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ABSTRACT
Document database systems store self-describing semi-
structured records, such as JSON, “as-is” without requiring
the users to pre-define a schema. This provides users with
the flexibility to change the structure of incoming records
without worrying about taking the system offline or hin-
dering the performance of currently running queries. How-
ever, the flexibility of such systems does not free. The large
amount of redundancy in the records can introduce an un-
necessary storage overhead and impact query performance.

Our focus in this paper is to address the storage over-
head issue by introducing a tuple compactor framework that
infers and extracts the schema from self-describing semi-
structured records during the data ingestion. As many
prominent document stores, such as MongoDB and Couch-
base, adopt Log Structured Merge (LSM) trees in their stor-
age engines, our framework exploits LSM lifecycle events
to piggyback the schema inference and extraction opera-
tions. We have implemented and empirically evaluated our
approach to measure its impact on storage, data ingestion,
and query performance in the context of Apache AsterixDB.
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1. INTRODUCTION
Self-describing semi-structured data formats like JSON

have become the de facto format for storing and sharing in-
formation as developers are moving away from the rigidity
of schemas in the relational model. Consequently, NoSQL
Database Management Systems (DBMSs) have emerged as
popular solutions for storing, indexing, and querying self-
describing semi-structured data. In document store systems
such as MongoDB [11] and Couchbase [10], users are not
required to define a schema before loading or ingesting their
data since each data instance is self-describing (i.e., each
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record embeds metadata that describes its structure and
values). The flexibility of the self-describing data model
provided by NoSQL systems attracts applications where the
schema can change in the future by adding, removing, or
even changing the type of one or more values without tak-
ing the system offline or slowing down the running queries.

The flexibility provided in document store systems over
the rigidity of the schemas in Relational Database Manage-
ment Systems (RDBMSs) does not come without a cost. For
instance, storing a boolean value for a field named hasChil-
dren, which takes roughly one byte to store in an RDBMS,
can take a NoSQL DBMS an order of magnitude more bytes
to store. Defining a schema prior to ingesting the data can
alleviate the storage overhead, as the schema is then stored
in the system’s catalog and not in each record. However,
defining a schema defies the purpose of schema-less DBMSs,
which allow adding, removing or changing the types of the
fields without manually altering the schema [18]. From a
user perspective, declaring a schema requires a thorough a
priori understanding of the dataset’s fields and their types.

Let us consider a scenario where a data scientist wants to
ingest and analyze a large volume of semi-structured data
from a new external data source without prior knowledge of
its structure. Our data scientist starts by acquiring a few
instances from the data source and tries to analyze their
structures; she then builds a schema according to the ac-
quired sample. After ingesting a few data instances, our
data scientist discovers that some fields can have more than
one type, which was not captured in her initial sample. As a
result, she stops the ingestion process, alters the schema to
accommodate the irregularities in the types of those fields,
and then reinitiates the data ingestion process. In this case,
our data scientist has to continuously monitor the system
and alter the schema if necessary, which may result in taking
the system offline or stopping the ingestion of new records.
Having an automated mechanism to infer and consolidate
the schema information for the ingested records without los-
ing the flexibility and the experience of schema-less stores
would clearly be desirable.

In this work, we address the problem of the storage
overhead in document stores by introducing a framework
that infers and compacts the schema information for semi-
structured data during the ingestion process. Our design
utilizes the lifecycle events of Log Structured Merge (LSM)
tree [32] based storage engines, which are used in many
prominent document store systems [10, 11] including Apache
AsterixDB [19]. In LSM-backed engines, records are first
accumulated in memory (LSM in-memory component) and
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then subsequently written sequentially to disk (flush op-
eration) in a single batch (LSM on-disk component). Our
framework takes the opportunity provided by LSM flush
operations to extract and strip the metadata from each
record and construct a schema for each flushed LSM compo-
nent. We have implemented and empirically evaluated our
framework to measure its impact on the storage overhead,
data ingestion rate and query performance in the context of
Apache AsterixDB. Our main contributions can be summa-
rized as follows:

• We propose a mechanism that utilizes the LSM work-
flow to infer and compact the schema for NoSQL sys-
tems semi-structured records during flush operations.
Moreover, we detail the steps required for distributed
query processing using the inferred schema.

• We introduce a non-recursive physical data layout that
allows us to infer and compact the schema efficiently
for nested semi-structured data.

• We introduce page-level compression in AsterixDB.
This is a similar solution to these adopted by other
NoSQL DBMSs to reduce the storage overhead of self-
describing records. We refer interested readers to the
extended version [17] of our paper for more details.

• We evaluate the feasibility of our design, prototyped
using AsterixDB, to ingest and query a variety of large
semi-structured datasets.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a preliminary review of the AsterixDB ar-
chitecture. Section 3 details the design and implementation
of our tuple compaction framework in AsterixDB. Section 4
presents an experimental evaluation of the proposed frame-
work. Section 5 discusses related work on utilizing the LSM
lifecycle and on schema inference for semi-structured data.
Finally, Section 6 presents our conclusions and discusses po-
tential future directions for our work.

2. APACHE ASTERIXDB OVERVIEW
In this paper, we use Apache AsterixDB to prototype our

tuple compactor framework. AsterixDB is a parallel semi-
structured Big Data Management System (BDMS) which
runs on large, shared-nothing, commodity computing clus-
ters. To prepare the reader, we give a brief overview of As-
terixDB [18, 24] and its query execution engine Hyracks [22].

2.1 User Model
The AsterixDB Data Model (ADM) extends the JSON

data model to include types such as temporal and spatial
types as well as data modeling constructs (e.g., bag or mul-
tiset). Defining an ADM datatype (akin to a schema in an
RDBMS) that describes at least the primary key(s) is re-
quired to create a dataset (akin to a table in an RDBMS).

There are two options when defining a datatype in Aster-
ixDB: open and closed. Figure 1 shows an example of defin-
ing a dataset of employee information. In this example,
we first define Dependent, which declares two fields name
and age of types string and int, respectively. Then, we de-
fine EmployeeType, which declares id, name and dependents
of types int, string and a multiset of Dependent, respec-
tively. The symbol “?” indicates that a field is optional.
Note that we defined the type EmployeeType as open, where
data instances of this type can have additional undeclared

fields. On the other hand, we define the Dependent as closed,
where data instances can only have declared fields. In both
the open and closed datatypes, AsterixDB does not permit
data instances that do not have values for the specified non-
optional fields. Finally, in this example, we create a dataset
Employee of the type EmployeeType and specify its id field
as the primary key.

CREATE TYPE Dependent
AS CLOSED {

name: string ,
age: int

};

CREATE TYPE EmployeeType
AS OPEN {
id: int ,
name: string ,
dependents:{{Dependent}}?
};CREATE DATASET Employee(EmployeeType) PRIMARY KEY id ;

Figure 1: Defining Employee type and dataset in ADM

To query the data stored in AsterixDB, users can submit
their queries written in SQL++ [25, 33], a SQL-inspired
declarative query language for semi-structured data. Fig-
ure 2 shows an example of a SQL++ aggregate query posed
against the dataset declared in Figure 1.

SELECT VALUE nameGroup FROM Employee AS emp
GROUP BY emp . name GROUP AS nameGroup

Figure 2: An example of a SQL++ query

2.2 Storage and Data Ingestion
In an AsterixDB cluster, each worker node (Node Con-

troller, or NC for short) is controlled by a Cluster Controller
(CC) that manages the cluster’s topology and performs rou-
tine checks on the NCs. Figure 3 shows an AsterixDB clus-
ter of three NCs, each of which has two data partitions that
hold data on two separate storage devices. Data partitions
in the same NC (e.g., Partition 0 and Partition 1 in NC0)
share the same buffer cache and memory budget for LSM in-
memory components; however, each partition manages the
data stored in its storage device independently. In this ex-
ample, NC0 also acts as a metadata node, which stores and
provides access to AsterixDB metadata such as the defined
datatypes and datasets.

