
IDAR: Fast Supergraph Search Using DAG Integration

Hyunjoon Kim† Seunghwan Min† Kunsoo Park
∗ † Xuemin Lin‡

Seok-Hee Hong§ Wook-Shin Han
∗¶

† Seoul National University, ‡ University of New South Wales, § University of Sydney,
¶ Pohang University of Science and Technology (POSTECH)
{hjkim,shmin,kpark}@theory.snu.ac.kr, lxue@cse.unsw.edu.au,

seokhee.hong@sydney.edu.au, wshan@dblab.postech.ac.kr

ABSTRACT
Supergraph search is one of fundamental graph query pro-
cessing problems in many application domains. Given a
query graph and a set of data graphs, supergraph search
is to find all the data graphs contained in the query graph
as subgraphs. In existing algorithms, index construction
or filtering approaches are computationally expensive, and
search methods can cause redundant computations. In this
paper, we introduce four new concepts to address these lim-
itations: (1) DAG integration, (2) dynamic programming
between integrated DAG and graph, (3) active-first search,
and (4) relevance-size order, which together lead to a much
faster and scalable algorithm for supergraph search. Exten-
sive experiments with real datasets show that our approach
outperforms state-of-the-art algorithms by up to orders of
magnitude in terms of indexing time and query processing
time.

PVLDB Reference Format:
Hyunjoon Kim, Seunghwan Min, Kunsoo Park, Xuemin Lin, Seok-
Hee Hong, Wook-Shin Han. IDAR: Fast Supergraph Search Using
DAG Integration. PVLDB, 13(9): 1456 - 1468, 2020.
DOI: https://doi.org/10.14778/3397230.3397241

1. INTRODUCTION
For the last two decades, much research has been carried

out on practical graph query processing as various public
graph data attracted great attention in numerous applica-
tion domains [15]. The public graph data can be categorized
into two types depending on their applications: large graphs
such as social networks and Resource Description Frame-
work data, and smaller graphs such as chemical compounds
and protein-protein interaction (PPI) networks. There are
two fundamental graph query processing problems in the lat-
ter, i.e., subgraph search [11, 3, 8, 17] and supergraph search
[5, 23, 25, 6, 12]. Given a query graph Q and a set D of data
graphs, subgraph search is to find all the data graphs that

∗contact author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397241

contain Q as subgraphs. Supergraph search is to retrieve all
the data graphs that are contained in Q as subgraphs.

In this study, we focus on the supergraph search problem.
Supergraph search is widely present in real-world applica-
tions such as chemical compound search in cheminformat-
ics [26], PPI network analysis in bioinformatics [18, 19, 4],
shape matching in image processing [14, 5], and malware
detection [1]. Given a PPI network of one species and a
database of structural motifs, researchers in bioinformatics
find the motifs contained in the PPI network [18, 19, 4]. In
cheminformatics, molecules are modeled as undirected la-
beled graphs where vertices represent atoms and edges rep-
resent chemical bonds. This problem is used in the process
of synthesizing new compounds with well-known chemical
molecules. For a set of chemical compounds with already
known functionalities, a query graph is given as a new large
compound, then supergraph search outputs a set of the com-
pounds contained in the query, which help researchers pre-
dict chemical functionalities of the new compound [26]. In-
deed, the National Institutes of Health (NIH) provides a web
user interface for supergraph search of chemical compounds
in an open chemistry database called PubChem1.

Supergraph search is NP-hard since it includes finding
subgraph isomorphism which is an NP-hard problem [7].
Therefore, solving supergraph search is a bottleneck in over-
all performance of the applications. Such applications give
challenges to this problem: fast response time and good
scalability for a large number of graphs and/or large-sized
graphs. For instance, there are more than 96 million chemi-
cal compounds in PubChem, which also contains large mole-
cules such as nucleotides and carbohydrates.

Related Work. Extensive research has been done to de-
velop efficient solutions for supergraph search. The general
approach in previous work is as follows: (1) an index is con-
structed for a set D of data graphs, and (2) given a query
graph Q, a set AQ of answer data graphs is computed. Due
to the NP-hardness of supergraph search, several existing
algorithms (including CIndex [5], GPTree [23], and PrefIndex
[25]) adopt the filtering-and-verification framework in which
their indices are exploited to first filter some false answers
to obtain a set of candidate graphs, and then each candi-
date graph is verified whether it is a subgraph of Q by a
subgraph isomorphism test. However, these solutions have
a significant overhead of data mining techniques (e.g., fre-

1https://pubchem.ncbi.nlm.nih.gov/

1456

quent subgraph mining) to extract common substructures
from data graphs in indexing. Moreover, they suffer from
high cost of verification for each data graph in a candidate
set.

In order to address these problems, IGQuery [6] heuristi-
cally finds some answer graphs by using its index, and then
runs a filtering-and-verification method in a set of remaining
data graphs to reduce the cost of both filtering and verifi-
cation. First, IGQuery merges a set of data graphs into an
integrated graph (IG) by depth-first search based on the fre-
quency of edges in IG (without using any mining techniques)
so that IG contains each data graph as a subgraph. To reduce
the candidate graphs that will go through the verification,
IGQuery finds a common subgraph Q′ between the query
graph and IG again by depth-first search, and then directly
outputs the data graphs which are subgraphs of Q′, i.e., di-
rect inclusion. Then, IGQuery runs filtering and verification
for the remaining data graphs as follows (a feature graph is
a common subgraph of some data graphs. A set of feature
graphs are found when IG is built): 1) for each feature graph,
perform a subgraph isomorphism test to check whether it is
a subgraph of the query graph; if it is not, filter all data
graphs which contain the feature graph as subgraphs, 2) for
each unfiltered data graph, run a subgraph isomorphism test
with the query graph.

Unlike the existing work, DGTree [12] filters and searches
at once in a single query processing algorithm. First, it con-
structs a tree called DGTree where each node consists of a
unique feature graph and the data graphs which contain the
feature graph. The feature graph of a node is always the fea-
ture graph of its parent plus one edge, and all data graphs
appear as the feature graphs of leaf nodes. During DGTree
construction, all (or some) embeddings (see Definition 2.1)
of each feature graph in the data graphs are computed,
which takes exponential time in the worst case. In query
processing, one traverses DGTree, and at each node finds all
embeddings of the corresponding feature in the query graph
in order to decide whether or not to filter the data graphs
that contains the feature. If there are no embeddings, the
data graphs are pruned. If one arrives at a leaf node, the
data graph is added to the answer set.

Much research has also been conducted to develop the
efficient solutions for the problems related to supergraph
search. Subgraph matching [10, 2, 9, 13] is one of the clas-
sic problems in graph analysis. Several studies of similarity
search on supergraph containment were proposed to approx-
imately solve the supergraph search problem [16, 22]. Re-
cently, probabilistic supergraph search has been studied to
handle uncertain data graphs with probability on edges or
vertices [20, 24].

Challenges. Although various techniques have been ex-
ploited in the existing solutions, even the state-of-the-art
algorithms (i.e., IGQuery and DGTree) show several limita-
tions to efficiently handle real-world data.

First, index construction is computationally expensive in
some existing work. Frequent subgraph mining or its vari-
ants are commonly used to extract common subgraphs shared
by many data graphs in the process of building indices [21,
5]; however, these data mining techniques are costly and not
scalable to deal with large data graphs. DGTree searches the
data graphs for embeddings of a feature graph correspond-
ing to every node to build the tree-structured index, which
takes exponential time in the worst case.

(a) A set D of data graphs (b) A query graph

Figure 1: Data graphs and a query graph

Second, filtering methods in some previous work are costly,
which may degrade overall query processing performance.
For example, in the feature-based filtering process of IG-
Query, one searches the query graph for an embedding of
every feature graph (i.e., a subgraph isomorphism test), and
thus it also takes exponential time.

Third, search methods in the existing algorithms can cause
redundant computations. For example, given a set D of
data graphs and a query graph Q1 in Figure 1, we can find
a partial embedding M1 = {(w1, v1), (w2, v4), (w4, v23)} of
g1 in Q1 and M3 = {(w1, v1), (w2, v4), (w3, v23)} of g3 in
Q1, where M1 and M3 overlap in Q1. However, in IGQuery,
once a set of candidate graphs is obtained by the direct in-
clusion and feature-based filtering, every candidate graph is
verified by a subgraph isomorphism test; thus, an embed-
ding of every candidate graph is independently computed
although (partial) embeddings of some candidate graphs in
Q may overlap each other. The DGTree traversal may spend
redundant search space to find all partial embeddings of
each answer graph. For example, DGTree finds 7×10 partial
embeddings of g1 in Q1, i.e., M1 = {(w1, v1), (w2, v4−10),
(w3, v11−20), (w4, v23)}, each of which can extend to an em-
bedding, but finding one of them is enough to solve this
problem.

