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ABSTRACT
Increased capacity of main memory has led to the rise of
in-memory databases. With disk access eliminated, efficiency
of index structures has become critical for performance in
these systems. An ideal index structure should exhibit high
performance for a wide variety of workloads, be scalable,
and efficient in handling large data sets. Unfortunately, our
evaluation shows that most state-of-the-art index structures
fail to meet these three goals. For an index to be performant
with large data sets, it should ideally have time complexity
independent of the key set size. To ensure scalability, critical
sections should be minimized and synchronization mecha-
nisms carefully designed to reduce cache coherence traffic.
Moreover, complex memory hierarchy in servers makes data
placement and memory access patterns important for high
performance across all workload types.

In this paper, we present HydraList, a new concurrent,
scalable, and high performance in-memory index structure
for massive multi-core machines. The key insight behind
our design of HydraList is that an index structure can be
divided into two components (search and data layers) which
can be updated independently leading to lower synchroniza-
tion overhead. By isolating the search layer, we are able to
replicate it across NUMA nodes and reduce cache misses
and remote memory accesses. As a result, our evaluation
shows that HydraList outperforms other index structures
especially in a variety of workloads and key types.
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1. INTRODUCTION
Evolution of hardware technologies has significantly af-

fected the design of today’s database systems. Increas-
ing main memory size has led to the rise of in-memory
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Figure 1: Performance of state-of-the-art indexes for the
YCSB workload with 89 million string keys. HydraList con-
sistently performs and scales well regardless of workload type. (a)
Libcuckoo [35], an efficient cuckoo hashing implementation shows
performance collapse for read mostly workloads because of spin-
locks thrashing at high core counts. (b) Throughput of ART [33]
with optimistic (ARTOLC) locking is 2.6× higher than B+ tree
with the same locking mechanism. (c) B+ tree (BtreeOLC) shows
higher scan performance than ART because finding next key in
scan is efficient. Refer to Table 1 for workload characteristics.

databases [18, 24, 26, 37] and in-memory key-value stores [17,
43]. Since data is in-memory, I/O bottlenecks caused by
expensive disk accesses are avoided. Moreover, significant
efforts on optimizing query execution has allowed compiled
transactions to remove buffer management and latching over-
heads [28]. This has made performance of index structures
critical in modern database systems. A recent study of mod-
ern in-memory database systems shows that index lookup
can contributes up to 94% of query execution time [29].

For single core machines, performance of an index struc-
ture mostly depends on the time complexity of its search
operation. Index structures can be broadly classified into
four classes based on their search time complexity. Hash
indexes are the fastest class, having O(1) lookup, but do not
support range queries as they scatter keys randomly. Tree-
based indexes (e.g., B-Tree) follow, usually having O(logn)
lookup, where n is the number of keys stored in an index.
Many variants of B-Tree have been proposed including B+
tree, k-ary tree [44], PALM [45]. Third, trie-based index
structures [32,36,40] have O(k) lookup, where k is the length
of a key. This index structure type uses a digital key repre-
sentation instead of hash or plain key comparison. Finally,
there exist hybrid indexes that creatively combine the afore-
mentioned index classes such as Masstree [38] (B+ tree with
trie) and Wormhole [49] (hash table with B+ tree).

However, time complexity of operations is not the sole fac-
tor that determines the performance of an index. With the
advent of multicore architectures, most modern databases
use concurrent index structures that allow multiple threads
to perform operations on the index concurrently and use
synchronization mechanisms like locks, memory barriers, and
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atomic instructions to coordinate access to shared memory.
The underlying synchronization mechanism can greatly affect
the performance of index structures to the extent of caus-
ing performance collapse at high core counts. For example,
Libcuckoo [35] is a known efficient and concurrent imple-
mentation of cuckoo-hashing; however, Figure 1(a) shows
performance collapse at 14 cores. This is because the lock
used to synchronize access to buckets becomes the bottle-
neck. Moreover, most high performance servers today are
non-uniform memory access (NUMA) machines and have
complex memory hierarchies. Such machines can have long
memory stalls, making traditional assumptions like uniform
memory access time inaccurate in data structure design
and can reduce performance significantly [46]. Thus to
achieve high performance in modern servers, an index struc-
ture should have: 1) efficient time complexity of operations, 2)
low synchronization overhead and 3) memory access patterns
that are cache efficient and (mostly) NUMA-local. Figure 1
shows how index structures perform well for some but not
all workloads because they violate at least one of the the
three aforementioned performance factors. We provide a full
analysis in §6.

In this paper, we propose a new in-memory index structure,
HydraList, which achieves high performance and scalability.
The key idea behind HydraList is to separate and individ-
ually optimize an index structure into two components: a
search layer, which helps locate key-value pairs efficiently,
and a data layer which stores key-value pairs. The two layers
are decoupled which allows asynchronous updates to the
search layer reducing the synchronization overhead by mak-
ing the critical sections in code smaller. Finally, to address
memory stalls caused by cross-NUMA accesses, HydraList
replicates the search layer across NUMA nodes. HydraList
supports insert, update, search, and delete operations as
well as range scan queries. All operations in HydraList are
strictly serializable. HydraList supports 64-bit integer and
string key types.

The contribution of this paper are as follows:
• We introduce, explain, and implement a new design

paradigm that provides high performance for a variety
of workloads; we do this by breaking down an index
structure into two decoupled and individually optimized
components: a search layer and data layer

• We show that inconsistency between the two layers
can be tolerated and in fact, leveraged to both reduce
synchronization and minimize remote memory accesses.

• Using this design approach, we propose HydraList, a
new index structure which achieves high performance
and scalability on massive multi-core systems.

• We compare HydraList to other state-of-the-art index
structures using real world workloads. HydraList out-
performs state-of-the-art index structures in insert and
scan workloads while maintaining search performance
comparable to state-of-the-art.

The remainder of this paper is organized as follows. Section
§2 reviews related work. In §3 we present design goals and
an overview of HydraList design. In §4 we describe the
design of HydraList in detail. We evaluate HydraList in
§6 and conclude in §8.