Node Controller 0
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

Node Controller 1
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

Node Controller 2
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

High-speed Interconnect

Data Feeds
(From External

Sources)

SQL++ Queries
and Results

Data Publishing
(to External

Sources/Apps)

Cluster Controller

Algebricks
Query Optimizer and 

Rewriter

SQL++ Compiler

Job Manager

Partition 0 Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Figure 3: Apache AsterixDB cluster with three NCs

AsterixDB stores the records of its datasets, spread across
the data partitions in all NCs, in primary LSM B+-tree
indexes. During data ingestion, each new record is hash-
partitioned using the primary key(s) into one of the config-
ured partitions (Partition 0 to Partition 5 in Figure 3) and
inserted into the dataset’s LSM in-memory component. As-
terixDB implements a no-steal/no-force buffer management
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policy with write-ahead-logging (WAL) to ensure the dura-
bility and atomicity of ingested data. When the in-memory
component is full and cannot accommodate new records,
the LSM Tree Manager (called the “tree manager” here-
after) schedules a flush operation. Once the flush operation
is triggered, the tree manager writes the in-memory compo-
nent’s records into a new LSM on-disk component on the
partition’s storage device, Figure 4a. On-disk components
during their flush operation are considered INVALID com-
ponents. Once it is completed, the tree manager marks the
flushed component as VALID by setting a validity bit in the
component’s metadata page. After this point, the tree man-
ager can safely delete the logs for the flushed component.
During crash recovery, any disk component with an unset
validity bit is considered invalid and removed. The recovery
manager can then replay the logs to restore the state of the
in-memory component before the crash.

<0, “Kim”, age: 26>
<1, “John”, age: 22>

C0

Insert

{id: 0}
{id: 2, name: “Bob”, age: 21}

C1

< 0, - >
<2, “Bob”, age: 21>

Flush

Flushing on-disk Component
In-memory Component

Metadata Page

INVALID
(Flushing)

VALID
(Flushed)

Metadata Page

Anti-matter

On-disk Component

(a)

VALID
(Flushed

<1, “John”, age: 22>

[C0, C1]
<2, “Bob”, age: 21>

INVALID
(Merging)

<0, “Kim”, age: 26>
<1, “John”, age: 22>

C0

C1

< 0, - >
<2, “Bob”, age: 21>

Merge
VALID

(Flushed)

Metadata Page

Metadata Page

Metadata Page

(b)

Figure 4: (a) Flushing component C1 (b) Merging the two
components C0 and C1 into a new component [C0, C1]

Once flushed, LSM on-disk components are immutable
and, hence, updates and deletes are handled by inserting
new entries. A delete operation adds an ”anti-matter” en-
try [19] to indicate that a record with a specified key has
been deleted. An upsert is simply a delete followed by an
insert with the same key. For example, in Figure 4a, we
delete the record with id = 0. Since the target record is
stored in C0, we insert an ”anti-matter” entry to indicate
that the record with id = 0 is deleted. As on-disk com-
ponents accumulate, the tree manager periodically merges
them into larger components according to a merge policy [19,
30] that determines when and what to merge. Deleted and
updated records are garbage-collected during the merge op-
eration. In Figure 4b, after merging C0 and C1 into [C0, C1],
we do not write the record with id = 0 as the record and the
anti-matter entry annihilate each other. As in the flush op-
eration, on-disk components created by a merge operation
are considered INVALID until their operation is completed.
After completing the merge, older on-disk components (C0

and C1) can be safely deleted.
On-disk components in AsterixDB are identified by their

component IDs, where flushed components have monoton-
ically increasing component IDs (e.g., C0 and C1) and
merged components have components IDs that represent the
range of component IDs that were merged (e.g., [C0, C1]).
AsterixDB infers the recency ordering of components by in-
specting the component ID, which can be useful for mainte-
nance [30]. In this work, we explain how to use this property
later in Section 3.2.

Scanner
(Partition 0)

Project SortGroupBy ResultWriter

Scanner
(Partition 5)

Project SortGroupBy ResultWriter

… … … …
Local-Exchange connector
Hash-Partition-Exchange connector

Figure 5: A compiled Hyracks job for the query in Figure 2

Datasets’ records (of both open and closed types) in the
LSM primary index are stored in a binary-encoded physi-
cal ADM format [3]. Records of open types that have un-
declared fields are self-describing, i.e., the records contain
additional information about the undeclared fields such as
their types and their names. For our example in Figure 4,
AsterixDB stores the information about the field age as it is
not declared. For declared fields (id and name in this exam-
ple), their type and name information are stored separately
in the metadata node (NC0).

2.3 Runtime Engine and Query Execution
To run a query, the user submits an SQL++ query to

the CC, which optimizes and compiles it into a Hyracks job.
Next, the CC distributes the compiled Hyracks job to the
query executors in all partitions where each executor runs
the submitted job in parallel 1.

Hyracks jobs consist of operators and connectors, where
data flows between operators over connectors as a batch
of records (or a frame of records in Hyracks terminology).
Figure 5 depicts the compiled Hyracks job for the query in
Figure 2. As shown in Figure 5, records can flow within an
executor’s operators through Local-Exchange connectors or
they can be repartitioned or broadcast to other executors’
operators through non-local exchange connectors such as the
Hash-Partition-Exchange connector in this example.

Operators in a Hyracks job process the ADM records in a
received frame using AsterixDB-provided functions. For in-
stance, a field access expression in a SQL++ query is trans-
lated into AsterixDB’s internal function getF ield(). Aster-
ixDB’s compiler Algebricks [23] may rewrite the translated
function when necessary. As an example, the field access ex-
pression e.name in the query shown in Figure 2 is first trans-
lated into a function call getF ield(emp, “name”) where the
argument emp is a record and “name” is the name of the re-
quested field. Since name is a declared field, Algebricks can
rewrite the field access function to getF ield(emp, 1) where
the second argument 1 corresponds to the field’s index in
the schema provided by the Metadata Node.

3. SCHEMA INFERENCE AND TUPLE
COMPACTION FRAMEWORK

The flexibility of schema-less NoSQL systems attracts ap-
plications where the schema can change without declaring
those changes. However, this flexibility is not free. In the
context of AsterixDB, Pirzadeh et al. [34] explored query ex-
ecution performance when all the fields are declared (closed
type) and when they are left undeclared (open type). One
conclusion from their findings, summarized in Figure 6, is
that queries with non-selective predicates (using secondary
indexes) and scan queries took twice as much time to ex-
ecute against open type records compared to closed type
records due to their storage overhead.

1The default number of query executors is equal to the num-
ber of data partitions in AsterixDB.
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Figure 6: Summary of the findings in [34]

In this section, we present a tuple compactor framework
(called the “tuple compactor” hereafter) that addresses the
storage overhead of storing self-describing semi-structured
records in the context of AsterixDB. The tuple compactor
automatically infers the schema of such records and stores
them in a compacted form without sacrificing the user ex-
perience of schema-less document stores. Throughout this
section, we run an example of ingesting and querying data
in the Employee dataset declared as shown in Figure 7. The
Employee dataset here is declared with a configuration pa-
rameter — {"tuple-compactor-enabled": true} — which en-
ables the tuple compactor.

We present our implementation of the tuple compactor
by first showing the workflow of inferring schema and com-
pacting records during data ingestion and the implications
of crash recovery in Section 3.1. In Section 3.2, we show the
structure of an inferred schema and a way of maintaining it
on update and delete operations. Then, in Section 3.3, we
introduce a physical format for self-describing records that
is optimized for the tuple compactor operations (schema in-
ference and record compaction). Finally, in Section 3.4, we
address the challenges of querying compacted records stored
in distributed partitions of an AsterixDB cluster.

