Guided Exploration of User Groups

Mariia Seleznova' , Behrooz Omidvar-Tehrani2, Sihem Amer-Yahia® , Eric Simon*
'TU Berlin, 2NAVER LABS Europe, *CNRS, University of Grenoble Alpes, *SAP Paris

'seleznova@tu-berlin.de, *behrooz.omidvar-tehrani@naverlabs.com,
ssihem.amer-yahia@univ-grenoble-alpes.fr, ‘eric.simon@sap.com

ABSTRACT

Finding a set of users of interest serves several applications
in behavioral analytics. Often times, identifying users re-
quires to explore the data and gradually choose potential
targets. This is a special case of Exploratory Data Analy-
sis (EDA), an iterative and tedious process. In this paper,
we formalize and solve the problem of guided exploration
of user groups whose purpose is to find target users. We
model exploration as an iterative decision-making process,
where an agent is shown a set of groups, chooses users from
those groups, and selects the best action to move to the
next step. To solve our problem, we apply reinforcement
learning to discover an efficient exploration strategy from a
simulated agent experience, and propose to use the learned
strategy to recommend an exploration policy that can be
applied to the same task for any dataset. Our framework
accepts a wide class of exploration actions and does not need
to gather exploration logs. Our experiments show that the
agent naturally captures manual exploration by human ana-
lysts, and succeeds to learn an interpretable and transferable
exploration policy.

PVLDB Reference Format:

Mariia Seleznova, Behrooz Omidvar-Tehrani, Sihem Amer-Yahia,
Eric Simon. Guided Exploration of User Groups. PVLDB, 13(9):
1469-1482, 2020.

DOI: https://doi.org/10.14778/3397230.3397242

INTRODUCTION

User data is widely available in various domains and is
characterized by a combination of demographics such as age
and location, and actions such as rating a movie, providing
advice on a product, or recording one’s blood pressure [1].
Many companies address the very fast growing market of
user data analysis by proposing dedicated platforms to col-
lect and analyze such data in a variety of business segments,

1.

*Work completed when author was an intern at SAP.

TWork funded by the Horizon 2020 research and innovation
y
programme under grant agreement No 863410.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 9

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3397230.3397242

1469

and start to tightly couple user data management with en-
terprise operational data management solutions [2, 3].

A common way of understanding user data is user group
analysis whose purpose is to breakdown users into groups
to gain a more focused understanding of their behavior or
to identify a target group of users satisfying an informa-
tion need. User group analysis has many applications in do-
mains such as social sciences, product design, product mar-
keting campaigns, and customer services [1]. In this paper,
we provide examples on different user datasets: DBLP [4],
a dataset of researchers, and MOVIELENS [5], a collabora-
tive rating dataset. The first example task is about a PC
chair who builds a program committee [6], starting with any
seed group of researchers, and iteratively looking for users in
groups that match properties expected of a PC (geographic
distribution, gender and topic balance, etc). The other ex-
ample task concerns about a movie festival committee seek-
ing to form a diverse set of critics at the first screening of
Drama and Comedy movies, by gathering a mix of reviewers
from the two genres with different demographics [7].

Due to the iterative nature of the task at hand, user group
analysis can be viewed as an instance of Exploratory Data
Analysis (EDA). In this setting, the exploratory analysis of
user groups is an iterative decision-making process, whereby
an analyst is shown a set of user groups labeled with user
and item attribute values (e.g., groups of researchers who
published in VLDB, groups of movie critics in the 35-44 age
range who review Drama movies), chooses target users from
those groups, and selects the best exploration action to move
to the next iteration (e.g., select a group whose label is [pro-
lific, female, published in VLDB] that has researchers with
well distributed geographical location, and apply an explo-
ration action to return k diverse groups that overlap with
the selected group). Despite a large body of work on the
recommendation of data exploration actions, several short-
comings exist. First, most works recommend SQL/OLAP
queries, which is not adapted to analysts with no I'T exper-
tise, while other works focus on specific types of actions that
are too limited for user group analysis. Second, existing so-
lutions either rely on tedious manual exploration [8], or on
a log of exploration sessions on the same dataset [9]. This
assumption is not valid in our case since many analysis tasks
are performed on different datasets. Finally, recent work on
automating the exploration process does not generate inter-
pretable exploration policies [10, 11].

We propose the first framework for user group exploration
that learns an exploration policy without requiring prior col-
lection of exploration logs. The learned policy is used to rec-

ommend an end-to-end interpretable exploration session on
a given dataset. Our framework supports exploration ses-
sions consisting of a sequence of exploration actions of vari-
ous types and returns recommendations for the exploration
of new datasets, provided they are similar (with respect to
domain-specific features) to previously analyzed datasets.
Our framework is independent from the approach used to
generate user groups from raw data. The exploration ac-
tions operate on groups that can be generated with any
method ranging from SQL aggregate queries to k-means,
graph-based algorithms (e.g., community detection), and
graph representation learning, to name a few. In an of-
fline phase, we learn an exploration policy from a simulated
agent experience in such a way that no human intervention
is needed. The lack of real exploration logs from a variety
of users rules out the use of approaches that require large
amounts of exploration traces such as sequence mining.

Our first contribution is to formalize the guided EDA
problem applied to user groups as a Markov decision pro-
cess where a state displays several groups, a transition is the
application of an exploration action to a chosen group, and
the reward of an action is a function of the number of target
users discovered by that action. An exploration session is
hence a sequence of exploration actions, and an exploration
policy is a function that maps a state to an action. A com-
mon difficulty is the design of state features to capture the
application of an exploration action to a group. To reflect a
human agent, we propose semantics that unifies previously
introduced actions (explore-around [8], explore-within [8], by-
facet [12, 13], by-distribution [14], and by-topic [15]). State
features are carefully designed to capture the effect of an ac-
tion on a state. The problem of guided EDA on user groups
becomes that of finding a policy that maximizes utility, i.e.,
that discovers as many target users as possible regardless
of the dataset and the seed group.

