN protocol introduced in
Section 4.2. First, we establish that the proposed proto-
col ensures atomicity. Then we analyze the scalability of
the witness network and how it affects the scalability of the
commitment protocol. Finally, we explain how this protocol
extends the functionality of previous proposals in [16,23].

5.1 AC3WN: Atomicity Correctness Proof
The correctness of the AC3WN protocol depends on the

stability of the underlying blockchains. For example, the
stability of the Bitcoin [22] network requires that at least a
majority of the mining nodes be honest and adhere to the
Bitcoin’s mining protocol. Also, as explained in [22], the
probability of forking the Bitcoin network at depth d blocks
exponentially decreases as d increases assuming the major-
ity of mining nodes are honest. Therefore, the correctness
of the AC3WN on the Bitcoin network requires the same
assumptions needed for the Bitcoin network stability. First,
we prove the correctness of the AC3WN protocol assum-
ing that the witness network and the asset networks do not
fork in Lemma 5.1. Then, Lemma 5.2 proves that atomic-
ity violations are negligible in the AC3WN protocol if the
probability of forking in the witness network and the asset
networks at depth d is negligible.

Lemma 5.1. Assume no forks in the witness network, then
the AC3WN protocol is atomic.

Proof. Consider an AC2T executed by the AC3WN pro-
tocol and assume the atomicity of this transaction is vio-
lated. This atomicity violation implies that there exist two
smart contracts SCi and SCj in AC2T where SCi is re-
deemed and SCj is refunded. The redemption of SCi implies
that there exists a block in the witness network where SCw’s
state is RDauth while the refund of SCj implies that there
exists a block in the witness network where SCw’s state is
RFauth. Since SCw is programmed to only allow state tran-
sitions either from P to RDauth or from P to RFauth, the
two function calls to alter SCw’s state from P to RDauth

and from P to RFauth cannot take effect in one block. Min-
ers of the witness network shall accept one and reject the
other. Therefore, these two state changes must be recorded
in two separate blocks. As there exist no forks in the wit-
ness network, one of these two blocks must happen before
the other. This implies that either SCw’s state is altered
from RDauth in one block to RFauth in a following block or
altered from RFauth in one block to RDauth in a following
block. However, only state transitions from P to RDauth or
from P to RFauth are allowed and no other state transition
is permitted leading to a contradiction. 2

Lemma 5.2. Let the probability of forks at depth d in the
permissionless witness network be negligible < ε, then
AC3WN protocol is atomic with a probability > 1− ε.

Proof. Contrapositive: assume an AC2T executed by
the AC3WN protocol and the atomicity of this transaction
is violated with a probability p > ε. This atomicity viola-
tion implies that there exists two smart contract SCi and
SCj in AC2T where SCi is redeemed and SCj is refunded.
The redemption of SCi implies that there exists a block in
the witness network where SCw’s state is RDauth while the
refund of SCj implies that there exists a block in the wit-
ness network where SCw’s state is RFauth. As SCw’s states
RDauth and RFauth are conflicting states, this implies that
the block where SCw’s state update to RDauth occurs must
exist in a fork from the block where SCw’s state update to
RFauth occurs. The atomicity violation of the AC2T with a
probability p implies that the fork probability in the witness
network must be p > ε. Hence, AC3WN is atomic with a
probability > 1− ε 2

5.2 The Scalability of AC3WN
One important aspect of AC3 protocols is scalability. Does

using a permissionless network of witnesses to coordinate
AC2Ts limit the scalability of the AC3WN protocol? In
this section, we argue that the answer is no. To explain this
argument, we first develop an understanding of the proper-
ties of executing AC2Ts and the role of the witness network
in executing AC2Ts.

