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ABSTRACT
Maximum biclique search, which finds the biclique with the
maximum number of edges in a bipartite graph, is a fun-
damental problem with a wide spectrum of applications in
different domains, such as E-Commerce, social analysis, web
services, and bioinformatics. Unfortunately, due to the dif-
ficulty of the problem in graph theory, no practical solution
has been proposed to solve the issue in large-scale real-world
datasets. Existing techniques for maximum clique search on
a general graph cannot be applied because the search objec-
tive of maximum biclique search is two-dimensional, i.e., we
have to consider the size of both parts of the biclique simul-
taneously. In this paper, we divide the problem into several
subproblems each of which is specified using two parameters.
These subproblems are derived in a progressive manner, and
in each subproblem we can restrict the search in a very small
part of the original bipartite graph. We prove that a loga-
rithmic number of subproblems is enough to guarantee the
algorithm correctness. To minimize the computational cost,
we show how to reduce significantly the bipartite graph size
for each subproblem while preserving the maximum biclique
satisfying certain constraints by exploring the properties of
one-hop and two-hop neighbors for each vertex. We use
several real datasets from various application domains, one
of which contains over 300 million vertices and 1.3 billion
edges, to demonstrate the high efficiency and scalability of
our proposed solution. It is reported that 50% improve-
ment on recall can be achieved after applying our method
in Alibaba Group to identify the fraudulent transactions in
their e-commerce networks. This further demonstrates the
usefulness of our techniques in practice.
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A bipartite graph is denoted by G = (U, V,E) where
U(G) and V (G) denote the two disjoint vertex sets and
E(G) ∈ U × V denotes the edge set. Bipartite graph is
a popular data structure, which has been widely used for
modelling the relationship between two sets of entities in
many real world applications. For example, in E-Commerce,
a bipartite graph can be used to model the purchasing re-
lationship between customers and products; In web appli-
cations, a bipartite graph can be used to model the visiting
relationship between users and websites; In bioinformatics, a
bipartite graph can be used to model the acting relationship
between genes and roles in biological processes.

A subgraph C is a biclique if it is a complete bipartite
subgraph of G that for every pair u ∈ U(C) and v ∈ V (C),
we have (u, v) ∈ E(C). Like clique in general graph, biclique
is a fundamental structure in bipartite graph, and has been
widely used to capture cohesive bipartite subgraphs in a
wide spectrum of bipartite graph applications. Below are
several representative examples.
(1) Anomaly Detection [3, 5]. In E-commerce such as Ebay
and Alibaba, the behavior of a large group of customers
purchasing a set of products together is considered as an
anomaly because there is a high probability that the group
of people is making fraudulent transactions to increase the
rankings of their businesses selling the corresponding prod-
ucts. This can be modelled as bicliques in a bipartite graph.
Similarly, in web services, biclique can be used to detect a
group of web spammers who click a set of webpages together
to promote their rankings.
(2) Gene Expression Analysis [32, 16, 11, 43, 9]. In gene
expression data analysis, different genes will respond in dif-
ferent conditions. The group of genes that have a number
of common responses over multiple conditions is considered
as a significant gene group.
(3) Social Recommendation [15]. In social analysis, there
may exist a group of users who have the same set of inter-
ests, such as swimming, hiking, and fishing. Such groups
and interests can be naturally captured by biclique, which
is helpful in social recommendation and advertising.

In practice, we cannot directly enumerate the bicliques
of the bipartite graphs as the number of bicliques is pro-
hibitively large in the above applications. In this paper,
we investigate the problem of maximum biclique search,
i.e., find the biclique with the largest number of edges, for
the following two reasons:
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(1) Given the biclique model, it is a very natural problem to
find the maximum biclique, which is not only theoretically
interesting but also useful in many real-life scenarios. For
instance, the maximum biclique may represent the largest
suspicious click farm in the e-commerce networks, the most
significant gene group in a gene-condition bipartite graph,
and the user group with largest potential market value in
the social network.

(2) In some scenarios, one may need to enumerate a set of
bicliques. For instance, the fraud transactions cannot be
fully covered by the maximum biclique in the e-commerce
network. To reduce the number of output bicliques, we may
consider the maximal biclique where none of its superset is
also a biclique. Unfortunately, as shown in our initial empir-
ical study, the number of maximal biclique is still large (e.g.,
over 109 maximal bicliques have been output after 24 hours
running of maximal biclique enumeration algorithm on a e-
commerce bipartite graph obtained from Alibaba). Thus,
we have to consider the top k diversified/representative bi-
cliques. Inspired by the well-studied top k diversified clique
problem (e.g., [42]), we can follow the same procedure by re-
peatedly removing the current maximum biclique from the
bipartite graph k times. Clearly, the efficient computation
of maximum biclique is the key of this problem.

Challenges and Motivations. Despite its wide range of
applications, finding the maximum biclique is an NP-hard
problem [27]. In the literature, there are many solutions
to solve another related NP-hard problem: the maximum
clique search problem in a general graph [34, 10, 33, 35,
36, 13, 21, 12, 17]. The main idea is to use graph coloring
and core decomposition to obtain an upper bound for the
maximum clique size and use this upper bound to prune
vertices that cannot be contained in the maximum clique.

A natural question raised is: can we use the above graph
coloring and core decomposition techniques to search the
maximum biclique in a bipartite graph? Unfortunately, the
answer is negative. First, in a bipartite graph, only two col-
ors are needed to color the whole bipartite graph. Obviously,
we cannot obtain an upper bound for the maximum biclique
size using graph coloring. Second, in a large biclique, it is
possible for a vertex to have a very small degree/core num-
ber. For example, suppose the maximum biclique C is a star
where |U(C)| = 1 and |V (C)| is large, we only require the
degree/core number for each vertex in V (C) to be ≥ 1. Con-
sequently, even a vertex has a small degree/core number, it
still cannot be pruned. Therefore, the core decomposition
technique also fails in maximum biclique search.

The main reason for challenges in maximum biclique search
is that the size of a biclique C depends on two factors:
|U(C)| and |V (C)|; so, it is difficult to find a one-dimensional
indicator, such as color number, degree, or core number, to
prune vertices that cannot participate in the maximum bi-
clique. Due to this challenge, existing solutions [27, 43] can
only handle small bipartite graphs and will face serious effi-
ciency issues when the bipartite graph scales up in size. Mo-
tivated by this, in this paper, we tackle the above challenges
and aim to solve the maximum biclique search problem on
bipartite graphs at billion scale.

Our Solution. Based on the above discussion, existing
coloring and core decomposition based approaches cannot
yield effective pruning in maximum biclique search. Our

paper aims for a new way to solve the problem. Our main
idea is as follows: instead of finding the upper bounds for
pruning, we try to guess a lower bound of |U(C∗)| as well
as a lower bound of |V (C∗)| for the maximum biclique C∗.
If the guess is correct and tight, we can search on a much
smaller bipartite graph by eliminating a large number of ver-
tices based on the two lower bounds. However, we cannot
guarantee that our guess is always correct. Therefore, in-
stead of guessing only once, we guess multiple times which
results in a list of lower-bound pairs (τ0U , τ

0
V ), (τ1U , τ

1
V ), . . ..

To gain high pruning power, the list of pairs should satisfy
four conditions: (1) τ0U × τ0V should be as large as possible
but not larger than the number of edges in the optimal bi-
clique C∗; (2) The pairs are derived in a progressive manner
so that τ iU ×τ iV ≥ τ i−1

U ×τ i−1
V for any i > 0; (3) There exists

at least one pair τkU and τkV that are the true lower bounds
of |U(C∗)| and |V (C∗)|; and (4) The number of pairs should
be well-bounded.

To make this idea practically applicable, two issues need
to be addressed: (1) How to guess the list of lower-bound
pairs so that they satisfy the above four conditions; and (2)
Given a lower-bound pair, how to eliminate as many vertices
as possible while preserving the corresponding maximum bi-
clique to optimize the computational cost.

Contributions. In this paper, we answer the above ques-
tions and make the following contributions:

• The First Work to Practically Study Maximum Biclique
Search on Big Real Datasets. Although the maximum
biclique search problem is NP-hard, we aim to design
practical solutions to solve the problem in real-world large
bipartite graphs with billions of edges. To the best of our
knowledge, this is the first work to solve this important
problem on real datasets at billion scale.

• A Novel Progressive-Bounding Framework. We propose
a progressive bounding framework to obtain the lower-
bound pairs (τ iU , τ

i
V ). We analyze the framework by pro-

jecting the problem into a two-dimensional space and we
show that the set of lower-bound pairs forms a skyline in
the two-dimensional space, and only logarithmic lower-
bound pairs are enough to guarantee the correctness.