Our second contribution is the use of Reinforcement Learn-
ing (RL) to learn an exploration policy from a simulated
agent experience, i.e., an RL agent that acts as an analyst
who chooses exploration actions, and recommends a policy.
A notable advantage of RL methods is that, unlike super-
vised methods, they do not require to gather labeled data.
Instead, the agent learns from rewards computed by the en-
vironment during the interaction [16]. This naturally fits our
context since we can use, for instance, the PC of WebDB
2017 (or any previous PC of the same or different venue)
to learn an exploration policy offline, and apply it online
to build the PC of WebDB 2018. Additionally, the use of
RL for EDA enables to model our problem as an interactive
stochastic process, a nascent research area in databases, that
can greatly benefit from research experience in data model-
ing [9]. Our work differs from recent proposals on RL-based
EDA [9, 17]. First, we address a well-defined user data anal-
ysis task (gathering target users) and the exploration actions
are chosen accordingly. Additionally, in our case, running a
large number of manual explorations for each new dataset
and new analysis task is impractical. Moreover, our focus
on producing interpretable exploration sessions for a human
analyst warrants the use of classical RL methods instead of
deep RL or contextual bandits, a special case of RL where
the agent’s action does not determine the next state of the
environment [10, 11, 18, 19, 20].

Our third contribution is an extensive set of experiments
that validate the use of RL to solve the guided EDA problem
for user groups. While we do not focus on theoretical con-
vergence results, we empirically study various cases: users
to be found are scattered in groups, exploration with differ-
ent starting groups, and how our learned policies perform
with respect to random ones. We also examine the utility of
learned policies where they are learned on the same dataset
or transferred between datasets. We also validate the appro-
priateness of the state features we crafted. Our experiments
show that the simulated agent succeeds to learn an inter-
pretable policy that naturally captures human analysts (as
in [8]) and can hence be used to automate guided EDA.

The rest of the paper is organized as follows. First, we
review related work in Section 2. We then introduce the
user data model and define the guided EDA problem for user
groups in Section 3. Then we present our solution based on
reinforcement learning in Section 4. In Section 5, we provide
an extensive set of experiments to validate the effectiveness
of our approach for EDA. We conclude in Section 6.

2. RELATED WORK

Our work lies at the intersection of data management and
machine learning. We present related work on user group
exploration, recommendation of exploration actions, and re-
inforcement learning for interactive exploration.

2.1 User group exploration frameworks

User group exploration is a recent and dynamic research
area in data management [1]. The traditional way of explor-
ing user groups is based on previous frameworks [21, 22].
Most notably, by-query can be used to select user groups
that satisfy predicates. However, to formulate a query, the
analyst needs to know the database schema, the query lan-
guage, and the underlying data distributions. We discard
this type of exploration in our model because we want to
target analysts that have no programming expertise.

Higher-level exploration actions not requiring much ex-
pertise have been introduced in recent work. by-facet ex-
ploration returns groups that have the same value for some
attribute, e.g., gender [23, 12, 13]. by-example exploration
[24, 8] finds groups that are similar to/different from an
input group. In [8], by-example-around returns k diverse
groups that overlap with an input group, and by-example-
within returns a set of k subgroups that maximize the cov-
erage of the input group. by-analytics selects groups based
on some desired statistics. Some actions admit as input a
set of distributions and find groups with similar rating dis-
tributions [14]. Others are a variant of by-example and look
for groups similar to/different from a given group in terms
of their distributions [25]. by-text exploration actions [15]
leverage textual information such as tags and reviews to find
groups that exhibit similar/dissimilar tags or reviews.

Our framework accommodates the above actions and is
sufficiently generic to capture other actions. There exist
other types of actions that we did not consider. For instance,
by-evolution actions [26, 27, 28, 29] are designed for times-
tamped datasets. They can be used to select groups based
on similarity /dissimilarity in their evolution over time, or
those that exhibit some pattern.

1470

2.2 Recommendation of exploration actions

A number of works recommend queries for the interactive
exploration of databases [30, 31]. One approach based on
collaborative filtering uses previously collected query logs of
a dataset (SQL queries in [32, 33|, and OLAP queries in
[34, 35]) to recommend queries on the same dataset. This
approach is not applicable to our problem because we can-
not rely on a large number of previous exploration sessions
for the same data analysis task, and we assume that the
same analysis task can be performed on different datasets.
Finally, these approaches focus on the recommendation of
SQL/OLAP queries, while we are interested in more ab-
stract operations that do not require technical expertise.

Another mode of interactive exploration, sometimes called
data-driven approach [30, 36, 37, 38, 39, 40], recommends a
single type of exploration action whose result is expected to
optimize a measure of “interestingness” with respect to the
current analysis context of a user on a given dataset. For
instance, [38] suggests different drill-down operations on a
given table (a case of by-facet), each producing a different
set of tuples. With a data-driven approach, the notion of
context is predefined (e.g., user profile [36], sequence of ac-
tions within the same session [38, 40], or data returned by
a query [37, 39]). These works do not apply to our problem
firstly because they only consider one type of exploration ac-
tion. Secondly, the proposed measures of “interestingness”
are predefined and cannot be adapted to different analysis
tasks. The closest work to ours is the recommendation of
various types of high-level exploration actions (e.g., filter,
roll-up, cluster-by) for interactive data analysis over dif-
ferent datasets [9]. In the same spirit as the data-driven
approach, an exploration action is recommended based on
different user’s analysis contexts modeled as trees in which
previous actions are edges and their output dataset, called
“display”, are nodes. Given a context, the system looks for k
similar contexts in a log of previous exploration sessions,
and retrieves a candidate next action. A suggested action
can be an abstract action (e.g., filter-by) that is general-
ized from a concrete action (e.g., filter-by protocol=“SSL”)
by leaving out data-specific and context-specific attributes.
This framework is however not suited for our problem. The
proposed approach assumes the prior collection of many ex-
ploration logs for a given task. Additionally, in our case, the
choice of a best next action is driven by the improvement of
a utility function computed over all the states seen so far,
rather than similarity with collected logs.

Another direction of research, called user intent identi-
fication, aims to understand how a user’s exploration goal
evolves during interaction. The approach developed in [17]
considers prediction of “interestingness” measures relevant
to the next step of interactive exploration. These measures
characterize some properties of interactive exploration dis-
plays. Examples of such measures are: diversity (favors dif-
ferences in values), dispersion (favors similar values), pecu-
liarity (favors values different from average), conciseness (fa-
vors short displays). Other works propose predictive models
to determine the topic of the next query [41] or the relevance
of content items [42] based on the behavioral features of the
analyst. Although the notion of interestingness proposed
there is closer to our needs, these approaches are based on
the clustering of real behavioral patterns using large collec-
tions of past user interactions.