Contributions. To address the limitations above, we in-
troduce the following new ideas, which lead to a faster and
scalable algorithm for supergraph search.

First, we propose an efficient index construction method
called DAG integration, in which we build a data DAG from
each data graph and merge data DAGs into an integrated
DAG (IDAG) I. DAG integration has following advantages
over existing work. Unlike DGTree and some indexing meth-
ods based on frequent subgraph mining, DAG integration
takes polynomial time. Compared to the depth-first search
of IGQuery, we can compactly merge a data DAG into I in
a topological order of the DAG, guided by the similarities
between vertices in the data DAG and I.

Second, we propose an auxiliary data structure called in-
tegrated candidate space (ICS), which will serve as a com-
plete search space to find all embeddings of data graphs in
Q. By applying dynamic programming between IDAG and
graph during ICS construction, we can efficiently filter false
answers. ICS construction has conceptually the same effect
as combining multiple CS’s, where CS is an auxiliary data
structure used in [9] to find all embeddings of one graph.

Third, we introduce a new supergraph search method
active-first search and a new adaptive matching order rele-
vance-size order. We extend a partial mapping from V (I)
to V (Q) in this framework to find an embedding of each
candidate graph merged to I. Intuitively, only the vertices
in V (I) relevant to the candidate graphs that share the par-
tial mapping (i.e., active vertices) can be the next vertices
to match in active-first search. Based on relevance-size or-

1457

der, among vertices that can be matched, we first select a
next vertex such that the extended partial mapping covers
as many partial embeddings of candidate graphs as possi-
ble. This search method can save redundant search space
by finding at most one embedding of every candidate graph
and keeping a large overlap among partial embeddings of
candidate graphs.

Organization. The remainder of the paper is organized
as follows. Section 2 provides useful definitions of the con-
cepts in our techniques and the supergraph search problem.
Section 3 presents a brief overview of our algorithm. Sec-
tion 4 describes DAG integration by which we merge input
data graphs. Section 5 presents three new techniques used
in query processing. Section 6 discusses the results of per-
formance evaluation. Finally, Section 7 concludes the paper.

2. PRELIMINARIES
For simplicity of presentation, we focus on undirected,

connected, and labeled graphs. Our methods can be eas-
ily applied to directed or disconnected graphs with multiple
labels on vertices or edges. A graph g = (V (g), E(g), lg)
consists of a set V (g) of vertices, a set E(g) of edges, and a
labeling function lg : V (g)∪E(g)→ Σ that assigns a label to
each vertex or edge, where Σ is a set of labels. For a subset
Y of V (g), the induced subgraph g[Y] denotes the subgraph
of g whose vertex set is Y and whose edge set consists of all
the edges in E(g) that have both endpoints in Y .

We will use the directed acyclic graph (DAG) as a tool
to build an index for multiple data graphs. A DAG g′ for a
graph g is defined as a DAG that is built from g by assigning
directions to the edges of g (e.g., g and its reverse g−1 in
Figure 2 are DAGs of g1 in Figure 1). A DAG g′ is a rooted
DAG if there is only one vertex r ∈ V (g′) (i.e., root) that
has no incoming edges. A vertex u′ is a descendant of u if g′

contains a path from u to u′. A sub-DAG of g′ rooted at u,
denoted by g′u, is the induced subgraph of g′ whose vertices
are u and all the descendants of u. The height of a rooted
DAG g′ is the maximum distance between the root and any
other vertex in g′, where the distance between two vertices
is the number of edges in a shortest path connecting them.
Let Child(u) and Parent(u) denote the children and parents
of u, respectively.

Definition 2.1. Given a graph Q = (V (Q), E(Q), lQ) and
a graph g = (V (g), E(g), lg), an embedding of g in Q is a
mapping M : V (g)→ V (Q) such that (1) M is injective (i.e.,
M(u) 6= M(u′) for u 6= u′ in V (g)), (2) lg(u) = lQ(M(u))
for every u ∈ V (g), and (3) (M(u),M(u′)) ∈ E(Q) and
lg(u, u′) = lQ(M(u),M(u′)) for every (u, u′) ∈ E(g).

We say that g is subgraph-isomorphic toQ, denoted by g ⊆
Q, if there exist an embedding of g inQ. An embedding of an
induced subgraph of g in Q is called a partial embedding. A
mapping that satisfies (2) and (3) is called a homomorphism.

Definition 2.2. The path tree of a rooted DAG g is defined
as the tree gT such that each root-to-leaf path in gT corre-
sponds to a distinct root-to-leaf path in g, and gT shares
common prefixes of its root-to-leaf paths (e.g., Figure 2c is
the path tree of g in Figure 2a).

Definition 2.3. For a rooted DAG g with root u, a weak
embedding M ′ of g at v ∈ V (Q) is defined as a homomor-
phism of the path tree of g such that M ′(u) = v.

Definition 2.4. An unvisited (i.e., unmapped) vertex u of
a DAG g in a mapping M is called extendable regarding M if

(a) g (b) g−1 (c) Path tree of g

Figure 2: DAGs and path tree

all parents of u are matched in M . A DAG ordering always
selects an extendable vertex as the next vertex to map.

Problem Statement. Given a query graph Q and a set
D of data graphs, the supergraph search problem is to find
all data graphs in D that are subgraphs of Q. That is,
supergraph search is to compute the answer set AQ = {gi ∈
D | gi ⊆ Q}. For example, given a set D of data graphs
and a query graph Q1 in Figure 1, supergraph search finds
a set AQ1 = {g1, g3} of answer graphs, each of which is
contained in Q1 as a subgraph. Since subgraph isomorphism
(i.e.,“Does Q contain a subgraph isomorphic to g?”) is NP-
complete [7], the supergraph search problem is NP-hard.

Table 1 lists the notations frequently used in the paper.

Table 1: Frequently used notations

Symbol Description

D Set of data graphs
D′ Set of data DAGs
Q Query graph
I Integrated DAG
AQ Answer set for Q
hi(w) Mapping of w in partial merging

hi :V (gi)→V (I) where gi ∈ D
f(u) Mapping of u in a partial feasible mapping

f :V (I)→V (Q)
C(u) Set of candidate vertices for u∈V (I)
G(u, v) Set of candidate graphs for u∈V (I), v∈V (Q)

3. OVERVIEW OF OUR ALGORITHM
We first describe our index construction algorithm over

a set D of data graphs to build a set of integrated DAGs
(IDAGs) in Algorithm 1, which follows the procedures below.

Algorithm 1: BuildIndex

Input: a set D of data graphs
Output: a set D∗ of integrated DAGs

1 D′ ← ∅;
2 foreach data graph g ∈ D do
3 g′ ← BuildDAG(g); D′ ← D′ ∪ {g′};
4 Π← Partition(D′);
5 foreach for each set in Π do
6 I ← empty integrated DAG;
7 foreach data DAG g′ in the set do
8 B ← BottomUpSim(g′, I);
9 FindMerging(g′, I, B);

1. Initially, BuildDAG is called to build a rooted DAG
g′ from g for every data graph g ∈ D. In BuildDAG,
we first select a root, which will be merged into a root

1458

of IDAG. Since the root is the first vertex in IDAG to
match in the search process, we prefer the root of g′

to have an infrequent label in D and a large degree
for better pruning; thus, the root r of g′ is selected as

r ← argminu∈V (g)
freq(lg(u),NLPF(u))

degg(u)
, where a neighbor

label-pair of u is a pair of labels (lg(u′), lg(u, u′)) for
an adjacent vertex u′ of u, NLPF(u) is the frequency
of u’s distinct neighbor label-pairs, e.g., in Figure 3a
NLPF(w1) in g1 is {(B, 1) : 1, (C, 2) : 1} (where edge
labels 1 and 2 represent a solid line and a dashed line,
respectively), and freq(l, x) is the frequency of a pair of
vertex label l and NLPF x. In order to build g′, we tra-
verse g in a BFS order from r, and direct all edges from
upper levels to lower levels. We refer to these DAGs for
data graphs in D as data DAGs.

