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ABSTRACT
Query performance prediction is vital to many database
tasks (e.g., database monitoring and query scheduling). Ex-
isting methods focus on predicting the performance for a
single query but cannot effectively predict the performance
for concurrent queries, because it is rather hard to capture
the correlations between different queries, e.g., lock conflict
and buffer sharing. To address this problem, we propose a
performance prediction system for concurrent queries using
a graph embedding based model. To the best of our knowl-
edge, this is the first graph-embedding-based performance
prediction model for concurrent queries. We first propose a
graph model to encode query features, where each vertex is a
node in the query plan of a query and each edge between two
vertices denotes the correlations between them, e.g., sharing
the same table/index or competing resources. We then pro-
pose a prediction model, in which we use a graph embedding
network to encode the graph features and adopt a predic-
tion network to predict query performance using deep learn-
ing. Since workloads may dynamically change, we propose a
graph update and compaction algorithm to adapt to work-
load changes. We have conducted extensive experiments on
real-world datasets, and experimental results showed that
our method outperformed the state-of-the-art approaches.
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1. INTRODUCTION
Query performance prediction is a vital task in database

systems to meet the service level agreements (SLAs), which
can benefit many database applications, such as transaction
scheduling [11], parameter tuning [16], and progress mon-
itoring [21]. Traditional prediction methods are designed
for single queries [29, 31] and they cannot effectively pre-
dict the performance for concurrent queries, because they
cannot capture the correlations between concurrent queries,
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e.g., global buffer sharing and lock conflict, which can signif-
icantly affect the query performance of concurrent queries.

There are some studies on performance prediction for con-
current queries. BAL [8] captures logical I/O metrics (e.g.,
page access time) and neglects many resource-related fea-
tures (e.g., buffer size, computation costs), and cannot ef-
fectively predict the performance. Besides, BAL [8] uses
linear regression and cannot get accurate prediction results
for complex features. DL [20] uses neural units to learn from
query plans and does not consider many potential relations
between concurrent queries (e.g., data/resource conflicts).
Moreover, these methods cannot effectively predict the per-
formance when the queries dynamically change.

To address these problems, we propose a performance pre-
diction system GPredictor using graph embedding, which
provides real-time query performance prediction for concur-
rent and dynamic workloads. GPredictor first uses a graph
model to represent the workload characteristics, in which
the vertices represent operator features extracted from query
plans and edges between two operators denote the query cor-
relations and resource competitions between them. Then
GPredictor feeds the workload graph into the prediction
model, and we propose a graph embedding algorithm to em-
bed graph features and design a deep learning model to pre-
dict query performance. Moreover, if a graph is too large, it
may affect the prediction efficiency. So we propose a graph
update and compaction algorithm, which removes redun-
dant vertices and combines similar vertices.

Contributions: We make the following contributions.
(1) We propose a graph-embedding model to predict the
query performance of concurrent queries. To the best of our
knowledge, this is the first performance prediction system
that uses graph embedding to predict query performance of
concurrent and dynamic workloads (see Section 2).
(2) We propose a graph-structured workload model to cap-
ture features of query operators and the correlations between
different operators, e.g., data sharing/conflict, and resource
competition (see Section 3).
(3) We propose a graph-based prediction model to pre-
dict query performance in a workload graph by (i) learn-
ing the performance-related features using a graph embed-
ding method; (ii) learning high-dimensional mapping from
embedded features to performance using deep learning (see
Section 4).
(4) For dynamic workloads, we adaptively predict the per-
formance on the workload graph. And we propose a graph
compaction algorithm to reduce the graph size and cut down
the prediction overhead (see Section 5).

1416



(5) We have conducted extensive experiments on different
workloads and running environments. Experimental results
showed that GPredictor achieved high accuracy and out-
performed the state-of-the-art methods (see Section 6).

2. SYSTEM OVERVIEW
Architecture. Given a query workload with multiple
concurrent queries, GPredictor aims to predict the execu-
tion time of each query. Figure 1 shows the architecture of
GPredictor, which mainly includes three modules. First,
Workload2Graph extracts features from the query workload
that may affect the query performance of concurrent queries.
For example, it extracts physical operators from the query
plans, and obtains the correlations between different opera-
tors, e.g., data sharing between operators and lock conflicts
between operators. It also collects statistics (e.g., database
configuration values, active tasks) from database system
views. Then Workload2Graph uses these features to char-
acterize the behaviors of concurrent queries in the form of
a graph, where the vertices are operators in the queries and
the edges are the correlations between two operators (see
Section 3). Then PerformancePredictor adopts a graph-
based learning model to embed the graph, and predicts the
query performance using a deep learning model (see Sec-
tion 4). Note that PerformancePredictor first predicts the
latency of each vertex in the graph, with which we derive the
latency of each concurrent query. Next GraphOptimizer op-
timizes the graph model from two aspects. Graph Updater

updates the graph for dynamic workloads by inserting new
queries and removing finished queries. Graph Compactor

compacts the graph by merging the vertices that may be
executed concurrently in order to reduce the graph size and
prediction overhead (see Section 5).

Workflow. When a new query comes, Workload2Graph ex-
tracts its operator features from the query plan, inserts these
operators into the workload graph as new vertices, and up-
dates the edges of the graph model. Then GraphOptimizer

compacts the graph by aggregating some vertices. Next
PerformancePredictor embeds the graph into vectors, up-
dates the embedded vectors whose local graph features have
changed, and re-predicts the performance of all queries un-
der execution. When some operators are complete, Graph

Updater updates the graph by removing the corresponding
vertices. Then PerformancePredictor re-predicts the query
performance of all queries under execution.

Figure 2 shows a running example of building workload
model for four concurrent queries. We first extract the
query plan for each query, take nodes in the plans as ver-
tices, add some edges between the query nodes (e.g., data-
sharing/lock-conflict relationships between different nodes),
and generate a graph. Then we embed the vertices and edges
into a vertex matrix and an edge matrix. Next we predict
the performance based on the two matrices.

Remark: We assume that (1) we get a query plan from the
database before execution, and do not consider pipelined
query execution; (2) the plan will not change during execu-
tion, and we do not consider adaptive query processing.

3. GRAPH MODEL FOR CONCURRENT
WORKLOADS

In this section we study how to characterize concurrent
queries. There are two main challenges in concurrent query
modeling. First, concurrent queries in a workload may have
different numbers of operators, and it is hard to model the
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Figure 1: The GPredictor Architecture

queries using traditional fix-length encoding methods. Sec-
ond, it requires us to capture the correlations between differ-
ent operators. Note operators in a concurrent workload may
have different relationships (e.g., buffer sharing, data con-
flict), which is hard to be represented using traditional mod-
eling methods (e.g., linear regression, statistic model). To
address this problem, we propose a graph-structured work-
load model, which is composed of two matrices, vertex ma-
trix and edge matrix, and we use the two matrices to predict
the performance of concurrent queries.

3.1 Graph Model
Given a set of concurrent queries in a workload, we ex-

tract the query plan tree for each query. Then we add edges
between different operators in the plan trees (e.g., buffer
sharing, data conflicts, resource competition), which forms
a graph to represent the workload characteristics. For ex-
ample, Figure 2 shows the graph model for four queries. We
extract 14 operators and add 20 relationships between them.

Definition 1 (Graph Model). Given a set of queries,
we model the queries into a graph. The vertices are physical
operators in the query plans and each represents the features
of corresponding operator. There is an edge between two op-
erators if they satisfy one of the following relationships:
(1) parent-child relationship in the same query plan;
(2) data-sharing: they access the same data, i.e., visiting
the same table or index;
(3) data-conflict: they have read-write/write-write access
conflicts;
(4) resource-competition: they compete the resource at the
same time, e.g., competing memory, CPU, I/O bandwidth;

Next we introduce the details of constructing a graph.