1471

3. USER DATA ANALYSIS MODEL

In this section, we define our EDA environment for user
group analysis. Section 3.1 describes the user data model
and the notion of user groups. Section 3.2 presents a unified
semantics for the exploration actions used in our framework
and defines the notions of relevance and quality of an action.
Last, Section 3.3 defines our guided EDA problem which
consists of recommending an exploration policy.

3.1 User datasets and user groups

We model user data as a set of users U, a set of items Z,
and a set D = {(u,4,s,z)} where u € U, i € Z, s is an
integer score, and z is a text. A tuple (u,i,s,z) represents
the action of user u (e.g., publishing, reviewing) on item i
with an optional score s (e.g., recency of research publica-
tions, movie rating) and an optional text = (e.g., publication
titles/abstracts, movie reviews).

Each user u € U is described with a set of attribute-value
pairs u = {(a,v)}, where a € Ay is a demographic attribute
(e.g., age, gender, occupation), and v is a value in a’s do-
main, i.e., v € dom(a). Similarly, each item ¢ € Z is de-
scribed with a set of attribute-value pairs ¢ = {{(a, v) } where
a € Ay is an item attribute (e.g., publication topic, movie
genre). The set of all demographic and item attributes is
denoted A = Ay U A;.

A user group g is a subset of U to which is associated
attribute-value pairs (a,v) that define label(g). The set
of groups is denoted G. items(g) is the set of items 4 for
which there exists a tuple (u,i,s,z) in D associated to a
user u in g. Every user u in g must satisfy label(g). For in-
stance, label(g) = {(gender, female), (location, CA), (venue,
VLDBJ), (venue, SIGMOD)} represents a group of female
researchers in California who published a VLDB Journal and
a SIGMOD paper at least once.

Since our focus is on exploration, our framework can rely
on any group generation method, ranging from SQL aggre-
gate queries to k-means, graph-based algorithms (e.g., com-
munity detection), graph representation learning, etc. Re-
sulting groups may or may not overlap. For more details,
the reader is referred to a survey on the stages of user group
analytics [1].

ExXAMPLE 1. As our running example, we consider Mar-
tin, a PC chair, who wants to build the WebDB 2014 PC
by gathering geographically distributed male and female re-
searchers with different topics of interest, seniority and ex-
pertise levels.

3.2 Group exploration actions

The exploration actions to consider for our framework
must be expressive enough to reflect how an analyst explores
the space of groups to satisfy her needs in terms of reaching
target users. Intuitively, an action should provide the ability
to look into a group, expand it, or to compare group mem-
bers. In [1], different group exploration actions are surveyed
and categorized according to how they capture users’ needs.
In this paper, we cover those exploration actions and unify
their semantics to make them composable.

We use E to denote a set of exploration actions. To rep-
resent the effect of an action, we define a generic function
explore(g, k,e) that takes as input a group g € G, an inte-
ger k, and an exploration action e € F, and returns k£ other
groups Gr C G \ g that represent new exploration options.

We unify the semantics of the actions by defining two
conditions on the set of k groups returned by ezplore(.) as
follows (gin is an input group and g a candidate group to be
returned):

e Vg € Gy, relevance(gin, g,€) > 0;
e quality(Gr, e) is maximized.

Both functions return a value between 0 and 1. Their
exact definitions depend on the exploration action e. Our
design is inspired by the approach developed in [17] to pre-
dict “interestingness” measures that are relevant to the next
exploration iteration: relevance(gin, g, e) forces the resulting
groups g € Gy, to share similarities with the input group gin,
measured by functions such as Jaccard, Cosine, or Earth
Mover’s Distance. This ensures continuity in the explo-
ration. Maximizing quality imposes that G brings added
value to the exploration, measured by functions such as di-
versity and coverage.

Exploration action explore-around. This action returns k
diverse groups that overlap with an input group g;» [8]. Jac-
card similarity is used to implement relevance, and diversity
is used for quality:

relevance(gin, g, explore-around) = Jaccard(gin, g) = lgin N g
lgin U g
| gl
quality(Gr, explore-around) = diversity(Gr) = %
g
9€Gy,

Exploration action explore-within. This action returns k&
subgroups that maximize the coverage of the input group g.n
to ensure that all exploration options within g, are still
available [8]. This is akin to subgroup discovery [43]:

relevance(gin, g, explore-within) = 1[g C gin|

The function relevance(gin, g, explore-within) returns ei-
ther 0 or 1. Hence in this case, o is always set to 1. To
ensure a range of exploration options, coverage is used to
define quality as follows:

quality(gin, Gk, explore-within) = coverage(gin, Gx)
= | Ugeg, (9N gin)l/gin]

Exploration action by-facet. This action is a realization
of faceted search in the group space [44]. Output groups
result from splitting an input group g¢i» on a given facet
(e.g., split a group by gender into males and females), i.e.,
(a,v), is added to the label of g;n, where a € A and v €
dom(a). Given g;, and an attribute a, relevance and quality
are defined as follows:

relevance(gin, g, by-facet) = 1[label(g) \ label(gin) = {(a, v)]

The function relevance(gin, g, by-facet) returns either 0
or 1. Hence in this case, o is always set to 1.

1472

quality(gin,Gr, by-facet) =

{9 € Gk, label(g) \ label(gin) = (a,v)}|
|dom (a)]

Exploration action by-distribution. A score distribution
g can be built for each group g using the score component s
in (u,i,s,z) € D (e.g., publication years of papers, ratings
of products), as follows:

g = {(s, count(s)) : Yu € ¢,Vi € items(g),I(u,1,s,z) € D}

by-distribution finds groups with score distributions simi-
lar to an input group gi» [14]. In this case
relevance(g, by-distribution) of a group g € Gi can be ex-
pressed with a distribution comparison function (for instance
Earth Mover’s Distance or Kendall Tau), and
quality (G, by-distribution) is expressed using diversity:

relevance(gin, g, by-distribution) = EMD(g, gin) =

min(work (g, gin))
min([3l » [genl,)

where the function work(§g, gin) computes the matching wei-
ght between the score distributions § and gin, and |||, de-
notes the Euclidean norm.