• Maximum-Biclique Preserved Graph Reduction. Given a
certain pair of lower bounds, we study how to eliminate
vertices while preserving the maximum biclique. We in-
vestigate the vertex properties and derive pruning rules
by exploring the one-hop and two-hop neighbors for each
vertex. Based on the pruning rules, we can significantly
reduce the size of the bipartite graph.

• Extensive Performance Studies on Billion-Scale Bipartite
Graphs. We conduct extensive performance studies using
16 real datasets from different application domains. The
experimental results demonstrate the efficiency and scal-
ability of our proposed approaches. Remarkably, in a
user-product bipartite graph from Alibaba with over 300
million vertices and over 1.3 billion edges, our approach
can find the maximum biclique within 15 minutes. It
is also reported that 50% improvement on recall can be
achieved after applying our proposed method in Alibaba
Group to identify the fraudulent transactions.

Outline. The remainder of this paper is organized as fol-
lows. Section 2 provides the preliminaries that formally de-
fines the problem and shows its hardness. Section 3 intro-
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u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v6v4 v5

(a) Bipartite Graph G = (U, V,E)

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v6v4 v5

(b) Maximum Biclique, τU = 1, τV = 1

u1 u2 u5 u6u3 u4 u7

v1 v2 v3 v6v4 v5

(c) Maximum Biclique, τU = 1, τV = 5

Figure 1: An Example of a Bipartite Graph and its Maximum Biclique

duces the baseline solution based on the branch-and-bound
framework. In Section 4, we analyze the reason for the in-
efficiency of the baseline solution, and propose the progres-
sive bounding framework. Section 5 presents the maximum-
biclique preserved graph reduction techniques and its op-
timizations. In Section 6, we evaluate our proposed algo-
rithms using extensive experiments. We review the related
work in Section 7 and conclude the paper in Section 8.

2. PRELIMINARIES
We consider an unweighted and undirected bipartite graph,

G = (U, V,E) where U(G) and V (G) denote the two disjoint
vertex sets and E(G) ∈ U × V denotes the edge set in G.
For each vertex u ∈ U(G), we use N(u,G) to denote the set
of neighbors of u in G, i.e., N(u,G) = {v|(u, v) ∈ E(G)}.
The degree of a vertex u ∈ U(G), denoted as d(u,G), is the
number of neighbors of u in G, i.e., d(u,G) = |N(u,G)|. We
use dUmax(G) to denote the maximum degree for all vertices
in U(G), i.e., dUmax(G) = maxu∈U(G) d(u,G). We have sym-
metrical definition for each vertex v ∈ V (G). The size of a
bipartite graph G, denoted as |G|, is defined as the number
of edges in G, i.e., |G| = |E(G)|.
Definition 2.1: (Biclique) Given a bipartite graph G =
(U, V,E), a biclique C is a complete bipartite subgraph of
G, i.e., for each pair of u ∈ U(C) and v ∈ V (C), we have
(u, v) ∈ E(C). 2

In this paper, given a bipartite graph G, we aim to find a
biclique C∗ in G with the maximum size. Considering that
many real applications (e.g., fraud transaction detection) re-
quire that the number of vertices in each part of the biclique
C∗ is not below a certain threshold, we add size constraints
τU and τV on |U(C∗)| and |V (C∗)| s.t. |U(C∗)| ≥ τU and
|V (C∗)| ≥ τV . Such a size constraint can also provide the
users with more flexibility to control the size of each side of
the biclique or avoid generating a too skewed biclique (e.g.,
a biclique with a single vertex of the highest degree at one
side and all its neighbors at the other side). As a special
case, when τU = 1 and τV = 1, the problem will find the
maximum biclique without any constraint. The maximum
biclique problem studied in this paper is defined as follows:

Problem Statement. Given a bipartite graph G = (U, V,
E), and a pair of positive integers τU and τV , the problem
of maximum biclique search aims to find a biclique C∗ in G,
s.t. |U(C∗)| ≥ τU and |V (C∗)| ≥ τV , and |C∗| is maximized.
We use C∗τU ,τV (G) to denote such a biclique.

Example 2.1: Fig. 1 (a) shows a bipartite graph G with
U(G) = {u1, u2, ..., u7}, V (G) = {v1, v2, ..., v6}. Given
thresholds τU = 1 and τV = 1, the maximum biclique
C∗1,1(G) = C1 is shown in Fig. 1 (b), where U(C1) = {u3,
u4, u5, u6} and V (C1) = {v2, v3, v4, v5}. Given thresholds
τU = 1 and τV = 5, the maximum biclique C∗1,5(G) = C2 is
shown in Fig. 1 (c), where U(C2) = {u3, u4} and V (C2) =
{v1, v2, ..., v6}. 2

Algorithm 1: MBC(G, τU , τV , C)

Input : Bipartite graph G, τU and τV , initial biclique C
Output : The maximum biclique C∗

C∗ ← C;1

BranchBound(U(G), ∅, V (G), ∅);2

return C∗;3

Procedure BranchBound(U, V,CV , XV )4

if |V | ≥ τV and |U | × |V | > |C∗| then5

C∗ ← (U, V, U × V );6

while CV 6= ∅ do7

v∗ ← CV .pop();8

U ′ ← {u ∈ U |(u, v∗) ∈ E(G)};9

V ′ ← V ∪ {v∗} ∪ {v ∈ CV |U ′ ⊆ N(v,G)};10

C′V ← {v ∈ CV \ V
′ | |N(v,G) ∩ U ′| ≥ τU};11

X′V ← {v ∈ XV | |N(v,G) ∩ U ′| ≥ τU};12

if |U ′| ≥ τU and |V ′| + |C′V | ≥ τV and |U ′| × (|V ′| +13

|C′V |) > |C
∗| and @ v ∈ XV s.t. U ′ ⊆ N(v,G) then

BranchBound(U ′, V ′, C′V , X
′
V );14

XV ← XV ∪ {v∗};15

NP-hardness and Inapproximability. As shown in [27],
the maximum biclique problem is NP-hard, and as proved in
[4] and [20], it is difficult to find a polynomial time algorithm
to solve the maximum biclique problem with a promising
approximation ratio. Due to the inapproximability, in this
paper, we aim to find the exact maximum biclique and will
propose several techniques to make our algorithm practical
in handling large real-world bipartite graphs.

3. THE BASELINE SOLUTION
In the literature, the state-of-the-art algorithm proposed

in [43] resorts to the branch-and-bound framework, aiming
to list all maximal bicliques by pruning non-maximal candi-
dates from the search space. To obtain a reasonable baseline,
in this section, we extend the algorithm proposed in [43], and
design an algorithm to compute the maximum biclique by
adding some pruning rules in the branch-and-bound process.

The Branch-and-bound Algorithm. We briefly intro-
duce the branch-and-bound algorithm. The algorithm main-
tains a partial biclique (U, V, U × V ) and recursively adds
vertices into V . When V is fixed, U can be simply computed
as the set of common neighbors of all vertices in V , i.e.,

U = {u|(u, v) ∈ E(G) ∀v ∈ V } (1)

Therefore, we only need to consider V to determine the bi-
clique. Based on this idea, the key to reducing the cost is
to prune the useless vertices to be added into V . According
to Eq. 1, when V is expanded, U will be contracted.

The pseudocode of the algorithm is shown in Algorithm 1.
The input of the algorithm includes the bipartite graph G,
the thresholds τU and τV , and an initial biclique C. Here,
C is used when a biclique is obtained before invoking the
algorithm, or can be set as ∅ otherwise. The algorithm ini-
tializes C∗ as C (line 1), invokes the BranchBound procedure
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u7u1 u2 u3 u4 u5 u6

v1 v2 v6v3 v4 v5v1

u7

v6

u1 u2 u3 u4 u5 u6

v2 v3 v4 v5

: vertex in U
: vertex in V
: vertex in CV

: vertex in XV

U(C*)={u3,u4}, V(C*)={v1,v2,v3,v4,v5,v6}

U(C*)={u2,u3,u4,u5,u6}, V(C*)={v2,v3,v5}U(C*)={u3,u4,u5,u6}, V(C*)={v2,v3,v4,v5}

(1) v* = v5

(2) v* = v4

(a) Search Tree of MBC

ҁa҂

root

v6 v5v1 v4v2 v3

v5v4 v4 v4

ҁ1҂

ҁ2҂ v6v1

u2 u3 u4 u5 u6

v2 v3 v4 v5

u1 u7

(b) Search Branch Starting from v5 

Figure 2: An Example of MBC Searching

v1 v2 v100

u1 u2 u3 u100

v3

…

…

A Bipartite Graph G

Figure 3: Draw-
backs of MBC

to update C∗ (line 2), and returns C∗ as the answer (line 3).