An AC2T is a distributed transaction that consists of sub-
transactions. Each sub-transaction is executed in a
blockchain. An AC3 protocol coordinates the atomic execu-
tion of these sub-transactions across several blockchains. An
AC3 protocol must ensure the atomic execution of the dis-
tributed transaction. This atomic execution of a distributed
transaction requires the ACID [13, 15] execution of every
sub-transaction in this distributed transaction in addition
to the atomic execution of the distributed transaction it-
self. The ACID execution of a sub-transaction executed
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within a single blockchain is guaranteed by the miners of
this blockchain. Miners use many techniques including min-
ing, verification, and the miner’s rationale to join the longest
chain in order to implement ACID executions of transactions
within a single blockchain. The atomicity of a distributed
transaction is the responsibility of the distributed transac-
tion coordinator. Therefore, the main role of the witness
network in the AC3WN protocol is to ensure the atomic-
ity of the AC2T. Since the atomicity coordination of AC2Ts
is embarrassingly parallel, different witness networks can be
used to coordinate different AC2Ts.

Assume two concurrent AC2Ts, t1 and t2. The atomic
execution of t1 does not require any coordination with the
atomic execution of t2. Each AC2T requires its witness net-
work to ensure that either all sub-transactions in the AC2T
are executed or none of them are. Therefore, t1 and t2 do
not have to be coordinated by the same witness network. t1
can be coordinated by one witness network while t2 can be
coordinated by another witness network. If t1 and t2 con-
flict at the sub-transaction level, this conflict is resolved by
the miners of the blockchain where these sub-transactions
are executed. Therefore, using a permissionless witness net-
work to coordinate AC2Ts does not limit the scalability of
the AC3WN protocol. Different permissionless networks can
be used used to coordinate different AC2Ts. For example,
the Bitcoin network can be used to coordinate t1 while the
Ethereum network can be used to coordinate t2.

5.3 Handling Complex AC2T Graphs

Figure 4: Examples of complex graphs handled by the
AC3WN protocol: (a) cyclic and (b) disconnected.

One main improvement of the AC3WN protocol over the
state-of-the-art AC3 protocols in [16,23] is its ability to coor-
dinate the atomic execution of AC2Ts with complex graphs.
This improvement is achieved because the AC3WN protocol
does not depend on the rational behavior of the partici-
pants in the AC2T to ensure atomicity. Instead, the pro-
tocol depends on a permissionless network of witnesses to
coordinate the atomic execution of AC2Ts. Once the par-
ticipants agree on the AC2T graph and register it in the
smart contract SCw in the witness network, participants
cannot violate atomicity as the commit and the abort deci-
sions are decided by the state of SCw. The state transitions
of SCw are witnessed and verified by the miners of the wit-
ness network. Therefore, the publication order of the smart
contracts in the AC2T cannot result in an advantage to any
coalition among the participants. Participants can concur-
rently publish their smart contracts in the AC2T, both in
Figures 1 and 4, without worrying about the maliciousness
of any participant.

Figure 4 illustrates two complex graph examples that ei-
ther cannot be atomically executed by the protocols in [16,
23] or require additional mechanisms and protocol modifi-
cations to be atomically executed. These graphs appear in

supply-chain applications. Both Nolan’s and Herlihy’s sin-
gle leader protocol require the AC2T graph to be acyclic
once the leader node is removed. Therefore, both protocols
fail to execute the transaction graph shown in Figure 4a.
Removing any node from the graph in Figure 4a still results
in a cyclic graph. Herlihy presents a multi-leader protocol
in [16] to handle cyclic graphs. However, both Nolan’s and
Herlihy’s protocols fail to handle disconnected graphs simi-
lar to the graph shown in Figure 4b. On the other hand, the
AC3WN protocol ensures the atomic execution of AC2Ts ir-
respective of the AC2T’s graph structure.

6 Evaluation
This section analytically compares the performance and the
overhead of the AC3WN protocol to the state-of-the-art
atomic swap protocol presented by Herilhy in [16]. First, we
compare the latency of AC2Ts as the diameter of the trans-
action graph D increases in Section 6.1. Then, the monetary
cost overhead of using a permissionless network of witnesses
to coordinate a AC2T is analyzed in Section 6.2. After-
wards, an analysis on how to choose the witness network is
developed in Section 6.3. Finally, an analysis of the AC2T
throughput as the witness network is chosen from the top-
4 permissionless cryptocurrencies, sorted by market cap, is
presented in Section 6.4.