. |Ug€gk 9|
> gl

9€GK

quality (G, by-distribution) = diversity (G)

Exploration action by-topic. This action operates on the
text component x of (u,i,s,x) in D. Several methods, in-
cluding Latent Dirichlet Allocation (LDA) and tf-idf, can
be used to process those z’s and associate a topic vector &
to each tuple (u,i,s,z) € D [45, 46]. In our work we use
LDA where the corpus is the set of x’s in all tuples of D.
Given a group g of users wu, its topic vector § is obtained
by combining (e.g., using sum) the topic vectors of all its
associated tuples (u, 1, s,).

In by-topic, relevant groups are determined by their Cosine
similarity to gi»’s topic vector. The quality is defined as the
diversity of labels of returned groups.

relevance(gin, g, by-topic) = Cosine(d, gin)

|Uyeg, (a,v) € label(g)]
> {a,v) € label(g)|

g€y

quality(Gy,, by-topic) =

EXAMPLE 2. We now revisit our PC formation example.
Assume that Martin starts with an input group containing
2 junior researchers, Sebastian Michel and Xiaokui Xiao
to be included in the final committee. He applies explore-
around to broaden his search. He discovers 3 groups of re-
searchers out of which he chooses a group whose label is [pro-
lific, SIGMOD] that contains 29 geographically-distributed
and gender-distributed researchers. Martin identifies Lu-
cian Popa, An-Hai Doan, Sihem Amer-Yahia and Michael
Benedikt in that group, and applies another explore-around
ezxploration to explore relevant groups. Among the 3 returned

groups, he examines one containing 119 highly senior re-
searchers, and requests explore-within to delve into that large
group. He finds the group labeled [highly senior, very produc-
tive, VLDB, ICDE] containing 26 senior researchers out of
which Francesco Bonchi, Kaushik Chakrabarti, Piero Frater-
nali and Feliz Naumann are of interest. Martin then applies
a by-topic exploration to find other groups whose research ar-
eas are similar to those 26 researchers. by-topic expands the
explored topics to identify a new group of 38 researchers who
cover “stream processing” and “data integration”, the main
topic of WebDB in 2014. Martin decides to apply a by-facet
on that group to separate males and females and balance his
PC. At this stage and after 5 steps only, Martin has covered
80% of the WebDB 2014 PC.

Example 2 illustrates the need for an iterative process to
find users of interest, since the analyst does not necessarily
have a complete specification of the set of target users at the
beginning, and a full understanding of the underlying data
distributions. An effective end-to-end exploration depends
on the seed group (the set of users with which the analyst
starts the exploration) as well as the series of exploration ac-
tions and their utility in helping the analyst to locate target
users.

3.3 Exploration states and policies

In our EDA environment, the analyst goes through multi-
ple steps where each step is the application of an exploration
action to an input group gi» to obtain a set of k groups, G,
that constitute further exploration options. Each step gen-
erates an exploration state s; = (g;, Gii) that represents the
result of applying an action e;—1 to group g;—1 (from the pre-
vious state). An exploration session S, starting at state s1,
of length n, is a sequence of exploration states and actions
of the form:

Ssl = [(ghgklael)a IR (gnagknaen)]

where ¢g; € Gr; C G and e; € E. For instance, the explo-
ration session of length 3 in Example 2 can be represented
as: [(g1,{g1}, explore-around), (g2, Gi2, explore-within),

(g3, Gr3, by-topic)], where g1 is a starting group in G, G2 is
the result of applying explore-around to g1, etc.

We define a policy 7 as a function that takes an explo-
ration state s; = (gi,0k;) and returns an action e;, i.e.,
m(s;) = e;. Then, we can rewrite the definition of a session
S starting at state s; and generated by a policy 7 as:

S;FI = [(81777(51))7 SRR (Snaﬂ'(sn))]

Utility of groups. The aim of a task is to gather a set
of target users Uy C U that are scattered in many groups
in G. Therefore, we need to measure the utility of a group g
returned by an ezplore(.) function with respect to U;. A
straightforward definition of utility would be |g N|. How-
ever, this definition results in higher utility for larger groups
which is not desired since the analyst would need to scan
many users to identify targets. For example, when Mar-
tin (the PC chair) wants to find “Asian female researchers
working on machine learning”, the group of “all female re-
searchers” contains many target users, but also many more
irrelevant users. We hence introduce a concentration pa-
rameter ¢ € [0,1] to reflect the distribution of target users
in a user group. We define group utility:

1473

g-utility(g,Us) = |g NU| * 1[g € Gf]

NU.
g _ {g c g . |g tl
lgl
where Gf C G is a set of target groups. While U; charac-
terizes the exploration goal, Gf is the set of all groups where
users from U; are concentrated.

c
t

> c}

Utility of a policy. The utility of an exploration session
measures the total number of unique target users identified
in target groups during this session discounted by the num-
ber of steps in that session with parameter v € [0, 1]:

>

(9i,9kiei)ES

s-utility(S,Uy) = v g-utility(gs, U\ | J{g; € G })
j<i
(1)
Given a seed state s1 = (g1,Gx1), we can now define the
utility of a policy 7 for a target set of users Us:

poutility(m, s1,Us) = s_utility(S3,, Us)
3.4 Guided EDA problem

We are now ready to state our problem: given the task
of finding a set of target users U, the guided EDA problem
is formulated as finding a policy 7* with the highest utility.
More formally,

" = argmaz,p_utility(r, s1,Us),Vs1 = (g1, Gr1)

The guided EDA problem poses two major challenges: ()
how to simulate a human agent in such a way that we learn
a policy that is applicable to any dataset and any input
groups? (it) how to characterize exploration states in such
a way that they are independent from the underlying data,
and that the decision of which action to apply next maxi-
mizes overall utility?

4. RL-BASED APPROACH

We describe our solution to the guided EDA problem
using an RL-based approach. We first describe the gen-
eral architecture of our approach (Section 4.1). Then, Sec-
tion 4.2 presents our modeling using a Markov Decision Pro-
cess (MDP), following which we reformulate our guided EDA
problem for user groups in section 4.3. Last, Section 4.4 de-
scribes the RL framework and algorithms to learn and apply
the best exploration policy.