2. RELATED WORK
HydraList is inspired by many previous works on con-

current data structure design and multicore scalability. We

have refined the most relevant ones to following principles:
Reduce Synchronization Overhead. The scalability
of an index structure heavily depends on the underlying
synchronization mechanism being used [6, 15,16,19]. Tradi-
tional concurrent B-Tree uses lock coupling to reduce the
number of locks held while traversing the tree [5]. In lock
coupling, a reader, while traversing from root to leaf node,
holds lock on a node until it has acquired lock on its child
node. Once the lock on child node is acquired, the parent
node lock is released and the process is repeated until the
leaf node is reached. This approach reduces contention on a
root of B-Tree but frequently acquiring and releasing locks
does not scale well in multicore systems as it creates large
cache coherence traffic [9]. Optimistic synchronization tech-
niques, such as optimistic lock coupling [7,33] and OLFIT [9],
have been proposed to reduce the synchronization overhead
of frequent lock acquisition. In OLFIT, a version number
is associated with every object which is incremented when
writer updates the object. Readers (i.e., lookup) check the
version number before and after reading a node and retry
if the versions do not match. Unlike a typical reader-writer
lock which always modifies the lock variable at the start and
end of critical section, in optimistic synchronization readers
do not update lock variable which reduces cache invalidation
traffic and improves scalability. HydraList uses optimistic
synchronization to co-ordinate accesses of readers and writers
in data layer.
Reduce the Size of Critical Section. Amdahl’s law [23]
predicts the maximum theoretical speedup when using multi-
ple processors. If the maximum theoretical speedup, which is
determined by a sequential portion of a program, is achieved,
adding more cores will not yield higher performance. In
this case, the only way to achieve higher performance is to
reduce the size of critical section (i.e., sequential portion).
For example, if 95% of a program can be parallelized, it
will reach 12× speedup with 32 cores. But if the serial sec-
tion in the program is reduced to allow 99% parallelization,
the speedup at 32 cores jumps to 24× with the maximum
theoretical speedup of 90×. This means reducing the size
of critical section is effective to improve performance and
scalability. A general technique to achieve this is to dele-
gate non-critical jobs like garbage collection to background
threads [34] or to use specialized hardware like vector pro-
cessing units [29,44,45,51] for faster execution in a critical
section. In HydraList we reduce the size of serial section by
updating only the data layer inside the critical section and if
needed, use a background thread to update the search layer
asynchronously. HydraList also uses SIMD instructions to
accelerate search of keys in data layer.
Reduce Cache Misses. Previous work has identified that
data cache misses are a significant component of database
execution time and can be more than 50% of total execution
time for certain workloads and configurations [2]. There-
fore, many techniques have been proposed to reduce cache
misses. Cache sensitive B+ trees stores all child nodes of a
given node in contiguous memory [42] to reduce prefetcher-
unfriendly pointer chasing and to make memory accesses
hardware prefetcher friendly. Masstree uses many techniques
like software prefetching, cache optimized fan-out to reduce
cache misses [38]. Inspired by these approaches, HydraList
uses a slotted doubly-linked list (§4.1) to store key-value
pairs in data layer. This design significantly improves scan
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Figure 2: HydraList uses Adaptive Radix Tree (ART) [33] as
search layer and a slotted doubly linked list as data layer. To
reduce remote memory accesses, the search layer is replicated per-
NUMA node. Nodes in data layer (called a data node) are indexed
in the search layer using a representative key called anchor key.
Keys in data node are not stored in sorted order.

performance of HydraList as fewer cache references are re-
quired to fetch the next key in the range and memory access
pattern is prefetcher friendly. Also, HydraList stores key
hash (called fingerprint) instead of keeping keys in sorted
order. It reduces cache misses when searching a key because
space-efficient fingerprint requires fewer cache references.
Reduce Cross-NUMA Memory Access. To accommo-
date many cores in a single machine, computer architects
have adopted Non-Uniform Memory Architecture (NUMA)
wherein cores are clustered into groups called NUMA nodes
or simply node and each node share last level cache (LLC)
and memory. NUMA architecture allows scaling to large
number of cores but a side effect of this design is that
cross-NUMA memory/cache-line accesses are more expen-
sive than within a node. Thus, concurrent data structures
should carefully handle such NUMA-ness to scale perfor-
mance in a large multi-core architecture. Our experiments
have shown that Wormhole performs worse than ART for
read-only workload because of high cross-NUMA traffic, even
though Wormhole uses fewer comparisons in case of lookup.
A common technique to reduce cross node communication is
to replicate shared memory across all NUMA nodes [8,14].
The challenge with replication is to maintain consistency
across all replicas while ensuring minimal synchronization
overhead. HydraList solves this using partial replication
wherein search layer is replicated among NUMA nodes while
data layer is shared across all nodes. This technique reduces
cross-NUMA traffic and the cost of replication in terms of
memory is not as high as NR algorithm [8].

3. OVERVIEW OF HYDRALIST

3.1 Design Goals
HydraList has three main design goals to be a generic

in-memory index for modern multicore systems:
• Multicore Scalability: Performance of HydraList

should scale with increasing core counts. This is impor-
tant as the number of cores in servers is rising, making
the scalability aspect of index structures critical for
database performance.

• Data Scalability: HydraList should efficiently in-
dex a large number of keys as increasing memory size
allows more data to be stored in a database.

• Versatility: HydraList should be performant for a
wide range of workloads. This eliminates the need for
workload specific performance tuning.

No existing index structures achieve all aforementioned
design goals. Hash tables have fast lookup but do not support
scan operations making them unusable for a wide variety
of applications. Skiplists and B-Tree based indexes do not
scale well with increasing data sizes as their performance
depends on key count. Trie based indexes on the other hand
work well with large data sets but perform poorly on scan
heavy workloads. Finally, our evaluation shows that most
indexes do not perform well with increasing number of cores.
We describe how HydraList is able to achieve these design
goals in the following.

3.2 Design Overview
To understand how HydraList is able to achieve its de-

sign goals, one needs to understand the general design of
index structures. Most tree-based index structures can be
divided into two layers 1: a search layer and a data layer.
The data layer stores key-value pairs while the search layer
stores partial keys (as in trie) or a subset of keys (as in B+
tree) which allows the reader to locate the key in the data
layer efficiently. Keys in data layer can be chained (as in
Blink-Tree [30]) allowing a faster scan or stored indepen-
dently (as in trie). In these indexes, updates to data layer
are synchronously propagated to the search layer if needed.
This increases critical section size inhibiting scalability. For
example, an insert operation at a leaf node of a B+ tree
(update to data layer) can cause a split which in turn can
cause a split in the internal nodes of the tree (update to
search layer). The insert operation is completed only when
the search layer is consistent with the data layer. Therefore
to design a high performance index structure, we need to
design an efficient search layer, data layer, and a synchro-
nization mechanism that updates both layers efficiently. In
the rest of this section, we will explain the design overview
of HydraList and motivation behind our design choices.
Search Layer. With increasing memory sizes in mod-
ern servers, it is expected that the number of keys stored
in a database will also increase. For example, a study of
Facebook’s KV cache workload reveals that the size of most
keys is between 20 and 40 bytes [3]. This means 32 GB of
key data can contain from 800 million to 1.6 billion keys
which makes indexes whose lookup cost is proportional to
log(number of keys stored) a poor choice. For example,
B+ tree with 100 million keys requires at least 26 compar-
isons to find a key2. On the other hand, the lookup cost
of trie-based indexes is proportional to the length of the
key. This property makes it possible for tries to perform
faster lookups than comparison-based indexes, such as B+
tree, especially for data sets with a large number of keys.
However, one downside of trie-based indexes is that long keys
can make searches slower. This problem is alleviated by path
compression wherein nodes with single child are merged to-
gether effectively reducing the lookup cost. Adaptive Radix
Tree (ART) [33] is a radix tree based index which supports