6.1 Latency
The AC2T latency is defined as the difference between the

timestamp ts when an AC2T is started and the timestamp
tc when the AC2T is completed. ts marks the moment when
participants in the AC2T start to agree on the AC2T graph
D. tc marks the completion of all the asset transfers in the
AC2T by redeeming all the smart contracts in AC2T.

Let ∆ be enough time for any participant to publish a
smart contract in any permissionless blockchain, or to change
a smart contract state through a function call of this smart
contract, and for this change to be publicly recognized [16].
Also, let Diam(D) be the AC2T graph diameter. Diam(D)
is the length of the longest path from any vertex in D to any
other vertex in D including itself.

The single leader atomic swap protocol presented in [16]
has two phases: the AC2T smart contract sequential de-
ployment phase and the AC2T smart contract sequential
redemption phase. The deployment phase requires the de-
ployment of all smart contracts in the AC2T, N , where ex-
actly Diam(D) ≤ N smart contracts are sequentially de-
ployed resulting in a latency of ∆ · Diam(D). Similarly,
the redemption phase requires the redemption of all smart
contracts in the AC2T, N , where exactly Diam(D) ≤ N
smart contracts are sequentially redeemed resulting in a la-
tency of ∆ ·Diam(D). The overall latency of an AC2T that
uses this protocol equals the latency summation of these two
phases 2 ·∆ ·Diam(D). Figure 5 visualizes the two phases
of the protocol where time advances from left to right. As
shown, some smart contracts (e.g., SC2, SC3, and SC4)
could be deployed and redeemed in parallel but there are
exactly Diam(D) sequentially deployed and Diam(D) se-
quentially redeemed smart contracts resulting in an overall
latency of 2 · ∆ · Diam(D). Note that the protocol allows
the parallel deployment and redemption of some smart con-
tracts as long as they do not lead to an advantage to either
a participant or a coalition of participants in the AC2T.
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Figure 5: The overall transaction latency of 2 ·∆ ·Diam(D)
when the single leader atomic swap protocol in [16] is used.

Figure 6: The overall transaction latency of 4 ·∆ when the
AC3WN protocol in Section 4.2 is used.

On the other hand, the AC3WN protocol has four phases:
the witness network smart contract deployment phase, the
AC2T smart contract parallel deployment phase, the witness
network smart contract state change phase, and the AC2T
smart contract parallel redemption phase. The witness net-
work smart contract deployment requires the deployment of
the smart contract SCw in the witness network resulting in
a latency of ∆. The AC2T smart contract parallel deploy-
ment requires the parallel deployment of all smart contracts,
N, in the AC2T resulting in a latency of ∆. The witness net-
work smart contract state change requires a state change in
SCw either from P to RDauth or from P to RFauth through
SCw’s AuthorizeRedeem or AuthorizeRefund function calls
resulting in a latency of ∆. Finally, the AC2T smart con-
tract parallel redemption requires the parallel redemption of
all smart contracts, N, in the AC2T resulting in a latency
of ∆. The overall latency of an AC2T that uses this pro-
tocol equals to the latency summation of these four phases
4 · ∆. Figure 6 visualizes the four phases of the protocol
where time advances from left to right. As shown, all smart
contracts in the AC2T are parallelly deployed and parallelly
redeemed resulting in an overall latency of 4 ·∆.

Figure 7 compares the overall AC2T latency in ∆s re-
sulting from Herlihy’s protocol in [16] and our protocol in
Section 4.2 as the transaction graph diameter, Diam(D)
increases. As shown, our protocol achieves a constant la-
tency of 4 ·∆ irrespective of the transaction diagram value
while Herlihy’s protocol achieves a linearly increasing la-
tency as the transaction diameter value increases. Note that
the smallest transaction graph consists of two nodes and two
edges and hence the graph diameter in Figure 7 starts at 2.