4.1 Architecture of the RL-based approach

The general architecture for our RL-based approach is de-
picted in Figure 1. The offline phase addresses our first chal-
lenge: simulate a human experience in such a way that we
learn a policy that is applicable to any dataset and any ini-
tial group. During the offline phase, an agent simulating a
human analyst is trained to learn a policy that maximizes
utility, e.g., for the PC of WebDB 2017. The policy is up-
dated as the agent interacts with user groups via exploration
actions. The outcome is final exploration policy that can be
leveraged in an online phase to find any set of target users.
For instance, the policy will apply explore-within at a given
step 7 in case a group at step @ — 1 includes some target
users but is too large and hence requires further splitting. If

(0) user group generation |

user data q —>|

..

(1) take action on current state ()
™) i

- (2) get reward and new state H
agent —— —————— usergroups G i

Offline phase
(simulated agent experience)

ﬁ recommended action
K=
S tarect (4) explore with action e
£ usirs (explore-around, explore-within, by-
5 : facet, by-distribution, by-topic)
: on the group g
@ 5 seed
«a i group l g€ Gk
analyst ?k

Figure 1: RL framework architecture. In the offline
phase, the system iterates between steps 1 and 2
until it learns a policy (Algorithm 1). The policy
(step 3) is used online to recommend exploration
actions. In step 4, it is applied to any input seed
group and returns target users (Algorithm 2).

instead the group is too small, it would apply explore-around
at step ¢. Once a policy is learned, it is provided to a human
analyst who applies it during the online phase to generate
an interpretable exploration session that finds a PC for the
same venue at a following year, e.g., WebDB PC in 2018, or
for another venue, e.g., the SIGMOD PC in 2018.

4.2 Exploration model

We model EDA as a Markov Decision Process (MDP)
comprising a quadruple (S, E, P, R) where:
e S is a set of states of the process;

e F is a set of exploration actions that change the process
state;

P(s;+1]8:,€:) are probabilities that action e; will change
state s; € S to state s;+1 € 5}

R(si+1]ss,€:) are rewards for transitioning from state s; €
S to state s;+1 € S by applying exploration action e;.

Each state s;+1 is a tuple (g;+1, Gri+1) obtained by apply-
ing an exploration action e; to a previous state s; = (gs, Gi),
and for which an action e;41 should be selected to continue
the exploration. The probabilities P(s;+1]s;,€;) character-
ize the behavior of exploration actions, i.e., they represent
what will be displayed next if e; is selected. These proba-
bilities are not known in advance and depend on the quality
and relevance functions of the exploration actions and on
properties of the dataset.

Reward design. The reward of a state R(s;+1]si,e;) must
reflect the utility of group gi+1 for a set of target users U; de-
fined in Section 3.3 (Equation 1). Reward design is known
to be a challenging issue, because a reward must capture

what a human analyst expects to achieve and a poorly spec-
ified reward may lead to counter-intuitive performance [9].
In our approach, the simulated RL agent is rewarded each
time it discovers new target users, i.e.,

R(sit1|ss,e:) = g-utility(git1,Us)

It is important that the agent is rewarded only for targets
which have not been found so far, because otherwise it would
prefer to go back to the same target group [47]. This re-
ward signal does not capture the need to maximize the total
number of target users found in a session. It only prefers
discovering more targets sooner starting from the current
state. A reward that captures the overall utility of an ex-
ploration policy should be computed once at the end of the
exploration. However, learning from such a sparse reward is
too complex in our case. Therefore, we reward the agent at
each intermediate step.

4.3 Reformulating the guided EDA problem

Following our MDP model, our guided EDA problem is
reformulated as finding a policy 7 : S — FE, such that it
maximizes the discounted cumulative reward R:

R= Z’yiR(sHﬂsi,ei) — maz
i

where e; = m(s;) and v € [0, 1] is a discount factor.
Similarly to classical RL, given a policy 7, we use a value
function Vx(s) and action-value function Q(s,e):

oo

Ve(s) = E[Z ’)’i+kR(5i+k+1|5i+k7 eitk)|si =]
k=0

Qx(s,€) =E[) A" R(sitata|sir, cirr)lsi = s, e =]
k=0

The function Vx(s) computes the expected cumulative re-
ward of the policy 7 gained after observing state s at step 3.
The function @~(s,e) captures the expected cumulative re-
ward that 7 gets from applying action e at state s. An opti-
mal policy 7* always selects actions with the highest value
in the current state, thus maximizing expected reward. This
yields optimal functions V* and Q* which satisfy the Bell-
man optimality equations [16]:

V2 (s) = max Q" (s,e) =
mélXZ P(si+1|si = S5,€e; = e) [R(Si+1‘si = S8,e; = e)+ny*(si+1)}
@

Our goal is then to find 7 which yields the best explo-
ration action at every exploration step.

4.4 RL framework

Reinforcement learning is a set of methods that find an op-
timal decision policy for an MDP when transition probabili-
ties are not given. The input to an RL model is (S, E, P, R)\
P. RL fits our context, because (i) we do not assume ex-
ploration logs, and (¢7) transition probabilities between ex-
ploration actions are unknown and depend on the data.

To learn an optimal policy, we simulate interactions be-
tween an analyst and groups in the offline phase. An RL
agent interacts with different states and gathers several sim-
ulated exploration sessions. At each state s; = (gi, Gi), the

1474

agent decides which exploration action e; to select. This de-
cision is based on the action-value function Q(s;,e;), which
the agent learns.

State-action features f(s,e). To enable learning inter-
pretable EDA policies, we describe our states with a small
set of domain-dependent features that reflect the result of
applying an exploration action to a state. The features must
enable learning how to choose between actions at each step.
We expect the states generated by different actions to take
different values for relevance and quality functions defined in
Section 3.2: e.g., explore-around aims to generate states with
higher diversity (quality), while explore-within aims to gen-
erate states with higher coverage (relevance). Features that
capture relevance and quality functions will ensure that val-
ues of P(s;|si—1,ei—1) depend on e;_1, so it is expected that
we learn a policy that performs better than random. Table 2
in Section 5 contains a detailed description of the features
we engineered for our empirical validation. The choice of
those features is based on realistic exploration tasks in the
literature [8, 44, 14] and on several trial-and-error steps and
on different user datasets. We denote f(s,e) as a feature
vector of size n for a corresponding state-action pair.