2. Partition takes a set D′ of data DAGs as input, and
outputs disjoint sets Π of data DAGs in D′. We de-
fine the property of the root r of a data DAG g′ as
(lg′(r),NLPF(r)). In Partition, we first compute the
property p of the root for every data DAG g′ ∈ D′,
and divide D′ into sets such that data DAGs with dif-
ferent root properties are in different sets. We sort all
data DAGs with a same property in the ascending order
of height (a data DAG with smaller number of vertices
comes first among the data DAGs with the same height).
Next, we equally divide the sorted data DAGs (with a
same property p) into γ|hgt(p)| sets where hgt(p) is a
set of distinct heights of the data DAGs with property
p, and γ is a constant.

3. For each set, we integrate every g′ in the set to I in
FindMerging guided by similarity scores between the
vertices of g′ and I, which are computed in BottomUp-
Sim and FindMerging (Section 4).

Selecting which IDAG a given data DAG should be inte-
grated to based on the similarity scores causes a considerable
overhead in our experiments, while its benefit over the cur-
rent partitioning method based on the root property and the
DAG height is minor. This implies that the root property
and the DAG height are effective measures in estimating the
similarities of DAGs in low cost.

For simplicity of presentation, g will denote a data graph
or a data DAG from the next section.

Algorithm 2: SupergraphSearch

Input: query graph Q, a set D∗ of integrated DAGs
Output: answer set AQ

1 AQ ← ∅;
2 foreach I ∈ D∗ do
3 ICS ← BuildICS(I,Q);
4 f ← ∅;
5 Backtrack(I, ICS, f, AQ);

The overall framework of query processing is shown in
Algorithm 2, which takes a query graph Q and a set D∗ of
IDAGs, and finds an answer set AQ for Q.

For every IDAG I, we go through two steps as follows.

1. First, BuildICS is invoked to build an ICS by using dy-
namic programming between an IDAG and a graph (Sec-
tion 5.1). We will show that finding an embedding of
each data graph g ∈ D in Q is equivalent to finding an
embedding of g in the ICS.

(a) A set D′ of data DAGs (b) A query graph

Figure 3: Data DAGs and a query graph

Figure 4: The integrated DAG for D′ in Figure 3a

2. Next, we find an embedding of each data graph g in-
tegrated to I in the ICS by Backtrack. We use a
new search technique based on active-first search (Sec-
tion 5.2) and relevance-size order (Section 5.3).

4. DAG INTEGRATION
In this section we describe a technique called DAG inte-

gration in which we construct an IDAG from multiple data
graphs.

Integrated DAG. Given a set of DAGs, we merge all the
DAGs into an integrated DAG (IDAG) I = (V (I), E(I), lI ,
DI , S(I)) that consists of a set V (I) of integrated vertices, a
set E(I) of directed edges, a labeling function lI that assigns
a label to each integrated vertex. Additionally, IDAG I has
a set DI(u) of DAGs merged to each integrated vertex u ∈
V (I), and a set DI(u, u′, x) of DAGs merged to each edge
(u, u′, x) ∈ E(I) where x is an edge label. We also associate
with each IDAG I the set S(I) of data graphs integrated to
I.

Figure 4 shows the IDAG constructed from a set D′ of data
DAGs in Figure 3a (where we integrate the data DAGs with
different root properties for simplicity). The IDAG keeps
the set of data DAGs integrated to each integrated vertex
and edge as in Figure 4. For instance, an edge (w1, w3)
in g1 is merged to the edge (u1, u3, 2) in the IDAG, i.e.,
DI(u1, u3, 2) = {g1}.
Definition 4.1. Given a DAG g and an IDAG I, a merging
of g to I is defined as an embedding h : V (g)→ V (I)∪Vnew

where Vnew is a set of newly created vertices during the
integration of g to I.

For example, a merging h3 of g3 in Figure 3a is an em-
bedding {(w1, u1), (w2, u2), (w3, u3), (w4, u4)} from g3 to I
in Figure 4.

Suppose that we are given a DAG gk and an IDAG Ik−1 to
which a set D′ = {g1, g2, ..., gk−1} of DAGs are integrated.
In our integration method, we integrate gk to Ik−1 so that
the merging of gk to Ik−1 becomes the embedding of gk in
Ik. A merging of an induced subgraph of gk to Ik−1 is called
a partial merging.

1459

Algorithm 3: FindMerging

Input: a DAG g, an IDAG I, bottom-up similarity B
1 Update the root ur of I; h← {(wr, ur)};
2 while there is an extendable vertex in V (g) do

3

(w, u)← arg max
(w′,u′)

sim(w′, u′) for every extendable

vertex w′ and u′ ∈ Ch(w′)

4 if u is matched in h then
5 Remove u from Ch(w);
6 if Ch(w) = ∅ then
7 Create a new vertex û of I; h← h∪ {(w, û)};

8 else
9 Update u; h← h ∪ {(w, u)};

Definition 4.2. Suppose that we are given a partial merg-
ing h and an extendable vertex w. The set of mergeable can-
didates of w regarding h is defined as Ch(w) =

⋃
wp∈Parent(w)

N̂
wp
w (h(wp)), where N̂

wp
w (up) represents the set of children

u of up in V (I) such that lg(w) = lI(u).

Integration Framework. Based on a DAG ordering and
the definition of the mergeable candidates, our new integra-
tion framework finds a merging of g to I as follows.

1. Select an extendable vertex w regarding the current par-
tial merging h.

2. Extend h by merging w to an unmapped u ∈ Ch(w) if
such a vertex exists in Ch(w); to a newly created inte-
grated vertex u otherwise, and recurse.

Two questions arise: (1) Among all extendable vertices
regarding h, which vertex should be extended first? (2) To
which unmapped mergeable candidate in Ch(w) should we
merge w? In our integration method, we select an extend-
able vertex w and a mergeable candidate u at once such that
the similarity score sim(w, u) is maximum among all pos-
sible pairs of extendable vertices and their mergeable can-
didates. We will compute sim(w, u) by using bottom-up
similarity and top-down similarity.

Example 4.1. Figure 5 displays the integration of DAGs
in Figure 3a. Assume that we just merged w1 into u1 during
integration of g2 to I1 in Figure 5a. We select w2 between
two gray extendable vertices w2 and w3, and merge w2 into
u2, because sim(w2, u2) is the largest. Note that the sub-
DAG rooted at w2 is similar to the sub-DAG rooted at u2.
In Figure 5b, assume that we just merged w2 into u2 during
integration of g3 to I2. Since sim(w3, u3) is the largest, we
select w3 rather than w4 and merge w3 into u3. Note that
the reverse sub-DAG rooted at w3 (consisting of w3, w2, and
w1) is similar to the reverse sub-DAG rooted at u3.

Definition 4.3. For each w ∈ V (g) and u ∈ V (I), the
bottom-up similarity of w and u is defined as B(w, u) =
score(w, u) +

∑
wc∈Child(w) max

uc∈Child(u)
{B(wc, uc)}, where

score(w, u) is 1 if lg(w) = lI(u); 0 otherwise.

Definition 4.4. Suppose that we are given a partial merg-
ing h of g to I, and an extendable vertex w ∈ V (g). The top-
down similarity of w and u ∈ Ch(w) regarding h is defined
as Th(w, u) = score(w, u) +

∑
wp∈Parent(w){Th(wp, h(wp))}.

The similarity of w and u ∈ Ch(w) is defined as sim(w, u) =
B(w, u) + Th(w, u).

Intuitively, B(w, u) measures how much the sub-DAG root-
ed at w and the sub-DAG rooted at u are similar, while

(a) The moment w1 is just
merged into u1 during inte-
gration of g2 to I1

(b) The moment w2 is just
merged into u2 during inte-
gration of g3 to I2

Figure 5: Example of DAG integration

Th(w, u) measures the similarity between the reverse sub-
DAG rooted at w and that rooted at u.

Bottom-up similarity B is computed in BottomUpSim in
Algorithm 1. In BottomUpSim, the bottom-up similarity
of every w ∈ V (g) and u ∈ V (I) is computed in a reverse
topological order of DAG g, i.e., w is processed after all its
children in g are processed.

Top-down similarities are computed and a DAG g is inte-
grated into an IDAG I at the same time in Algorithm 3.
When we create or update u, g is added to DI(u), and
DI(h(wp), u, lg(wp, w)) for each wp ∈ Parent(w). We main-
tain a max priority queue to get the maximum sim(w, u).
Once a vertex w ∈ V (g) becomes extendable due to an ex-
tension of h, Ch(w) and top-down similarities between w
and u ∈ Ch(w) are immediately computed.