CREATE TYPE EmployeeType AS OPEN { id: int };
CREATE DATASET Employee(EmployeeType)
PRIMARY KEY id WITH {"tuple-compactor-enabled": true};

Figure 7: Enabling the tuple compactor for a dataset

3.1 Tuple Compactor Workflow
We first discuss the tuple compactor workflow during nor-

mal operation of data ingestion and during crash recovery.
Data Ingestion. When creating the Employee dataset

(shown in Figure 7) in the AsterixDB cluster illustrated
in Figure 3, each partition in every NC starts with an
empty dataset and an empty schema. During data inges-
tion, newly incoming records are hash-partitioned on the
primary keys (id in our example) across all the configured
partitions (Partition 0 to Partition 5 in our example). Each
partition inserts the received records into the dataset’s in-
memory component until it cannot hold any new record.
Then, the tree manager schedules a flush operation on the
full in-memory component. During the flush operation, the
tuple compactor, as shown in the example in Figure 8a, fac-
tors the schema information out of each record and builds
a traversable in-memory structure that holds the schema
(described in Section 3.2). At the same time, the flushed
records are written into the on-disk component C0 in a com-
pacted form where their schema information (such as field
names) are stripped out and stored in the schema structure.
After inserting the last record into the on-disk component
C0, the inferred schema S0 in our example describes two
fields name and age with their associated types denoted as
FieldName : Type pairs. Note that we do not store the
schema information of any explicitly declared fields (field id

In-memory Component

Insert

In-memory
Schema

Flush

Metadata
Page{id: 0, name: “Kim”, age: 26}

{id: 1, name: “John”, age: 22}

Tuple Compactor

name: string
age: int

C0

<0, “Kim”, 26>
<1, “John”, 22>

S0

(a)

S1
Metadata 
Page

<0, “Kim”, 26>
<1, “John”, 22>

C0

In-memory Component

Insert

In-memory
Schema

Flush

{id: 2, name: “Ann”}
{id: 3, name: “Bob”, age: “old”}

<2, “Ann”>
<3, “Bob”, “old”>

Tuple Compactor

name: string
age: union(int,string)

C1

name: string
age: int

S0

S1

(b)

<0, “Kim”, 26>
<1, “John”, 22>

C0

name: string
age: int

S0

S1
name: string
age: union(int,string)

S1

C1

<2, “Ann”>
<3, “Bob”, “old”>

name: string
age: union(int,string)

S1

<0, “Kim”, 26>
<1, “John”, 22>

[C0, C1]

<2, “Ann”>
<3, “Bob”, “old”>

Merge

(c)

Figure 8: (a) Flushing the first component C0 (b) Flush-
ing the second component C1 (c) Merging the two compo-
nents C0 and C1 into the new component [C0, C1]

in this example) as they are stored in the Metadata Node
(Section 2.2). At the end of the flush operation, the compo-
nent’s inferred in-memory schema is persisted in the com-
ponent’s Metadata Page before setting the component as
V ALID. Once persisted, on-disk schemas are immutable.

As more records are ingested by the system, new fields
may appear or fields may change, and the newly inferred
schema has to incorporate the new changes. The newly in-
ferred schema will be a super-set (or union) of all the previ-
ously inferred schemas. To illustrate, during the second flush
of the in-memory component to the on-disk component C1

in Figure 8b, the records of the new in-memory component,
with id 2 and 3, have their age values as missing and string,
respectively. As a result, the tuple compactor changes the
type of the inferred age field in the in-memory schema from
int to union(int, string), which describes the records’ fields
for both components C0 and C1. Finally, C1 persists the
latest in-memory schema S1 into its metadata page.

Given that the newest schema is always a super-set of the
previous schemas, during a merge operation, we only need
to store the most recent schema of all the mergeable com-
ponents as it covers the fields of all the previously flushed
components. For instance, Figure 8c shows that the result-
ing on-disk component [C0, C1] of the merged components
C0 and C1 needs only to store the schema S1 as it is the
most recent schema of {S0, S1}.

We chose to ignore compacting records of the in-memory
component because (i) the in-memory component size is rel-
atively small compared to the total size of the on-disk com-
ponents, so any storage savings will be negligible, and (ii)
maintaining the schema for in-memory component, which
permits concurrent modifications (inserts, deletes and up-
dates), would complicate the tuple compactor’s workflow
and slow down the ingestion rate.

Crash Recovery. The tuple compactor inherits the LSM
guarantees for crash recovery (see Section 2.2). To illustrate,
let us consider the case where a system crash occurs during
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{

"id": 1,

"name": "Ann",

"dependents":{{

{"name": "Bob", “age”: 6},

{"name": "Carol", “age” : 10} }},

"employment_date": date("2018-09-20"),

"branch_location": point(24.0, -56.12),

"working_shifts": [[8, 16], [9, 17], [10, 18], "on_call"]

}

... + 5 more {"id": int, "name": string} records …

(a)

2 4 5 6
Root

string date point

string int

Multiset

Union

Array

int

string

1

Array

1 3
Object

(1)

(2)

(2)(2)

(6) (1) (1) (1)

(4)

(1)(3)

(6)

FieldNameID

Counter

(b)

FieldNameID field name

1 name

2 dependents

3 age

4 employement_date

5 branch_location

6 working_shifts

(c)

Figure 9: (a) An ADM record (b) Inferred schema tree structure (c) Dictionary-encoded field names

the second flush as shown in Figure 8b. When the sys-
tem restarts, the recovery manager will start by activating
the dataset and then inspecting the validity of the on-disk
components by checking their validity bits. The recovery
manager will discover that C1 is not valid and remove it.
As C0 is the “newest” valid flushed component, the recov-
ery manager will read and load its schema S0 into memory.
Then, the recovery manager will replay the log records to
restore the state of the in-memory component before the
crash. Finally, the recovery manager will flush the restored
in-memory component to disk as C1, during which time the
tuple compactor operates normally.

3.2 Schema Structure
Previously, we showed the flow of inferring the schema and

compacting the tuples during data ingestion. In this section,
we focus on the inferred schema and present its structure.
We also address the issue of maintaining the schema in case
of delete and update operations, which may result in remov-
ing inferred fields or changing their types.

3.2.1 Schema Structure Components
Semi-structured records in document store systems are

represented as a tree where the inner nodes of the tree repre-
sent nested values (e.g., JSON objects or arrays) and the leaf
nodes represent scalar values (e.g., strings). ADM records
in AsterixDB also are represented similarly. Let us con-
sider the example where the tuple compactor first receives
the ADM record shown in Figure 9a during a flush opera-
tion followed by five other records that have the structure
{"id": int , "name": string}. The tuple compactor traverses
the six records and constructs: (i) a tree-structure that sum-
marizes the records structure, shown in Figure 9b, and (ii) a
dictionary that encodes the inferred field names strings into
FieldNameIDs, as shown in Figure 9c. The Counter in the
schema tree-structure represents the number of occurrences
of a value, which we further explain in Section 3.2.2.

The schema tree structure starts with the root object
node which has the fields at the first level of the record
(name, dependents, employment date, branch location, and
working shifts). We do not store any information here
about the dataset’s declared field id as explained previously
in Section 3.1. Each inner node (e.g., dependents) repre-
sents a nested value (object, array, or multiset) and the leaf
nodes (e.g., name) represent the scalar (or primitive) val-
ues. Union nodes are for object fields or collection (array
and multiset) items if their values can be of different types.
In this example, the tuple compactor infers the array item
type of the field working shifts as a union type of an array
and a string.