Representation of Q(s, e). Typically an RL method learns
a matrix of size |S| x |E| for Q(s,e). In our case, our state
space is vertically huge (i.e., all (g, Gx) combinations). Con-
sequently the matrix is large and highly specific to the group
set G. Hence the scope of the learned policy will be lim-
ited. To cope with that, we rely on approximate control
methods [16] to learn an approximation of the action-value
function Q(w, s,e) = Q(s,e) as a function of a weight vec-
tor w € R™, where m is the number of state features and
m < |S]. Given a state-action feature vector f(s,e), we
define a linear approximation of Q(s,e):

Q(w,s,e) = w' £(s,e)

This approximation is essential for two reasons: (i) RL
methods do not scale with a large number of discrete states
as they need to store and train a huge matrix, but in our case
we use a continuous state space and an approximate Q func-
tion as a linear combination of features (this is referred to
as “approximate control”), (i) it makes our representation
data-driven but not strictly data-dependent and it blends
together states with the same features in the same manner
as grouping similar contexts in database exploration [9].

Learning procedure. To learn the approximation of the
action-value function, we apply a common method, a semi-
gradient method [16] based on a stochastic gradient descent
(SGD) minimization of mean squared error:

err(w) =

Z P(s,e)(Q(s,e) - Q(W, Sve))z

s€S,e€FE

where P(s,e) denotes probabilities of the state-action pairs
in the agent-environment interaction. During the simulated
exploration, SGD updates the weights w to minimize the
error function. The exact stochastic gradient step with the
learning rate « is defined as follows:

1475

Algorithm 1: Policy learning (offline)

IHPUt: E» g7 k,Z/It, gtca go, €, &, 7y, Wo
Output: agent.policy

1 agent.set(e, a, v, wo, E)
2 while not end_of _learning do
3 | si < (g0,{g0})
4 e; < agent.get_exploration_action(s;)
5 while not end_of _session do
6 Grit1,7 <+ explore(si,e;)
7 Si+1 < (gi+1, Grit1)
8 ei+1 agent.get_exploration_action(si+1)
9 agent.update_weights(s;, €;,T, Si+1, €it1)
10 Si = Si+1, € = €i+1
11 end
12 end

Algorithm 2: Learned policy application (online)

Input: agent.policy, go
Output: target users

1 target_users< ()
2 si < (90, {g0})
3 e; « agent.get_exploration_action(s;)
4 while not end_of _session do
5 Grit1,7 < explore(s;, ;)
6 | sit1 < (git1, Grit1)
7 erec < agent.get_exploration_action(si+1)
8 target_users<— target_users U €rec(S:)
9 Si < Si+1, € < €rec
10 end

Wit1 = Wi + a(Q(ss, ;) — Q(Wm Si, ei))VQ(Wi, i, €q)

This update is done each time the RL agent observes a
new state and selects an exploration action. While the true
Q(s, e) is unknown, we rely on its estimator as follows:

wit1 = Wi + a(Qi — Q(Wi, si,€:))VQ(Wi, 54, €:)

The employed estimator is proposed in the semi-gradient
SARSA algorithm [16], ie, Qi = Rit1 +’}/Q(Wi, Sit1, €i+1).
SARSA is a slight variation of the popular Q-Learning algo-
rithm. It uses the action performed by the current policy to
learn the Q-value. Our final linear approximation function
is therefore:

Wit = Wita(Rip1+7w, £(sit1, eiv1)—w; £(si,e:))f(si, €:)

(2)

These updates guarantee to converge to a local minimum
with a sufficiently small learning rate o and a fixed P(s,e)
distribution [16].

Learning algorithm. We apply the learning procedure in
an offline phase (Algorithm 1) and recommend the learned
exploration policy online (Algorithm 2). Algorithm 1 shows

the process of the agent-environment interaction during pol-
icy learning. The algorithm iterates until end_of _learning
is true which can be caused by a time limit or a limit on
the proportion of target users found (details in Section 5).
In each learning loop, the environment first returns to its
initial state so = (go,{go}). Then the agent iteratively ob-
serves environment states and selects corresponding actions
using get_exploration_action(.) (line 8). With probability e,
the function returns

argmal‘eeEWTf(gy G, 5)

otherwise it returns a random e. The observation steps
break when the parameter end_of _policy is true. In line 6,
the function action_apply(.) performs the selected explo-
ration action e to change the environment state and get
its corresponding reward. We set r lg N U if the se-
lected group is in G; and to O otherwise. The function
update_weights(.) is responsible for learning the weights thro-
ugh semi-gradient updates as depicted in Equation 2 (line 9).
Finally the agent with the learned set of weights w is re-
turned.

Algorithm 2 describes the process of policy recommenda-
tion. At each step, the agent recommends the best explo-
ration action er.. as a function of the current state (g, Gx)
(line 7). The algorithm iterates until end_of _session is true
which is the case if a time limit is reached or when a wanted
proportion of target users is found.

5. EXPERIMENTS

Our experiments first seek to validate the use of RL for
EDA on user data, and then to examine the utility of our
learned policies on real user datasets.

Summary of results. We first observe that increasing the
number of sessions in offline learning yields a decrease in the
number of steps to find target users in the online phase (Fig-
ure 3), which validates the effectiveness of learned policies
(Section 5.3). We show how the scattering of target users
impacts the learned policy (Section 5.5): we see that explore-
around and by-distribution are favored when targets are scat-
tered in diverse groups, whereas by-facet is favored when
targets are concentrated in fewer groups; we observe that
the likelihood of using explore-around decreases after many
target users have been discovered; also the likelihood of us-
ing by-distribution increases when handling smaller groups.
Last, we illustrate that while different tasks may require
different policies, it is possible to transfer policies between
tasks (Section 5.4). We show that training policies on larger
datasets (e.g., SIGMOD PC) may lead to overfitting when
we transfer the policy to smaller datasets (e.g., WebDB PC).
The inverse transfer is shown to perform well.