3.1.1 Vertex Modeling
Vertices are physical operators in the query plan tree.

Each vertex contains key features of the corresponding op-
erator, including estimated execution cost, operator type,
predicates, and sample bitmap.

Estimated Cost. The execution cost of an operator in-
cludes the size of the input table and the complexity of
executing the operator (e.g., CPU time to process all the
tuples). We use the cost values provided by the database op-
timizer to estimate the actual execution cost [29]. To avoid
large errors in cost estimation [15], we tune the parameters
in the cost model (e.g., seq page cost, cpu tuple cost) based
on the hardware statistics before extracting cost values.

Operator Type. Each operator in the execution plan rep-
resents a type of data manipulation operation on database
tuples, including aggregation, hash join, sequential scan, etc.
These physical operators decide the resources required for
processing these operators. We encode operation types into
one-hot. As Figure 2 shows, for vertex v3, it is a sequence
scan operator and is encoded into “001000” based on the
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Figure 2: An Example Graph Modeling of Four Concurrent Queries (∆: the weight of time overlap).

encoding table. As the number of database operators is lim-
ited, we can pre-define the size of operation types.

Predicates. Predicates are the filter/join conditions
in an operator. On one hand, predicates affect the
cost of operator execution, because different predicates
may access different tuples. On the other hand, pred-
icates can capture the similarity of data access, e.g.,
“aka name.id>1000” and “aka name.id>990”. To encode
a predicate (e.g., aka name.id>225 or aka name.id<50 or
aka name.name=‘Julie’), we adopt the method used in car-
dinality estimation [25], which encodes each condition in the
predicate into a one-hot vector and then concatenates these
vectors in a depth-first order.

Sample Bitmap. For each table, we sample some tuples.
With sample tuples, we can execute the operator, get the
query result on those tuples, and use it to provide an ap-
proximation of the query cost. Moreover, in case of skewed
data, we use stratified sampling [13], which better covers
distinct tuples with limited feature bits.

Vertex Formulation. For a vertex vi, we denote features
of Cost, Operator Type, Predicates, Sample Bitmap as Ci,
Oi, Pri, Si. We concatenate these features and formulate
the vertex feature vector as: Vi = [Ĉi, Ôi, P̂ ri, Ŝi], where

Ĉi, Ôi, P̂ ri, Ŝi are the normalized features of Ci, Oi, Pri, Si

respectively. We use estimated cost Ĉj and operator type Ôi

to reflect query features, and use predicate P̂ ri and sample
bitmap Ŝi to reflect data features (e.g., the accessed data
ranges). For example, in Figure 2, the feature vector of v4
is (18.88, 001000, 11...111, Padding), where the predicate
feature is padded with 0, because v4 has no predicate.

3.1.2 Edge Modeling
The execution of concurrent queries has the following fea-

tures: (1) There are data dependencies between operators in
the same query plan; (2) Data in the shared buffer is avail-
able for multiple queries, bringing in data sharing and con-
flicts; (3) Resources allocation is affected by database config-
urations (e.g., Work Mem, Max Connections). We use edges
to capture potential correlations between vertices. We con-
sider four types of correlations to add edges, and other types
of correlations can be easily integrated into our method.

(1) Parent-Child Relationship. In the query plan tree
of a query, parent-child relationships capture the data flow
between different vertices. First, the start time of a parent
vertex depends on the finish time of its children. Second, the
resource usage of a parent vertex depends on the result size

passed from its children. Thus the parent-child relationship
should be used to predict the performance.

(2) Data Sharing. Different operators may share the same
data. If one operator loads the data into memory, other
operators sharing the data can directly utilize the cached
data and thus can reduce the computation cost. There are
three categories of data sharing,

1) Index Sharing. Different operators may utilize the same
index. If one query operator already uses the indexes and
caches some information, the cached information can benefit
other queries. For example, on the same table aka name,
both Hash Scan (id > 90) and Hash (id=100) can use the
index index id of aka name.

2) Table Sharing. Different operators may scan the same
table. If one query operator loads the table (or a part) into
memory, other query operators can utilize the cached data.
For example, in Figure 2, the operators of vertex v5 and
vertex v4 use the same table aka name.

3) Intermediate Results Sharing. Database may cache fre-
quently accessed intermediate results for data sharing be-
tween operators. The vertex with the same sub-tree in the
query plan will share the same intermediate results. We add
an edge between two vertices if they have the same sub-tree.
In Figure 2, vertex v10 and vertex v9 may share the same
intermediate results, because they have the same sub-query.

(3) Data Conflict. Different operators may have data
conflict, e.g., read-write, write-write conflicts on tables and
indexes. The conflict data may be locked and this will affect
the concurrency. Formally, if two operators manipulate the
same data and at least one of them is a write operator,
there could be data-conflict relationship between them. For
example, in Figure 2, there is data-conflict relationship from
vertex v11 to vertex v5, because vertex v11 updates table
aka name and comes earlier than vertex v5. So vertex v5
may wait for the lock until vertex v11 finishes. We evaluate
whether two operators have conflict based on their starting
time. For any operator o of query q, we denote its starting
time as tq+co, where tq is the commit time of query q, and
co is the startup time of operator o related to the commit
time of query q. co is estimated by the database optimizer.

(4) Resource Competition. There may be resource com-
petition between two concurrent operators. First, for ana-
lytical queries, memory size is usually the bottleneck. When
conducting too many large-scale join operators, the data
may move to disk and affect the efficiency. Second, for
transactional tasks, we have two observations. (1) The num-
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ber of concurrent queries may be larger and the concur-
rency level is limited by the maximal connection threshold.
(2) There are frequent I/O operations and so the I/O band-
width can be the bottleneck. So here we mainly consider
memory, CPU, and I/O bandwidth competitions, which are
controlled by database parameters. For example, in Post-
greSQL, work mem controls the size of memory space; and
max connections controls the maximum connection num-
bers; effective io concurrency sets the number of concur-
rent disk I/O operations. Note the parameters of memory
and I/O are usually positively related to query performance;
while the parameters of concurrency control may take nega-
tive effects, as they may bring more operator competitions.

Execution Time Overlap. For vertices vi, vj , if they
have no execution time overlap, we can assume they have
no resource/lock conflicts and less possibility of data shar-
ing; otherwise, the larger the overlap is, the higher possi-
bility of query conflict is. Thus we need to consider the
execution overlap when adding an edge, which affects the
strengths of the four relationships. Formally, let si/ei de-
note the start/execution time of vertex vi. Then, we use
∆i,j to denote the time overlap factor:

∆i,j =

{
0, si + ei < sj
si+ei−sj

ej
, si + ei ≥ sj

(1)

Note that, when the learning model converges, we directly
replace the start/end time with the model outputs.

3.2 Graph Construction
We formulate the procedure of graph construction using

the extracted features (vertices) and relationships between
vertices. As shown in Figure 2, the workload graph is de-
fined as G = (V,E), where V is the vertex matrix with each
row representing the feature vector of an operator, and E is
the edge matrix with each entry (i, j) representing the rela-
tionships between vi and vj . Next, we present the details of
constructing the graph for a given workload. We will discuss
how to incrementally update the graph in Section 5.1.

Step 1 - Vertex Feature Modeling. For each query,
we first obtain the query plan from the optimizer, and then
extract operator features from the query plan. Next for each
vertex vi, we extract operation type, predicates, operation
cost, and sample bitmap features and generate a vector Vi.
For example, Figure 2 shows the vertex matrix, where each
row is feature vector of a vertex.

Step 2 - Edge Feature Modeling. For each pair (vi, vj),
if they satisfy the four relationships and ∆i,j 6= 0, we add
an edge between them and the weight (µi,j = E[i][j]) is
computed as follows.

(1) If vi and vj have a parent-child relationship, µi,j =
µi,j + ∆i,jλ1, where λ1 is the weight of the parent-child
relationship.