Back to Figure 5a of Example 4.1, we select w2 between
two gray extendable vertices w2 and w3 because Th(w2, u2) =
Th(w3, u2) but B(w2, u2) > B(w3, u2). In Figure 5b of Ex-
ample 4.1, we select a pair (w3, u3) and merge w3 to u3

because bottom-up similarities of candidate pairs are the
same but Th(w3, u3) > Th(w4, u3).

Lemma 4.1. Given a DAG g and an IDAG I, the time
and space complexities of DAG integration of g to I are
O(|E(g)||E(I)|+|V (g)||V (I)| log(|V (g)||V (I)|)) andO(|V (g)|
|V (I)|), respectively.

DAG integration can effectively merge data graphs into
IDAGs in polynomial time, as IGQuery merges data graphs
into an IG. Nevertheless, DAG integration differs from the
graph integration of IGQuery which uses a depth-first search.
In DAG integration, vertices with high similarity are se-
lected to merge based on DAG ordering, which leads to
a compact integration for subsequent filtering and search
steps.

5. QUERY PROCESSING

5.1 Dynamic Programming between IDAG
and Graph

DAF [9] constructs an auxiliary data structure called CS
(Candidate Space) consisting of candidate vertices and cor-
responding edges, which serves as a complete search space
to find all embeddings of one graph. To deal with multiple
data graphs at once, we propose an auxiliary data structure
called the integrated candidate space (ICS). ICS construction,
which takes an IDAG I and a query graph Q as input, has
conceptually the same effect as combining multiple CS’s. By
applying dynamic programming to ICS construction, we can

1460

(a) Initial ICS (b) ICS after 1st refinement (c) ICS after 2nd refinement

Figure 6: Refinements of ICS using IDAG-graph DP

efficiently filter false answers and obtain a complete search
space for all embeddings of remaining data graphs in Q.

ICS. Given an IDAG I and a query graph Q, ICS on I and
Q consists of the following.

• For each u ∈ V (I), a set C(u) of candidate vertices is
a set of vertices v ∈ V (Q) which u can be mapped to.
C(u) is a subset of Cini(u), where Cini(u) is the set of
vertices v ∈ V (Q) such that lI(u) = lQ(v).

• For each u ∈ V (I) and v ∈ C(u), a set G(u, v) of can-
didate graphs is a set of data graphs g ∈ DI(u) which
can be answer graphs when u is mapped to v. G(u, v) is
initially DI(u). Let Zu denote ∪∀v∈C(u)G(u, v).

• There is an edge between v ∈ C(u) and vc ∈ C(uc) if
and only if (u, uc, x) ∈ E(I) such that x = lQ(v, vc),
(v, vc) ∈ E(Q), and G(u, v) ∩ G(uc, vc) 6= ∅. The edges
are stored as an adjacency list Nu

uc
(v) for each v ∈ C(u)

and each edge between u and uc in I, where Nu
uc

(v)
represents the list of vertices vc adjacent to v in Q such
that vc ∈ C(uc).

Figure 6a shows the initial ICS on I in Figure 4 and
Q2 in Figure 3b (every number i in G(u, v) represents gi
in Figure 6). In the initial ICS, Cini(u3) = {v4, v6} be-
cause v4 and v6 have the same label as u3, G(u3, v4) =
G(u3, v6) = {g1, g2, g3} since DI(u3) = {g1, g2, g3}, and Zu3

= G(u3, v4) ∪ G(u3, v6) = {g1, g2, g3}. There are edges be-
tween v2 ∈ C(u1) and two candidate vertices in C(u6), i.e.,
Nu1

u6
(v2) = {v5, v7}.

Definition 5.1. An embedding of a data graph gi in an
ICS on I and Q is defined as an injective mapping M :
V (gi) → V (Q) such that (1) M(w) ∈ C(hi(w)) and gi ∈
G(hi(w),M(w)) for every w ∈ V (gi) where hi is the merging
of gi to I, and (2) there is an edge (M(w),M(w′)) with label
lgi(w,w

′) in the ICS for every (w,w′) ∈ E(gi).

Definition 5.2. An ICS on I and Q is sound if it satis-
fies the following statement: if there is an embedding M :
V (g) → V (Q) of g ∈ S(I) in Q such that M(w) = v, then
v and g must exist in C(h(w)) and G(h(w), v), respectively.
(Recall that S(I) is the set of data graphs integrated to I.)

Definition 5.3. An ICS on I and Q is equivalent to Q with
respect to I if the set of all embeddings of g ∈ S(I) in Q is
the same as the set of all embeddings of g ∈ S(I) in the ICS.

Then we have the following equivalence property.

Theorem 5.1. If an ICS on I and Q is sound, it is equiva-
lent to Q with respect to I.

Once we compute a compact sound ICS, Q is no longer
necessary afterward by the equivalence property.

IDAG-Graph DP. For each IDAG I, we find weak embed-
dings of all data graphs in S(I) in our new technique called
dynamic programming between IDAG and graph (for short,
IDAG-graph DP). Given a sound ICS, we have the following
observation.

• If there is an embedding M of a data DAG g∗ (g∗ can
be g or g−1) in ICS such that M(w) = v for a vertex
w ∈ V (g∗), there must be a weak embedding of g∗w at v
in the ICS where g∗w is the sub-DAG of g∗ rooted at w.

Based on this observation, we propose an ICS refinement
algorithm by using dynamic programming in order to re-
move unpromising candidates from C(u) and G(u, v) if such
a weak embedding does not exist. First, for each set G(u, v)
of candidate graphs, we define the refined set of candidate
graphs G′(u, v) as follows:

g ∈ G′(u, v) iff g ∈ G(u, v) and there is a weak embedding

of g∗w at v in the ICS, where u = h(w). (1)

Second, for each set C(u) of candidate vertices, we define
the refined set of candidate vertices C′(u) as follows:

v ∈ C′(u) iff v ∈ C(u) and G′(u, v) 6= ∅.

For example, if we apply this refinement to the ICS in Figure
6b over the IDAG I in Figure 4, we obtain the refined ICS in
Figure 6c. Note that v7 is removed from C(u2) since there
are no weak embeddings of g1,w2 , g2,w2 , g3,w2 at v7 in the
ICS of Figure 6b, so G(u2, v7) = ∅. On the other hand, v2
stays in C(u1) even though there are no weak embeddings
of g1,w1 and g3,w1 at v2 since there is a weak embedding of
g2,w1 at v2 in the ICS.

To compute G′(u, v), we remove the data graphs that do
not satisfy Condition (1) fromG(u, v). A data DAG g∗ (with
merging h) such that there is no weak embedding of a sub-
DAG g∗w at v (where u = h(w)) has at least one outgoing
edge (w,wc) which has no corresponding edge (v, vc) such
that a weak embedding of g∗wc

exists at vc. We define and
compute a set Fu

uc
(v) of such graphs in a bottom-up fashion.

Definition 5.4. For each u ∈ V (I), v ∈ C(u), and a
child uc of u, the set Fu

uc
(v) of filtered graphs is the set

of g ∈ DI(u, uc, x) that has the following property: there is
no vc ∈ C′(uc) adjacent to v with lQ(v, vc) = x such that
g ∈ G′(uc, vc).

To compute G′(u, v), we use the following recurrence:

G′(u, v) = G(u, v)− ∪uc∈Child(u)F
u
uc

(v),

where

Fu
uc

(v)=∪(u,uc,x)∈E(I){DI(u, uc, x)−∪vc∈Nu
uc

(v,x)G
′(uc, vc)},

1461

and Nu
uc

(v, x) = {vc ∈ Nu
uc

(v) | lQ(v, vc) = x}. According
to the recurrence above, we compute G′(u, v) and C′(u) for
all u ∈ V (I) by dynamic programming in a reverse topolog-
ical order of I∗(i.e, I or I−1), in which u is processed after
all children of u are processed. All the sets of data graphs
above are implemented as bit-arrays (|S(I)| bits per set) so
that union, intersection, and difference operations can be
efficiently done in O(|S(I)|/w) time, where w is a word size.

Lemma 5.1. Given an ICS on I and Q, the time and space
complexities of ICS construction are O(|E(I)||E(Q)||S(I)|/
w) andO(|E(I)||E(Q)|+|V (I)||V (Q)||S(I)|/w), respectively.

Building a Compact ICS. By using IDAG-Graph DP mul-
tiple times in different orders, we can filter as many data
graphs that have no weak embeddings as possible, and get
a small search space for remaining data graphs.