1Not all tree-based index structures can be decomposed into
these two layers. For example a binary search tree stores
value in every node.
2If the order of B+ tree is S, then the height of tree is
log(100M)/log(S) and at each level a binary search is per-
formed with order log(S).
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resizing of internal nodes and path compression making it
highly space efficient and performant. Therefore, we extend
ART as the search layer in HydraList.
Data Layer. The scan performance of B+ trees is good
because their design of leaf nodes allows clustering of keys
within a range so less pointer chasing is required to pro-
cess range scans, which otherwise may incur costly cache
and TLB misses. Moreover, chaining of adjacent leaf nodes
in B+ tree leads to faster discovery of the next leaf node
in the range. Tries including ART suffer from poor scan
performance because poor clustering properties and lack of
chaining of leaf nodes. This forces readers to jump between
multiple levels to perform range scans [48]. To alleviate this
problem, we use a slotted doubly linked list, called data list
as the data layer in HydraList (see Figure 2). Every node
in the data list (called data node) stores multiple key-value
pairs and is indexed in the search layer using a unique key
(called anchor key).
Asynchronous Update. In HydraList, the search and
data layers are decoupled, i.e., updates from the data layer
to the search layer are not propagated in a synchronous
fashion; rather, updates to the search layer are done using
background threads. We use operational logging [4], wherein
updates to the search layer are enqueued in a per-thread
queue. Periodically, all operational logs are merged and the
search layer is updated. The search algorithm of HydraList
is designed to tolerate transient inconsistency when the data
layer is updated but updates to the search layer are pending.
Synchronization. Since the two layers are decoupled,
HydraList uses two different synchronization mechanisms.
These mechanisms are chosen based on properties of the
layers. Because the search layer is only updated by a single
background thread and progress of readers is important, we
use the Read-Optimized Write Exclusive protocol [33] to
synchronize ART in the search layer allowing non-blocking
reads. To allow parallelism and lock free traversal of the
data layer, we use optimistic version locking to synchronize
data nodes. Synchronization is further described in (§4.6).
Replication of Search Layer. To reduce remote memory
accesses, we replicate the search layer across NUMA nodes.
This is possible while allowing strictly serializable reads
because the two layers are decoupled and the search algorithm
in HydraList can tolerate inconsistency between them.

4. DESIGN OF HYDRALIST
In this section, we will discuss the design of HydraList.

First we will discuss organization of the search and data
layers as well as describe the operations of HydraList.

4.1 Data Layer and Search Layer
Figure 4 illustrates the layout of a data node. Every

data node is assigned a unique key called the anchor key
which is the smallest key of the node when it was inserted
in the data list. For example, in Figure 2 the anchor key
for the second data node is BBA. An invariant in the data
layer is: any key stored in a data node should be greater
or equal to the anchor key of the current node and should
be smaller than the anchor key of the next data node (i.e.,
node->anchor_key <= key < node->next->anchor_key).

This invariant assigns a key range to every node and thus
maps every key to a unique node in the data list. Key-
value pairs are stored in contiguous memory locations in a

data node but not in sorted fashion as maintaining a sorted
order for keys, especially string keys, is expensive. Instead,
HydraList stores a 1-byte hash (called fingerprint) [41] of
every key and maintains a bitmap of every valid key-value
slot. A permutation array stores the position of keys if the
keys were sorted and is maintained to reduce the cost of
sorting the key-value array on every scan operation. Data
nodes store pointers to next and previous data nodes forming
a doubly linked list. Since data nodes store keys in slots, we
call this data structure a slotted doubly linked list.

The ART-based search layer of HydraList indexes all
nodes in a data list by storing anchor keys and pointers of
data nodes. A newly created data node might not be immedi-
ately indexed as updates to the search layer are propagated
asynchronously. However, this does not lead to incorrect
results because the search operation in HydraList can tol-
erate such inconsistencies which is described next.

4.2 Search Operation
This operation begins with traversing the search layer to

locate a jump node, that specifies where searching in data
layer should begin. Second, the data layer is traversed to find
the data node (called target node) which might contain the
key. Finally, the target node is searched for the queried key.
Note that in the search layer, a key is divided into 1-byte
tokens and path compression is used for cache efficiency. For
example in Figure 3, key BBB is represented using two nodes,
B and BB. The leaf node of the search layer stores the pointer
to the data node of the corresponding anchor key.

4.2.1 Finding a Jump Node in Search Layer
Ideally, the jump node is the target node. However, when

they are not the same, which is possible when search layer
has pending updates, the jump node should be as close as
possible to the target node. By design, anchor keys divide
the key space into ranges. Therefore, finding the jump node
is equivalent to finding the anchor key in search layer which
is a lower or upper bound of the query key (key). This can
be done in our ART-based search layer using the algorithm
described. The pseudocode can be found in appendix (§10).

Consider a query key <t1t2...tl>. First a reader will per-
form a longest prefix matching (LPM) between the query
key and the keys in the search layer. If the query matches
an anchor key, the search is over. Otherwise the reader has
to find the next smaller or larger anchor key. Let p be the
length of the longest prefix. Among the children of the last
matched node, child node with token L is found such that
LowerBound(tp+1) = L Then the reader will walk to the
right-most leaf node of the sub-tree rooted at this child ,
see Figure 3 1 - 2 ). If a lower bound token does not ex-
ist, then the child node with token H is found such that
UpperBound(tp+1) = H; but, instead of walking to the right
most leaf node, the reader searches for the left most leaf
node of the sub-tree.

For example, consider the search layer in Figure 3. If the
query key is BAA, the LPM search will yield node with token
B. Since no child of this node exists with token smaller than
AA, node with token BB is used. Since it is a leaf node we
immediately get the jump node.

4.2.2 Locating a Target Node in Data List
A target node can be found by traversing the data list till

a node is found that meets the invariant in §4.1. If a query
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Figure 4: Layout of a data node

key is smaller than the anchor key of current node, then the
search proceeds leftward. See step 3 of Figure 3 where query
key BAA is smaller than the anchor key BBB. If the invariant
is not met and a query key is greater than the anchor key,
then the search proceeds rightwards. See step 5 of Figure 3,
where a query key AAC is greater than the anchor key AAA.
This traversal is done lock free as the reader only needs to
read the anchor key of a node which is never modified once
a node has been created.