(2) If vi and vj have a data-sharing relationship, µi,j =
µi,j + ∆i,jλ2, where λ2 is the weight of the data-sharing
relationship.

(3) If vi and vj have a data-conflict relationship, µi,j =
µi,j + ∆i,jλ3, where λ3 is the weight of the data-conflict
relationship.

(4) If vi and vj have a resource competition re-
lationship, we consider two aspects. Let Pm de-
note the set of parameters that control memory usage
(e.g., shared buffer, work mem) and I/O bandwidth (e.g.,

effective io concurrency). The larger the memory us-
age is, the smaller the conflict is. Let P c denote the
set of parameters that control concurrency levels (e.g.,
max connections). The larger the concurrency value is, the
larger the conflict is. Thus we set the weight as µi,j =
µi,j + ∆i,j

∏
p∈Pc p

∏
q∈Pm(1− q).

Figure 2 shows the edge matrix, where each cell value is
the weight of an edge between two vertices. For example,
there are data-sharing and resource-competition relation-
ships between v4 and v5. µ4,5=∆4,5λ2+∆4,5

∏
p∈Pc p

∏
q∈Pm

(1− q)=2.013, where ∆4,5 denotes the execution time over-
lap of v4 and v5, P c and Pm denote parameters that control
memory and I/O usage (e.g., work mem) and concurrency
levels (e.g., max connections) respectively. Table 2 shows
the values of P c, Pm in PostgreSQL, normalized into (0,1).

4. PERFORMANCE PREDICTION
We use the vertex matrix and edge matrix to predict

the query performance. There are two challenges in per-
formance prediction for a concurrent workload. Firstly, the
performance-related features are sparsely scattered in the
graph (e.g., for a matrix of 1000×1000, many rows only have
two 1s, meaning that the corresponding operator only has 2
directly related operators). Traditional graph traversal al-
gorithms [24] either directly encode the graph or choose ran-
dom paths, and may not extract useful features. Secondly,
considering a graph with thousands of vertices in high con-
currency scenarios, the prediction is of high dimension and
traditional regression methods are time consuming. To ad-
dress these problems, we propose a graph-based prediction
model, which utilizes a graph embedding algorithm to re-
semble the local and global structures of each vertex and
generalizes neural models to predict query performance.

In this section, we first introduce the architecture of our
performance prediction model in Section 4.1 and then ex-
plain the graph embedding algorithm in Section 4.2 and the
training strategy in Section 4.3; and finally we take exe-
cution time as an example to illustrate the details of our
performance prediction model in Section 4.4.

4.1 Performance Prediction Model
To address the challenges in graph embedding and per-

formance prediction, we propose a performance prediction
model and the framework includes two parts. First, to pro-
file and learn the structure information scattered across the
graph, we propose the Graph Embedding Network that em-
beds the local graph structure for each vertex in the vertex
matrix V and outputs an embedded matrix H. Second, to
predict query performance based on the graph information,
we propose the Graph Prediction Network that learns the
mapping from the embedded matrix H to the performance
metrics (e.g., execution time) in an operator level. Figure 3
shows the model architecture.

Graph Embedding Network aims to embed each vertex
into a vertex vector that captures both the vertex features
and edge features. Obviously, it is expensive to embed all
edges into the vectors. To address this issue, we only em-
bed the edges within K hops to the vertex. To this end,
we embed each vertex based on the layer-wise propagation
rule: for every graph embedding layer, it embeds the fea-
tures and relationships of 1-hop neighbors of all the vertices
in V . Thus by passing through K graph embedding layers,
it embeds the local graph features within K hops for each
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Figure 3: Graph-based Performance Prediction Model.

vertex vi. We have shown that K = 3 achieves the best bal-
ance between accuracy and training time according to the
experimental results (see Section 6.2.1). So we place three
graph embedding layers in the Graph Embedding Network.
Besides, we add a Dropout layer among every two graph em-
bedding layers to avoid overfitting on the training set, which
randomly sets some dimensions to 0 and leads to slight dif-
ference in prediction results each time.

The benefits of Graph Embedding Network are two-fold.
(1) It effectively reduces computation work by extracting
local structure instead of searching the whole graph. (2) It
can concurrently process the local graphs of all the vertices.

Graph Prediction Network aims to predict the per-
formance based on the embedding vector. We adopt a
three-layer perceptron, including input/hidden/output lay-
ers, which is good at deriving performance features from the
embedded matrix H provided by the Graph embedding net-
work. The input layer maps H into preferable feature space
H ′; hidden layer conducts data abstraction on H ′ and out-
puts an abstracted matrix H ′′; and finally the output layer
makes predictions on H ′′ and outputs the performance ma-
trix P . Each vector Pi in P includes execution time, startup
time, memory requirement, and CPU utilization.

For a concurrent workload, this architecture has the fol-
lowing advantages. (1) With large-scale matrix manipula-
tions in the graph layers, we can concurrently predict execu-
tion time for each physical operator in the workload graph.
(2) The training of the model is semi-supervised, and we
only need to label the performance for a part of vertices in
each sample, which saves the training time.

4.2 Graph Embedding Algorithm
We propose a graph embedding algorithm to embed the

graph information in a vertex level. The idea is to ob-
tain the local graph structures of each vertex, conduct non-
linear mapping, and learn the way of embedding graph
features by training network weights. And our algorithm
is based on a layer-wise propagation rule [6] and we can
denote the encoding procedure of the lth layer as Hl =

σl(D−
1
2E′D−

1
2W lHl−1), where Hl is the output of the

lth layer (H0 = V ), σl is the activation function, Di =
[ET

i E:,i]H
l−1 denotes the neighbor vector of vertex vi within

l hops, E′ is the sum of edge matrix and identity matrix,
and W l is the weight matrix which is shared globally by
all the input data. Next we will further explain our graph
embedding algorithm and how to compute Hl in three steps.

Step 1. To prepare the input data, we add self-connection
relationships into the edge matrix E, denoted as E′ = E +
I, where I(i, j) = 1 if i = j and I(i, j) = 0 if i 6= j. In other
words, vertex vi is also connected with itself, and the edge
weight is the largest, representing that the corresponding
feature of vi is most closely related to the performance.

Algorithm 1: GraphEmbedding(L, V,E)

Input: L: the graph embedding network ([σl,W l]);
V : a vertex matrix; E: an edge matrix

1 H = V ;
2 I = an identity matrix with the same dimension as V ;

3 foreach (σl,W l) ∈ L do
4 E = E + I; // Add self-connections
5 Initialize the neighbor matrix D;
6 foreach Ek ∈ E do
7 Dk = [ET

k E:,k] H; // Compressed adjacent
vector

8 H = σl(D−
1
2ED−

1
2W lH);

9 return H ;

Step 2. To learn the neighborhood information, we place
the local information (one hop) inside a high dimension ma-
trix, denoted as Di = [ET

i E:,i]H
l−1, which represents the

neighbor features of each operator vi within l hops. And
then we multiply D, E with the weight matrix W l, which
further embeds the output into features by learning proper
weight values from the loss values iteratively. Weights in W l

are globally shared in the network, i.e., we embed the local
graphs of all the vertices with the common network weights,
which can propagate differences of sub-graphs across the
embedding model and avoid local optimum.

Step 3. To learn different performance metrics, we apply an
activation function σl(∗) after each graph layer l. In above
steps, we only conduct linear operations (e.g., matrix addi-
tion, multiplication), while the activation function conducts
non-linear transformations (e.g., ReLU, Sigmoid) for com-
plex learning tasks. For example, we may need to predict
the startup time and execution time together. The startup
time mainly depends on the execution cost of its sub-plan;
while the execution time mainly depends on the execution
features of the operator. So we add an activation function to
provide more mixed and complex data processing methods
to predict performance.