The recursive procedure BranchBound has four parameters
U , V , CV , and XV , initialized as U(G), ∅, V (G) and ∅
respectively. Here, (U, V, U × V ) defines a partial biclique.
CV is the set of candidate vertices that can be possibly added
to V , and XV is the set of vertices that has been used and
should be excluded from V . The procedure BranchBound
updates C∗ using (U, V, U×V ) if it is larger than the current
C∗ and satisfies the threshold constraints (line 5-6). Then it
iteratively adds vertex v∗ from CV to expand V (line 7-8).
Then U ′ is updated by selecting the vertices from U that are
neighbors of v∗; V ′ includes vertices in V , v∗, and vertices
in CV that are neighbors of all vertices in U ′; C′V includes
the vertices in CV by excluding the vertices in V ′ as well as
the vertices with number of neighbors in U ′ no larger than
τU ; X ′V includes all vertices in XV by excluding the vertices
with number of neighbors in U ′ no larger than τU (line 9-12).
The new search branch by including v∗ will be created after
considering the following pruning conditions (line 13-14):

(1) τU Pruning: The size of U ′ should be ≥ τU since U will
only be contracted in the branch.
(2) τV Pruning: The size of V ′∪ C′V should be ≥ τV .
(3) Size Pruning: The value of |U ′| × (|V ′| + |C′V |) should
be ≥ |C∗|. Without it, exploiting the current branch will
not result in a larger biclique.
(4) Non-maximality Pruning: The non-maximality pruning
is based on the fact that a maximum biclique should be a
maximal biclique. If there is a vertex v in the exclusion
set XV that are neighbors of all vertices in U ′ (i.e., U ′ ⊆
N(v,G)), the resulting biclique cannot be maximal and thus
the branch can be pruned.

After searching bicliques with v∗, we add v∗ intoXv (line 15).

Example 3.1: Given the bipartite graph G in Fig. 1(a)
and thresholds τU = 1 and τV = 1, we show the search
tree of MBC in Fig. 2(a). The vertices in V are processed
in non-descending order of degree [43], and each tree node
represents v∗ selected in the branch. We illustrate the details
in search branch from v5 in Fig. 2(b). At first, we have
XV = {v6, v1}, CV = {v5, v2, v4, v3}, U(C∗) = {u3, u4}, and
V (C∗) = {v1, v2, v3, v4, v5, v6}. In step (1), we select v∗= v5
and refine U ′ = {u2, u3, u4, u5, u6}. V ′ is the vertices in
CV that connect to all vertices in U ′, i.e., V ′ = {v2, v3, v5}.
Then we refine C′V = {v4} and X ′V = {v1, v6}. By now, we
update U(C∗) = U ′, V (C∗) = V ′ and |C∗| = 15. In step
(2), we further select v∗ = v4, refine corresponding sets in a
similar way as shown in Fig. 2, and update |C∗| = 16. 2

4. A PROGRESSIVE BOUNDING METHOD
In this section, we first analyze the reason for the large

search space of the baseline solution, and then introduce our
approach using search space partitioning based on a progres-
sive bounding framework to significantly reduce the compu-
tational cost.

4.1 Problem Analysis
Why Costly? Although four pruning conditions are used
to reduce the search space for maximum biclique search in
Algorithm 1, it will still result in a huge search space in real
large bipartite graphs due to the following two drawbacks:

• Drawback 1: Loose Pruning Bounds. Most pruning con-
ditions in Algorithm 1 rely on τU and τV . However, τU
and τV are user given parameters which can be small. In
this way, the pruning power by τU and τV can be rather
limited. For size pruning, the constraint of |U ′| × (|V ′|
+ |C′V |) > |C∗| can be very loose because C′V is filtered
using τU and thus |C′V | can be large when τU is small.

• Drawback 2: Large Candidate Size. The size of a bi-
clique C, calculated as |U(C)| × |V (C)|, depends on two
factors: |U(C)| and |V (C)|. It is possible that the opti-
mal solution C∗ is unbalanced, i.e., either with a large
|U(C∗)| and a small |V (C∗)| or with a small |U(C∗)|
and a large |V (C∗)|. Therefore, during the branch-and-
bound process, even if the degrees of all candidates in CV
are small (where |U | is small), we cannot stop branching
when V ∪ CV is large, because we may still generate a
large biclique in this situation. Similarly, we cannot re-
move a vertex from U when its degree is small. This can
result in a huge search space on a large bipartite graph.

Example 4.1: Fig. 3 shows a bipartite graph G with U =
{u1, u2, ..., u100} and V = {v1, v2, ..., v100}. Specifically, u1

connects to all vertices in V and v1 connects to all ver-
tices in U . Given τU = 1 and τV = 1, the size of maxi-
mum biclique C∗ is 100. By adopting MBC, we firstly se-
lect v1 into V ′. As v1 connects to all vertices in U , U ′ =
{u1, u2, ..., u100}. Furthermore, as u1 connects to all vertices
in V , C′V = {v2, v3, ..., v100}. However, we cannot prune any
vertices with τU = 1 and τV = 1, and neithor can we prune
search branches with size constraint since |U ′|×(|V ′|+|C′V |)
is larger than |C∗|. Moreover, we can not prune candidate
vertices in C′V , though the degrees of vertices are 1s, which
leads to large candidate size and a huge search space. 2

Our Idea. Based on the above analysis and to significantly
improve the algorithm, we consider two aspects:
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• To resolve drawback 1, we need to improve the pruning
bounds to achieve the stop conditions in early stages of
the branch-and-bound process;

• To resolve drawback 2, we need to remove as many ver-
tices as possible from the graph to reduce the number of
candidates that may participate in the optimal solution.

Our idea is as follows: instead of using the thresholds τU
and τV for pruning, we enforce two new thresholds τ∗U and
τ∗V for U(C∗) and V (C∗) respectively with τ∗U ≥ τU and
τ∗V ≥ τV . To tighten the bounds, we try to make τ∗U × τ∗V
as large as possible but ensure that τ∗U × τ∗V is no larger
than the size of the optimal solution. With τ∗U and τ∗V , we
are able to obtain a smaller bipartite graph G∗ by removing
as many vertices as possible that will not participate in the
maximum biclique. On the smaller graph G∗ with tighter
bounds τ∗U and τ∗V , the algorithm will be much more efficient.
Suppose C∗ is the optimal solution, if we can guarantee that
τ∗U ≤ |U(C∗)| and τ∗V ≤ |V (C∗)|, the algorithm on graph G∗

with thresholds τ∗U and τ∗V will output the optimal solution.
However, to make our idea practically applicable, the fol-

lowing two issues need to be addressed:

• First, we do not know the size of the maximum biclique
C∗ before the search.

• Second, it is difficult to find a single pair τ∗U and τ∗V to
guarantee that τ∗U ≤ |U(C∗)| and τ∗V ≤ |V (C∗)|.

In the following, we will introduce a progressive bounding
framework to resolve the two issues.

4.2 The Progressive Bounding Framework
We propose a progressive bounding framework to address

the two issues raised as follows:

• To address the first issue, instead of using the size of the
optimal solution |C∗|, we use a lower bound lb(C∗) of
|C∗|, i.e., lb(C∗) ≤ |C∗|. The lower bound can be quickly
initialized and will be updated progressively to make the
thresholds τ∗U and τ∗V tighter.

• To address the second issue, instead of using a single pair
τ∗U and τ∗V , we use multiple pairs (τ1U , τ

1
V ), (τ2U , τ

2
V ), . . .,

(τkU , τ
k
V ). We will guarantee that for any possible biclique

C with U(C)×V (C) ≥ lb(C∗), there exists a pair (τ iU , τ
i
V )

for 1 ≤ i ≤ k s.t. τ iU ≤ |U(C)| and τ iV ≤ |V (C)|. Then,
for each (τ iU , τ

i
V ) for 1 ≤ i ≤ k, we compute a biclique

C∗i with maximum size s.t. |U(C∗i )| ≥ τ iU and |V (C∗i )| ≥
τ iV . Among the computed bicliques, the biclique with the
maximum size is the answer for the original problem.