First, for every u ∈ V (I), C(u) is initialized to Cini(u),
and G(u, v) is initialized to DI(u) for every v ∈ Cini(u).
Moreover, a set Ac

Q of filtered graphs, i.e., a set of data
graphs not contained in the query, is initialized to ∅.

Next, IDAG-Graph DP refines the ICS over the rooted
IDAG I and its reverse I−1 alternately. We perform IDAG-
Graph DP using I−1 to the initial CS. We then further refine
the ICS over I. The refined candidate sets in the current
step may help further refine the candidate sets using I−1

again, and so on. Our empirical study showed that three
steps are enough for optimization, so we set this number to
3 in our experiments. For every u ∈ V (I), we clear C(u) if
Zu ⊆ Ac

Q. Otherwise, we refine C(u) and G(u, v), calculate
Zu = ∪∀v∈C(u)G(u, v), and update Ac

Q as follows: Ac
Q ←

Ac
Q ∪ (DI(u)− Zu).
After computing the final candidate sets, we materialize

the edges as an adjacency list Nu
uc

(v) for each v ∈ C(u) to
obtain the complete ICS. During the refinements, we only
maintain C(u), G(u, v), and Zu. The edges in Figure 6 are
illustrated only for presentation.

After ICS construction, we do not need to consider a vertex
u ∈ V (I) that has no candidate (i.e., C(u) = ∅). Let V ′ be
a set of integrated vertices with nonempty C(u), then we
assume that an IDAG is I[V ′] from the next section.

5.2 Active-First Search
From this subsection we present our new matching algo-

rithm to find embeddings of candidate graphs (i.e, the re-
maining data graphs in S(I) after the filtering of ICS) in the
ICS. Compared to the backtracking frameworks with a single
given graph in existing subgraph matching algorithms [10,
2, 9], our technique is specifically designed to search for a
common partial embedding shared by candidate graphs via
a mapping from V (I) to V (Q) with as small search space
as possible by taking advantage of the overlap between the
candidate graphs in I.

In our search method, only active vertices in V (I) are
allowed to be matched in a current partial mapping f :
V (I)→ V (Q). Figure 7 shows an illustration of an IDAG to
which g1, g2 and g3 are integrated. Suppose we just matched
u1 and u2 in current partial mapping f . Since f covers all
data graphs, all children of u1 or u2 (i.e., u3, u5 and u7) are
active. However, if we extend f to f ′ by matching u3, f ′

covers only g1 and g2. Thus, u4 and u5 are active, but u7 is
no longer active regarding f ′.

Example 5.1. Figure 8 shows an IDAG I to which DAGs
for data graphs in D of Figure 1a are integrated, and Figure
9 illustrates the ICS on I and Q1 of Figure 1b. There are

Figure 7: An illustrating example of an IDAG

embeddings of g1 and g3 in the ICS, e.g., {(w1, v1), (w2, v4),
(w3, v11), (w4, v23), (w5, v26)} for g1, and {(w1, v1), (w2, v4),
(w3, v23)} for g3; however, there is no embedding of g2.

We define a partial mapping f : V (I) → V (Q) and a set
of data graphs covered by f as follows.

Definition 5.5. A (partial) feasible mapping of an IDAG I
in the ICS is defined as a mapping f : V (I) → V (Q) such
that there exists at least one data graph gi ∈ S(I) that has
its merging hi : V (gi)→ V (I) where f ◦ hi : V (gi)→ V (Q)
is a (partial) embedding of gi in ICS, and for every (u, v) ∈
f , a vertex of gi is merged to u, i.e., h−1

i (u) exists. Such
data graphs are a set of (partial) feasible graphs regarding
f , denoted as FG∗f (PFG∗f). Let PFGf denote PFG∗f −AQ.

Example 5.2. Figure 10 is a search tree for IDAG I in
Figure 8 and query graph Q1 in Figure 1b. A node in
the search tree corresponds to a partial feasible mapping,
e.g., the root of the search tree corresponds to partial fea-
sible mapping f1 = {(u1, v1)}, its left child labeled with
(u2, v4) corresponds to f11 = {(u1, v1), (u2, v4)}, and so on.
Therefore we use f to represent a node as well as a par-
tial feasible mapping. Each node shows the latest mapping
(u, v) of f and PFGf = {g1, ..., gk} (when AQ1 = ∅). In
the search tree of Figure 10, PFGf1 = {g1, g2, g3} for node
f1 = {(u1, v1)}. Furthermore, PFGf11 = {g1, g3} for node
f11 = {(u1, v1), (u2, v4)} since g2 is not merged to u2, and
PFGf21 = {g1} for f21 = {(u1, v1), (u2, v4), (u3, v11)} since
g3 is not merged to u3.

Definition 5.6. Let G denote a set of data graphs. An
integrated vertex u is irrelevant to G if G and Zu have no
common graph (i.e., G ∩ Zu = ∅); relevant to G otherwise.

Definition 5.7. Suppose that we are given a partial feasible
mapping f and a set PFGf of partial feasible graphs. An
unvisited (i.e., unmapped) vertex u ∈ V (I) is called active
regarding f if u is relevant to PFGf and all the u’s parents
relevant to PFGf are matched in f .

Now we describe our search method. Given a partial fea-
sible mapping f with PFGf , let u1, ..., un be the integrated
vertices extended from f in the search tree. Assume that
we have explored the subtrees rooted at f ∪{(uk, v)} (where
1 ≤ k ≤ n) for every v that uk can be matched to. An
active-first search always selects an active vertex relevant to
Uf,k as the next vertex to map, where Uf,0 = PFGf and
Uf,k = PFGf − ∪k

i=1Zuk for k ≥ 1.
We consider Uf,k, a subset of graphs in PFGf that have

been untried as partial feasible graphs in the extensions of
f , in order not to find duplicate embeddings of g ∈ PFGf .
In Example 5.2, when we first visited f1, Uf1,0 = PFGf1 =
{g1, g2, g3}, thus u2 and u3 can be matched. Now, suppose
that we just came back to node f1 after the exploration of
the subtrees rooted at f11 and f12. During the exploration,
we have tried all possible extensions to map u2 with partial
feasible graphs g1 and g3. Then Uf1,1 = PFGf1 −{g1, g3} =
{g2}, so only u3 can be matched.

1462

Figure 8: The IDAG built from D of Figure 1a

Figure 9: ICS on I in Figure 8 and Q1 in Figure 1b

We define a failure that a partial feasible graph regarding
f becomes no longer partially feasible regarding f ′ = f ∪
{(u, v)}. A candidate graph gi belongs to a set empf (u, v)
of empty-set graphs if w = h−1

i (u) cannot be matched to v
regarding M ′ = f ′ ◦ hi.

Definition 5.8. Suppose that we are given a partial feasi-
ble mapping f and an active vertex u. Given a candidate
vertex v ∈ C(u), the set of matchable graphs of u and v
regarding f is defined as Gf (u, v) = G(u, v) − empf (u, v).
The set of matchable candidates of u regarding f is defined
as Cf (u) = {v ∈ ∪up∈Parentf (u)N

up
u (f(up)) | Gf (u, v) 6= ∅}

where Parentf (u) is u’s parents relevant to PFGf .

Example 5.3. Given a partial feasible mapping f={(u1,v1),
(u2, v4), (u3, v11)} in Figure 9, u4 is the only active vertex.
Since Nu1

u4
(v1)∪Nu2

u4
(v4)∪Nu3

u4
(v11) = {v23} and Gf (u4, v23)

= {g1, g2, g3}, v23 is the only matchable candidate of u4.

Lemma 5.2. Suppose that we are given a partial feasible
mapping f and an active vertex uk+1 relevant to Uf,k. For
every candidate v ∈ Cf (uk+1), f ′ = f ∪ {(uk+1, v)} is a
partial feasible mapping with PFGf ′ = Uf,k ∩Gf (u, v).

In Examples 5.2 and 5.3, suppose that we just extended to
f = {(u1, v1), (u2, v4), (u3, v11)} with Uf,0 = PFGf = {g1}.
Then f ′ = f ∪ {(u4, v23)} is a partial feasible mapping with
PFGf ′ = Uf,0 ∩ Gf (u4, v23) = {g1}, but we cannot extend
f to u5 which is not relevant to Uf,0, i.e., Uf,0 ∩ Zu5 = ∅.
Backtracking Framework. Based on Lemma 5.2, our
backtracking framework finds an embedding of each data
graph in the ICS as follows.