Neighbor Approximation. The cost of computing the
neighbor matrix D is high for online prediction. Assuming
the vertex number is |V |. Then for each vertex, the com-
plexity of searching the neighbors is O(|V |2), and the total
complexity is O(|V |3), which is too high for online predic-
tion. Hence we approximate W using a truncated expan-
sion by Chebyshev polynomials Tk(V ) to reduce dimension:

W lH ≈
∑l

k=0 θ
′kTk(V ), where l denotes the lth graph layer;

V is the vertex matrix; θ′k is the weight values in the kth
layer; the Chebyshev polynomials Tk(x) is recursively de-
fined as Tk(x) = 2Tk−1(x)−Tk−2(x) (T0(x) = 1, T1(x) = x).
Tk(x) has been proven to significantly reduce the dimensions
of forward transform and save the embedding time [12].
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4.3 Model Training
Training Data. The training data is a set of tuples 〈Q,
Pm, P c, P 〉, where Q is a set of concurrent queries, Pm is
the set of database configurations that control memory and
I/O usage, P c is the set of database configurations that con-
trol concurrency, and P is the real execution performance
of queries in Q. Taking JOB [15] dataset as an example,
we generate 20,187 SQL queries from the 113 query tem-
plates by randomly assembling {Table, Join, Condition,
Aggregate Operation, Column}, and mix them into 1000
queries with concurrency from 10 to 100, which are split into
training, validating, testing sets by 8:1:1. For each workload
in the training set, we extract operators from corresponding
physical plans, predict the performance of all the opera-
tors on the workload graph, and derive query performance
from their root operators. With the operators, we train the
prediction model by updating the layer weights with the
loss values. After the performance converges or arriving the
maximum training iterations, we test the performance on
validation set. If the loss is still too large, we continue to
train the model on this training set; otherwise, the model
is converged on this workload and train the model using
the next workload. After running out of training samples
or the performance is steady, we test the prediction model
on the testing set. We adopt batch gradient descent to en-
hance training efficiency, which predicts the performance for
several workloads together, and computes the gradient and
updates the layer weights in batch.

Loss function. Loss function is vital in graph embed-
ding, which measures the accuracy of graph embedding algo-
rithm between predicted performance and real performance.
There are two challenges to design good loss functions. First,
it may lead to overfitting to train the model using the real
performance of all vertices. Second, it is time-consuming
to get the real performance for all vertices. To address
these challenges, for each workload sample, we randomly
label 80% vertices with real performance, and use both the
labeled and unlabeled vertices to compute the prediction
loss [14]. (1) To reflect the prediction accuracy, we calcu-
late the loss on labeled vertices using the Mean Squared
Error (MSE): L0 = 1

B

∑B
i=1(f(Vi) − yi)

2, where B is the
number of labeled vertices, f(∗) is the prediction model, Vi

is the i-th labeled vertex, and yi is the real performance.
MSE measures average squared error and can minimize the
distance from real values. (2) To smooth the prediction
results across different vertices, we calculate the loss on un-
labeled vertices as a Laplacian regularization term: Lreg =∑

i,j µi,j ||f(Vi)− f(Vj)||, where |f(Vi)− f(Vj)| denotes the
L1 distance, in order to minimize the sum of absolute dif-
ferences [7]. Lreg means that the larger the edge weight
(Vi, Vj) is, the more similar the embedded features of Vi

and Vj should be. So Lreg can work as a penalty to ensure
that the output of two closely linked vertices do not differ
too much. Finally, we denote the overall loss function as:
Ltotal = L0 + γLreg, where γ is a weight factor to tradeoff
the importance between labeled and unlabeled vertices.

4.4 Prediction of Execution Time
Our graph embedding algorithm can be used to predict

different types of query performance (e.g., execution time,
memory requirement, and CPU utilization). Taking execu-
tion time as an example, for each workload, Workload Graph
generates the workload graph G. First, we obtain the ver-

tex matrix V and edge matrix E from G. Second, we input
(V,E) into the graph embedding network and output the
embedded matrix H. Third, the graph prediction network
inputs H and outputs (sti, eti) for each operator vi in the
workload, where sti is the startup time related to the com-
mit time (we need to add the timestamp of different queries
for comparison across queries) and eti is the execution time
of operator vi. For each root vertex vr in the query tree, the
predicted end time of the query is str + etr.

Remark: For every vertex, we do not directly predict its
end time, because there may be overlap between startup/end
time, which may lead to computation redundancy. For ex-
ample, the end time of an operator may be the same as the
start time of its parent. Instead, we predict the startup/exe-
cution time of each vertex and derive the end time of overall
plan tree incrementally, where the end time of the sub-plan
under vertex vj is stj + etj .

5. SUPPORTING DYNAMIC WORKLOADS
Real-world workloads will dynamically change. As more

queries are coming, we add the vertices of these queries into
the graph, and the graph becomes larger and larger. It is too
expensive to execute the whole workload prediction model
every time the workload changes, because it not only wastes
the memory size but also increases the prediction time. To
address this issue, we propose two techniques. The first
dynamically updates the graph by removing some unneces-
sary vertices (see Section 5.1), and the second compacts the
graph by combining some vertices (see Section 5.2).

5.1 Graph Update and Prediction
There are two cases to trigger the graph update. The first

case is adding a new query and the second case is removing
some finished operators. Note that it is expensive to update
the graph too frequently, because the graph updating also
has overhead. To address this issue, we update the graph
if a batch of operators Φ are finished. To obtain Φ, when
we update the graph, we predict the performance of each
operator and keep a constant of operators (e.g., 6) with the
earliest finish time in Φ. If Φ = φ, we update the graph.
Next we present the details on how to update the graph.

Initialization: (1) To estimate the execution progress, we
predict the start/execution time for each operator vi, de-
noted as (sti, eti), with which we estimate the execution
progress of operators and queries. (2) To update the work-
load graph dynamically, we maintain a set Φ to store oper-
ators with the earliest end time.

Algorithm: We update the graph when (1) adding a new
query or (2) a batch of operators finished, i.e., Φ = φ. Al-
gorithm 2 shows the pseudo code.

Case 1: When submitting a new query, we update the
graph in two steps. (1) We extract the query plan tree of
the query, and for each operator in the query, we add it as a
new vertex on the graph. For each vertex, we find correlated
vertices from the graph and add edges to these vertices. We
run the graph embedding and graph prediction algorithms
to predict the performance. (2) We update Φ by adding the
operators with the earliest finish time, which is predicted by
the performance model.

Case 2: When Φ = φ, we remove the finished operators
and the corresponding edges from the graph, run the embed-
ding and prediction algorithms to predict the performance.
We add the operators with the earliest finish time to Φ.
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Algorithm 2: OnlinePrediction

Input: Q: a workload {Q1, Q2, · · · , Q|Q|};
τ : the update degree

1 Initialize an operator set Φ ;
2 Initialize the workload graph G(V,E);
3 while true do
4 if coming a new query Qx then
5 CompactGraph();
6 UpdateGraph-Add(Qx, G);

7 if Φ = φ then
8 UpdateGraph-Remove(G,Φ);

Function UpdateGraph-Add(Qx, G)

Input: Qx: a new workload; G: a workload graph
1 foreach (qk, stk, etk) ∈ Qx do
2 Add feature vector of qk into V ;
3 Add edges of qk into E;

4 Predict the performance of G;
5 Φ = {τ vertices with the earliest end time};
6 return G, Φ;

Function UpdateGraph-Remove(G,Φ)

Input: G: a workload graph;
Φ: an operator set {(qk, etk)}

1 foreach (qk, etk) ∈ Φ do
2 Remove edges and vertices of qk from G;

3 Predict the performance of G;
4 Φ = {τ vertices with the earliest end time};
5 return G, Φ;

Incremental Prediction. Note after updating the graph,
we re-predict the performance of vertices whose local graph
changes. Generally only a small part of vertices may change
in the workload graph and our embedding model can adapt
to structural changes without re-training, and so we adopt
an incremental way to update the performance. Let H de-
note the embedded matrix before update and ∆E denote
the updated edges. We feed ∆E and V into the Graph

Embedding Network and output an incremental matrix ∆H ′.
We input H ′ = H + ∆H into Graph Prediction Network,
and output the updated query performance.