The edges between the nodes in the schema tree structure
represent the nested structure of an ADM record. Each in-
ner node of a nested value in the schema tree structure can
have one or more children depending on the type of the in-
ner node. Children of object nodes (e.g., fields of the Root
object) are accessed by FieldNameIDs (shown as integers
on the edges of object nodes in Figure 9b) that reference
the stored field names in the dictionary shown in Figure 9c.
Each field name (or FieldNameID in the schema tree struc-
ture) of an object is unique, i.e., no two children of an object
node share the same field name. However, children of differ-
ent object nodes can share the same field name. Therefore,
storing field names in a dictionary allows us to canonicalize
repeated field names such as the field name name, which has
appeared twice in the ADM record shown in Figure 9a. A
collection node (e.g., dependents) have only one child, which
represents the items’ type. An object field or a collection
item can be of heterogeneous value types, so, their types
may be inferred as a union of different value types. In a
schema tree structure, the number of children a union node
can have depends on the number of supported value types in
the system. For instance, AsterixDB has 27 different value
types [2]. Hence, a union node could have up to 27 children.

3.2.2 Schema Structure Maintenance
In Section 3.1 we described the flow involved in inferring

the schema of newly ingested records, where we “add” more
information to the schema structure. However, when delet-
ing or updating records, the schema structure might need
to be changed by “removing” information. For example,
the record with id 3 shown in Figure 8 is the only record
that has an age field of type string. Therefore, deleting this
record should result in changing the type of the field age
from union(int, string) to int as the dataset no longer has
the field age as a string. From this example, we see that
on delete operations, we need to (i) know the number of ap-
pearances of each value, and (ii) acquire the old schema of
a deleted or updated record.

During the schema inference process, the tuple compactor
counts the number of appearances of each value and stores
it in the schema tree structure’s nodes. In Figure 9b, each
node has a Counter value that represents the number of
times the tuple compactor has seen this node during the
schema inference process. In the same figure, we can see
that there are six records that have the field name, including
the record shown in Figure 9a. Also, we can infer from the
schema structure that all fields other than name belong to
the record shown in Figure 9a. Therefore, after deleting
this record, the schema structure should only have the field
name as shown in Figure 10.

1392



Root

string

1

(5)

FieldNameID field name Value

1 name

FieldNameID
Counter

Figure 10: After deleting the record shown in Figure 9a

On delete, AsterixDB performs a point lookup to get
the old record from which the tuple compactor extracts its
schema (we call the schema of a deleted record the “anti-
schema”). Then, it constructs an anti-matter entry that
includes the primary key of the deleted record and its anti-
schema and then inserts it into the in-memory component.
During the flush operation, the tuple compactor processes
the anti-schema by traversing it and decrementing the Coun-
ters in the schema tree structure. When the counter’s value
of a node in the schema tree structure reaches zero, we know
that there is no record that still has this value. Then, the
tuple compactor can safely delete the node from the schema
structure. As shown in Figure 10, after deleting the record in
Figure 9a, the counter value corresponding to the field name
is decremented from 6 to 5 whereas the other nodes of the
schema structure (shown in Figure 9a) have been deleted as
they were unique to the deleted record. After processing the
anti-schema, the tuple compactor discards it before writing
the anti-matter entry to disk. Upserts can be performed as
deletes followed by inserts.

It is important to note that performing point lookups for
maintenance purposes is not unique to the schema struc-
ture. For instance, AsterixDB performs point lookups to
maintain secondary indexes [19] and LSM filters [20]. Luo
et al. [29, 30] showed that performing point lookups for
every upsert operation can degrade data ingestion perfor-
mance. More specifically, checking for key-existence for ev-
ery upserted record is expensive, especially in cases where
the keys are mostly new. As a solution, a primary key in-
dex, which stores primary keys only, can be used to check
for key-existence instead of using the larger primary index.
In the context of retrieving the anti-schema on upsert, one
can first check if a key exists by performing a point lookup
using the primary key index. Only if the key exists, an ad-
ditional point lookup is performed on the primary index to
get the anti-schema of the upserted record. If the key does
not yet exist (new key), the record can be inserted as a new
record. In Section 4, we evaluate the data ingestion perfor-
mance of our tuple compactor under heavy updates using
the suggested primary key index.

3.3 Compacted Record Format
Since the tuple compactor operates during data inges-

tion, the process of inferring the schema and compacting
the records needs to be efficient and should not degrade the
ingestion rate. As the schema can change significantly over
time, previously ingested records must not be affected or re-
quire updates. Additionally, sparse records should not need
to store additional information about missing values such as
null bitmaps in RDBMSs’ records. For example, storing the
record {"id": 5, "name": "Will"} with the schema shown
in Figure 9b should not include any information about other
fields (e.g., dependents). Moreover, uncompacted records
(in-memory components) and compacted records (on-disk
components) should be evaluated and processed using the
same evaluation functions to avoid any complexities when

generating a query plan. To address those issues, we intro-
duce a compaction-friendly physical record data format into
AsterixDB, called the vector-based format.

3.3.1 Vector-based Physical Data Format
The main idea of the vector-based format is that it sepa-

rates the metadata and values of a self-describing record into
vectors that allow us to manipulate the record’s metadata ef-
ficiently during the schema inference and record compaction
processes. To not be confused with a columnar format, the
vectors are stored within each record and the records are
stored contiguously in the primary index (Section 2.2). Fig-
ure 11 depicts the structure of a record in the vector-based
format. First comes the record’s header, which contains in-
formation about the record such as its length. Next comes
the values’ tags vector, which enumerates the types of the
stored primitive and nested values. Fixed-length primitive
(or scalar) values such as integers are stored in the fixed-
length values vector. The next vector is split into two sub-
vectors, where the first stores lengths and the second stores
the actual values of variable-length values. Lastly, the field
names sub-vectors (lengths and values) store field name in-
formation for all objects’ fields in the record.

Header … … … … … …

Length Number of 
Values

Lengths 
bit-widths Offsets

Values’ Tags Fixed-Length Values Variable-Length Values Field Names

Lengths Values Lengths Values

4-bytes 4-bytes 1-bytes 16-bytes

Figure 11: The structure of the vector-based format.

Figure 12 shows an example of a record in the vector-
based format (we refere intersted readers to [17] for more
examples). The record has four fields: id, name, salaries,
and age with the types integer, string, array of integers and
integer, respectively. Starting with the header, we see that
the record’s total size is 73-bytes and there are nine tags in
the values’ type tags vector. Lengths for variable-length val-
ues and field names are stored using the minimum amount of
bytes. In our example, the maximum lengths of the variable-
length values and field names are 3 (Ann) and 8 (salaries),
respectively. Thus, we need at most 3-bits and 5-bits to
store the length of each variable-length value or field name,
respectively. We only actually need 4-bits for name lengths;
however, the extra bit is used to distinguish inferred fields
(e.g., name) from declared ones (e.g., id) as we explain next.

{ "id": 6, "name": "Ann", "salaries": [ 70000, 90000 ], "age": 26 }

object int string array int int ./0123 int 456

6 70000 90000 26
16-bytes

Values’ Type Tags (9-bytes)

3 Ann
1-byte* 3-bytes

0 4 8 3 name salaries age
4-bytes** 15-bytes

Fixed-length Values Field NamesVariable-length Values

73 9 3-bits* | 5-bits** 50 51 54 57
Length Tags Length Lengths bit-widths Offsets

Header (25-bytes)

Figure 12: An example record in the vector-based format

After the header, we store the values’ type tags. The
values’ type tags encode the tree structure of the record in a
Depth-First-Search order. In this example, the record starts
with an object type to indicate the root’s type. The first
value of the root object is of type integer, and it is stored in
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the first four bytes of the fixed-length values. Since an object
tag precedes the integer tag, this value is a child of that
object (root) and, hence, the first field name corresponds
to it. Since the field id is a declared field, we only store
its index (as provided by the metadata node) in the lengths
sub-vector. We distinguish index values from length values
by inspecting the first bit. If set, we know the length value
is an index value of a declared field. The next value in the
example record is of type string, which is the first variable-
length value in the record. The string value is stored in the
variable-length values’ vector with its length. Similar to the
previous integer value, this string value is also a child of the
root and its field name (name) is next in the field names’
vector. As the field name is not declared, the record stores
both the name of the field and its length. After the string
value, we have the array tag of the field salaries. As the
array is a nested value, the subsequent tags (integers in this
example) indicate the array items’ types. The array items
do not correspond to any field name, and their integer values
are stored in the fixed-length values’ vector. After the last
item of the array, we store a control tag object to indicate
the end of the array as the current nesting type and a return
to the parent nesting type (object type in this example).
Hence, the subsequent integer value (age) is again a child
of the root object type. At the end of the value’s tags, we
store a control tag EOV to mark the end of the record.