1. Select an active vertex u relevant to Uf,k regarding the
current partial feasible mapping f .

2. Extend f to f ′ by mapping u to each unvisited v ∈ Cf (u)
if Cf (u) 6= ∅; a dummy vertex v∗ otherwise (a vertex u
with Cf (u) = ∅ should be matched to v∗ to make its
children active).

Figure 10: Search tree of backtracking for new run-
ning example of I in Figure 8 and Q1 in Figure 1b.
Each node shows the latest mapping (u, v) of f and
PFGf = {g1, ..., gk} when AQ1 = ∅.

3. Compute PFGf ′ regarding the extended partial feasible
mapping f ′.

4. Extend Mi : V (gi)→ V (Q) by mapping h−1
i (u) to v for

each gi ∈ PFGf ′ (if all vertices in V (gi) are matched,
insert gi to AQ and remove gi from PFGs), and recurse.

Figure 10 shows the search tree of the backtracking frame-
work above. Suppose that we just came back to node f21 =
{(u1, v1), (u2, v4), (u3, v11)} with PFGf21 = {g1} after the
exploration of the subtree rooted at f21. During the explo-
ration, we have narrowed down search space to extend par-
tial feasible mappings regarding only PFGf21 , and tried all
possible extensions to map u3, i.e., the first integrated vertex
extended from f11, to every v ∈ Cf21(u3). After the explo-
ration, we have Uf11,1 = PFGf11 − Zu3 = {g3}. Then we
next match the active vertex u4 relevant to Uf11,1. We have
f22 = {(u1, v1), (u2, v4), (u4, v23)} and PFGf22 = {g3}, and
focus on finding an embedding of g3. Similarly, suppose that
we just came back to node f1 after we have explored the sub-
trees with active vertex u2 to search for PFGf11 = {g1, g3}.
Now we have Uf1,1 = PFGf1−Zu2 = {g2}. Next, we choose
u3 as the next vertex to match.

Computing Empty-set Graphs. We describe how to
compute empty-set graphs. Suppose that we try to extend
f to f ′ = f ∪ {(u, v)} by matching active vertex u to its
matchable candidate v. The set empf (u, v) of empty-set
graphs is the set of gi ∈ DI(u) (where u = hi(w)) such
that for wp ∈ Parent(w), there is at least one edge (wp, w)
that does not correspond to edge (M(wp), v) ∈ E(Q), where
M = f ◦ hi. Now we compute empf (u, v) as follows.

empf (u, v) = ∪up∈Parentf (u){∪(up,u,x)∈E(I)DI,f (up, u, v, x)},

where DI,f (up, u, v, x) is ∅ if v ∈ Nup
u (f(up), x); DI(up, u, x)

otherwise. Recall thatN
up
u (vp, x) = {v ∈ Nup

u (vp) | lQ(vp, v)
= x}.

Consider the running example in Figure 9 in the back-
tracking framework above. Note that all graphs have sin-
gle edge labels (i.e., 1). Suppose that we just visit a par-
tial feasible mapping f = {(u1, v3), (u2, v22)} with Uf,0 =
PFGf = {g3}. Since u4 is active regarding f , we compute
empf (u4, v24) to obtain the set Gf (u4, v24) of matchable
graphs. The parents of u4 relevant to PFGf (i.e., u1 and
u2) are matched to query vertices, and v24 ∈ Nu1

u4
(f(u1)).

However, v24 /∈ Nu2
u4

(f(u2)), so for every (u2, u4, x) ∈ E(I),
all graphs in DI(u2, u4, x) have no partial embeddings if
we extend f to f ′ = f ∪ {(u4, v24)}. Thus, empf (u4, v24) =

1463

DI,f (u1, u4, v24, 1)∪DI,f (u2, u4, v24, 1) = ∅∪DI(u2, u4, 1) =
{g1, g3}. Finally, we can compute Gf (u4, v24) = G(u4, v24)
− empf (u4, v24) = ∅. Hence, v24 is not a matchable candi-
date of u4, so we do not extend f to f ′.

5.3 Relevance-Size Order
When we extend a partial feasible mapping f , there may

be more than one vertex that can be matched. Which ver-
tex should be extended first among them? To answer this
question, we describe an adaptive matching order suitable
for the backtracking framework based on active-first search.

Given a partial feasible mapping f , we prefer f ′ = f ∪
{(u, v)} to have large |PFGf ′ | so that f ′ is shared by as
many partial feasible graphs as possible in order to reduce
the search space. In Figure 7, suppose that we matched u1

and u2 in a partial feasible mapping f , and u3, u5, u7 are
active. We prefer u3 or u5 to u7 as the next vertex to match
since u3, u5 are shared by more partial feasible graphs than
u7 regarding f . However, since a matchable candidate v
is undecided when we try to choose the next vertex u, we
consider an upper bound of |PFGf ′ | instead of |PFGf ′ | for
every vertex that can be matched as follows.

PFGf ′ = Uf,k ∩Gf (u, v) ⊆ Uf,k ∩ Zu

where k is the number of integrated vertices that have been
extended from f . We call the size of the upper bound Uf,k∩
Zu the relevance rf (u) of u regarding f .

Relevance-Size order. We make use of the estimation
above to choose the next vertex in our matching order.

1. Select an active vertex u relevant to Uf,k such that rf (u)
is the maximum.

2. If there is more than one vertex with the maximum
rf (u), select u with the minimum |Cf (u)| among them.

Since we primarily consider the number of common graphs of
Uf,k and Zu, this matching order is called the relevance-size
order, where rf (u) and Cf (u) are computed regarding the
partial feasible mapping f . Thus, the next vertex selected
may be different for different partial feasible mappings; that
is, the relevance-size order is an adaptive matching order.

We also adopt the leaf decomposition strategy of [2] where
vertices in I are decomposed into the set of degree-one ver-
tices and the set V ′ of the remaining vertices so that we first
match I[V ′], and then try the degree-one vertices.

Search Process. Algorithm 4 shows the backtracking pro-
cess in which we find an embedding of every gi ∈ S(I) in Q
in the ICS by extending a partial feasible mapping f . For
simplicity, Uf,k is represented as Uf for every 0 ≤ k ≤ n,
where n is the number of extended integrated vertices from
f . The relevance and matchable candidates of a vertex is
computed immediately when it becomes active due to an
extension of f .

6. PERFORMANCE EVALUATION
In this section, we present experimental results to show

the effectiveness of our algorithm, referred to as IDAR. Since
two state-of-the-art supergraph search algorithms IGQuery
[6] and DGTree [12] significantly outperformed other existing
algorithms for graphs with small size and large size, respec-
tively, we mainly compare our approach against these two
algorithms. These methods are evaluated in several aspects:
(1) the effect of the number of vertices in data graphs, (2)
the effect of the number of vertices in a query graph, (3) the

Algorithm 4: Backtrack(I, ICS, f, AQ)

1 if |f | = 0 then
2 foreach v ∈ C(r) do
3 f ← {(r, v)}; PFGf ← G(r, v);
4 Mark v as visited;
5 Backtrack(I, ICS, f, AQ);
6 Mark v as unvisited;

7 else if there is no active vertex relevant to Uf then
8 return

9 else
10 Uf ← PFGf ;
11 while Uf 6= ∅ do
12 u← next vertex based on relevance-size order;
13 if Cf (u) = ∅ then
14 f ′ ← f ∪ {(u, v∗)}; PFGf ′ ← Uf − Zu;
15 Backtrack(I, ICS, f ′, AQ);
16 Uf ← Uf − PFGf ′ ;

17 else
18 foreach unvisited v ∈ Cf (u) do
19 f ′ ← f ∪ {(u, v)};
20 Mark v as visited;
21 PFGf ′ ← Uf ∩Gf (u, v);
22 Extend partial embedding of

g ∈ PFGf ′ in Q, and if an embedding
of g is found, insert g to AQ;

23 Backtrack(I, ICS, f ′, AQ);
24 Mark v as unvisited;
25 if Zu ⊆ AQ then break;

26 Uf ← Uf − Zu;

effect of the number of data graphs, and (4) the effect of the
number of answer graphs.

Experiments are conducted on a Windows machine with
an Intel i5-7500 3.40GHz CPU and 16GB memory. The
executable file of IGQuery was obtained from the authors in
[6]. We couldn’t get the code of DGTree from its authors.
Nevertheless, we have communicated with the authors to get
implementation details, and implemented the algorithm in
[12]. Its performance is as good as (actually slightly better
than) the one in [12] when compared against IGQuery.