The Algorithm Framework. The progressive bounding
framework is shown in Algorithm 2. For any valid biclique C
with |U(C)| ≥ τU and |V (C)| ≥ τV , |C| is a lower bound of
the optimal solution C∗. Based on this, we first use InitMBC
to obtain an initial biclique, denoted as C∗0 , s.t. |C∗0 | ≤ |C∗|
(line 1). Then we set τ0V to be an upper bound of |V (C)|
for any possible biclique C. Here, a natural upper bound is
the maximum degree for any nodes in U(G), i.e., dUmax(G)
(line 2). k is used to denote the number of iterations and
initialized as 0 (line 3). The progressive bounding frame-
work will finish in logarithmic iterations. Each iteration
will generate a pair τk+1

U and τk+1
V based on the values of

τkV and the the lower bound of the optimal solution |C∗k |.
When τk+1

V (τk+1
U resp.) is smaller than τV (τU resp.), it

Algorithm 2: MBC∗(G, τU , τV )

Input : Bipartite graph G, thresholds τU and τV
Output : The maximum biclique C∗

C∗0 ← InitMBC(G, τU , τV );1

τ0V ← dUmax(G);2

k ← 0;3

while τkV > τV do4

τk+1
U ← max(

⌊
|C∗

k |
τk
V

⌋
, τU );

5

τk+1
V ← max(

⌊
τkV
2

⌋
, τV );

6

Gk+1 ← Reduce(G, τk+1
U , τk+1

V );7

C∗k+1 ← MBC(Gk+1, τ
k+1
U , τk+1

V , C∗k);8

k ← k + 1;9

return C∗k ;10

will be set to be τV (τU resp.) (line 5-6). We will ana-
lyze the rationale later. With τk+1

U and τk+1
V , we aim to

obtain a graph Gk+1 that is much smaller than G using pro-
cedure Reduce(G, τk+1

U , τk+1
V ), and the maximum biclique

w.r.t. thresholds τk+1
U and τk+1

V is preserved inGk+1 (line 7).

After this, we find the maximum biclique w.r.t. τk+1
U and

τk+1
V on Gk+1 with C∗k as an initiation in MBC (line 8).

The Rationale. Next, we address the rationale of the pro-
gressive bounding framework. Note that the size of a bi-
clique C is determined by |U(C)| and |V (C)|. Therefore, to
analyze the problem, we define a two-dimensional space as
follows:

Definition 4.1: (Search Space S(G)) Given a bipartite
graph G, a two-dimensional space S(G) has two axes |U |
and |V |. Given any biclique C in G, we can represent it as
a two-dimensional point (|U(C)|, |V (C)|) in the space S(G).

2

Given the search space S(G), the i-th search in line 7-8 of
Algorithm 2 can be considered as to cover a certain subspace
([τ iU ,+∞), [τ iV ,+∞)) in S(G). To show the search preserves
the optimal solution, we define the optimal curve in S(G):

Definition 4.2: (Optimal Curve) Given a bipartite graph
G and parameters τU and τV , suppose C∗ is the maximum
biclique w.r.t. τU and τV , we call the curve |U |× |V | = |C∗|
the optimal curve in the two-dimensional space S(G). 2

Note that the optimal curve is unknown before the search.
However, it can be used to analyze the correctness of the
progressive bounding framework as followers.

Theorem 4.1: (Algorithm Correctness) Given a bipar-
tite graph G and parameters τU and τV , for any point (sU , sV )
on the optimal curve with sU ∈ [τU , d

V
max(G)] and sV ∈

[τV , d
U
max(G)], there exists a certain (τ iU , τ

i
V ) generated by

Algorithm 2 s.t. (sU , sV ) ∈ ([τ iU ,+∞), [τ iV ,+∞)). 2

Proof Sketch: In Algorithm 2, τ0V is set to be dUmax(G),
and when k increases, τkV will be iteratively divided by 2
until it is smaller than τV . Therefore, we can always find a
certain i > 0 s.t. τ iV ≤ sV ≤ τ i−1

V

Based on Algorithm 2, we have τ iU = max(

⌊
|C∗

i−1|
τi−1
V

⌋
, τU ).

We consider two cases:

• Case 1: τ iU = τU . In this case, we have:

sU ≥ τU = τ iU

Therefore, (sU , sV ) ∈ ([τ iU ,+∞], [τ iV ,+∞]) holds.
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Figure 4: Illustration of Algorithm Rationale

• Case 2: τ iU =

⌊
|C∗

i−1|
τi−1
V

⌋
. Note that |C∗i−1| is a lower bound

of the optimal value |C∗| i.e.,

|C∗i−1| ≤ |C∗|
Since (sU , sV ) is a point on the optimal curve, we have

sU × sV = |C∗|
Consequently, we can derive the following inequalities:

τ iU =

⌊
|C∗i−1|
τ i−1
V

⌋
≤
⌊
|C∗|
τ i−1
V

⌋
≤
⌊
|C∗|
sV

⌋
= bsUc ≤ sU

Therefore, (sU , sV ) ∈ ([τ iU ,+∞], [τ iV ,+∞]) holds.

According to the analysis above, Theorem 4.1 holds. 2

Theorem 4.1 shows that all points in the optimal curve
within the range ([τU , d

V
max(G)], [τV , d

U
max(G)]) are covered

by the search spaces in Algorithm 2. Note that for any
biclique C in G, we can guarantee that |U(C)| ≤ dVmax(G)
and |V (C)| ≤ dUmax(G). Therefore, Algorithm 2 obtains the
optimal solution.

The rationale of the progressive bound framework is illus-
trated in Fig. 4. Here we draw the two-dimensional space
S(G), and show the search spaces of the first three iterations
of Algorithm 2 on S(G). We generate three search spaces
using (τ1U , τ

1
V ), (τ2U , τ

2
V ), and (τ3U , τ

3
V ), which obtains the bi-

cliques C∗1 , C∗2 , and C∗3 , respectively. We use red, green, and
blue colors to differentiate the three spaces respectively. As
shown in Fig. 4, when i increases, the curve |U |× |V | = |C∗i |
progressively approaches the optimal curve |U |×|V | = |C∗|,
and the optimal curve |U |× |V | = |C∗| in S(G) for |V | ≥ τ3V
is totally covered by the three search spaces. This illustrates
the correctness of the progressive bounding framework.

Example 4.2: Given the bipartite graph G in Fig. 1(a) and
thresholds τU = 1 and τV = 1, we adopt Algorithm 2 to find
the maximum biclique. Suppose we initiate biclique C∗0 as
shown in Fig. 1(c), that we have |C∗0 | = 12 and τ0V = 6.
Then we search the optimal solution progressively:
(1) τ1U = 2, τ1V = 3. We adopt Reduce to filter vertices
in G, e.g., we filter u7 as d(u7, G) = 2 and it cannot be
involved in a biclique with τ1V = 3. We will explain Reduce
in detail later. We search for C∗1 on G1, and get U(C∗1 ) =
{u3, u4, u5, u6}, V (C∗1 ) = {v2, v3, v4, v5}. Thus |C∗1 | = 16.
(2) τ2U = 5, τ2V = 1. Since we cannot find any larger biclique
on reduced graph G2, |C∗2 | = 16.
As shown above, we progressivly use multiple strict τkU and
τkV threshold pairs to approach the optimal solution. 2

The effectiveness of the progressive bounding framework
is further verified in our experiments. For example, Table
2 shows that the graph compression ratio in the bounding
iterations varies from 0% (omitted in the table) to 2.05%.
This reduces significantly the search space and computation
cost in the maximum biclique search procedure.

To realize the algorithm framework MBC∗ in Algorithm 2,
we still need to solve the following two components:

• The initial biclique computation algorithm InitMBC. We
use a greedy strategy to obtain the initial biclique. Specif-
ically, we initialize an empty biclique and iteratively add
the vertex that can maximize the size of the current bi-
clique until no vertex can be added. The biclique with
the maximum size among the process is returned.

• The graph reduction algorithm Reduce. We will discuss
the details of Reduce in the next section.

5. MBC-PRESERVED GRAPH REDUCTION
As shown in Algorithm 2, one of the most important pro-

cedures is to reduce the size of the bipartite graph given
certain τ iU and τ iV while preserving the maximum biclique.
In this section, we show how to reduce the bipartite graph
size by exploring some properties of the one-hop and two-
hop neighbors for a certain vertex. We first introduce the
MBC-preserved graph below.