As can be inferred from the previous example, the com-
plexity of accessing a value in the vector-based format is
linear in the number of tags, which is inferior to the log-
arithmic time provided by some traditional formats [3, 9].
We address this issue in more detail in Section 3.4.2.

3.3.2 Schema Inference and Tuple Compaction
Records in vector-based format separate values from

metadata. The example shown in Figure 12 illustrates how
the fixed-length and variable-length values are separated
from the record’s nested structure (values’ types tags) and
field names. When inferring the schema, the tuple com-
pactor needs only to scan the values’ type tags and the field
names’ vectors to build the schema structure.

Compacting vector-based records is a straightforward pro-
cess. Figure 13 shows the compacted structure of the record
in Figure 12 along with its schema structure after the com-
paction process. The compaction process simply replaces
the field names string values with their corresponding Field-
NameIDs after inferring the schema. It then sets the fourth
offset to the field names’ values sub-vector in the header
(Figure 11) to zero to indicate that field names were re-
moved and stored in the schema structure. As shown in the
example in Figure 13, the record after the compaction needs
just two bytes to store the field names’ information, where
each FieldNameID takes three bits (one bit for distinguish-
ing declared fields and two for the IDs), as compared to the
19 (4+15) bytes in the uncompacted form in Figure 12.

6 70000 90000 26
16-bytes

Fixed-length Values

3 Ann
1-byte 3-bytes

0 1 2 3
2-bytes

Field Names IDsVariable-length Values

FieldNameID field name
1 name
2 salaries
3 age

1 2 3

Root

string

int

array int

Figure 13: The record in Figure 12 after compaction

3.4 Query Processing
In this section, we explain our approach of querying com-

pacted records in the vector-based format. We, first, show
the challenges of having distributed schemas in different
partitions and propose a solution that addresses this issue.
Next, we zoom in into each query executor and show the
optimizations needed to process compacted records.

3.4.1 Handling Heterogeneous Schemas
As a scalability requirement, the tuple compaction frame-

work operates in each partition without any coordination
with other partitions. Therefore, the schema in each parti-
tion can be different from other schemas in other partitions.
When a query is submitted, each distributed partition ex-
ecutes the same job. Having different schemas becomes an
issue when the requested query needs to repartition the data
to perform a join or group-by. To illustrate, suppose we
have two partitions for the same dataset but with two dif-
ferent inferred schemas, as shown in Figure 14. We see that
the schemas in both partitions have the field name of type
string. However, the second field is age in partition 0 and
salary in partition 1. After hash-partitioning the records by
the name value, the resulting records are shuffled between
the two query executors and the last field can be either age
or salary. Recall that partitions can be in different ma-
chines within the AsterixDB cluster and have no access to
the schema information of other partitions. Consequently,
query executors cannot readily determine whether the last
field corresponds to age or salary.

SELECT VALUE emp FROM Employee AS e GROUP BY e.name AS name GROUP AS emp

name: string,
age: int
Local Schema

Result

Hash-Partition
by: $e.name

Partition 0

Project: $e.name, $e

Group: by $e.name
Aggregate: listfy($e)

<P1, 2,“Ann”, 80000>]
[ <P0, 0,“Ann”,34>, 

<0, “Ann”, 34>
<1, “Bob”, 24>

$e:= scan

Partition 1

Project: $e.name, $e

Group: by $e.name
Aggregate: listfy($e)

[ <P0, 1,“Bob”, 24>,
<P1, 2,“Sam”, 70000 > ]

<1, “Ann”, 80000>
<2, “Sam”, 70000>

$e:= scan

name: string,
salary: int

Local Schema

Result
Prepended 
partition ID

Executor 0 Executor 1

S0 S1

S0 S1
Broadcasted

Schemas

S0 S1
Broadcasted

Schemas

Figure 14: Two partitions with two different schemas

To solve the schema heterogeneity issue, we added func-
tionality to broadcast the schema information of each parti-
tion to all nodes in the cluster at the beginning of a query’s
execution. Each node receives each partition’s schema infor-
mation along with its partition ID and serves the schemas
to each executor in the same node. Then, we prepend each
record resulting from the scan operator with the source par-
tition ID. When an operator accesses a field, the operator
uses both the prepended partition ID of the record and the
distributed schema to perform the field access. Broadcast-
ing the partitions’ schemas can be expensive, especially in
clusters with a large number of nodes. Therefore, we only
broadcast the schemas when the query plan contains a non-
local exchange operator such as the hash-partition-exchange
in our example in Figure 14. When comparing the schema
broadcasting mechanism to handling self-describing records,
a broadcasted schema represents a batch of records, whereas
the redundant schemas embedded in self-describing records
are carried through the operators on a record-by-record basis.
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Thus, transmitting the schema once per partition instead of
once per record is more efficient.

3.4.2 Processing Compacted Records
One notable difference between the vector-based format

and the ADM physical format is the time complexity of
accessing a value (as discussed in Section 3.3.1). The As-
terixDB query optimizer can move field access expressions
within the plan when doing so is advantageous. For in-
stance, the query optimizer inlines field access expressions
with WHERE clause conjunct expressions as in the example:

emp.age > 25 AND emp.name = “Ann”

The inlined field access expression emp.name is evaluated
only if the expression emp.age > 25 is true. However, in
the vector-based format, each field access requires a linear
scan on the record’s vectors, which could be expensive. To
minimize the cost of scanning the record’s vectors, we added
one rewrite rule to the AsterixDB query optimizer to con-
solidate field access expressions into a single function ex-
pression. Therefore, the two field access expressions in our
example will be written as follows:

[$age, $name] ← getV alues(emp, “age”, “name”)

The function getV alues() takes a record and path expres-
sions as inputs and outputs the requested values of the pro-
vided path expressions. The two output values are assigned
to two variables $age and $name and the final conjunct ex-
pression of our WHERE clause example is transformed as:

$age > 25 AND $name = “Ann”

The function getV alues() is also used for accessing ar-
ray items by providing the item’s index. For example, the
expression emp.dependents[0].name is translated as follows:

[$d name] ← getV alues(emp, “dependents”, 0, “name”)

Additionally, we allow “wildcard” index to access nested
values of all items of an array. For instance, the output of
the expression emp.dependents[∗].name is an array of all
names’ values in the array of objects dependents.

4. EXPERIMENTS
In this section, we experimentally evaluate the implemen-

tation of our tuple compactor in AsterixDB. In our exper-
iments, we compare our compacted record approach with
AsterixDB’s current closed and open records in terms of (i)
on-disk storage size after data ingestion, (ii) data ingestion
rate, and (iii) the performance of analytical queries. Addi-
tionally, we evaluated the performance of accessing values in
records in the vector-based format (Section 3.3.1) with and
without the optimizations explained in Section 3.4.2.

We also conducted additional experiments, summarized
in Section 4.5 and detailed in our extended paper [17], to
further evaluate other aspects of the proposed framework.

Experiment Setup We conducted our initial experiments
using a single machine with an 8-core (Intel i9-9900K) pro-
cessor and 32GB of main memory. The machine is equipped
with two storage drive technologies SATA SSD and NVMe
SSD, both of which have 1TB of capacity. The SATA SSD
drive can deliver up to 550 MB/s for sequential read and
520 MB/s for sequential write, and the NVMe SSD drive
can deliver up to 3400 MB/s for sequential read and 2500
MB/s for sequential write.