5.1 Datasets

We test our system on DM-AUTHORS, a dataset we built
from DBLP [4]. DM-AUTHORS includes 1,860 researchers
with a total of 200,000 publications in data management
venues between 2000 and 2018: VLDB, SIGMOD, ICDE,
WWW, RecSys, EDBT, DEXA, WebDB, and HILDA. We
crawled profiles of researchers from DBLP and added de-
mographic attributes.

Following our data model (Section 3), we describe the
quadruple (u, 7, s,z) in DM-AUTHORS as follows: v € U is a
researcher, i € Z is a publication by a researcher, s € [1, 5]

1476

is a normalized value for publication recency, and x is a
bag of words from the publication title. The score s is
assigned based on the year of publication: [2017,2018] —
5, [2014,2017] — 4, [2010,2013] — 3, [2006,2009] — 2,
[2000, 2005] < 1. For instance, the quadruple (Volker Markl,
VLDB, 5, { fault-tolerance, dataflows}) represents that Volker
Markl published a paper in VLDB during the years 2017
and 2018 (s = 5) whose title contains “fault-tolerance” and

“dataflows”.!

Demographic and item attributes. Table 1 describes
the set of demographic attributes Ay for each researcher in
DM-AuTHORS. The set Az has one attribute, i.e., the venue
(conference or workshop) that the paper was published in.

Table 1: Demographic attributes in DM-Authors.

| Attribute [Description | Values
Number of years since | starting
the first publication in | (1-8 years),
researcher’s DBLP. Junior (9-12),
Seniority Values are chosen to senior (13-15),
equalize the number of | highly senior
researchers in each (16-21),
category. confirmed (22+)
active (0.18-
Average number of 1.47), very
publications per year. active (1.48-
Publication | Values are chosen to 2.48), productive
rate equalize the number of | (2.49-3.71),
researchers in each very productive
category. (3.72-6.0),
prolific (6.1+)
North America,
UK /Ireland,
Extracted from South America,
Location researchers’ affiliations | Furope, Fast/
in DBLP profiles. South Asia,Aus-
tralia, Middle
FEast, other
Extracted by matching
researcher’s first name
Gender to a database of more male, female
than 40,000 names.?

User groups.

State-action features.

To build the set of groups G, we rely on
LCM, an implementation of the Apriori algorithm for closed
frequent pattern mining [48]. LCM admits D and a support
threshold 7, and returns a set of frequent patterns which
contain at least 7 users. Each frequent pattern is described
with demographics, items, and item attributes which are
common to all i users of the pattern. Hence each pattern
forms a user group g where label(g) is the pattern itself. We
mined 26,648 groups with a support value set to n = 10.
The size of group labels in G varies between 1 and 5.

In Section 4.4, we proposed to

describe each state-action pair (s,e) with a set of domain-
dependent features, f(s,e), and use those features in our

"https://dblp.org/rec/html/journals/pvidb/XuLSM18
Zhttps://github.com/ferhatelmas/sexmachine/

1 |
0.8 |
S 06| WebDB 2015 PC |}
a — WebDB 2017 PC
= 04 — WebDB 2018 PC ||
02l ----SIGMOD 2015 PC ||
’ -—--SIGMOD 2017 PC
o - SIGMOD 2018 PC | |
‘ : ‘ : 03 1
1[a|
©
E: 0.5 |
= el SN
0L T 1 |
0.8 1
¢
-10*
_2r F |
§ 1F \"\i:\,\ |
ok e : —
0 0.2 0.4 0.6 0.8 1
c

Figure 2: Quality of G with respect to targets.

learning process. The first column of Table 2 describes the
state-action features considered in this work, whose design
is influenced on one hand by the relevance and quality func-
tions of our exploration actions (represented as diversity and
coverage), and on the other hand by the analysis task of find-
ing target users (e.g., support of input group, number of item
attributes in its label, number of target users discovered at
that step). The second column of the table describes how
the features are instantiated for the dataset schema consid-
ered in our experiments. These features are applicable to
different user datasets, such as forming a PC, and gathering
a movie critic panel.

5.2 Experimental setup

Our exploration goal is to gather a set of researchers to
serve on a PC. Our ground-truth consists of real PCs of one
large and one small venue, i.e., the SIGMOD conference and
the WebDB workshop, in the years 2015, 2017, and 2018.

Learning variants. To compare different policies, we de-
fine 3 learning variants each of which has a different train
set. All the variants share the same test set, namely 2018 PC
of either WebDB or SIGMOD. We run offline policy learning
on the train set and use the learned policy to explore the
test set. The learning variants are: OLDEST where the train
set is the 2015 PC of the same venue, LAST where the train
set is the PC of the previous year’s venue, i.e., 2017, and
TRANSFER where the train set is the PC of the other venue:
SIGMOD for WebDB, and vice versa.

Learning parameters. In real exploration tasks, target
users are scattered over the group set, and the analyst needs
to scan many different user groups to achieve a task. We
propose to measure the overall utility of G for locating the
target users using “true positive” and “false positive” rates
(Equation 3).

1477

_ | Ugegtc (ut N 9)|

c U
TPR(G) = _ Wgegs 9\ th)]

The true positive rate TPR(.) measures the fraction of target
users U; found in target groups Gi. Also the false positive
rate FPR(.) measures the fraction of non-target users found
in target groups. Plotting TPR(Gf,c) against FPR(Gf,c)
for different values of c is analogous to a receiver operating
characteristic (ROC) curve. We can then employ the area
under the curve (ROC-AUC) to measure the utility of a
group set with respect to a set of target users U; .

To choose target groups and check how well a group set G
locates target users, we vary the concentration parameter c
and examine the evolution of TPR and FPR measures (Equ-
ation 3) in a ROC curve. The results are illustrated in Fig-
ure 2. In general, we observe that ROC-AUC values for all
the sets of target users are high, hence exploring G is poten-
tially beneficial for the task under investigation. In all our
experiments, we set ¢ = 0.3 for a large venue like SIGMOD,
and ¢ = 0.1 for WebDB. This means that, in the worst
case, one needs to scan a group of ten people to find one
PC member for SIGMOD. We observe in Figure 2 that with
the aforementioned values of ¢, G; includes only around 10%
of all groups that overlap with U;, but still covers almost
all PC members of WebDB 2015, 2017 and 2018. Table 3
summarizes the properties of U; and G;.