Definition 5.1: (MBC-Preserved Graph) Given a bi-
partite graph G, and thresholds τ iU and τ iV , a bipartite
graph G′ is called a MBC-preserved graph w.r.t. τ iU and
τ iV , if U(G′) ⊆ U(G), V (G′) ⊆ V (G), E(G′) ⊆ E(G) and
|C∗
τi
U
,τi

V
(G′)| = |C∗

τi
U
,τi

V
(G)|. In other words, the maximum

biclique for G is preserved in G′. We use G′ vτi
U
,τi

V
G to

denote that G′ is an MBC-preserved graph of G. 2

We can easily derive the following lemma:

Lemma 5.1: (Transitive Property) If G1 vτi
U
,τi

V
G2 and

G2 vτi
U
,τi

V
G3, we have G1 vτi

U
,τi

V
G3. 2

5.1 One-Hop Graph Reduction
To reduce the size of the bipartite graph, we first consider

a simple case by exploring the one-hop neighbors for each
vertex. Specifically, we use the number of neighbors to re-
duce the bipartite graph. Besides, we eliminate a vertex u
by removing u and all its adjacent edges from G, denoted
as G	 u. We derive the following lemma:

Lemma 5.2: Given a bipartite graph G, thresholds τ iU and
τ iV , we have:
(1) ∀u ∈ U(G): d(u,G) < τ iV =⇒ G	 u vτi

U
,τi

V
G;

(2) ∀v ∈ V (G): d(v,G) < τ iU =⇒ G	 v vτi
U
,τi

V
G. 2

Proof Sketch: We only prove (1), and (2) can be proved
similarly. Given a certain vertex u ∈ U(G) with d(u,G) <
τ iV , we need to prove that for any biclique C in G with
|U(C)| ≥ τ iU and |V (C)| ≥ τ iV , C is also a biclique in G	u.
That is, we only need to prove u /∈ U(C). Next, we prove
u /∈ U(C) by contradiction. Suppose u ∈ U(C), since C is
a biclique with |V (C)| ≥ τ iV , u has at least τ iV neighbors in
G, i.e., d(u,G) ≥ τ iV . This contradicts with the fact that
d(u,G) < τ iV . Therefore, the lemma holds. 2

Lemma 5.2 provides a sufficient condition for a vertex to be
eliminated s.t. the maximum biclique is preserved. Based
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Algorithm 3: Reduce1Hop(G, τ iU , τ
i
V )

Input : Bipartite graph G, thresholds τ iU and τ iV
Output : A graph Gi s.t. Gi vτi

U
,τi

V
G

Gi ← G; finish← false;1

while finish = false do2

finish← true;3

if exists u ∈ U(Gi) s.t. d(u,Gi) < τ iV then4

Gi ← Gi 	 u; finish← false;5

if exists v ∈ V (Gi) s.t. d(v,Gi) < τ iU then6

Gi ← Gi 	 v; finish← false;7

return Gi;8

on the Lemma 5.1, Lemma 5.2 can be iteratively applied to
reduce the graph size until no vertices can be eliminated.

The one-hop graph reduction is shown in Algorithm 3.
Given a bipartite graph G and thresholds τ iU and τ iV , the al-
gorithm aims to compute a bipartite graphGi s.t. Gi vτi

U
,τi

V

G by applying the one-hop reduction rule in Lemma 5.2. We
first initialize Gi to be G (line 1), and then we iteratively re-
move vertices fromGi that satisfy either case (1) (line 4-5) or
case (2) (line 6-7) in Lemma 5.2. The algorithm terminates
until no such vertices can be found in Gi. The following
lemma shows the time complexity of Algorithm 3.

Lemma 5.3: Algorithm 3 requires O(|G|) time. 2

The proof of Lemma 5.3 is omitted due to space limit.

5.2 Two-Hop Graph Reduction
Next, we explore the two-hop neighbors to further reduce

the size of the bipartite graph. For each vertex u, suppose
u′ is a two-hop neighbor of u, i.e, N(u′, G) ∩ N(u,G) 6=
∅. To eliminate u by fully using the information involved
within the two-hop neighbors, instead of only considering
the degree of u′, i.e., |N(u′, G)|, we consider the number of
common neighbors of u and u′, i.e., |N(u′, G)∩N(u,G)|. To
do so, we define the τ -neighbor and τ -degree as follows:

Definition 5.2: (τ-Neighbor and τ-Degree) Given a
bipartite graph G and a parameter τ , for any u ∈ U(G) and
u′ ∈ U(G), u′ is a τ -neighbor of u iff

|N(u′, G) ∩N(u,G)| ≥ τ

For any u ∈ U(G), the set of τ -neighbors of u is defined as
Nτ (u,G), i.e.,

Nτ (u,G) = {u′ | |N(u′, G) ∩N(u,G)| ≥ τ}

and the τ -degree of u is defined as the number of vertices in
Nτ (u,G), i.e.,

dτ (u,G) = |Nτ (u,G)|

Similarly, we can define the τ -neighbor set Nτ (v,G) and the
τ -degree dτ (v,G) for any v ∈ V (G). 2

Obviously, the τ -neighbor of any vertex u is a subset of
a union of u itself and the two-hop neighbors of u. For
example, in Fig. 5(b), when τ = 4, Nτ (v1, G

′) = {v1, v2, v3},
because both v2 and v3 have ≥ 4 neighbors with v1.

The following lemma shows how to use the τ -neighbor of
a vertex to eliminate the vertex with the given thresholds.

Lemma 5.4: Given a bipartite graph G, thresholds τ iU and
τ iV , we have:

(1) ∀u ∈ U(G) : dτi
V

(u,G) < τ iU =⇒ G	 u vτi
U
,τi

V
G;

(2) ∀v ∈ V (G) : dτi
U

(v,G) < τ iV =⇒ G	 v vτi
U
,τi

V
G. 2

Algorithm 4: Reduce2Hop(G, τ iU , τ
i
V )

Input : Bipartite graph G, thresholds τ iU and τ iV
Output : A graph Gi s.t. Gi vτi

U
,τi

V
G

Gi ← G;1

Gi ← Reduce2H(Gi, U(Gi), τ
i
U , τ

i
V );2

Gi ← Reduce2H(Gi, V (Gi), τ
i
V , τ

i
U );3

return Gi;4

Procedure Reduce2H(Gi, U, τ
i
U , τ

i
V )5

for each u ∈ U do6

S ← ∅;7

for each v ∈ N(u,Gi) do8

for each u′ ∈ N(v,Gi) do9

if S.find(u′) = ∅ then10

S ← S ∪ {(u′, 1)};11

else12

o← S.find(u′);13

o.cnt← o.cnt+ 1;14

c← |{o ∈ S|o.cnt ≥ τ iV }|;15

if c < τ iU then16

Gi ← Gi 	 u;17

return Gi;18

Proof Sketch: We only prove (1), and (2) can be proved
similarly. Given a certain vertex u ∈ U(G) with dτi

V
(u,G) <

τ iU , we need to prove that for any biclique C in G with
|U(C)| ≥ τ iU and |V (C)| ≥ τ iV , C is also a biclique in G	u.
That is, we only need to prove u /∈ U(C). Next, we prove
u /∈ U(C) by contradiction. Suppose u ∈ U(C), since C
is a biclique with |U(C)| ≥ τ iU and |V (C)| ≥ τ iV , for each
u′ ∈ U(C), we have:

|N(u,C) ∩N(u′, C)| = |V (C)| ≥ τ iV
In other words, u′ is a τ iV -neighbor of u in C, i.e., u′ ∈
Nτi

V
(u,C). Therefore,

|Nτi
V

(u,C)| = |U(C)| ≥ τ iU
Consequently, we can derive:

dτi
V

(u,G) = |Nτi
V

(u,G)| ≥ |Nτi
V

(u,C)| ≥ τ iU

This contradicts with the assumption that dτi
V

(u,G) < τ iU .

As a result, the lemma holds. 2

Based on Lemma 5.4 and the transitive property shown
in Lemma 5.1, we are ready to design the two-hop graph
reduction algorithm. The pseudocode of the algorithm is
shown in Algorithm 4. Since Lemma 5.4 can be applied for
vertices in both U(G) and V (G), the algorithm reduce the
bipartite graph G twice, and each time the vertices in one
side are reduced using the procedure Reduce2H (line 1-4).

In the Reduce2H procedure (line 5-18), we visit each ver-
tex u ∈ U to check whether u can be eliminated using
Lemma 5.4 (line 6). We use S to maintain the set of two-hop
neighbors of u along with the number of common neighbors
with each two-hop neighbor. Specifically, for each two-hop
neighbor u′ of u, we create a unique entry o = (u′, cnt)
in S where o.cnt denotes the number of common neighbors
for u and u′. In the algorithm, we first search the neigh-
bors v ∈ N(u,Gi) (line 8) and then search the neighbors
u′ ∈ N(v,Gi) to obtain each two-hop neighbor u′ (line 9).
If the entry for u′ does not exist in S, we add u′ to S
with cnt = 1 (line 10-11); Otherwise, we obtain the entry
o for u′ and increase o.cnt by 1 (line 13-14). After process-
ing all two-hop neighbors of u, we maintain a counter c to
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Figure 5: An Example of Graph Reduction with τU = 4, τV = 4

count the number of τ iV -neighbor of u (line 15). Obviously,
c = dτi

V
(u,G). Therefore, if c < τ iU , we can eliminate u from

Gi according to Lemma 5.4 (line 16-17).

Lemma 5.5: Algorithm 4 requires O(
∑
u∈U(G) d(u,G)2 +∑

v∈V (G) d(v,G)2) time. 2

The proof of Lemma 5.5 is omitted due to space limit.

Optimizations. However, Reduce2Hop is more costly than
Reduce1Hop. So we introduce two heuristics, early pruning
and early skipping, to further optimize the two-hop reduc-
tion algorithm as follows.