We used AsterixDB v9.5.0 after extending it with our tu-
ple compaction framework. We configured AsterixDB with

15GB of total memory, where we allocated 10GB for the
buffer cache and 2GB for the in-memory component bud-
get. The remaining 3GB is allocated as temporary buffers
for operations such as sort and join. Throughout our exper-
iments, we also evaluate the impact of our page-level com-
pression (detailed in [17]) using Snappy [13] on the storage
size, data ingestion rate, and query performance.

Schema Configuration. In our experiments, we evalu-
ated the storage size, data ingestion rate, and query per-
formance when defining a dataset as (i) open, (ii) closed,
and (iii) inferred using our tuple compactor. For the open
and inferred datasets, we only declare the primary key field,
whereas in closed datasets, we pre-declare all the fields. The
records of open and closed datasets are stored using the
ADM physical format, whereas the inferred datasets are us-
ing the new vector-based format. Note that the AsterixDB
open case is similar to what schema-less NoSQL systems,
like MongoDB and Couchbase, do for storage.

4.1 Datasets
In our experiments, we used three datasets (two of which

are listed in Table 1) that differ in terms of their records’
structure, size, and value types. The third one, with more
field heterogeneity, is included in [17].

Table 1: Datasets summary
Twitter Sensors

Source Scaled Synthetic
Total Size 200GB 122GB
# of Records 77.6M 25M
Record Size ∼2.7KB 5.1KB
Max. Depth 8 3
# of values (min, max, avg) 53, 208, 88 248, 248, 248
Dominant Type String Double

Using the first dataset, we want to evaluate ingesting and
querying social network data. We obtained a sample of
tweets using the Twitter API [14]. Due to the daily limit of
the number of tweets that one can collect from the Twitter
API, we replicated the collected tweets ten times to have
200GB worth of tweets in total. Replicating the data would
not affect the experiment results as (i) the tuple compactor’s
scope is the records’ metadata (not the values) and (ii) the
original data is larger than the compressible page size.

To evaluate more numeric Internet of Things (IoT)-like
workloads, we generated a second synthetic dataset that
mimics data generated by sensors. Each record in the sen-
sors’ dataset contains captured readings and their times-
tamps along with other information that monitors the health
status of the sensor. The sensor data contains mostly nu-
merical values and has a larger field-name-size to value-size
ratio. The total size of the raw Sensors data is 122GB.

4.2 Storage Size
In this experiment, we evaluate the on-disk storage size

after ingesting the Twitter and the Sensors datasets into As-
terixDB using the three formats (open, closed and inferred)
and we compare it with MongoDB’s storage size. Our goal of
comparing with MongoDB’s size is simply to show that the
compressed open case is comparable to what other NoSQL
systems take for storage using the same compression scheme
(Snappy). (It is not the focus of this paper to compare both
systems’ data ingestion and query performance.)

We first evaluate the total on-disk sizes after ingesting
the data into the open, closed and inferred datasets. We
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Figure 15: On-disk sizes

begin with the Twitter dataset. Figure 15a shows its total
on-disk sizes. We see that the inferred and closed schema
datasets have lower storage footprints compared to the open
schema dataset, as both avoid storing field names in each
record. When compression is enabled, both formats still
have smaller size compared to the open format and to Mon-
goDB’s compressed collection size. The size of the inferred
dataset is slightly smaller than the closed schema dataset
since the vector-based format does not store offsets for ev-
ery nested value (as opposed to the ADM physical format
in the closed schema dataset).

The Sensors dataset contains only numerical values that
describe the sensors’ status along with their captured read-
ings, so this dataset’s field name size to value size ratio is
higher compared to the previous datasets. Figure 15b shows
that, in the uncompressed dataset, the closed and inferred
datasets have about 2x and 4.3x less storage overhead, re-
spectively, than the open dataset. The additional savings for
the inferred dataset results from eliminating the offsets for
readings objects, which contain reading values along with
their timestamps — {"value": double, "timestamp": bigint}.
Compression reduced the open and closed dataset sizes by
a factor of 6.2 and 3.8, respectively, as compared to their
uncompressed counterparts. For the inferred dataset, com-
pression reduced its size only by a factor of 2.1. This in-
dicates that both the open and closed dataset records in-
curred higher storage overhead from storing redundant off-
sets for nested fixed-length values (readings objects). As in
the Twitter, the sizes of both the compressed open dataset
in AsterixDB and the compressed collection in MongoDB
were comparable in the Sensors dataset.

To summarize our findings, both the syntactic (page-level
compression) and semantic (tuple compactor) approaches
alleviated the storage overhead as shown in Figure 15. The
syntactic approach was more effective than the semantic ap-
proach for the Twitter dataset. For the Sensors dataset, the
semantic approach (with our vector-based format) was more
effective for the reasons explained earlier. When combined,
the approaches were able to reduce the overall storage sizes
by 5x and 9.8x for the Twitter and Sensors datasets, respec-
tively, compared to the open schema case in AsterixDB.

4.3 Ingestion Performance
We evaluated the performance of continuous data inges-

tion for the different formats using AsterixDB’s data feeds
for the Twitter dataset. We first evaluate the insert-only in-
gestion performance, without updates. In the second experi-
ment, we evaluate the ingestion performance for an update-
intensive workload, where previously ingested records are
updated by either adding or removing fields or changing the
types of existing data values. The latter experiment mea-
sures the overhead caused by performing point lookups to
get the anti-schemas of previously ingested records. The
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Figure 16: Data ingestion performance (Twitter Dataset)

Sensor dataset was also ingested through a data feed and
showed similar behavior to the Twitter dataset; we omit
these results here to conserve space. In [17], we evaluated

Data Feed (Insert-only). To evaluate the performance of
continuous data ingestion, we measured the time to ingest
the Twitter dataset using a data-feed to emulate Twitter’s
firehose. We set the maximum mergeable component size to
1GB and the maximum tolerable number of components to
5, after which the tree manager triggers a merge operation.

Figure 16a shows the time needed to complete the data
ingestion for the 200GB Twitter dataset. Ingesting records
into the inferred dataset took less time than ingesting into
the open and closed datasets. Two factors played a role in
the data ingestion rate. First, we observed that the record
construction cost of the system’s current ADM physical for-
mat was higher than the vector-based format by ∼40%. Due
to its recursive nature, the ADM physical format requires
copying the values of the child to the parent from the leaf
to the root of the record, which means multiple memory
copy operations for the same value. Closed records took
even more time to enforce the integrity constraints such as
the presence and types of none-nullable fields. The second
factor was the IO cost of the flush operation. We noticed
that the inferred dataset’s flushed on-disk components are
∼50% and ∼25% smaller than the open and closed datasets,
respectively. This is due to the fact that compacted records
in the vector-based format were smaller in size than the
closed and open records in ADM format (see Figure 15a).
Thus, the cost of writing larger LSM components of both
open and closed datasets was higher.

The ingestion rate for the SATA SSD and the NVMe
SSD were comparable, as both were actually bottlenecked
by flushing transaction log records to the disk. Enabling
compression had a slight negative impact on the ingestion
rate for each format due to the additional CPU cost.

Data Feed (50% Updates). As explained in Sec-
tion 3.2.2, updates require point lookups to maintain the
schema, which can negatively impact the data ingestion
rate. We evaluated the ingestion performance for update-
intensive workload when the tuple compactor is enabled. In
this experiment, we randomly updated 50% of the previ-
ously ingested records by either adding or removing fields
or changing existing value types. The updates followed a
uniform distribution, where all records are updated equally.
We created a primary key index, as suggested in [29, 30], to
reduce the cost of point lookups of non-existent (new) keys.
Figure 16b shows the ingestion time of Twitter dataset, us-
ing the NVMe SSD drive, for the open, closed and inferred
datasets with updates. The ingestion times for both open
and closed datasets were about the same as with no updates
(Figure 16a). For the inferred dataset, the ingestion time
with updates took ∼27% and ∼23% more time for the un-
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compressed and compressed datasets, respectively, as com-
pared to no updates. The ingestion times of the inferred
and open datasets were comparable and took less time than
the closed dataset.