6.2 Cost Overhead
This section analyzes the monetary cost overhead of the

AC3WN protocol in comparison to Herlihy’s atomic swap
protocol in [16]. As explained in Section 2, miners charge
end-users a fee for every smart contract deployment and

Figure 7: The overall AC2T latency in ∆s as the graph
diameter, Diam(D), increases.

every smart contract function call that results in a smart
contract state change. This fee is necessary to incentivize
miners to add smart contracts and append smart contract
state changes to their mined blocks. As shown in Figures 5
and 6, both protocols deploy a smart contract for every edge
e ∈ D.E . This results in the deployment of N = |E| smart
contracts in the smart contract deployment phase of both
protocols. In addition, both protocols invoke a redemption
or a refund function call for every deployed smart contract
in the AC2T resulting in N function calls. However, the
AC3WN protocol requires the deployment of an additional
smart contract SCw in the witness network in addition to an
additional function call to change SCw’s state either from
P to RDauth or from P to RFauth. The cost of the deploy-
ment and state transition function call of SCw comprises
the monetary cost overhead of the AC3WN protocol. Let fd
be the deployment fee of any smart contract SCi ∈ AC2T
and ffc be the function call fee of any smart contract func-
tion call. Then, the overall AC2T fee of Herlihy’s protocol
is N · (fd + ffc) while the overall AC2T fee of the AC3WN
protocol is (N + 1) · (fd + ffc). This analysis shows that
AC3WN imposes a monetary cost overhead of 1

N
the trans-

action fee of Herilhy’s protocol assuming equal deployment
and functional call fees for all the smart contracts in the
AC2T.

But, how much does it cost in dollars to deploy a smart
contract and make a smart contract function call? The an-
swer is, it depends. Many factors affect a smart contract
fee such as the length of the smart contract and the aver-
age transaction fee in the smart contract’s blockchain [6,27].
Ryan [27] shows that the cost of deploying a smart contract
with a similar logic to SCw’s logic in the Ethereum network
costs approximately $4 when the ether to USD rate is $300.
Currently, this costs approximately $2 assuming the current
ether to USD rate of $140.

6.3 Choosing the Witness Network
This section develops some insights into choosing the wit-

ness network for an AC2T. This choice has to consider the
risk of choosing different permissionless blockchain networks
as the witness of an AC2T and the relationship between this
risk and the value of the assets exchanged in this AC2T. As
the state of the witness smart contract SCw determines the
state of an AC2T, forks in the witness network present a
risk to the atomicity of the AC2T. A fork in the witness
network where one block has SCw’s state of RDauth and
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another block has SCw’s state of RFauth might result in an
atomicity violation leading to asset losses of some partic-
ipants in the AC2T. To overcome possible violations, our
AC3WN protocol does not consider a block where SCw’s
state is either RDauth or RFauth as a commit or an abort
evidence until this block is buried under d blocks in the
witness network. This technique of resolving forks by wait-
ing is presented in [22] and used by Pass and Shi in [25] to
eliminate uncertainty of recently mined blocks. This fork
resolution technique is efficient as the probability of elimi-
nating a fork within d blocks is sufficiently high. Waiting for
d confirmations (blocks) is an essential technique to confirm
the commitment of any transaction in any open blockchain
that could fork. Therefore, waiting for d block con-
firmations is not a replacement for Herihly’s and
Nolan’s timelocks. In fact, the timelocks of Nolan’s and
Herlihy’s should consider waiting for d confirmations after
every smart contract deployment. Recall the atomic swap
example in Section 1. Alice deploys a smart contract SC1 in
the Bitcoin network to transfer X bitcoins to Bob. Immedi-
ately afterwards, Bob deploys SC2 in the Ethereum network
to transfer Y ethers to Alice. Now, what happens if Alice
redeems the Y ethers from SC2 and the Bitcoin network
gets forked before the deployment of SC1 (or the other way
around). Even if timelocks are respected, this fork could re-
sult in an atomicity violation. Now, the question is whether
waiting for d confirmations is sufficient to make Herlihy’s
protocol [16] atomic? The answer is no. Even if the smart
contract deployments are buried under d blocks, the viola-
tion of timelocks due to crash failures or network denial of
service at Bob could result in a refund of the bitcoins in
SC1 resulting in an atomicity violation. Herlihy’s protocol
assumes synchrony of the network and atomicity could be
violated even if there are no forks in the network.