5.2 Graph Compaction and Prediction
Even though we remove redundant vertices from the graph

when workload changes, the graph still can be large with
hundreds of queries and thousands of operators, which bring
more computation and network training overhead. To ad-
dress this issue, we can compact the graph. Intuitively,
GPredictor predicts the performance of every operator in
the workload, but we only need the overall performance of
queries, depending on the longest path in the query tree from
a leaf to the root. For operators not on the longest execution
path of each query tree, we can compact them. Formally, we
compact several vertices into a compound vertex if (1) the
execution time of any two vertices has overlap; (2) any two
vertices have no parent-child/data-sharing/data-conflict re-
lationships. For example, in Figure 4, v2, v5, v6 have time
overlap and do not have direct relationships, so we can com-
pact them into a compound vertex, denoted as c1.

Graph Compaction Problem. Given a graph G(V,E),
we aim to generate a graph G′(V ′, E′) with the minimum
vertex size, such that (1) any vertex in v ∈ V must be in a
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Figure 4: Graph update and compaction.

compound vertex v′ ∈ V ′; (2) for any edge (v, u) ∈ E, there
exists an edge (v′, u′) ∈ E′ where v and u are in compound
vertices v′ and u′ respectively.

We can prove that the graph compaction problem is NP-
hard by an induction from the problem of finding the max-
imum clique. Without loss of generality, we assume that all
vertices have time overlap. Then we compact the vertices
without edges into a compound vertex. To this end, we gen-
erate the complementary graph Ĝ of G, which has the same
vertex set as G. For any two vertices G, if (v, u) ∈ G, then

(v, u) 6∈ Ĝ; otherwise (v, u) ∈ Ĝ. Then we want to find

all the cliques from Ĝ, and the vertices in the same clique
should be merged into the same compound vertex.

Theorem 1. The graph compaction problem is NP-hard.

Compaction Algorithm. Since the graph compaction
problem is NP-hard, we propose an approximate algorithm.
The basic idea is to greedily merge the vertices into a com-
pound vertex. To this end, we propose a two-step algorithm.
The first step compacts the vertices with time overlap into
the same group. The second step splits each group into
compound vertices by cutting the vertices with edges.

Step 1: Grouping Vertices with Time Overlap. This
step aims to cluster the vertices into different groups, where
the vertices in the same graph have time overlap; while the
vertices in different groups have no time overlap. In this way,
the vertices in different groups cannot be compacted and we
only need to compact the vertices in the same group by
checking whether they have edges. To generate the groups,
we can sort the vertices based on their start time. Then we
scan the vertices in order. First we take the first vertex as a
group which has a time span (start time, end time). Then
we visit the second vertex. If the second vertex has time
overlap with the first vertex, we group them together and
update the time span; otherwise we take the second vertex
as a new group. Iteratively, we can generate the groups.
The time complexity of this step is O(|V | log(|V |)).
Step 2: Splitting Groups into Compound Vertices.
This step aims to split the groups into compound vertices
by cutting the edges between vertices. Given a group, we
enumerate the vertices. First, we take the first vertex as a
compound vertex. Then for the second vertex, if it has an
edge with the first vertex; we take it as the second com-
pound vertex; otherwise, we compact it into the first com-
pound vertex. Considering the x-th vertex, we enumerate
every compound vertex. If the vertex has no edge with the
compound vertex, we compact it into this compound vertex;
otherwise we check the next compound vertex. If the vertex
cannot be compacted with any compound vertex, we take
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Table 1: Datasets. JOB is an analytical workload,
and TPC-C, XuetangX are transactional workloads.

Name Table Cardinality Size (G) #Query

JOB 22 20,581,773 1.1 20,187

TPC-C 9 70,785,180 1.3 912,176

XuetangX 14 69,826,530 11.5 22,000

it as a new compact vertex. Iteratively we can generate the
compound vertices. The complexity is O(|V |2).

Feature Encoding. For a compound vertex, we merge the
origin features of those vertices in the compound vertex as
the features of this compound vertex, where the cost is the
maximum estimated cost of those operators; the end time

is the latest of those operators; and the features of operator
type, predicate, and sample bitmap are concatenated and
flattened into a no-zero vector respectively. For an edge be-
tween two compound vertices, we enumerate edges between
the vertices in the two compound vertices, and compute the
sum of the weights of these edges as the weight of this edge.
In this way, we can generate a compacted graph with com-
pacted features and reduce the graph size. Then we can
apply the graph embedding algorithm and graph prediction
model on the compacted graph. Note that we adopt the
same training method on the compact graphs.

6. EXPERIMENTS
We evaluate our proposed techniques and demonstrate

the experimental results of our system from three aspects.
(1) We evaluate the efficiency of GPredictor. (2) We com-
pare the performance of GPredictor with three state-of-the-
art methods [8, 20, 25]. (3) We evaluate the adaptability of
GPredictor to show that GPredictor can adapt to different
workloads and different hardware environments.

6.1 Experiment Setting
We implement GPredictor using Pytorch with Tensor-

Flow as the backend, and process data using Python tools
such as psycopg2, scikit-learn, and numpy to interact with
databases and pre-process data. We conduct our experi-
ments on a server with 128GB RAM, 5TB disk, 4.00GHz
CPU. We use PostgreSQL v11.1.

Datasets. We use three datasets as shown in Table 1.
(1) JOB is an OLAP benchmark. It uses a real-world dataset
IMDB, which contains 22 tables joined on primary keys
and foreign keys, and 20,187 queries, which are generated
from the original 113 queries by randomly combing differ-
ent tables, columns, and predicates; (2) TPC-C is an OLTP
benchmark. It contains 9 tables and 912,176 queries, which
are read and write operations; (3) XuetangX is a real-world
OLTP benchmark (https://www.xuetangx.com/global) for
online education. It has 14 tables with complex foreign key
relations, and 22,000 queries extracted from the log.

Dynamic Workload. To simulate the changes of concur-
rent workloads in real scenarios, we combine queries of JOB,
TPC-C, and XuetangX into different workloads based on the
concurrency level respectively. For example, if the concur-
rency level is 10, we combine every 10 queries as a concurrent
workload Wi and executes them together. GPredictor uses
Wi to update the workload graph and predicts the perfor-
mance of queries in the workload graph, and then actually
run Wi to verify the performance.

Training Data. We train GPredictor to adapt to dif-
ferent workloads, concurrency levels, and resource limita-
tions (e.g., buffer size). So each training sample is in the

form of 〈Q, Pm, P c, P 〉, where Q is a set of queries, |Q|
equals to the concurrency level and |Q| ∈ {10, 50, 100},
Pm is the set of database configurations that control mem-
ory and I/O usage, P c is the set of database configura-
tions that control concurrency. Typical parameter combi-
nations are shown in Table 2. For example, if the concur-
rency level is 50 and there are 418 workloads, we generate
20,900 training samples. We consider 10 typical database
configurations (e.g., work mem=512M, max connections=3,
effective io concurrency=100). We take 80% samples as the
training set, 10% as the validation set, 10% as the test set.