4.2.3 Searching for a Key in the Target Node
On finding the target node, a 1-byte fingerprint of the

query key is generated. Only key-value slots that are valid in
the bitmap and whose fingerprint matches with the query key
fingerprint are probed. Using 1-byte fingerprints, we found
that 1.077 probes on average were required to find the correct
key which implies collisions are rare. To further improve the
performance, we use vector instructions to match multiple
fingerprints in the node while using a single instruction.

4.3 Split and Merge of a Data Node
In HydraList, a data node can store 64 key-value pairs.

We choose 64 key-value pairs per node as it allows effi-
cient comparison of key fingerprints using SIMD instructions
(AVX512). Variable length values can be supported by stor-
ing pointers to value fields instead of actual values in the
key-value array. Insert operations on a full node causes a
split. To split a data node, the writer will first lock the
node, find the median key in the key-value array and move
keys which are greater or equal to the median key to a new
data node. The median key is assigned as the anchor key
of the new node. The new node is then inserted into the
linked list. Two adjacent nodes are merged when a delete
operation causes the total number of keys in the two nodes
to be less than half of full key-array capacity. Figure 3 (2),
illustrates the split process. The target node (first data

node in data layer) of query key BAA is full, so the inserting
thread creates a new node, finds the median key of the target
node and moves all keys greater or equal to the median into
the new node. Also it inserts the query key into the new
node. It should be noted that only one node is locked during
the split process because the invariant in §4.1 ensures the
target node is eventually found even when adjacent nodes
are concurrently updated. Also, two writers cannot modify
the previous pointer field of a successor node because splits
are only allowed to create successor nodes and nodes are
always merged to the predecessor. The HydraList merge
algorithm is similar to split.

4.4 Decoupling Search Layer and Data Layer
The search layer has to be updated whenever an insert or

a delete in the data layer causes split/merge of data nodes.
These structural modification operations (SMO) are tradi-
tionally done in a synchronous fashion i.e., splits/merges are
not made visible to other readers/writers until the modifi-
cation has propagated to the search layer. Performing syn-
chronous updates requires holding locks for multiple nodes,
which becomes a performance and scalability bottleneck espe-
cially for write-heavy workloads. In HydraList, the search
algorithm involves finding an anchor key in the search layer
which is closest to the query key (not the exact key), hence
a reader can tolerate lazy updates to the search layer as long
as the data layer is consistent. This insight allows decoupling
of the two layers. Updates to the data layer is done syn-
chronously while updates to the search layer is asynchronous.
If the query key is located in a node whose anchor key has
not been added to the search layer, then the reader will land
at a node further away from the target node. Hence the cost
of inconsistency between two layers is longer traversal in the
data layer. However, this cost is smaller than the cost of
updating both layers synchronously (see §6.3.1).

4.4.1 Asynchronous Update of Search Layer
Figure 5 illustrates asynchronous update in HydraList

which uses a per-thread operational log and two types of
background threads. To propagate updates from the data
layer to the search layer, threads that cause a split or merge
store information including the anchor key, a pointer to new
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Figure 5: Illustration of how a combiner and updater threads are
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log which has operations sorted according to timestamps. 3 A
merged operational log is broadcast to all updater threads which
update the search layer. 4 A per-NUMA updater thread applies
operations to its local search layer.

data node, a current timestamp, and the operation (i.e.,
insertion or deletion of an anchor key), in its operational log.
For example, in Figure 3, after creating the new data node,
the thread will enqueue an insert operation into its opera-
tional log along with other metadata. Per-thread logging is
used instead of a global log as it reduces cross-NUMA traffic
and synchronization between enqueuing threads. Timestamp-
ing ensures global ordering of events. A special background
thread, called a combiner, periodically merges operation logs
of all threads, sorts them according to timestamp, and adds
the pointer of the merged log into the work queue of a sec-
ond background thread, called updater, which updates the
search layer asynchronously. Sorting operations according to
timestamp is important for consistency of the search layer as
operations should be applied in the order in which they were
created. In our prototype, we set the combining interval to
200 microseconds. An updater thread dequeues operations
from its local work queue and executes the operations against
the search layer. Using two different types of background
threads allows task level parallelism. It should be noted that
only a single thread updates a search layer but HydraList
can have multiple search layers (hence multiple updaters) to
achieve NUMA-awareness (discussed in §4.5). To generate
timestamps, we use a previous work of generating scalable
timestamp using hardware counters called ORDO [27]. We
cannot directly use RDTSC instruction as hardware counters in
different sockets have a constant skew between them. ORDO
takes the constant skew into account and provides hardware

timestamps which can be ordered correctly. Note that no
special hardware is required to use the ORDO primitive.
Updating search layer asynchronously may form long chains
of data nodes in the data layer which do not have anchor
keys in the search layer. This could lead to unbounded pro-
cessing times for reads. However, we did not find this issue
in our evaluation. We measured the distance between jump
and target nodes for a 100% insert workload and found the
distance to be less than 2 node away for 99.5% of inserts.
We discuss the detailed results in §6.3.4.

4.4.2 Reclaiming Merged Operational Logs
Once a merged log is created, its pointer is broadcast to

all updater threads. A merged log is safe to be deleted when
all operations in the merged log have been applied to the
search layer by the updater threads. These merged logs are
named obsolete logs. To detect an obsolete log, every merged
log is given an monotonically increasing ID by the combiner
thread at time of creation. Every updater thread keeps track
of the merged logs which it has consumed. The combiner
thread will periodically check with all updater threads to
free merged logs which have ID smaller than the smallest
obsolete log ID among the updater threads.

4.4.3 Reclaiming a Data Node from Search Layer
After a merge operation, the data node gets logically

deleted from the data layer but the memory cannot be
reclaimed as references to that data node still exist from
the search layer. To safely reclaim the data node, we use
a variation of Epoch Based Memory Reclamation (EBMR)
techniques [21,22,39]. Here an epoch is defined as the period
between two consecutive cycles of freeing obsolete merged
logs. Freeing obsolete merge logs ensures that any deleted
data node in the previous epoch has no memory reference
from the search layer as structural modifications related to
split/merge operation have been propagated to search layer.
However, it is possible that a reader can started reading in
the previous epoch and still reference the deleted data node.
To ensure no reader is currently reading the deleted data
node, we wait for all threads to exit the critical section at
least once (i.e., passing the second epoch). Then we physi-
cally free the memory of all nodes which were deleted in the
previous epoch.