(1) Early Pruning. In Algorithm 4, there is no specific or-
der to process vertices. However, if we process vertices that
are more likely to be pruned first, the removal of these ver-
tices may result in more vertices elimination in later iter-
ations. Based on this, we design a score function so that
vertices with small scores are more likely to be pruned. A
straightforward score is the vertex degree. However, it only
considers the vertices in one side and ignores those in the
other side. Therefore, for each vertex u, we summarize the
degrees for all u’s neighbors, and design the score function
as follows:

score(u) =
∑

v∈N(u,G)

d(v,G) (2)

The score function considers both the number of neighbors
u has and the degrees of the u’s neighbors, and is cheap to
compute. Given the score function, we can simply modify
the algorithm by processing vertices in non-decreasing order
of their scores to improve the algorithm performance.

(2) Early Skipping. Then we proceed to identify some ver-
tices that cannot be pruned using Reduce2Hop before explor-
ing their two-hop neighbors. These vertices can be skipped
directly. The following lemma provides a way to do this:

Lemma 5.6: For any vertices u, u′ and threshold τ , we
have:

u′ ∈ Nτ (u,G) ⇐⇒ u ∈ Nτ (u′, G) 2

Based on Lemma 5.6, for any vertex u′ ∈ U(G), if there
are more than τ iU vertices u with u′ ∈ Nτi

V
(u,G), we can

guarantee that dτi
V

(u′, G) ≥ τ iU , and therefore u′ can be

skipped by Lemma 5.4 without exploring the two-hop neigh-
bors of u′. To realize this idea, for each vertex u′ ∈ U(G),
we use u′.c to maintain the number of processed vertices u
s.t. u′ ∈ Nτi

V
(u,G). When processing u, for each two-hop

neighbor u′, if u′ ∈ Nτi
V

(u,G), we increase u′.c by 1. Later

on, when processing u′, we check whether u′.c+ 1 ≥ τ iU be-
fore exploring the two-hop neighbors of u′. If so, we know
that u′ cannot be pruned and directly skip u′. Here, we use
u′.c+ 1 to take u′ itself into consideration.

5.3 The Overall Reduction Strategy
Based on the above analysis, we can use either one-hop or

two-hop reduction to reduce the size of the bipartite graph
G. The following lemma shows that the two-hop reduction
rule in Lemma 5.4 has stronger pruning power than the one-
hop reduction rule in Lemma 5.2.

Lemma 5.7: Given a bipartite graph G, thresholds τ iU and
τ iV , we have:

(1) ∀u ∈ U(G) : d(u,G) < τ iV =⇒ dτi
V

(u,G) < τ iU ;

(2) ∀v ∈ V (G) : d(v,G) < τ iU =⇒ dτi
U

(v,G) < τ iV . 2

Proof Sketch: We first prove (1). For any u ∈ U(G), if
d(u,G) < τ iV , we know that there does not exist a two-hop
neighbor u′ of u s.t. |N(u′, G) ∩N(u,G)| ≥ τ iV . Therefore,
dτi

V
(u,G) = 0 < τ iU . (2) can be proved similarly. 2

Nevertheless, based on Lemma 5.3 and Lemma 5.5, apply-
ing one-hop reduction is much more efficient than applying
two-hop reduction. Therefore, we design the overall graph
reduction strategy as follows:
Reduce. Given a bipartite graph G and thresholds τ iU and
τ iV , Reduce iteratively applies one-hop and two-hop reduc-
tion strategies on G for MAX ITER rounds where MAX ITER
is a small constant, and returns the reduced graphGi. Specif-
ically, in each round, Reduce first applies Reduce1Hop and
then further applies Reduce2Hop on the reduced graph.

Example 5.1: We show the example of the complete graph
reduction process in Fig. 5. Given the bipartite graph G in
Fig. 1(a) and thresholds τU = 4, τV = 4 and MAX ITER = 2,
we first apply Reduce1Hop in Fig. 5(a). Since d(u7, G) =
2 < τV and d(v6, G) = 2 < τU , we prune u7 and v6. Then
we apply Reduce2Hop in Fig. 5(b) with the details shown
in Fig. 5(d). We traverse the one-hop and two-hop neigh-
bors of v1, and update the entries in S as shown in step
(1) to step (4). For example, in step (1), we traverse v1’s
neighbor u1 and two-hop neighbors v1, v2, v3 and v4, and
set cnt = 1 for each two-hop neighbor. After visiting all
neighbors in step (4), we have 3 vertices with cnt = 4,
i.e., c = dτU (v1, G

′) = 3. According to Lemma 5.4, since
dτU (v1, G

′) < τV , we prune v1. After that, we further ap-
ply Reduce1Hop in Fig. 5(c), and prune vertices u1 and u2.
By applying Reduce, we save huge search space in biclique
search. 2
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Table 1: Dataset Statistics
Dataset Category |U | U Type |V | V Type |E| E Type

Writers Authorship 89,355 Writer 46,213 Work 144,340 Authorship
YouTube Affiliation 124,325 User 94,238 Group 293,360 Membership
Github Authorship 56,519 User 120,867 Project 440,237 Membership
BookCrossing Rating 105,278 User 340,523 Book 1,149,739 Rating
StackOverflow Rating 545,195 User 96,678 Post 1,301,942 Favorite
Teams Affiliation 901,130 Athlete 34,461 Team 1,366,466 Membership
ActorMovies Affiliation 127,823 Movie 383,640 Actor 1,470,404 Appearance
TVTropes Feature 64,415 Work 87,678 Trope 3,232,134 HasFeature
Wikipedia Feature 2,036,440 Article 1,853,493 Category 3,795,796 Inclusion
Flickr Affiliation 499,610 User 395,979 Group 8,545,307 Membership
DBLP Authorship 1,425,813 Author 4,000,150 Publication 8,649,016 Authorship
LiveJournal Affiliation 3,201,203 User 7,489,073 Group 112,307,385 Membership
WebTrackers Hyperlink 27,665,730 Domain 12,756,244 Tracker 140,613,762 Inclusion
LabeledAddCart MISC 78,582,023 Customer 23,827,661 Product 184,265,522 AddCart
AddCart MISC 141,839,807 Customer 65,589,796 Product 1,307,950,593 AddCart
Transaction MISC 272,227,190 Customer 75,350,951 Product 1,319,706,942 Purchasing

6. PERFORMANCE STUDIES
Below, we present our experimental results by compar-

ing the proposed maximum biclique search algorithm MBC∗,
with the baseline algorithm MBC. MBC is developed based
on the algorithm in [43], where the code is obtained from
the authors, with the pruning rules in Algorithm 1 added.
We evaluate our algorithms in two aspects: (1) the effec-
tiveness of the graph reduction techniques and optimization
strategies used in MBC∗, and (2) the efficiency and scalabil-
ity of maximum biclique search by comparing MBC∗ with
MBC. A case study of anomaly detection on real datasets
obtained from Alibaba Group is described to demonstrate
the resultant quality by applying our method. Unless other-
wise specified, experiments are conducted with τU = 3 and
τV = 3 by default. All of our experiments are performed on
a machine with an Intel Xeon E5-2650 (32 Cores) 2.6GHz
CPU and 128GB main memory running Linux.

Datasets. We use 16 real datasets selected from different
domains with various data properties, including the ones
used in existing works. The detailed statistics of the datasets
are shown in Table 1. The first 13 datasets are obtained from
KONECT1. The last 3 datasets are real datasets obtained
from the E-Commerce company Alibaba Group. Here, the
AddCart dataset includes data of customers adding prod-
ucts into cart in 10 days, and the Transaction dataset in-
cludes data of customers purchasing products in 15 days.
Additionally, the LabeledAddCart dataset includes fraudu-
lent transactions labels that we utilize as the ground truth
in the case study.

6.1 Graph Reduction and Optimizations
In this subsection, we test the effectiveness and efficiency

of the graph reduction techniques and optimization strate-
gies used in our algorithm.