LSM Write-amplification. Continuous data ingestion
from a data feed is sensitive to LSM configurations such
as the merge-policy and the memory budget. AsterixDB’s
default “prefix-merge” policy [19] could then suffer from
higher write-amplification by repeatedly merging smaller on-
disk components until their combined size reaches a certain
threshold. To eliminate those factors, we also evaluated the
performance of bulkloading (detailed in [17]), which builds
a single on-disk component for the loaded dataset. We ob-
served that the cost of building the primary index was higher
for both the open and closed schema datasets for the same
reasons explained earlier and the cost of the LSM write am-
plification did not change the trends in Figure 16a.

4.4 Query Performance
We next evaluated the impact of our work on query per-

formance by running analytical queries against the ingested
Twitter and Sensor datasets. The objective of our experi-
ments is to evaluate the IO cost of querying against open,
closed, and inferred datasets. Each executed query was re-
peated 6 times and we report the average execution time of
the last 5. All queries are listed in [17].

4.4.1 Twitter Dataset
We ran four queries against the Twitter dataset:

Q1. The number of records in the dataset — COUNT(∗).
Q2. The top ten users whose tweets’ average length are the

largest — GROUP BY/ORDER BY.
Q3. The top ten users who have the largest number of

tweets that contain a popular hashtag — EXISTS/

GROUP BY/ORDER BY.
Q4. All records of the dataset ordered by the tweets’ post-

ing timestamps — SELECT ∗/ORDER BY
2.

Figure 17 shows the execution time for the four queries in
the three datasets (open, closed, and inferred) when the data
is on the SATA SSD drive and the NVMe SSD drive. On
the SATA SSD, the execution times of the four queries, with
and without compression, correlated with their on-disk sizes
from Figure 15a. This correlation indicates that the IO cost
dominates the execution time. However, on the NVMe SSD
drive, the CPU cost becomes more evident, especially when
page-level compression is enabled. For Q2 and Q4, the ∼2x
reduction in storage after compression reduced their execu-
tion times in the SATA case in all three datasets. However,
the execution times for Q2 and Q4 in the closed and inferred
datasets did not improve as much after compression in the
NVMe case, as the CPU became the bottleneck here. Q3,
which filters out all records that do not contain the required
hashtag, took less time to execute in the inferred dataset.
This is due to the way that nested values of records in the
vector-based format are accessed. In the Twitter dataset,
hashtags are modeled as an array of objects; each object
contains the hashtag text and its position in the tweet’s
text. We consolidate field access expressions for records in
the vector-based format (Section 3.4.2), and the query opti-
mizer was able to push the consolidated field access through

2In Q4, we report only the time for executing the query,
excluding the time for actually retrieving the final formatted
query result.

the unnest operation and extract only the hashtag text in-
stead of the hashtag objects. Consequently, Q3’s intermedi-
ate result size was smaller in the inferred dataset compared
to the other two datasets, and executing Q3 against the in-
ferred dataset was faster.
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Figure 17: Query execution for the Twitter dataset

4.4.2 Sensors Dataset
We again ran four queries:

Q1. The number of records in the dataset — COUNT(∗).
Q2. The minimum and maximum reading values that were

ever recorded across all sensors — UNNEST/GROUP BY.
Q3. The IDs of the top ten sensors that have recorded the

highest average reading value — UNNEST/GROUP BY/
ORDER BY.

Q4. Similar to Q4, but look for the recorded readings in a
given day — WHERE/UNNEST/GROUP BY/ORDER BY
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Figure 18: Query execution time for the Sensors dataset.

The execution times are shown in Figure 18. The exe-
cution times for Q1 on both uncompressed and compressed
datasets correlate with the storage sizes of the datasets from
Figure 15b. Q2 and Q3 exhibit the effect of consolidat-
ing and pushing down field value accesses of vector-based
format, where both queries took significantly less time to
execute in the inferred dataset. However, pushing the field
access down is not always advantageous. When compression
is enabled, the execution time of Q4 for the inferred dataset
using NVMe SSD was the slowest. This is because the con-
solidated field accesses (of sensor ID, reading and reporting
timestamp) are evaluated before filtering using a highly se-
lective predicate (0.001%). In the open and closed datasets,
delaying the evaluation of field accesses until after the filter
for Q4 was beneficial. However, the execution times for the
inferred dataset was comparable to the open case.

4.4.3 Impact of the Vector-based Optimizations
As we showed in our experiments, the time it takes for

ingesting and querying records in the vector-based format
(inferred) was smaller even when the schema is fully declared
for the ADM format (closed). This is due to fact that the
vector-baed format encodes nested values more efficiently
using only the type tags (as in Section 3.3.1). To measure
the impact of the newly proposed format, we reevaluate the
storage size of the vector-based without inferring the schema
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or compacting the records (i.e., a schema-less version using
the vector-based format), which we refer to as SL-VB.

In Figure 19a, we see the total sizes of the four datasets
open, closed, inferred, and SL-VB after ingesting the Twit-
ter dataset. We see that the SL-VB dataset is smaller than
the open dataset but slightly larger than the closed one.
More specifically, about half of the storage savings in the
inferred dataset (compared to the open dataset) is from the
more efficient encoding of nested values in the vector-based
format, and the other half is from compacting the record.
For the Sensors dataset, Figure 19b shows a similar pat-
tern; however, the SL-VB Sensors dataset is smaller than
the closed dataset for the reasons explained in Section 4.2.
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Figure 19: Impact of the vector-based format on storage

Also, we showed that our optimizations of consolidating
and pushing down field access expressions can tremendously
improve query execution time. To isolate the factors that
contributed to the performance gains, we reevaluated the
execution times for Q2-Q4 of the Sensors dataset with and
without these optimizations using the NVMe storage device.
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Figure 20: Impact of consolidating field access expressions

The execution times of the queries are shown in Fig-
ure 20. We refer to Inferred (un-op) as querying the inferred
dataset without our optimization of consolidating and push-
ing down field access expressions. When not consolidated,
the linear-time field accesses of the vector-based format are
performed as many times as there are field access expres-
sions in the query. For instance, Q3 has three field access
expressions. Each field access requires scanning the record’s
vectors, which is expensive. Additionally, the size of the in-
termediate results of Q2 and Q3 were then larger (array of
objects vs. array of doubles). As a result, Q2 and Q3 took
twice as much time to finish for Inferred (un-op). Q2 was
still faster to execute in the Inferred (un-op) case than in the
closed case, whereas Q3 took slightly more time to execute.
Finally, delaying the field accesses improved the execution
time for queries with highly selective predicates, such as Q4.

4.5 Summary of Additional Experiments
We conducted additional experiments using the Twitter

dataset to evaluate (i) the storage size and construction time
of the vector-based format in comparison with schema-based
formats; namely, Apache Avro, Apache Thrift and Google
Protocol Buffers, (ii) the impact of the linear access in the

vector-based format, (iii) the query performance with the
presence of a secondary index, and (iv) the cluster scalability
using Amazon EC2 instances.

Other formats, such as Apache Avro [4], Apache Thrift
[8], and Google Protocol Buffers [12], also exploit schemas
to store semi-structured data more efficiently. In fact, pro-
viding a schema is not optional for writing records in such
formats — as opposed to the vector-based format, where the
schema is optional. Nonetheless, we compared the vector-
based format to Apache Avro, Apache Thrift using both
Binary Protocol (BP) and Compact Protocol (CP), and Pro-
tocol Buffers to evaluate 1) the storage size and 2) the time
needed to construct the records in each format using 52MB
of the Twitter dataset. Table 2 summarizes the result of our
experiment. We see that the storage sizes of the different for-
mats were mostly comparable. In terms of the time needed
to construct the records, Apache Thrift (for both protocols)
took the least construction time followed by the vector-based
format. Apache Avro and Protocol Buffers took 1.9x and
2.9x more time to construct the records compared to the
vector-based format, respectively.