4.5 NUMA-Awareness to Search Layer
Since inconsistency between the search and data layers

can be tolerated, performance and scalability of HydraList
can be further improved by replicating the search layer in
every NUMA node. By doing so, every thread will execute
only NUMA-local accesses when traversing the search layer.
NUMA replication of the search layer is achieved by assigning
an updater thread to every NUMA node and making the
combiner thread broadcast the merged operational log to
work queue of each updater. Therefore in a machine with N
NUMA nodes, N + 1 background threads are needed, N for
replication and 1 thread as combiner.

4.6 Concurrency
The search and data layers have different properties in

terms of contention, memory locality, and update frequency.
Decoupling the search and data layer allows concurrency
control of both layers to be designed independently and
optimized for layer specific properties.
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4.6.1 Concurrency in Search Layer
The search layer is updated by a single thread meaning

only reader-writer synchronization is required, and writer-
writer synchronization is not essential. Also readers can be
prioritized over writers to allow non blocking reads as the
search layer can tolerate delayed updates. Keeping these
properties in mind, we use Read-Optimized Write Exclusion
(ROWEX) [33] protocol to synchronize the search layer in
HydraList. In ROWEX, a writer locks a node before mod-
ifying it, thus providing exclusion relative to other writers
but readers do not acquire any locks. ROWEX ensures reads
are safe by only allowing atomic modifications to fields that
can be read concurrently. Nodes are replaced or added to
ART using atomic compare-and-swap operations. Obsolete
nodes are freed using garbage collection.

4.6.2 Concurrency in Data Layer
The data Layer in HydraList is shared between all read-

ers and writers. Therefore, the concurrency control of the
data layer should ensure maximum parallelism and reduce
cache coherence traffic. To achieve this, HydraList uses the
Optimistic Version Locking protocol. When a writer wants
to modify a node, it first atomically increments the version
number of the node. Since version numbers are initialized to
zero, an odd version number indicates the node is being up-
dated and any concurrent reader or writer trying to enter the
critical section will have to retry. After the node is updated,
its version number is incremented again and is unlocked. A
reader reads the version number of a node before and after
accessing the node. If the version number does not match,
then the reader retries. The advantage of this protocol is that
it does not cause cache invalidation in case of reads unlike
traditional locking schemes like spinlock or reader-writer lock
which modify shared cache lines when readers enter critical
sections. A drawback of optimistic concurrency is the large
number of aborts under high contention which can cause per-
formance collapse. To prevent this, HydraList implements
a backoff scheme wherein if a reader or writer performs retries
more than a certain threshold, it waits for random period
before attempting again. Our evaluation shows that this
backoff scheme does not affect performance in low contention
case but is effective in preventing performance collapse under
high contention (§6.3.1).

4.7 Putting It All Together
Before starting an operation, a thread determines its

NUMA node and gets the root of the corresponding NUMA
node’s search layer. A side effect of using optimistic locking
techniques is that readers can read logically deleted data
nodes. To avoid this, after entering a critical section, ev-
ery reader/writer ensures that the current data node is not
deleted by checking the deleted field (Figure 4) and ensuring
the invariant of the data list defined in §4.1 is not violated.

4.7.1 lookup(key)
For lookup, a reader first reads the version number of the

node using readLock() API which returns 0 if the node is
locked making the reader retry. Also, a reader will check
the validity of the node. If the node is already deleted, it
will retry the lookup operation. If the node is valid, then
the reader will find the index of the key in the key-value
array using the fingerprint. If the key is found, the value
of the key is fetched. The reader checks if the node version

is unmodified before returning the value. An updated node
version indicates a concurrent write and the reader will rety
the lookup.

4.7.2 insert(key, value)
The insert operation starts by finding a target node. Af-

ter finding the target for key, the writer tries to lock the
data node by incrementing the node version number using
atomically. In case of failure, the writer aborts and retries.
After locking the data node, it checks again if the target
node invariant is met and the node is not deleted, due to
a concurrent split or merge. If the node is still valid, the
writer checks if the key already exists in the node. To do this,
it generates a fingerprint (i.e., 1-byte hash) of the key and
checks only those key array slots whose fingerprint matches.
Fingerprint matching is accelerated using vector instructions.
If such a key does not exist, key-value is inserted in the first
empty slot. Finally, the node is unlocked by incrementing
the node version again.

4.7.3 remove(key)
The remove operation is similar to insert(k,v). After

locking the data node and checking its validity, the node
tries to find the key in the node. If successful, the key is
deleted by resetting its corresponding bit in the bitmap.

4.7.4 scan(key, range)
Keys in a data node are not stored in a sorted fashion.

This makes sorting keys on every scan operation a perfor-
mance bottleneck. To reduce the cost of sorting, we use a
permutation array which stores the indices of keys in a sorted
fashion. The permutation array is computed again only if
there has been an update to the node since the last time
it was computed. This can be detected by comparing the
version number of the node when permutation array was last
generated and the most recent version number. If an anchor
key of a node is less than the start key, then the starting
index of a scan is computed using binary search. Then using
the permutation array, the result array is populated. This
process is repeated with the next node until the size of the
result array is the same as the scan range length.

5. IMPLEMENTATION
We implemented a prototype of HydraList in C++. The

prototype comprised of 4500 lines of code (LoC) includ-
ing 2600 LoC from the concurrent Adaptive Radix Tree
library [1]. We added 300 LoC to the library to imple-
ment the algorithm to find the jump nodes. We use Intel
Advanced Vector Extensions (AVX 512) [25] for comparing
key fingerprints to fingerprint arrays. To only require one
SIMD instruction for comparison, we allocate 64 keys per
node. Also, we accelerate bitmap array operations using x86
assembly instructions. We use a hardware clock (RDTSC in
x86 architecture) to prevent timestamp allocation from be-
coming a scalability bottleneck [47, 50]. Our implementation
of HydraList supports 64-bit integer and string key types.
The maximum size of string keys is limited to 32 bytes. We
have discussed techniques to support a variable length key
in §7.

6. EVALUATION
In this section, we first begin by introducing our evalu-

ation setup (§6.1). We then show performance results of
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HydraList in comparison with other state-of-the-art in-
dexes (§6.2). Finally, we analyze the effectiveness of our
design choices (§6.3).

6.1 Experimental Setup

6.1.1 Hardware and Software Platform
We used a Intel Xeon Platinum 8180 server with 112

physical cores. It has four NUMA sockets with 28 physical
cores per socket. It has 125 GB of memory. We disabled
AutoNUMA [12], which automatically migrates memory from
one NUMA domain to another NUMA domain, to avoid
performance interference by underlying OS. Also, we enabled
huge pages as some index evaluated use huge pages. We used
jemalloc as memory allocator to prevent memory allocation
from becoming a scalability bottleneck. We used gcc 8.3 with
-O3 compiler flag to compile all indexes and benchmarks3.
All experiments are done on Linux Kernel 5.0.16.