Metrics. We evaluate GPredictor using three metrics.
(1) Error rate: we use the mean squared error (MSE) to

estimate the prediction accuracy, formalized as 1
N

∑N
i=1(Yi−

f(Xi))
2, where N denotes the number of labeled vertices in

a workload, Yi and f(Xi) are the actual and predicted per-
formance values of vertex vi respectively; (2) Prediction

latency: for a workload Wi, the prediction latency is the
time of predicting the latency of all queries in the workload;
(3) Training time: training time includes data preparation
(e.g., extract query plans from the database), and model
training. GPredictor finishes training if the error rate is
lower than 0.01 or arriving the maximum iteration number.

Evaluation Techniques. We compare GPredictor with
three state-of-the-art studies.

1. BAL-based approach: We implement the BAL-based
approach, a state-of-the-art latency prediction method in
workload level [8]. Buffer Access Latency (BAL) is the aver-
age latency of logical I/O operations. This approach collects
the values of BAL and uses a linear regression to make con-
tinuous latency prediction during query execution. It takes
a long time to get relatively accurate results (for days) and
cannot adapt to workload changes quickly.

2. DL-based approach: We implement the deep-learning-
based method, a state-of-the-art latency prediction method
in workload level [20]. It uses deep learning to predict
query latency under concurrency scenarios, including inter-
actions between child operators, parent operators, and par-
allel plans. However, it adopts a pipeline structure (causing
information loss) and fails to capture data sharing/conflict
features and resource limitation information. In PostgreSQL
v11.1, we extract 29 most widely-used operators, and build
and train 29 neural units for each kind of operators.

3. TLSTM-based cost model: We implement the TLSTM-
based cost model, a state-of-the-art cost estimation method
in query level [25]. For each operator in the query plan, it
uses a Long Short-term Memory (LSTM) unit to estimate
the cost of the operator. The input of each LSTM unit is
the features of the operator (e.g., predicates, tables) and the
intermediate results of the child operators, and the output
is the predicted execution cost. And these units are orga-
nized in the tree structure to get the total cost of the query.
The strengths compared with the DL-based method are two-
fold. First, it encodes predicate features as the input of each
LSTM unit, which provide detailed query features. Second,
it uses the LSTM units to replace the neural network units,
which can effectively avoid gradient explosion or vanishing.

6.2 Evaluation on Our Techniques
6.2.1 Evaluation on Embedding Layers

Our graph embedding algorithm is based on the layer-wise
propagation rule, in which the number of graph layers de-
cides the maximum hops of connected vertices (local graph)
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Table 2: Example Database Configurations for Training on PostgreSQL.
Id P1 P2 P3 P4 P5 P6 P7 P8 P9

work mem shared buffers temp buffers max stack maintenance autovacuum max prepared max effective io
depth work mem work mem transactions connections concurrency

1 160 2.0 0.1 0.1 100 100 100 100 10

2 240 4.0 0.1 0.1 100 100 100 100 10

3 1,000 50 25 25 75 75 75 75 250

4 2,200 50 25 25 75 75 75 75 250

5 5,000 95 50 40 50 50 50 50 500

6 7,000 100 50 50 50 50 50 50 500

7 8,000 250 75 75 25 25 25 25 800

8 8,500 560 75 75 25 25 25 25 800

9 10,000 1,000 100 100 10 10 10 10 1,000

10 10,000 1,000 100 100 10 10 10 10 1,000
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Figure 5: Evaluation on Embedding Layers on JOB

that can be used in graph embedding. Hence we evaluate
the impact of different numbers of graph layers to the per-
formance of our prediction model. Figure 5 demonstrates
the results and we make the following observations.

First, GPredictor has similar accuracy trend on three dif-
ferent workloads: when the layer number is smaller than or
equal to 3, the error rate obviously goes down by increas-
ing the layer number. But when the layer number is bigger
than 3, the error rate will not obviously decrease. Second,
when the accuracy of GPredictor goes steady (layer num-
ber > 3), the average error of different workloads is less
than 0.5%: 0.29% for JOB, 0.44% for TPC-C, and 0.38%
for XuetangX. Our method achieves small errors, because
(1) GPredictor captures the “potential” key correlations
between concurrent queries (data passing/data sharing/data
conflict/resource competition) to better reflect the execution
features for the prediction model; (2) GPredictor embeds lo-
cal structures using graph convolution filter and captures the
complex correlations between concurrent queries. It can bet-
ter embed global and local features of the graph, and so there
is less information loss. Our method achieves the best per-
formance on JOB, because (1) the queries are complex (with
nested structures and many joins) and the system noise is
trivial compared with the real execution time; (2) the con-
currency level is relatively low (less than 5). So there are
fewer correlations between queries and it is easier to predict.
Third, the training time of GPredictor on three workloads
is around 1 hour. With increasing the number of layers,
the training time increases, because GPredictor needs to
train larger neural networks. For XuetangX, one-layer graph
takes longer time than 2-layer and 3-layer graphs, because
one-layer graph network mainly considers the directed con-
nected vertices, and the side effects of other vertices cannot
be embedded, and one-layer graph is hard to converge with-
out hidden layers for feature abstraction.

Summary. When the number of graph embedding layers is
3, our model works the best for trade-off between error rate
and training time. Thus we choose 3 in our model.

6.2.2 Evaluation on Graph Update and Compaction
Next we evaluate our graph update and compaction tech-

niques. We compare the accuracy and prediction latency of
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Figure 6: Validation Error on JOB. Graph(N) denotes
GPredictor without update/compaction; Graph(U) de-
notes update only; Graph(C) denotes compaction
only; Graph(UC) denotes GPredictor with update and
compaction. Concurrency level is 50.

four methods, GPredictor without graph update or com-
paction (denoted as Graph(N)), GPredictor with graph up-
date only (denoted as Graph(U)), GPredictor with graph
compaction only (denoted as Graph(C)), and GPredictor

with graph update and compaction (denoted as Graph(UC)).
We train each method with the training set of JOB on Post-
greSQL and the validation results are shown in Figure 6.

Training time. First, Graph(U) converges fastest (around
9 episodes) and takes the least training time (around 20
minutes). By predicting the performance for a query for
multiple times (a batch of operators finish or new queries
income) and taking the average error rate as the loss value,
our graph update algorithm can dynamically remove use-
less vertex and edge information from the graph and itera-
tively gain more accurate results within the same training
times. Second, Graph(C) converges slower than Graph(U) for
two reasons. (1) Generally a compound vertex connects to
more edges than a vertex denoting an operator, whose local
graph structures are also harder to embed. But Graph(C)

can effectively reduce the graph scale and so converges faster
than Graph(N). (2) Graph(C) only predicts the total execu-
tion time and gains one loss value for optimizing network
weights, while Graph(U) predicts for every query and gains
more loss values. Hence, Graph(UC) converges slower than
Graph(U) but faster than Graph(C).

Error rate. First, the four methods all achieve relatively
low error rate (lower than 0.6% after convergence). The rea-
sons are two-fold. (1) We encode performance-related fea-
tures in different dimensions like data, resources, and time
overlap, which can capture differences between database sce-
narios, cut down the impact of outliers caused by feature
lack, and adapt to validation data. (2) The graph model is
good at representing the complex relationships between con-
current queries, and with the deep graph embedding network
we can capture the performance-related structure features
efficiently. Second, Graph(UC) achieves the lowest error rate.
On the one hand, by updating the graph it reduces the ef-
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Figure 7: Performance Comparison with Baselines on the JOB Workloads on PostgreSQL.

Table 3: Prediction Errors on the Test Set of JOB
workloads. The Concurrency Level is 50.

Methods median 90th 95th 99th max mean

BAL 18.31 24.10 25.43 25.79 26.23 20.23

DL 11.28 16.37 16.82 19.37 21.61 12.71

TLSTMCost 5.53 9.36 10.53 12.36 13.39 6.94

Graph(U) 0.23 0.92 1.31 2.41 3.78 0.56

Table 4: Prediction Errors on the Test Set of TPC-C
Workloads. The Concurrency Level is 50.