Effectiveness of graph reduction. We test the effective-
ness of the proposed one-hop and two-hop graph reduction
techniques on datasets of TVTropes and BookCrossing, and
show the results in Tables 2 and 3 respectively. We set
MAX ITER in Reduce as 2. Experiments on other datasets
have similar outcomes. In Table 2 and Table 3, we list τkU , τkV
and the number of vertices and edges of the reduced graph
in each iteration k in MBC∗. We also list the size of C∗k
found in each iteration. We compute the compression ratio
rk as the value of dividing reduced graph size by its original

1http://konect.uni-koblenz.de/

Table 2: Graph Reduction on TVTropes
k (τkU , τ

k
V ) |U | |V | |E| |C∗k | rk(%)

0 (3,3) 64,415 87,678 3,152,266 6,045 97.53
1 (3,928) 15 6,088 32,991 5,564 1.02
2 (5,464) 40 5,823 62,913 5,564 1.95
3 (11,232) 59 2,247 43,602 5,564 1.35
4 (23,116) 36 78 1,903 5,564 0.06
7 (191,14) 1,259 115 46,776 5,564 1.45
8 (397,7) 3,899 59 66,219 5,564 2.05
9 (863,3) 8,889 27 63,251 6,045 1.96

Table 3: Graph Reduction on BookCrossing
k (τkU , τ

k
V ) |U | |V | |E| |C∗k | rk(%)

0 (3,3) 15,330 46,068 599,593 880 52.15
1 (3,110) 154 9,284 89,550 840 7.79
2 (7,55) 194 2,020 46,471 880 4.04
3 (16,27) 236 496 23,155 880 2.01
4 (32,13) 272 138 10,773 880 0.94
5 (67,6) 468 70 8,910 880 0.77

size. In iteration 0, we show the results of graph G0 reduced
by τU = 3 and τV = 3, as a comparison. We omit the results
in the iterations where the reduced graphs are empty. From
the results, we can see that in each iteration, we adopt much
more strict τkU and τkV constraints rather than τU and τV .
Therefore, by utilizing the graph reduction techniques, we
get much smaller reduced graphs, e.g., compression ratio of
0% (omitted in the table) to 2.05% by using τkU and τkV in
our progressively bounding framework v.s. 97.53% by using
τU and τV as shown in Table 2. This saves huge search space
and accelerates the biclique computation greatly.
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Figure 6: Optimization Strategies

Efficiency of graph reduction. We conduct experiments
on LiveJournal and WebTrackers to compare the perfor-
mance of the basic algorithms with the optimized versions.
We denote the basic version of Algorithm 2 as BASIC, the
algorithm with early pruning strategy introduced in Sec-
tion 5.2 as OPT1, and the algorithm with early skipping
strategy introduced in Section 5.2 as OPT2 based on OPT1.
The results are shown in Fig. 6, with the two-hop graph re-
duction time cost denoted as TwoHopTime, and the total
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time cost denoted as AllTime. We can see that for TwoHop-
Time in LiveJournal, OPT2 is about 21.41% faster than
OPT1, and 41.74% faster than BASIC. Consequently, OPT2

accelerates AllTime by around 17.56% w.r.t. the BASIC
version. For TwoHopTime in WebTrackers, OPT2 is about
30.9% faster than OPT1, and 45.7% faster than BASIC.
Consequently, OPT2 accelerates AllTime by around 23.2%
w.r.t. the BASIC version. When comparing with the base-
line algorithm in the following experiments, we apply all the
optimization techniques.

6.2 MBC∗ vs MBC

In this subsection, we compare the performance of MBC∗

and MBC on maximum biclique search by: (1) conducting
experiments on all datasets; (2) varying τU and τV thresh-
olds on both small-sized and large-sized graphs; (3) varying
graph density; (4) varying graph scale.

In all experiments, we set the maximum processing time
as 24 hours, and if the methods cannot finish computing,
we denote the time cost as NaN. For those experiments that
cannot finish within 24 hours, we also report the quality
ratio above the corresponding bars, which is calculated as:

quality ratio =
the size of current best biclique

the size of the maximum biclique

Note that it is possible that the quality ratio is 100% while
the algorithm cannot finish, because the size of the maxi-
mum biclique is unknown before the algorithm finishes.
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Figure 7: C∗3,3 Search on All Datasets

All Datasets. In this experiment, we test the efficiency of
C∗3,3 search in all datasets by comparing MBC∗ with MBC,
and report the processing time in Fig. 7. From Fig. 7, we
can see that when the size of dataset is relatively small, e.g.,
around 0.1 million edges in Writers, MBC∗ and MBC can
both find C∗3,3 efficiently. As the graph size scales up, e.g.,
for the graphs with millions of edges such as BookCrossing
and StackOverflow, MBC takes hours to compute the re-
sults, while MBC∗ only takes seconds. Furthermore, when
the graph size grows up to around 1 billion edges such as
AddCart and Transaction, MBC cannot finish computing
within 24 hours, while MBC∗ only takes minutes to compute
the results. For most cases where MBC cannot finish com-
puting, the bicliques it finds within 24 hours are far smaller
than the maximum bicliques. From the results shown in
Fig. 7, we can see that MBC∗ is much more efficient and
scalable than MBC on all datasets.

Varying τU and τV thresholds. We vary τU and τV
thresholds to compute C∗ and illustrate the performance
of MBC∗ and MBC in Fig. 8. Fig. 8 shows that MBC can
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Figure 8: C∗ Search by Varying τU and τV
process small graphs (YouTube and StackOverflow) but fails
in processing large graphs (LiveJournal and WebTrackers).
For small graphs, when τU and τV get larger, the time cost
of MBC decreases. This is because as τU and τV get larger,
MBC can filter more search branches. For large graphs, MBC
cannot finish computing within 24 hours, since the search
space is huge and MBC is stuck in local search. In com-
parison, MBC∗ is orders of magnitude faster than MBC on
all settings. For most cases, when τU and τV get larger,
the time cost of MBC∗ slightly increases. This is because
in most real cases, as τU and τV get larger, |C∗| becomes
smaller. Thus, MBC∗ generates relatively looser τkU and τkV
constraints, which results in larger reduced graph. Specif-
ically, in WebTrackers, the processing time is steady. This
is because for all τU and τV settings in this experiment,
|C∗| in WebTrackers is relatively large, and consequently τkU
and τkV are quite strict. In general, the high efficiency of
MBC∗ mainly benefits from the effective progressive bound-
ing framework with graph reduction techniques, which saves
enormous search space in biclique search.
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Figure 9: C∗3,3 Search by Varying Graph Density

Varying Graph Density. In this experiment, we test the
effect of graph density on the performance, and demonstrate
the results in Fig. 9. We prepare graphs with different
density by sampling edges in the original graph. For ex-
ample, we sample 20%, 40%, 60%, 80% and 100% edges
in TVTropes, and denote these (sub)graphs as TV1, TV2,
TV3, TV4 and TV5 in ascending order of density. Fig. 9
shows that as the graphs grow denser, MBC takes longer
time to find the maximum bicliques, or cannot finish com-
puting within 24 hours. In contrast, MBC∗ is orders of mag-
nitude faster than MBC on all settings. It is worth noting
that for dense graphs, MBC∗ also finds maximum bicliques
efficiently. For example, in Fig. 9(c), as the graphs grow
denser from LJ3 to LJ5, the processing time of MBC∗ de-
creases. The reason is that MBC∗ can find larger C∗k in
denser graphs. This helps improve the τkU and τkV thresholds
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and lead to small reduced graphs (or even empty) in the pro-
gressive bounding framework. Therefore MBC∗ finds maxi-
mum biclique efficiently on both sparse and dense graphs.

Table 4: Statistics of AddCart and Transaction
Dataset |U | |V | |E|

AddCart1d 36,610,265 18,840,419 112,796,688
AddCart3d 78,574,410 35,834,266 362,528,389
AddCart6d 107,870,369 48,056,268 768,628,469
AddCart10d 141,839,807 65,589,796 1,307,950,593
Transaction1d 57,324,865 14,381,171 99,906,746
Transaction3d 133,563,771 30,702,475 305,137,702
Transaction6d 166,496,732 45,016,333 490,500,877
Transaction10d 231,377,734 59,688,447 872,112,829
Transaction15d 272,227,190 75,350,951 1,319,706,942
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Figure 10: C∗3,3 Search by Varying Graph Scale

Varying Graph Scale.The effects of graph size on the per-
formance show scalability. We prepare datasets by obtaining
1, 3, 6 and 10 days data of AddCart, and 1, 3, 6, 10 and
15 days data of Transaction. We list the statistics in Table
4, and report the results in Fig. 10. In Fig. 10, we can see
that MBC cannot finish computing within 24 hours on all
datasets and the reported bicliques are much smaller than
the maximum bicliques. In contrast, the processing time of
MBC∗ increases steadily as the graph scales up. For graph
of AddCart10d and Transaction15d, which both consist of
about 1.3 billion edges, MBC∗ costs 18 minutes and 15 min-
utes to compute the results respectively, which is quite ef-
ficient. To the best of our knowledge, no existing solutions
can find maximum bicliques in bipartite graphs at this scale.

6.3 Case Study
Our proposed algorithm has been deployed in Alibaba

Group to detect fraudulent transactions. E-business owners
at Taobao and Tmall (two E-commerce platforms of Alibaba
Group), may pay some agents in black market to promote
the rankings of their online shops. Considering the costs of
fake transactions and maintenance of a large amount of user
accounts, these agents usually need to organize a group of
users to “purchase” a set of products at the same time for
cost effectiveness. This will lead to some bicliques (i.e., click
farms) in the bipartite graph consisting of users, products
and purchase transactions. As the maximum biclique alone
cannot cover all fraudulent transactions, we use the top-K
diversified biclique method as follows.

topKMax. We repeatedly compute the maximum biclique
using MBC∗ and then delete it from the bipartite graph,
and further apply MBC∗ on the remaining graph, until we
obtain K bicliques (i.e., suspicious click farms). We call
this approach topKMax. Note that topKMax improves the
recall rate of fraudulent transaction by 50% according to the
feedback of the risk management team from Alibaba Group.