6.1.2 Real-World Workload: YCSB
We used the Yahoo! Cloud Serving Benchmark (YCSB) [11],

which is a widely-used key-value store benchmark as it mim-
ics real-world workloads as summarized in Table 1. We
used an index benchmarking tool, index-microbench [48],
which generates a workload file for YCSB and statically split
them across threads. For each workload, we test two key
types: integer and string. For integer key, we randomly
generate 100 million 8-byte random integers. For string key,
we use publicly available 89 million email addresses [20] to
mimic the key distribution of real workload. The average
length of email addresses is 20 bytes and maximum is lim-
ited to 32 bytes. For evaluation, the username and domain
name of email addresses are swapped–e.g., abc@xyz.com be-
comes xyz.com@abc–which is a common pre-processing for
trie-based indexes [32, 38, 48]. The value field in each key
type is a 8-byte integer which mimics pointer to record in
a real database. For each workload, we first load keys (100
million for integer and 89 million for string) and then run 50
million YCSB transactions on the keys.

6.1.3 In-Memory Index Comparison
We compared HydraList with several state-of-the-art

indexes: Adaptive Radix Tree (ART) [33] with optimistic
lock coupling (ARTOLC) and read-optimized-write-exclusive
synchronization (ARTROWEX), Masstree [38], B+ tree with
optimistic lock coupling (BtreeOLC) [10, 31], open source
implementation of Bw-Tree (Bw-Tree) [48], Wormhole [49],
and Cuckoo hashing (Libcuckoo) [35]. Obviously, Cuckoo
hashing does not support scan operation so we did not present
Cuckoo hashing results for YCSB workload E, which requires
scan operations.

We did not include the evaluation results of skiplists, in-
cluding a lock-free version [13] and a NUMA-optimized ver-
sion [14] because they did not perform and scale well with a
large number of keys. We found that these skiplist algorithms
do not scale because the background thread used to update
the skiplist becomes a bottleneck when number of keys in-
crease. This is consistent with findings of previous work [48].
Increasing the number of background threads to improve
scalability while maintaining correctness is non-trivial.

3 For YCSB workload A and workload B, we did not include
ARTOLC as it segfaults with -O3 optimization

Table 1: Characteristics of YCSB workloads

Workload Application Description

Load Bulk database insert 100% Insert
A Session store Read/Update 50/50
B Photo tagging Read/Update 95/5
C User profile cache 100% Reads
D User status update Read (Latest)/Insert 95/5
E Threaded conversation Scan/Insert 95/5

6.2 Performance Evaluation
Figure 6 and Figure 7 show the performance and scalability

of in-memory index structures with YCSB workload.

6.2.1 Insert Only
Libcuckoo has the highest throughput for both integer

and string keys because it randomly scatters the key which
lowers contention. HydraList throughput for integer key is
38.5% higher than ARTOLC but is similar to ARTROWEX
for string keys. This is because performance improvement
dues to reduction in size of critical section in case of integer
keys is negated by higher key comparison cost for string
keys. Masstree, Wormhole and B+ tree showed performance
saturation after 28 threads because reads and writes cross
NUMA boundaries.

6.2.2 Workload A
This workload performs large number of reads and up-

dates with skewed access pattern which causes performance
saturation or meltdown of most index structures at high
core count as updates are serialized. HydraList avoids
performance collapse unlike Libcuckoo and ARTOLC as it
reduces contention using a backoff scheme. Thus HydraList
throughput is 6.4× and 1.75 higher for integer and string
keys respectively at 112 threads. High performance shows
that HydraList can handle workload skew and does not
require load balancing.

6.2.3 Workload B
All indexes show near linear performance scaling as this

is a read-mostly workload. For string keys, ARTROWEX,
Masstree and HydraList perform best. Masstree and ART
performs well because common prefix of string in our work-
load reduces the number of comparisons. B+ tree and Bw-
Tree show lower performance because of large number of keys
and high string comparison cost.

6.2.4 Workload C
Libcuckoo shows performance collapse because per-bucket

spinlock becomes bottleneck. In case of 112 thread for in-
teger keys, performance profiling of Libcuckoo using Linux
perf shows 98% of cycles are spent in acquiring spinlock.
B+ tree and Bw-Tree show lower performance because of
large number of keys which requires more memory access
and comparisons. Performance of Wormhole is lower, even
though its theoretical asymptotic complexity is better (i.e.,
O(log(length of key)) because it uses a reader-writer lock
to synchronize access to leaf nodes. Reader-writer lock take
15% of CPU cycles for 112 threads and hence becomes a
scalability bottleneck. HydraList throughput is about 20%
lower than ART in case of integer keys but the performance
is comparable in case of string keys.
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Figure 6: Performance comparison of in-memory indexes for YCSB workload: 50 million operations with 89 million string keys.

0
10
20
30
40
50
60
70
80
90

100

14 28 42 56 70 84 98 11
2 0

10
20
30
40
50
60
70

14 28 42 56 70 84 98 11
2 0

50

100

150

200

250

14 28 42 56 70 84 98 11
2

0

50

100

150

200

250

14 28 42 56 70 84 98 11
2 0

20
40
60
80

100
120
140
160
180
200

14 28 42 56 70 84 98 11
2 0

5
10
15
20
25
30
35
40
45

14 28 42 56 70 84 98 11
2

O
ps

/µ
se

c

Load (insert only) Workload A Workload B

O
ps

/µ
se

c

#threads

Workload C

ARTOLC
HydraList
Masstree

BtreeOLC

#threads

Workload D

Wormhole
Bw-Tree

Libcuckoo

#threads

Workload E

ARTROWEX

Figure 7: Performance comparison of in-memory indexes for YCSB workload: 50 million operations with 100 million integer keys.

6.2.5 Workload D
All indexes show near linear performance scaling as this

is read-mostly workload. Performance of ARTOLC and
HydraList are comparable for both integer keys and string
keys. In this workload, performance of Libcuckoo does not
collapse because lower contention on buckets.

6.2.6 Workload E
HydraList and B+ tree outperform all index structures

in scan workload because slotted nodes structure of the data
layer allows readers to read values with next key in the range
with fewer cache references as compared to ART or Masstree
which have to traverse different levels. Wormhole performs
poorly because scanning every node requires sorting of key
array. Also Wormhole uses reader-writer lock which generates
large cross-NUMA traffic leading to poor performance.