Methods median 90th 95th 99th max mean

BAL 25.28 29.17 29.51 29.92 30.13 26.81

DL 16.51 20.12 21.18 23.61 25.71 17.16

TLSTMCost 9.75 15.36 16.71 17.03 17.44 10.81

Graph(U) 0.41 2.03 2.23 2.43 2.56 0.46

fects of noise data (useless vertex and edges) and predicts
well on the training set; on the other, by compacting the
graph it generates different simplified graphs, avoids overfit-
ting, and works well on the validation set.

Prediction latency. Prediction latency is vital to online
prediction. Figure 6(b) shows the average prediction la-
tency on the validation set of JOB. First, they all achieve
relatively low latency (lower than 17 ms). And the reasons
are two-fold. (1) The prediction model of GPredictor em-
beds and predicts performance in graph level, where all the
vertices share the same set of network weights. (2) Rather
than encoding the whole graph, the embedding algorithm
of GPredictor selects the local graph features for each ver-
tex. Second, compared with Graph(N), Graph(U) reduces
the prediction latency by removing useless vertices and edges
by about 40.56%; and Graph(C) further reduces the latency
by compacting independent vertices by around 67.88%. So
with both update and compaction, we can effectively reduce
the prediction latency, with 4.37 ms in average.

Summary. GPredictor with update requires less training
time and gains lower error rate; while GPredictor with com-
paction gets slightly higher error rates, but achieves higher
prediction efficiency. By combing update and compaction,
we balance between error rate and prediction latency.

6.3 Performance Comparison
We compare GPredictor with three state-of-the-art meth-

ods, BAL-based method (BAL) [8], DL-based method [20]
(DL), and TLSTM-based method [25] (TLSTMCost). BAL es-
timates the average buffer access latency and uses linear re-
gression to predict query latency for concurrent queries. DL

adopts a plan-structured neural network to predict perfor-
mance for single query, and TLSTMCost uses a tree-structured
LSTM network to predict the cardinality and cost for single
queries. We first compare prediction accuracy, prediction
time, and training time of these methods on the test work-
loads of JOB. The results are shown in Figure 6.2.1, and then
we verify the results on the test workloads of TPC-C and

Table 5: Prediction Errors on the Test Set of Xue-
tangX Workloads. The Concurrency Level is 50.

Methods median 90th 95th 99th max mean

BAL 28.11 30.78 31.13 32.61 33.11 28.94

DL 10.98 14.32 15.75 16.38 17.61 11.83

TLSTMCost 12.65 16.83 17.03 17.91 18.41 14.71

Graph(U) 0.51 1.93 2.07 2.35 2.99 0.68

XuetangX respectively. The prediction results are shown in
Tables 3-5, and we have the following observations.

Error rate. GPredictor outperforms the other methods
in all cases. In Figure 6.2.1, for different concurrency lev-
els, GPredictor has the lowest error rate, around 29.9x
lower than BAL, 22.5x lower than DL, and 11.4x lower than
TLSTMCost on the JOB workloads. The reasons are two-
fold. First, the workload graph of GPredictor encodes oper-
ator vertices features and relationships between concurrent
queries so as to catch complex query correlations. Second,
the graph embedding network in GPredictor can represent
the workload graph structure and improve the generality.
BAL has the worst performance and the reasons are two-

fold. First, it only takes buffer access latency into consid-
eration, and linear regression cannot learn the complex cor-
relations between BAL and actual latency. For example,
with the same value of BAL, query latency may increase if
there is data conflict. Besides, DL and TLSTMCost consider
more operator features and can obtain the plan-structural
information, therefore achieving better accuracy than BAL.
But they cannot directly encode concurrent factors like data
share/resource contentions, which may increase query la-
tency of JOB by over 20%, compared with the latency of
serial execution. And the accuracy of TLSTMCost is better
than DL for two reasons. (1) TLSTMCost considers the pred-
icate and cardinality features, which are important to re-
flect the data the query accesses. (2) TLSTMCost uses LSTM
units. With extra memory channels, LSTM better learn
new knowledge and reserve old knowledge, compared with
the neural units used in DL.

Prediction Latency. As Figure 6.2.1, when the concur-
rency level equals 10, GPredictor takes the least prediction
time; and when the concurrency level increases, GPredictor
outperforms all the other methods. For GPredictor, the
prediction model concurrently predicts the execution time
of all the vertices. It embeds the localized graphs for each
vertex in the workload graph with global trainable weights in
every graph embedding layers. So the total prediction time
for all the concurrent queries is close the time to predict
for the vertex with the largest localized graph. BAL requires
the longest prediction time because it needs to predict the
performance while executing the workload, and takes rela-
tively long time to estimate the BAL values. For DL and
TLSTMCost, on the one hand, they need to propagate inter-
mediate data features across the query plan tree in a bottom-
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Figure 8: Adaptability on Different Workloads.
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Figure 9: Adaptability on Different Configurations.

up fashion, which takes relatively long time to gain the la-
tency of a single query. On the other hand, the prediction
model of DL/TLSTMCost only inputs a query at a time with-
out batch processing and cannot predict with all the queries
as a unit. DL takes less prediction time than TLSTMCost be-
cause (1) TLSTMCost needs to encode predicates; (2) LSTM
unit takes relatively longer propagation time than a neural
unit with similar functions.

Training Time. GPredictor outperforms all the other
methods on training time. GPredictor outperforms BAL,
DL, TLSTMCost, because, in graph level, GPredictor can
learn more from one training episode. For each episode
GPredictor trains the network with the loss value of all
the concurrent queries and so can fast capture the general
performance-related features. Graph(U) can effectively cut
down the graph scale and takes less training time.

For BAL, it needs to extract system metrics (e.g., I/O fre-
quency, block read/write latency) while repeatedly execut-
ing workloads, and takes days to learn a proper linear regres-
sion function. And for DL and TLSTMCost, their models can
only predict for single queries and take longer time in for-
ward propagation. With batch training, the training time
of DL and TLSTMCost is reduced. But samples of a batch
are independently predicted and the model cannot directly
capture the correlations between them.

Summary. GPredictor outperforms state-of-the-arts meth-
ods in terms of error rate, prediction time, and training time.
For error rate, GPredictor outperforms existing methods
by 11–30 times. For prediction time, GPredictor outper-
forms existing methods by 20%–1,227%. For training time,
GPredictor outperforms existing methods by 607%–4,383%.

6.4 Evaluation on Adaptability
6.4.1 Varying Datasets

We test the adaptability of GPredictor when dataset
changes. We conduct two experiments on PostgreSQL:
(1) Use the well-trained model on the training set of Xue-
tangX to predict the test set of JOB. (2) Use the well-trained
model on the training set of JOB to predict the test set of
TPC-C. In each experiment we compare the error rate of
GPredictor with BAL, DL, TLSTMCost. Figure 8 shows the
results. Note that here we disable predicate encoding in
GPredictor and TLSTMCost, because the patterns learned
to parse a predicate are highly related to the dataset. For
example, when data distribution changes, the cost of predi-
cate “name like ‘%Bob’ ” may change and predicate encod-
ing cannot identify without learning new patterns. Hence
we leave the generalization of predicate encoding as the fu-
ture work and here we verify whether GPredictor can adapt
to new datasets and workloads without predicate features.

XuetangX to JOB. GPredictor outperforms the other
three methods and achieves the lowest average error rate,
about 16.9 times less than BAL, 10.0 times less than DL, and
7.6 times less than TLSTMCost. The main reasons are two-

fold. (1) In each vertex of GPredictor, the features may
change with data (e.g., estimated cost) and queries (e.g.,
estimated cost, operation type, sample bitmap) and reflect
differences in workloads. But the estimated cost of an op-
erator may make different errors on JOB. GPredictor fine-
tunes the prediction model based on a very small percent
of JOB workloads, and achieves lowest error rate in testing,
in which the average error rate is 1.63% and the variance
is 0.34. (2) The workload graph of GPredictor encodes the
four main relationships between queries and resource lim-
its in JOB as edges, which can properly reflect the concur-
rency and resource information. And the prediction model
of GPredictor can adapt to new graph structures.