Table 2: Experiment settings (k = thousand)

Parameter Range Default

|V (g)| (rand) 1-20, 21-40, 41-60, 61-80, 81-100 1-100
|V (g)| (freq) 1-10, 11-20, 21-30, 31-40 1-40

|V (Q)| 101-120, 121-140, 141-160, 101-
161-180, 181-200, 201-

|D| 10k, 20k, 40k, 60k, 80k, 100k 10k

Datasets. Experiments were performed on real datasets:
AIDS, NCI, and PubChem. AIDS contains 42,687 com-
pounds with 1 ≤ |V | ≤ 438 in the AIDS antiviral screen
dataset2. NCI consists of 265,242 graphs with 1 ≤ |V | ≤
342 obtained from the National Cancer Institute database3.
From PubChem, the open chemistry database at the NIH4,

2http://dtp.nci.nih.gov/
3http://cactus.nci.nih.gov/download/nci/index.html
4https://pubchem.ncbi.nlm.nih.gov/

1464

(a) AIDS (random) (b) AIDS (frequent)

(c) NCI (random) (d) NCI (frequent)

(e) PubChem (random) (f) PubChem (frequent)

Figure 11: Indexing time for varying number of ver-
tices in data graphs.

499,963 chemical compound structures with 1 ≤ |V | ≤ 801
are downloaded.

Query and Data Graphs. Since IGQuery and DGTree
are the state-of-the-art algorithms to compare, we prepare
the query and data graphs in a way similar to [6] and [12]
for fair comparison. For each dataset, we use the graphs
with |V | > 100 as the basic query set. To evaluate the
performance of query processing, we randomly select 100
query graphs from the basic query set, and take the aver-
age processing time. We extract data graphs from the basic
query set in two different manners as in Table 2: (1) random
walk on a randomly selected graph, from which we obtain a
subgraph containing all the visited vertices and some edges
between these vertices (denoted by “random”), and (2) fre-
quent subgraph mining (denoted by “frequent”) at minimum
support threshold 0.1 [6]. One experiment consists of a set
D of data graphs and 100 query graphs. Default values for
the number V (g) of vertices in a data graph, the number
V (Q) of vertices in a query graph, and the number |D| of
data graphs are shown in Table 2. If not specified, the pa-
rameters are set to their default values.
Time Complexity. Given a query graph Q and a set D
of data graphs, the time complexity of each algorithm is
shown in Table 3. While DGTree takes exponential time
in the worst case for indexing, the others take polynomial
time. All the algorithms take exponential time in the worst
case for query processing, resulting from the nature of a
NP-hard problem. Since they are designed to reduce query
processing time experimentally, they cannot be compared
by the worst case time complexities, but they should be
compared by experiments. IGQuery and IDAR may reduce
query processing time in practice by using polynomial-time
heuristic techniques called direct inclusion and IDAG-graph
DP, respectively, before exponential-time subsequent steps.
Number of Vertices in Data Graphs. First, we vary the
number of vertices in data graphs. Specifically, we consider
the sets of random data graphs with 1-20, 21-40, 41-60, 61-

(a) AIDS (random) (b) AIDS (frequent)

(c) NCI (random) (d) NCI (frequent)

(e) PubChem (random) (f) PubChem (frequent)

Figure 12: Query processing time for varying num-
ber of vertices in data graphs.

Table 3: Time complexities of the algorithms (exp
= exponential, w = word size, S(I) = a set of data
graphs integrated to I)

Indexing Query processing

IGQuery Σg∈D|E(g)|2 |E(Q)|2 (direct inclusion)

+ exp (filtering)

+ exp (verification)

DGTree exp exp

IDAR Σg∈D{|E(g)||E(I)|+ Σ∀I |E(I)||E(Q)||S(I)|/w
|V (g)||V (I)| log(|V (g)||V (I)|)} (IDAG-graph DP)

+ exp (search)

80, 81-100 vertices, and frequent data graphs with 1-10, 11-
20, 21-30, 31-40 vertices.

Figure 11 presents the time for index construction. IDAR
and IGQuery are comparable, whereas DGTree has the worst
index construction time, e.g., IDAR is faster than DGTree
by at least one order of magnitude. The performance gap
between DGTree and IDAR increases as the number of ver-
tices in data graphs grows, because DAG integration in IDAR
takes polynomial time unlike DGTree construction that may
take exponential time (to find embeddings of feature graphs
in the data graphs). If we assume that |E(g)| is significantly
larger than |V (g)| for g ∈ D, the time complexities of IDAR
and IGQuery in Table 3 are quadratic functions in the num-
ber of edges. Indeed, IDAR and IGQuery take similar time
in indexing as shown in Figure 11.

In query processing performance, IDAR always outper-
forms the competitors as shown in Figure 12.

• On the one hand, IDAR is faster than IGQuery by up
to two orders of magnitude (81-100 in the random data
graphs of AIDS, NCI, and PubChem); furthermore, the
query processing time of IDAR generally remains steady,
while that of IGQuery exponentially grows. We attribute
this phenomenon to the different heuristics implemented
by the algorithms, i.e., IGQuery suffers from heavy cost

1465

(a) AIDS (random) (b) AIDS (frequent)

(c) NCI (random) (d) NCI (frequent)

(e) PubChem (random) (f) PubChem (frequent)

Figure 13: Query processing time for varying num-
ber of vertices in a query graph.

of subgraph isomorphism tests in the filtering and veri-
fication phases as data graph sizes increase, which takes
exponential time in the worst case. However, the ef-
fective filtering (IDAG-graph DP) and efficient search
strategy of IDAR result in good scalability with respect
to the number of vertices in data graphs.
• On the other hand, IDAR outperforms DGTree by up

to one order of magnitude for large-sized frequent data
graphs. The reason for this is that IDAR searches for only
one embedding of each answer graph, whereas DGTree
finds all (partial) embeddings of the answer graphs, which
can be costly for the data graphs that have a lot of em-
beddings in a query graph.

Number of Vertices in a Query Graph. Next, we vary
the number of vertices in a query graph as shown in Figure
13: 101-120, 121-140, 141-160, 161-180, 181-200, 201- for
NCI and PubChem; and 101-120, 121-140, 141-160, 161- for
AIDS (query graphs with |V | > 160 are not enough to be
divided into separate groups in AIDS, so we regard 161- as a
single group). IDAR remains steadier and runs consistently
faster than the others by taking advantage of the filtering
power of IDAG-graph DP and the efficient search strategy.
For the random data graphs, IDAR outperforms IGQuery by
up to three orders of magnitude: 121-140, 141-160 in AIDS;
181-200, 201- in NCI; and 201- in PubChem. For the fre-
quent data graphs, IDAR is faster than DGTree by at least
one order of magnitude.

Between two existing algorithms, DGTree is generally faster
in the random data graphs, but IGQuery shows better per-
formances in the frequent data graphs. This phenomenon
may stem from the fact that DGTree and IGQuery are de-
signed to run efficiently for queries with the small and large
number of answers, respectively (see Number of Answer
Graphs). In fact, some queries for the frequent data graphs
has far more answers than most queries for the random data
graphs since the frequent data graphs are generally smaller
and have fewer labels as shown in Table 4. The large gap in

(a) AIDS (random) (b) AIDS (frequent)

(c) NCI (random) (d) NCI (frequent)

(e) PubChem (random) (f) PubChem (frequent)

Figure 14: Indexing time for varying number of data
graphs.

Table 4: Characteristics of data graphs and size of
IG (index of IGQuery) in the experiment of Figure 13

Data graph Avg |E(g)| Var |E(g)| |Σ| |E(IG)|
AIDS (rand) 52.13 906.82 35 18,690
NCI (rand) 52.25 891.24 46 23,777

PubChem (rand) 52.11 875.61 19 15,406
AIDS (freq) 31.43 14.77 6 238
NCI (freq) 22.86 10.52 6 441

PubChem (freq) 29.88 7.70 6 182

performances of IGQuery between the random and frequent
data graphs may be due to the big difference of their IG sizes
in Table 4.

Among the frequent data graphs, the gap between IGQuery
and IDAR in PubChem is less than those in AIDS and NCI.
These gap differences may originate from IGQuery because
the average query processing time of IGQuery varies a lot
for different datasets (8-284980 msec) whereas that of IDAR
is relatively stable (3-134 msec) in Figure 13. According
to Table 4, IGQuery may benefit from the characteristics of
PubChem: the frequent data graphs in PubChem have small
sizes (i.e., Avg |E(g)|) and the least variance of sizes (i.e.,
Var |E(g)|), which leads to IG with the smallest size (i.e.,
|E(IG)|). Indeed, the smaller the size of IG is, the faster is
IGQuery in query processing generally in Figure 13.