6.2.7 Delete Workload
Since YCSB does not support delete, we benchmarked in-

dexes using a synthetic workload comprising of deletes (15%),
inserts (15%) and lookup(70%). The results for 89 million
string keys and integer keys are summarized in Figure 8.
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Figure 8: Performance comparison of in-memory indexes with
mixed workload of insert(15%), delete(15%) and lookup (70%).

The throughput of HydraList is 1.5× and 1.4× higher
than ARTROWEX for integer and string keys respectively
for 112 threads.

6.2.8 Summary
It should be noted that with exception of few workloads,

there is a superior structure or very close competitor to
HydraList in terms of performance but these competitors
change with different workloads. HydraList consistently
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Figure 9: Factor analysis of YCSB Workload for 112 threads with string keys.
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Figure 10: Comparison of remote memory access. HydraList (n), where n is the number of search layer.

performs well for all different workloads and key type, hence
achieving its design goal of versatility (§3.1).

6.3 Analysis on Design Choices
In this section, we analyze impact of our design choices

on performance and scalability (§6.3.1), impact of search
layer replication on NUMA traffic and memory (§6.3.2),
HydraList scalability with increasing data size (§6.3.3) and
distance between jump node and data node (§6.3.4).

6.3.1 Factor Analysis
We analyze the performance of HydraList by breaking

down the performance gap between ART and HydraList.
We incrementally added features to ART and benchmarked
each increment using YCSB workloads. The throughput of
112 threads for string keys are summarized in Figure 9.
+slotted leaf node. We added multiple key-value slots
to the leaf node of ART which improves scan performance
by over 3.2×. Keys are stored in a sorted fashion. Binary
search is used to search within a node. However, performance
in insert-only workloads reduces by 2.4× as inserting into
a sorted list requires multiple string comparisons and key
shifts. This feature also reduces the performance of workload
C and D by 33% and 41% respectively as binary search is
not cache efficient.
+fingerprinting. To counteract this deficiency, we use
1-byte fingerprints to search for keys in a node. This im-
proves throughput of insert-only, B, C, and D workloads
by reducing amount of string comparisons. This however,
reduces performance of scan operations as it adds overhead
of array sorting before scanning a node.
+SIMD. Using SIMD instructions allows fingerprint com-
parison to occur in parallel; this improves performance in
workload B, C, and D which are lookup heavy workloads.

+separate SL/DL. Separating search and data layer as
well as asynchronous search layer updating improves perfor-
mance in insert-only case by 52% with no/negligible impact
on performance of other workloads. Improvement in perfor-
mance can be attributed to the removal of updates from the
critical path in the search layer.
+multiple SL. Adding a search layer to each NUMA node
improves performance further by about 9% in case of insert-
only work load. It also improves performance in Workload
B, C, and D by 5%, 2.5%, and 5.75% respectively.
+backoff. A thread is forced to retry when it fails to acquire
a write lock on a data node. This causes high contention
and can lead to performance collapse. We added backoff
feature wherein if a thread has retried a certain number of
times it will wait before attempting again. Adding backoff
improved performance by 4.5× in Workload A which is a
high contention workload.

6.3.2 Impact of Search Layer Replication
Cross NUMA Traffic. To measure the remote mem-
ory access, we measured the total number of remote cache
lines accessed using Intel’s Performance Counter Monitor
for 50 million transactions of YCSB workload with string
keys. As Figure 10 shows, HydraList has the least number
of remote memory accesses among the measured indexes
for all the workloads. Remote cache line accesses reduce
when HydraList uses four search layers because search
layer traversals does not access remote memory. B+ tree and
BwTree have large number of remote cache line accesses for
Workload A and C as their search operation involves access-
ing more memory locations. However, in case of Workload
E, their remote cache line accesses is lower than Masstree
because of slotted leaf node structure which leads to smaller
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Figure 12: Performance comparison of indexes with varying key
set size with 112-thread and string keys.

number of cache misses. NUMA traffic in Workload E is
high in case of Wormhole because of reader-writer locking.
Memory Consumption. We measured the peak mem-
ory consumption of different indexes after inserting 100
million integer keys and 89 million string keys (see Fig-
ure 11). We measured the resident set size (RSS) by reading
/proc/[pid]/statm in Linux. For this experiment, huge
pages were disabled to reduce overhead of fragmentation.
ART is the most memory efficient memory among all the
indexes because of path compression and adaptive sizing of
nodes. The memory overhead of search layer replication is
low. In case of integer key with 4-way replication of search
layer, only 15% (0.48 GiB) of the total memory consumption
(3.16 GiB) is used by search layer. This is significantly lower
than node replication algorithm NR [8] where the over head
would have been 4x. Data node in HydraList is larger than
leaf node of B+ tree because it stores fingerprint, bitmap
and permutation array. This leads to higher memory con-
sumption.

6.3.3 Impact of Key Set Size
To understand the performance of index structures with

increasing key set size, we measured the throughput of in-
dexes for Workload B with string keys after adding 100K,
1M and 89M keys. Increasing key set size from 100K to
89M reduces the throughput of B+ tree by 5×. In case of
HydraList and ARTROWEX, the reduction of throughput
is only 2×. Masstree shows the least amount of variation
in throughput with increasing size but the performance of
Masstree for small key set is less.

6.3.4 Distance between Jump Node and Target Node
We measured the distance between the jump node and the

target node when inserting 89 million string keys (i.e., YCSB
Load) using 112 threads as this distance could impact the
performance of HydraList. This workload is expected to
have the maximum distance between jump node and target
node because of high number of inserts. Results of average
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Figure 13: Distance between target node and jump node(x-axis)
vs % of insert operation (y-axis).

of 10 runs is summarized in Figure 13. 99.5% of inserts had
0 or 1 as distance between jump node and target node while
99.99% of inserts had distance less than 5.

7. DISCUSSION
Comparison with Wormhole. Wormhole [49] and
HydraList differ in their design approaches. Wormhole
tries to improve performance by using a very efficient search
layer. But in massive multicores, as shown in our evalua-
tion, other factors also contribute to performance. Design
of Wormhole and HydraList differ in three key aspects: 1)
updates to the search layer, 2) the data layout and 3) con-
currency control. First, Wormhole uses a hash table (Meta-
TrieHT) as its search layer that is always consistent with
its data layer (LeafList) leading to higher synchronization
overhead and longer critical sections. Second, HydraList
supports per-NUMA replication of search layers. As a result,
remote cache line accesses in HydraList are significantly
fewer (Figure 10). Finally, Wormhole uses RCU to synchro-
nize its search layer which has high memory overhead as it
requires two copies of a hash table to be maintained making
per-node replication like HydraList unfeasible. Also their
reader-writer lock for data layer is non-scalable.
Supporting Variable Length Key. In our prototype,
data nodes store a maximum of 64 keys-value pointer pairs
and the maximum key length is fixed to 32 bytes. It is
possible to implement variable key length by storing keys
smaller than 32 bytes in data nodes directly; keys larger
than 32 bytes would store partial keys and a pointer to the
remainder in the data node.