Table 2: Writing 52MB of Tweets in different formats

Space (MB) Time (msec)
Avro 27.49 954.90
Thrift (BP) 34.30 341.05
Thrift (CP) 25.87 370.93
ProtoBuf 27.16 1409.13
Vector-based 29.49 485.48

Accessing values in the vector-based format is sensitive to
the position of the requested value. For instance, accessing a
value that appears first in a record is faster than accessing a
value that resides at the end. To evaluate the impact of the
value’s position, we ran four queries where each counts the
number of appearances of a value. The positions (or indexes)
of those values in the vector-based format were 1, 34, 68, and
136 for Q1, Q2, Q3 and Q4, respectively, where position 1
means the first value in the record and position 136 is the
last. The impact of the value’s position was negligible, and
all queries took less time to execute in the inferred cases due
to the storage savings. However, when all the data fits in-
memory, the CPU cost becomes more apparent. When using
all 8-cores, the execution time for all queries were about the
same for the three datasets. In the case of a single core, the
vector-based format was the slowest to execute Q3 and Q4.

Pirzadeh et al. [34] previously showed that predeclaring
the schema in AsterixDB did not improve (notably) the per-
formance of range-queries with highly selective predicates in
the presence of a secondary index. We evaluated the impact
of having a secondary index (on the timestamp) on query
performance by running different queries with low and high
selective predicates. We modified the scaled Twitter dataset
by generating monotonically increasing values for the at-
tribute timestamp to mimic the time at which users post
their tweets. The storage savings had a negligible impact
on the execution times for the queries with selectivities of
0.001% and 0.01% (as in [34]). However, the execution times
for queries with higher selectivities (0.1%-0.5%) correlated
with the storage sizes (Figure 15a), where the closed and
inferred datasets have lower storage overhead.

Finally, to evaluate the scalability of our approach (in-
cluding the handling of distributed schemas in different par-
titions), we conducted a scale-out experiment using a cluster
of Amazon EC2 instances of type c5d.2xlarge (each with
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16GB of memory and 8 virtual cores). We evaluated the in-
gestion and query performance of the Twitter dataset using
clusters with 4, 8, 16 and 32 nodes. The raw sizes of the
ingested data were 400, 800, 1600 and 3200 GB for the 4,
8, 16 and 32 node clusters, respectively. As expected, we
observed the same trends as seen for the single node clus-
ter (see Figures 15a and 16a), where the inferred dataset
has the lowest storage overhead with the highest data in-
gestion rate. To evaluate query performance, we ran the
same four queries as in Section 4.4.1. All four queries scaled
linearly, as expected, and all four queries were faster in the
inferred dataset. Since the data is shuffled in Q2 and Q3 to
perform the parallel aggregation, each partition broadcasts
its schema to the other nodes in the cluster (Section 3.4.1)
at the start of a query. However, the performance of the
queries was essentially unaffected and were still faster in the
inferred dataset.

5. RELATED WORK
Schema inference for self-describing, semi-structured

data has appeared in early work for Object Exchange Model
(OEM) and later for XML and JSON documents. For OEM
(and later for XML), [27] presented the concept of a data-
guide, which is a summary structure for schema-less semi-
structured documents. A dataguide could be accompanied
with values’ summaries and samples (annotations) about the
data, which we also use in our schema structure to keep the
number of occurrences in each value. In [37], Wang et al.
present an efficient framework for extracting, managing and
querying schema-view of JSON datasets. Their work tar-
geted data exploration, where showing a frequently appear-
ing structure can be good enough. However, in our work,
the purpose of inferring the schema is to use it for compact-
ing and querying the records, so, we infer the exact schema
of the ingested dataset. In another work [26], the authors
detail an approach for automatically inferring and generat-
ing a normalized (flat) schema for JSON-like datasets, which
then can be utilized in an RDBMS to store the data. Our
work here is orthogonal; we target document store systems
with LSM-based storage engines.

Creating secondary indexes is related to declaring at-
tributes in schema-less document stores. Azure Document-
DB [35] and MongoDB support indexing all fields at once
without declaring the indexed fields explicitly. E.g., Mon-
goDB allows users to create an index on all fields using a
wildcard index. Doing so requires the system to “infer” the
fields. Despite the similarities, our objective is different. In
our work, we infer the schema to reduce storage overhead
by compacting records residing in the primary index.

Semantically compacting self-describing, semi-struc-
tured records using schemas appears in popular big data
systems such as Apache Spark [38] and Apache Drill [6]. For
instance, Apache Drill uses schemas of JSON datasets (pro-
vided by the user or inferred by scanning the data) to trans-
form records into a compacted in-memory columnar format
(Apache Arrow [1]). File formats such as Apache Avro,
Apache Thrift, and Google Protocol Buffers use the provided
schema to store nested data in a compacted form. However,
the schema is required for the those formats; whereas it is
optional for the vector-based format. Apache Parquet [7] (or
Google Dremel [31]) use the provided schema to store nested
data in a columnar format to achieve higher compressibil-
ity. An earlier effort to semantically compact and compress
XML data is presented in [21, 28]. Our work is different in

targeting more “row”-oriented document stores with LSM-
based storage engines. Also, we support data values with
heterogeneous types, in contrast to Spark and Parquet.

Exploiting LSM lifecycle events to piggyback other
operations to improve the query execution time is not new by
itself and has been proposed in several contexts [15, 20, 36].
LSM-backed operations can be categorized as either non-
transformative operations, such as computing information
about the ingested data, or transformative operations, e.g.,
in which the records are transformed into a read-optimized
format. An example of a non-transformative operation is
[20], which shows how to utilize the LSM lifecycle operations
to compute range-filters that can accelerate time-correlated
queries by skipping on-disk components that do not satisfy
the filter predicate. [15] proposes a lightweight statistics col-
lection framework that utilizes LSM lifecycle events to com-
pute statistical summaries of ingested data that the query
optimizer can use for cardinality estimation. An example
of a transformative operation is [36], which utilizes LSM-
like operations to transform records in the writeable-store
into a read-optimized format for the readable-store. Our
work utilizes the LSM lifecycle operations to do both (i)
non-transformative operations to infer the schema and (ii)
transformative operations to compact the records.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a tuple compaction frame-

work that addresses the overhead of storing self-describing
records in LSM-based document store systems. Our frame-
work utilizes the flush operations of LSM-based engines to
infer the schema and compact the ingested records with-
out sacrificing the flexibility of schema-less document store
systems. We also addressed the complexities of adopting
such a framework in a distributed setting, where multiple
nodes run independently, without requiring synchronization.
We further introduced the vector-based record format, a
compaction-friendly format for semi-structured data. Ex-
periments showed that our tuple compactor is able to reduce
the storage overhead significantly and improve the query
performance of AsterixDB. Moreover, it achieves this with-
out impacting data ingestion performance. In fact, the tuple
compactor and vector-based record format can actually im-
prove data ingestion performance of insert-heavy workloads.
When combined with our page-level compression, we were
able to reduce the total storage size by up to 9.8x and im-
prove query performance by the same factor.

The vector-based format store values (fixed and variable
lengths) contiguously in the same region, which could be
suitable for applying several encoding schemes. We plan to
explore this opportunity for future work.. We also plan to
extend this work to introduce a schema-adaptive columnar-
oriented document store. First, we want to explore the vi-
ability of adopting the PAX [16] page format, which could
potentially eliminate some of the vector-based format over-
heads. In a second direction, we want to explore ideas from
popular static columnar file formats (such as Apache Par-
quet and Apache CarbonData [5]) to build an LSM-ified
columnar indexes for self-describing, semi-structured data.
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