Number of Data Graphs. To test the effect of the num-
ber of data graphs on indexing and query processing, we use
the sets of 10000, 20000, 40000, 60000, 80000, and 100000
data graphs.

The indexing time for each algorithm is presented in Fig-
ure 14. The indexing performance of IDAR is on par with
that of IGQuery in most cases; however, DGTree doesn’t
manage to construct the index for more than 10000 ran-
dom data graphs, and more than 20000 frequent data graphs
because of its high memory usage to store all (or some) em-
beddings of feature graphs in each data graph.

1466

(a) AIDS (random) (b) AIDS (frequent)

(c) NCI (random) (d) NCI (frequent)

(e) PubChem (random) (f) PubChem (frequent)

Figure 15: Query processing time for varying num-
ber of data graphs.

Figure 15 shows the average query processing time. Since
IGQuery cannot solve some queries in a reasonable time, we
set a time limit of 24 hours for a query graph, and record the
processing time of the query that does not finish within the
time limit as 24 hours for comparison. IDAR outperforms IG-
Query by up to three orders of magnitude in random graphs.
For the frequent data graphs, IDAR outperforms DGTree by
up to one order of magnitude. Moreover, IDAR is faster than
IGQuery in all cases.

Number of Answer Graphs. We measure the query pro-
cessing time for different numbers of answer graphs: 0-9, 10-
99, 100-999, 1000-10000 for frequent data graphs in NCI and
PubChem; and 0, 0-10000, 10000 for frequent data graphs
in AIDS (we set three ranges because the number of answers
is not evenly distributed). Since the number of answers for
the random data graphs is less diverse, the query processing
time remains relatively constant, so we mainly consider the
frequent data graphs.

Figure 16 shows the results. Between IGQuery and DGTree,
a better performer changes as the number of answers grows.
For the small number of answers, DGTree outperforms IG-
Query because DGTree can efficiently filter many false an-
swers by utilizing diverse small features. For the large num-
ber of answers, IGQuery performs better because it outputs
many answers by using direct inclusion, which can save the
cost of subsequent filtering and verification.

IDAR consistently outperforms the others except for 0 in
AIDS and 0-9 in PubChem where most query graphs have no
answers. These queries are easy instances answered within
average 10 msec for IDAR and DGTree (DGTree performs
well especially for a query graph with no answers).

Index Size. Figure 17 demonstrates the size of each in-
dex for varying the number of data graphs in AIDS (the
results for the other datasets are similar). In general IDAR
is a better performer than others. The gap between IDAR
and IGQuery grows as the number of data graphs increases,
which means that IDAR is more effective in integrating nu-

(a) AIDS (frequent) (b) NCI (frequent)

(c) PubChem (frequent)

Figure 16: Query processing time for varying num-
ber of answers.

(a) AIDS (random) (b) AIDS (frequent)

Figure 17: Index size for varying number of data
graphs.

merous data graphs thanks to DAG integration. Especially
in frequent data graphs, IDAR benefits from a small number
of root properties in data DAGs and a large commonality
among data graphs, which leads to fewer IDAGs than those
for random data graphs.

7. CONCLUSION
In this paper we have proposed a new supergraph search

algorithm using DAG integration. DAG integration can be
extended for dynamic graph databases as follows. To insert
a data graph g, we build a DAG from g, select an IDAG to
which the DAG will be integrated (based on the partitioning
rule), and integrate the DAG into the IDAG. To delete g from
IDAG I to which g is integrated, we remove g from the root
of I, remove g from the outgoing edges of the root, and
repeat for the children of the root. More details and related
experiments will be described in the future work.

Extensive experiments on real datasets show that our ap-
proach outperforms the state-of-the-art algorithms by up to
several orders of magnitude. Applying our techniques to
some other graph query processing problems would be an
interesting future work.

8. ACKNOWLEDGMENTS
H. Kim, S. Min, and K. Park were supported by Institute for
Information communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) (No. 2018-
0-00551, Framework of Practical Algorithms for NP-hard
Graph Problems). W.-S. Han was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government(MSIT) (No. NRF-2017R1A2B3007116).

1467

9. REFERENCES
[1] D. Babić, D. Reynaud, and D. Song. Malware analysis

with tree automata inference. In International
Conference on Computer Aided Verification, pages
116–131. Springer, 2011.

[2] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang.
Efficient Subgraph Matching by Postponing Cartesian
Products. In Proceedings of SIGMOD, pages
1199–1214, 2016.

[3] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and
D. Shasha. Enhancing graph database indexing by
suffix tree structure. In IAPR International
Conference on Pattern Recognition in Bioinformatics,
pages 195–203. Springer, 2010.

[4] M. Cannataro and P. H. Guzzi. Data Management of
Protein Interaction Networks, volume 17. John Wiley
& Sons, 2012.

[5] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and
X. Gu. Towards graph containment search and
indexing. In Proceedings of VLDB, pages 926–937,
2007.

[6] J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu. Fast
graph query processing with a low-cost index. The
VLDB Journal, 20(4):521–539, 2011.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[8] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti,
A. Ferro, and D. Shasha. Grapes: A software for
parallel searching on biological graphs targeting
multi-core architectures. PloS one, 8(10):e76911, 2013.

[9] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han.
Efficient Subgraph Matching: Harmonizing Dynamic
Programming, Adpative Matching Order, and Failing
Set Together. In Proceedings of SIGMOD, pages
1429–1446, 2019.

[10] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: Towards
Ultrafast and Robust Subgraph Isomorphism Search
in Large Graph Databases. In Proceedings of
SIGMOD, pages 337–348, 2013.

[11] K. Klein, N. Kriege, and P. Mutzel. Ct-index:
Fingerprint-based graph indexing combining cycles
and trees. In Proceedings of IEEE ICDE, pages
1115–1126. IEEE, 2011.

[12] B. Lyu, L. Qin, X. Lin, L. Chang, and J. X. Yu.
Scalable supergraph search in large graph databases.
In Proceedings of IEEE ICDE, pages 157–168. IEEE,
2016.

[13] A. Mhedhbi and S. Salihoglu. Optimizing subgraph
queries by combining binary and worst-case optimal
joins. PVLDB, 12(11):1692–1704, 2019.

[14] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and
G. BakIr. Weighted substructure mining for image
analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1–8. IEEE, 2007.

[15] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T.

Özsu. The ubiquity of large graphs and surprising
challenges of graph processing. PVLDB,
11(4):420–431, 2017.

[16] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise.
Similarity search on supergraph containment. In
Proceedings of IEEE ICDE, pages 637–648. IEEE,
2010.

[17] S. Sun and Q. Luo. Scaling up subgraph query
processing with efficient subgraph matching. In
Proceedings of IEEE ICDE, pages 220–231. IEEE,
2019.

[18] Y. Tian, R. C. Mceachin, C. Santos, D. J. States, and
J. M. Patel. Saga: a subgraph matching tool for
biological graphs. Bioinformatics, 23(2):232–239, 2006.

[19] Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In Proceedings of IEEE ICDE,
pages 963–972. IEEE, 2008.

[20] Y. Tong, X. Zhang, C. C. Cao, and L. Chen. Efficient
probabilistic supergraph search over large uncertain
graphs. In Proceedings of ACM International
Conference on Conference on Information and
Knowledge Management, pages 809–818. ACM, 2014.

[21] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In Proceedings of IEEE ICDM, pages
721–724. IEEE, 2002.

[22] D. Yuan, P. Mitra, and C. L. Giles. Mining and
indexing graphs for supergraph search. PVLDB,
6(10):829–840, 2013.

[23] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach
for efficient supergraph query processing on graph
databases. In Proceedings of International Conference
on Extending Database Technology: Advances in
Database Technology, pages 204–215. ACM, 2009.

[24] W. Zhang, X. Lin, Y. Zhang, K. Zhu, and G. Zhu.
Efficient probabilistic supergraph search. IEEE
Transactions on Knowledge and Data Engineering,
28(4):965–978, 2015.

[25] G. Zhu, X. Lin, W. Zhang, W. Wang, and H. Shang.
Prefindex: An efficient supergraph containment search
technique. In International Conference on Scientific
and Statistical Database Management, pages 360–378.
Springer, 2010.

[26] Q. Zhu, J. Yao, S. Yuan, F. Li, H. Chen, W. Cai, and
Q. Liao. Superstructure searching algorithm for
generic reaction retrieval. Journal of Chemical
Information and Modeling, 45(5):1214–1222, 2005.

1468