8. CONCLUSION
We introduce a new index structure, HydraList which is

based on the idea that an index structure can be divided into
two components, a search layer and a data layer. HydraList
decouples these two layers and updates from the data layer
to a search layer are propagated asynchronously using back-
ground threads. This design removes search layer updates
from cirtical path and allows replication of search layers
across NUMA nodes which further improves performance.
Our evaluation shows that design of HydraList is scalable
and versatile over a large variety of workloads.
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10. APPENDIX: PSEUDO-CODE
1 node* getLowerBound(node* curNode, uint8 unmatchedToken) {
2 // With each node representing 1 byte of key
3 // A node can have 256 possible children
4 for (int i = unmatchedToken - 1; i >= 0; i--) {
5 if (curNode->getLevelChild(i) != NULL)
6 return curNode->getLevelChild(i);
7 }
8 return NULL;
9 }

10 node* findJumpNode(Key_t key, SearchLayer* sl) {
11 int level = 0;
12 // Longest Prefix Match
13 for (int i = 0; i < key.length(); i++) {
14 if (sl->checkPrefix(key, level)) level++;
15 else break;
16 }
17 slNode* LPMnode = sl->getNode(level);
18 if(LMPnode->type == LEAF_NODE) return sl->getValue(LPMnode);
19 // Find child node whose token is lower bound of unmatched token
20 slNode* Lnode = getLowerBound(LPMnode, key[level]);
21 if (Lnode) {
22 // Get the rightmost leaf node of subtree rooted at Lnode
23 while(!sl->isLeafNode(Lnode))
24 Lnode = getLowerBound(node, 255);
25 } else {
26 // Find child node whose token is upper bound of unmatched token
27 Rnode = getUpperBound(sl->getNode(level), key[level]);
28 // Get the leftmost leaf node of subtree rooted at Lnode
29 while(!sl->isLeafNode(Rnode))
30 node = getUpperBound(Rnode,0);
31 }
32 return sl->getValue(node);
33 }
34 node* findTagetNode(node* jumpNode, Key_t key) {
35 node* cur = jumpNode;
36 while (1) {
37 if (cur->getAnchor() > key) {
38 cur = cur->getPrev();
39 continue;
40 }
41 if (cur->getNext()->getAnchor() > key) {
42 cur = cur->getNext();
43 continue;
44 }
45 break;
46 }
47 return cur;
48 }
49 bool checkNodeValidity(node* cur, Key_t key,
50 node &head, node jumpNode) {
51 if (cur->getDeleted()) { // Check if current node is deleted
52 if (cur == jumpNode) { // If deleted node is jump node
53 // Modify the start node of search in data layer
54 head = jumNode->getNext();
55 }
56 return false;
57 }
58 //Check if current node meets the key invariant
59 if (cur->checkInvariant(key))
60 return false;
61 }
62 bool insert(node* jumpNode, Key_t key, Val_t val) {
63 node* head = jumpNode;
64 restart:
65 node* tagetNode = findTargetNode(head, key);
66 if (!cur->writeLock()) // Acquire write lock
67 goto restart;
68 // Check the node invariant are met
69 if (!checkNodeValidity(cur, key, head, jumpNode)){
70 cur->writeUnlock();
71 goto restart
72 }
73 uint8_t fingerPrint = getFingerPrint(key);
74 int index = cur->findKey(key, fingerPrint);
75 if (index > -1) // If key does exits return
76 return false;
77 bool ret = cur->insertKey(key, val, fingerPrint);
78 cur->writeUnlock();
79 return ret;
80 }

81 Val_t lookup(node* jumpNode, Key_t key) {
82 node* head = jumpNode;
83 restart:
84 node* tagetNode = findTargetNode(head, key);
85 version_t readVersion = cur->readLock();
86 if (!readVersion) // Node locked, retry
87 goto restart;
88 if (!checkNodeValidity(cur, key, head, jumpNode))
89 goto restart;
90 uint8_t fingerPrint = getFingerPrint(key);
91 int index = cur->findKey(key, fingerPrint);
92 if (index == -1) // Key does not exits
93 return nullptr;
94 Val_t ret = cur->getValue(index);
95
96 // Check if the version has changed
97 if (!cur->readUnlock(readVersion))
98 goto restart;
99 return ret;

100 }
101 bool remove(node* jumpNode, Key_t key, Val_t val) {
102 node* head = jumpNode;
103 restart:
104 node* tagetNode = findTargetNode(head, key);
105 if (!cur->writeLock()) // Acquire Write lock
106 goto restart;
107 if (!checkNodeValidity(cur, key, head, jumpNode)) {
108 cur->writeUnlock();
109 goto restart;
110 }
111
112 uint8_t fingerPrint = getFingerPrint(key);
113 int index = cur->findKey(key, fingerPrint);
114 if (index == -1) // If key does not exits return
115 return false;
116 bool ret = cur->removeKey(index);
117 cur->writeUnlock();
118 return ret;
119 }
120 vector<Val_t>& scan(node* jumpNode, Key_t key, int range) {
121 vector<Val_t> scanVector(range);
122 node* head = jumpNode;
123 restart:
124 scanVector.clear();
125 int done = 0;
126 node* tagetNode = findTargetNode(head, key);
127 while (done < range) {
128 versiont_t readVersion cur->readLock();
129 if (!readVersion) // If node is locked, retry
130 goto restart;
131 if (done == 0
132 && !checkNodeValidity(cur, key, head, jumpNode))
133 goto restart;
134 int todo = range - done;
135
136 // Check if an update has occurred since last scan
137 if (readVersion > cur->getLastScanVersion()) {
138 // If yes, regenerate Permutation Array
139 cur->generatePermuter();
140 lastScanVersion = readVersion;
141 }
142 uint8_t startIndex = 0;
143
144 // Find index to start the scan
145 if (startKey > cur->getAnchorKey())
146 startIndex = binSearchLowerBound(startKey);
147 for (uint8_t i = startIndex;
148 i < cur->numEntries && todo > 0; i++) {
149 int index = cur->getPermuter(i);
150 scanVector[done++] = cur->getValueArray(index);
151 todo--;
152 }
153
154 // Recheck read version, if changed retry
155 if (!cur->readUnlock(readVersion))
156 goto restart;
157 cur = cur->getNext();
158 }
159 return scanVector;
160 }
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