To further demonstrate the effectiveness and efficiency of
topKMax, we also evaluate the following two baseline ap-
proaches on a real dataset LabeledAddCart obtained from

Alibaba Group, which includes the labels of ground-truth
fraudulent transactions.

(1) enumKMax. We adopt enumKMax, whose logic is the
same with MBC but without the size pruning rule (in line 5
and 13 in Algorithm 1), to enumerate all maximal bicliques
satisfying the thresholds τU and τV , and each maximal bi-
clique represents a click farm. However, it is not possible to
find all maximal bicliques and then select the top-K among
them due to the huge number of maximal bicliques, thus we
evaluate the result of the first-K output maximal bicliques.

(2) Reduce. Given appropriate values of thresholds τU
and τV , Reduce outputs the reduced bipartite graph, where
the edges represent suspicious fraudulent transactions. Al-
though Reduce cannot output bicliques, it can reduce the
candidate size.

We define the precision and recall rate as follows:

precision =
number of found fraudulent transactions

number of output edges of the method

recall =
number of found fraudulent transactions

number of ground-truth fraudulent transactions
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topKMax Result Evaluation. In this experiment, we
vary τV from 2 to 5 (with τU = 1) to test the precision of
top-K diversified bicliques found by topKMax on LabeledAd-
dCart, and show the results in Fig. 11. The figure shows that
the precision is over 95% in most cases except top-1000 when
τV = 2. This is because coincidences are more likely to hap-
pen when τV is small. When τV > 2, the precision is even
larger than 99%. In general, topKMax outputs fraudulent
transactions with high precision, and the found biclique can
be served as the evidence when taking disciplinary measures.
In real application in Alibaba Group, topKMax not only re-
turns fraudulent transactions with high precision, but also
improves the recall rate by 50% w.r.t. to exisiting solutions.

enumKMax Result Evaluation. We conduct experi-
ments of enumKMax on LabeledAddCart and show the re-
sults in Fig. 12. We set τU = 1 and τV = 2, and the re-
sults with other settings are similar. Given the fact that
enumKMax cannot finish maximal biclique enumeratation
within 24 hours, we record two statistics of the first-K out-
put maximal bicliques: (1) the total number of output edges,
denoted as All, and (2) the number of unique output edges,
denoted as Uni. Besides, the enumeration process easily be-
comes stuck in local search, so the search order has great in-
fluence on the result of first-K bicliques. Thus we adopt two
search orders in enumKMax, i.e., we iteratively add v ∈ V
into biclique in descending order (denoted as Desc) or as-
cending order (denoted as Asc) of the number of v’s neigh-
bors in U . This is because, intuitively, we may enumerate
the maximal bicliques in the dense region or sparse region
of the bipartite graph respectively. From Fig. 12, we can see
that for Desc order, when the output biclique number in-
creases, the total number of output edges increases as well.
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However, the number of unique edges barely grows, which
indicates that enumKMax enumerates many redundant max-
imal bicliques with very limited effective information when
searching in dense region of the graph. In comparision, for
Asc order, both total output edges and unique edges in-
creases. However, the average size of the first-16000 max-
imal bicliques is only 12, which is too small to be used in
anomaly detection application, with the precision of only
33.23% compared with the ground-truth. The computation
cost of enumKMax is also high, and the algorithm outputs
huge amounts of maximal bicliques (over 109 bicliques in 24
hours). In conclusion, maximal biclique enumeration is not
suitable to this case study for anomaly detection on large-
scale graphs.
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Figure 13: Precision and Recall Rate of Reduce

Reduce Result Evaluation. Given specific τU and τV
values, we can detect fraudulent transactions with Reduce.
In this experiment, we vary τV from 2 to 5, and for each τkV ,
we set two corresponding τkU values, i.e., the small value τ

sk
U

for loose condition, and the large value τ
lk
U for strict condi-

tion. All τU values are suggested by the experts of anomaly
detection in Alibaba. Due to the confidential nature, we
omit the exact values. For simplicity, we use τsU and τ lU to
represent the loose and strict constraints for all τkV .

We evaluate the performance in terms of precision and
recall rate, and present the results in Fig. 13. In Fig. 13(a),
the precision of Reduce improves when τV grows larger, since
the more common products a group bought together, the
more suspecious the transactions are. Similarly, larger τU
also leads to higher precision with fixed τV . However, the
precision does not meet the requirement of at least 95%
(from Alibaba). In Fig. 13(b), the recall rate is relatively
high especially for loose constraints τsU , due to the fact that
we only take advantages of the graph topological structure.
However, we gain the high recall rate at the cost of low
precision and large amount of output edges (over 107 edges
for all settings). Besides, the result quality depends heavily
on the given τU and τV thresholds, which cannot be easily
adapted to different datasets manually. Therefore, Reduce
is not suitable for anomaly detection in this case study.

7. RELATED WORK
In this section, we review the related work, including max-

imum biclique search and its variants, and maximal biclique
enumeration.

Maximum Biclique Search and its Variants. The max-
imum biclique problem has become increasingly popular in
recent years [30, 29, 7]. [30] proposes an integer program-
ming methodology to find the maximum biclique in general
graphs. However, it is not applicable for large scale graphs.
[29] develops a Monte Carlo algorithm for extracting a list of
maximal bicliques, which contains a maximum biclique with
fixed probability. [7] studies the parameterized maximum bi-
clique problem in bipartite graphs, that reports if there ex-
ists a biclique with at least k edges, where k is a given integer

parameter. Besides, there are two variants of the maximum
biclique problem, i.e., the maximum vertex biclique and the
maximum balanced biclique. The former one aims to find
the biclique C∗ that |U(C∗)|+ |V (C∗)| is maximized. This
problem can be solved in polynomial time by a minimum
cut algorithm [23]. The latter one aims to find the biclique
C∗ with maximum cardinality that |U(C∗)| = |V (C∗)|. The
most popular apporoach is heuristic algorithms, including
[1, 40, 31] that solve the problem by converting it into a
maximum balanced independent set problem on the comple-
ment bipartite graph with node deletion strategies, and [44]
that combines tabu search and graph reduction to find the
maximum balanced biclique on the original bipartite graph.
[41, 39] propose local search framework to find good solu-
tions within reasonable time. [22, 45] introduce exact algo-
rithms to find the maximum balanced biclique by following
the branch-and-bound framework.

Maximal Biclique Enumeration. The maximal biclique
enumeration problem is widely studied. A biclique is said
to be maximal if it is not contained in any larger bicliques.
[2] proposes a consensus approach, which starts with a col-
lection of simple bicliques, and then expands the bicliques
as a sequence of transformations on the biclique collections.
[28, 25] find maximal bicliques C = (U, V, U × V ) by ex-
haustively enumerating U as subsets of one vertex parti-
tion, obtaining V as their common neighbors in the other
vertex partition, and then checking the maximality of C. In
[43], the authors propose algorithm iMBEA, which combines
backtracking with branch-and-bound framework to filter out
the branches that cannot lead to maximal bicliques. [19, 8]
reduce the problem to the maximal clique enumeration prob-
lem by transferring the bipartite graph into a general graph.
[14] proves that maximal biclique is in correspondence with
frequent closed itemset. The maximal biclique enumeration
can be reduced then to the well-studied frequent closed item-
sets mining problem [6, 37, 38, 18]. [26, 24] propose parallel
methods to enumerate maximal bicliques in large graphs.

8. CONCLUSION
Maximum biclique search in a bipartite graph is a funda-

mental problem with a wide spectrum of applications. Ex-
isting solutions are not scalable for handling large bipartite
graphs because the search has to consider the size of both
sides of the biclique. In this paper, instead of solving the
problem directly on the original bipartite graph, we pro-
pose a progressive bounding framework which aims to solve
the problem on several much smaller bipartite graphs. We
prove that only logarithmic rounds are needed to guarantee
the algorithm correctness, and in each round we show how
to significantly reduce the bipartite graph size by consid-
ering the properties of the one-hop and two-hop neighbors
for each vertex. We conducted experiments on real datasets
from different application domains, and two of the datasets
contain billions of edges. The experimental results demon-
strate that our approach is efficient and scalable to handle
large bipartite graphs. It is reported that 50% improvement
on recall can be achieved after applying our method in Al-
ibaba Group to identify the fraudulent transactions.
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