JOB to TPC-C. We get similar results. GPredictor can
easily migrate knowledge learned from one workload to an-
other, because the queries in JOB contain complex plan
structures like nested sub-queries, which have covered sim-
ple operators and sub-queries when training GPredictor.
And GPredictor mainly needs to learn how to predict write
operators and embed a graph with many more edges, since
there are hybrid read/write queries and higher concurrency
requirement in TPC-C.

6.4.2 Varying Database Configurations
Different database configurations may affect query per-

formance significantly, especially under concurrent scenar-
ios. Since memory and CPU are usually the performance
bottleneck, we conduct two experiments on JOB work-
loads. (1) We test the models with different memory
sizes. (2) We test the models with different max concur-
rency limitations. In PostgreSQL, the former is mainly con-
trolled by Work Mem, and the latter is mainly controlled by
Max Connections.
Memory size. Work Mem controls the memory size al-
located for each database connection, and we have the fol-
lowing observations. First, the error rate of every method
decreases when Work Mem gets larger, because with more
data put inside memory, there is less I/O accesses and the
query performance change becomes smaller, which is easier
to predict. Second, GPredictor outperforms all the other
methods with different Work Mem, because GPredictor en-
codes resource limitations on each pair of edges, which can
be embedded as graph structures in the graph embedding
network. Thus GPredictor can adapt to different memory
sizes. While BAL, DL, and TLSTMCost cannot.

Concurrency limitation. Max Connections controls the
maximum connection numbers a database instance can con-
currently work, and we have the following observations. First,
different from memory sizes, the error rate of every method
increases when Max Connections gets larger, because with
more concurrent queries, there is higher possibility of com-
petition (lock, resource) and the query performance gets
harder to predict. Second, GPredictor still outperforms the
baselines by encoding the lock/resource relationships, which
affect the query performance when the number of concurrent
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queries is larger than the limitation of max connections.

Summary. Our method GPredictor can adapt to differ-
ent workloads and different database configurations, because
GPredictor can capture the features of both queries and the
database configurations while baseline methods cannot.

7. RELATED WORK
Performance Prediction for Single Queries. Most of
existing query performance prediction methods predict per-
formance on single queries, which can be divided into two
categories. The first is statistics-based methods [29, 31].
These methods sample a small percent of data and collect
the feature statistics, and predict the performance based on
these features. However, the accuracy is highly related to
samples and it is not easy to many high-quality samples.
The second uses traditional machine learning [4]. It first se-
lects most useful query features ranked by their correlations
to the performance metrics, and then uses Support Vector
Machines (SVMs) to predict the performance in the query
level and proposes a hierarchical model in the operator level.
With these hybrid ML models, it can balance between ac-
curacy and adaptability.

However, these methods predict on single queries and
mainly have two limitations. First, they do not consider
concurrency features, which may affect the performance sig-
nificantly under high-concurrency scenarios. Second, they
take a long time to adapt to new scenarios and workloads
without encoding the concurrency features.
Performance Prediction for Concurrent Queries.
There are some traditional methods predicting performance
for concurrent queries. Duggan et al. [8] proposed Buffer
Access Latency (BAL) to capture the joint effects of disk and
memory contention on query performance. And it used a lin-
ear regression model to predict query performance. However
it takes a long time (several days) to train the model. Wu
et al. [28] proposed an analytic model to predict dynamic
workloads, which models the underlying database system as
a queuing network for I/O and CPU requests. They pre-
dicted the execution time based on the merge result of the
I/O and CPU requirements in concurrent queries. The third
uses deep learning [20]. For a single query, it builds tree-
structured network to predict query latency, which encodes
interactions between child/parent operators.

However, these methods are all designed for analytical
workloads. For transactional scenarios, the concurrency level
is much higher than analytical workloads, and the queriers
may have lock conflicts. Moreover, the workload may change
with time more frequently, which are hard to predict.

There are multi-query optimization techniques (MQO)
that generate a global query plan for the concurrent queries
to share the intermediate results, which make the perfor-
mance more predictable [23, 26, 2]. As traditional MQO
identifies common sub-expressions greedily and may fail into
local optimum [23], Unterbrunner et al [26] propose to in-
dex query predicates with probabilistic counting and join
concurrent queries with Clock Scan to ensure predictable
query latency. Zahid et al [2] propose to use regular path
queries (RPQs) to explore path patterns in the query graph,
which uses multi-join operations (e.g., ancestor-descendant)
to estimate the intermediate costs.
Resource Usage Estimation. Resource usage esti-
mation (e.g., CPU time, memory size) is crucial to vari-
ous database tasks, e.g., cost estimation, performance pre-

diction, and task scheduling [17, 10]. We classify exist-
ing resource usage prediction technologies into two classes.
The first is the statistics-based resource models [1, 3, 27],
which use combinations of weighted resource-related fea-
tures, like memory requirements and the I/O times. How-
ever, these methods annot provide accurate resource estima-
tion for complex operators like nested loop [15]. The second
is machine-learning based methods. Li et al [17] proposed
machine learning models (e.g., regression trees) to estimate
resource usage. It can learn complex dependencies between
query features and resources with machine learning. How-
ever, it did not consider many other factors that affect the
resource usage (e.g., resource-related parameter, lock con-
flict). However these methods cannot be used to predict the
query performance for concurrent queries.
Cost Estimation. Cost estimation is important to esti-
mate query performance. We can classify cost estimation
techniques into two classes. The first is traditional cost mod-
els [29, 18]. However, these methods cannot provide high-
quality estimation for queries with multiple columns and
multiple tables. The second is learning-based method [25].
It estimates query cost with a tree-structured LSTM model,
which can embed the plan structures and gain higher accu-
racy with the cardinality estimated together. However these
methods cannot be used to predict the query performance
for concurrent queries.
Graph Neural Networks. Graph Neural Networks (GNNs)
can be broadly classified into primitive GNNs [22], recurrent
graph neural networks (RecGNNs) [9], graph auto-encoders
(GAEs) [30, 5], graph convolution networks (GCNs) [14, 19].
Primitive GNNs [22] only support static graphs with fixed ver-
tices and have to re-train when graph changes. RecGNNs [9]
are computationally expensive for performance prediction,
because they require to recurrently process the neighbor se-
quence to gain global features. GAEs [30, 5] embed the whole
graph or generate new graph (decoder) by mapping vertices
into latent representations (encoder), while in performance
prediction we embed local graphs on each vertex. GCNs [14,
19] extract localized features and construct expressive rep-
resentations for vertices, and thus are best suit for perfor-
mance prediction. Traditional GCNs [14] use Laplacian ma-
trix (symmetric) and only work for undirected graphs. Ma
et al [19] propose to use a directed Laplacian matrix for
directed graphs. But they only consider out-degree matrix
and may cause information loss. So we propose to use the
in/out-degree neighbor matrices to embed vertices in non-
Euclidean domain. We have conducted experiments to com-
pare with other GNN models, and our method outperforms
them. To the best of our knowledge, this is the first work
that uses GNNs to predict query performance.

8. CONCLUSION
In this paper we proposed a query performance prediction

method for concurrent queries using a graph-embedding-
based model. We used a graph-structured model to encode
query features as vertices and the correlations between op-
erators as edges. Then we proposed a prediction model to
embed the performance-related graph features with a graph
embedding network and predict the query performance us-
ing a three-layer deep learning model. We also proposed
a graph update and compaction algorithm for supporting
dynamic workloads and reducing graph size. Experimen-
tal results on real-world datasets showed that our method
significantly outperformed the state-of-the-art approaches.
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