A malicious participant in an AC2T could fork the wit-
ness blockchain for d blocks in order to steal the assets of
other participants in the AC2T. To execute this attack, a
malicious participant rents computing resources to execute
a 51% attack on the witness network. The cost of an hour of
51% attack for different cryptocurrency blockchains is pre-
sented in [7]. If the cost of running this attack for d blocks
is less than the expected gains from running the attack, a
malicious participant is incentivized to act maliciously.

To prevent possible maliciousness, the cost of running a
51% attack on the witness network for d blocks must exceed
the potential gains of running the attack. Let Va be the value
of the potentially stolen assets if the attack succeeds. Also,
let Ch be the hourly cost of a 51% attack on the witness
network. Finally, let dh be the expected number of mined
blocks per hour for the witness blockchain (e.g., dh = 6
blocks / hour for Bitcoin). The value d must be set to ensure
that Va is less than the cost of running the attack for d blocks
d·Ch
dh

. Therefore d must ensure the inequality d > Va·dh
Ch

in

order to disincentivize maliciousness. For example, let Va

be $1M and assume Bitcoin is used for coordination. The
cost per hour of a 51% attack on Bitcoin is approximately
Ch = $300K. Therefore, d must be > $1M·6

$300K
= 20.

6.4 Throughput
The throughput of the AC2Ts is the number of trans-

actions per second (tps) that could be processed assuming
that every AC2T spans a fixed set of blockchains and is wit-
nessed by a fixed witness blockchain. For an AC2T that

spans multiple blockchains, the throughput is bounded by
the slowest involved blockchain in the AC2T including the
witness network. Let tpsi be the throughput of blockchain
i. The throughput of the AC2Ts that span blockchains
i, j, ..., n and are witnessed by the blockchain w equals
min(tpsi, tpsj .., tpsn, tpsw). Table 1 shows the throughput

Table 1: The throughput in tps of the top-4 permissionless
cryptocurrencies sorted by their market cap.

Blockchain tps Blockchain tps
1) Bitcoin 7 3) Litecoin 56
2) Ethereum 25 4) Bitcoin Cash 61

of the top-4 permissionless cryptocurrencies sorted by their
market cap [24]. An example AC2T that exchanges assets
between Ethereum and Litecoin blockchains and is witnessed
by Bitcoin achieves a throughput of 7. The witness net-
work should be chosen from the set of involved blockchains
(Litecoin and Ethereum in this example) to avoid limiting
transaction throughput.

7 Conclusion
This paper presents AC3WN, the first decentralized Atomic
Cross-Chain Commitment protocol that ensures the all-or-
nothing atomicity semantics even in the presence of par-
ticipant crash failures and network denial of service attacks.
Unlike in [16,23] where the protocol correctness mainly relies
on participants’ rational behaviour, AC3WN separates the
coordination of an Atomic Cross-Chain Transaction, AC2T,
from its execution. A permissionless open network of wit-
nesses coordinates the AC2T while participants in the AC2T
execute sub-transactions in the AC2T. This separation al-
lows AC3WN to ensure atomicity of all the sub-transactions
in an AC2T even in the presence of failures. In addition,
this separation enables AC3WN to parallelly execute sub-
transactions in the AC2T reducing the latency of an AC2T
from O(Diam(D)) in [16], where Diam(D) is the diameter
of the AC2T graph D, to O(1) irrespective of the size of
the AC2T graph D. Also, this separation allows AC3WN
to scale by using different permissionless witness networks
to coordinate different AC2Ts. This ensures that using a
permissionless network of witnesses for coordination does
not introduce any performance bottlenecks. Finally, the
AC3WN protocol extends the functionality of the proto-
col in [16] by supporting AC2Ts with complex graphs (e.g.,
cyclic and disconnected graphs). AC3WN introduces a slight
monetary cost overhead to the participants in the AC2T.
This cost equals the cost of deploying a coordination smart
contract in the witness network plus the cost of a function
call to the coordination smart contract to decide whether to
commit or to abort the AC2T. The smart contract deploy-
ment and function call approximately cost $2 combined per
AC2T when Ethereum is used to coordinate the AC2T.
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