£ 30 2
< T P= T

t?c —— 1 group (ROC-AUC=L1.) g’b 60 - — 1 group (ROC-AUC=1.) [|
= gl — 2 groups (ROC-AUC=0.98) || = —— 2 groups (ROC-AUC=0.98)
- —— 4 groups (ROC-AUC=0.95) - —— 4 groups (ROC-AUC=0.95)
2 —— 10 groups (ROC-AUC=0.90) || 22 —— 10 groups (ROC-AUC=0.90)
o 20 [=Ts gl
a i

Zo 5 Z

e} o

= -

n 10f w 201

oy =¥

i I3

+= +

7] %

F= F=

I I | I I | I I I | I I I
0 50 100 150 200 250 300 50 100 150 200 250 300

simulated sessions # simulated sessions

S

£
& 140

120 -

830% ta

100 [~

80 |-

60 |-

10 -

steps to N

I I I | | | I
0 50 100 150 200 250 300

simulated sessions

Figure 3: Learning curve for the synthetic exper-
iments with different scattering levels: 20 target
users are scattered equally over 1, 2, 4 or 10 groups.

In the offline phase, we set k = 5 and choose the next
group to explore at random. If Gy includes groups with
target users not discovered earlier, we simulate the choice of
an analyst by randomly selecting one of those groups. And
if there are no such groups, the choice of g is random.

Exploration actions. We use all the exploration actions in
Section 3.2 with different values for the relevance threshold
o: explore-around with o = 0.2, by-distribution with o = 0.05,
and by-topic with ¢ = 0.1, and explore-within and by-facet
with ¢ = 1.0. We also consider the action undo to enable
returning to the previous state if no target user has been

Table 2: State-action features. All features are encoded as Boolean values.

Feature

Description

Diversity of Gk

binary features representing 5 equal-width intervals between 0 and 1

Coverage of gi—1

binary features representing 5 equal-width intervals between 0 and 1

Number of displayed groups |Gx|

2 binary features to determine whether more than one group
is displayed or not

Size of input group |gin|

binary features for the following intervals: [0, 15], [16, 50],
51, 100], [101,200], [201,500] and [501, 00)

Number of item attributes in label(g;)

3 features for “0 item attributes”, “between 1 and 2 item attributes”,
and “more than 2”

Number of demographic attributes in label(g;)

3 features for “0 demographic attributes”, “between 1 and
2 demographic attributes”, and “more than 2”

Previously discovered target users

2 features to capture whether g; contains target users or not

Rating distribution of g;

3 features for low, uniform, and high distributions, computed using
Earth Mover’s Distance between ¢; and the distributions:

[1,0,...,0], [0,...,0,1], [, £, 1]
Number of discovered target users features for the following intervals: [0, 1], [2, 3], [4, 5], [6, 7]
and [8,00)

Presence of demographic attributes

8 features for 4 facets, i.e., gender, seniority level, productivity,
and location

Reward

2 features to capture whether g; yielded a positive reward (i.e., if
new target users were selected from the group) or not

Previous exploration action

one feature per exploration action e € F

Table 3: Summary of statistics about U; and G;.

| [WebDB’15 | WebDB’17 | WebDB’18 | SIGMOD’15 | SIGMOD’17 | SIGMOD’18 |

members [U] 43 19 22 119 173 163
|Gt 1874 649 880 4145 3985 7405
ROC-AUC 0.85 0.94 0.89 0.83 0.81 0.82
observed. We use LDA to generate topic vectors of length | lfemale, North America)
_ H : 5 : £ [UK/Ireland, female|
10 for by tOp.IC. —| [2] (all the users) _";; §—> fmalc] —.; §—|[female, Europe]
The learning parameters are o = 0.001,v = 0.5. The 58 |lfemale] 28 ||Asia female]

number of sessions is set as € = min(10/n, 1). Initial weights
wo are set to zero. Each exploration action online and of-
fline has a time limit of 100ms. An offline learning with
300 sessions with an average of 50 steps per session needs
100ms * 50 * 300 = 25min. The total number of steps is
limited to 200. All our results are averages of 10 runs of the
offline learning with many random seed groups. During the
learning process some actions are chosen at random (with
decreasing probability ¢€), as it is usually done in RL.

5.3 Synthetic exploration

We run a number of synthetic experiments with different
levels of concentration of target users U in groups in G.
In all the experiments, |¢] = 20. In the first experiment,
all target users are concentrated in the same group. We
choose “females from Europe who published in VLDB” as
the set of target users, which fits in a single group with
the label [female, VLDB, Europe]. In the second experi-
ment, the same number of target users is gathered from
two non-overlapping groups: |[female, VLDB, Europe] and
[male, AAAI, Asia] and each of these groups contains 10
targets. In two other experiments, we scatter targets over
4 and 10 groups in the same way. In all the experiments
¢ = 0.1. Figure 3 reports the number of steps required in
the learning phase of the experiments. One can clearly see
that scattering targets over more groups increases the time
it takes the agent to reach its targets.

1478

[Australia, female|

discovered PC: 0 # discovered PC: 0 # discovered PC: 19

Figure 4: Simulated session with a policy trained on
the synthetic task.

More specifically, we can see that the task of finding target
users concentrated in one group takes only a few steps. The
reason is that the ROC-AUC value of the synthetic setting is
equal to 1.0. We delve into one of the learned policies that
reaches the target in only 2 steps (Figure 4) and observe
that this policy does not make use of explore-around and by-
distribution. It favors by-facet on gender and location that
help locate the single target group of interest more quickly.
This simple experiment is a proof-of-concept showing that
when target users are concentrated in the same group, our
policy is equivalent to simple SQL queries (on gender and
location). Our subsequent experiments will require more
sophisticated policies to reach target users.

5.4 TImpact of learning variants

Our second experiment examines the impact of the learned
policies in each learning variant, OLDEST, LAST and TRANSFER.
We measure the utility of each policy as the percentage of
discovered PC members (see Section 3.3), denoted as v. Fig-
ure 8 illustrates the learning curves.

|female, very productive, Europe, SIGIR]

[female, highly senior, Enc. of DBJ|

c G very act § T E - -

[CEUR Workshop Proceedings, very .g |Asia, very active, male] £ |female, Europe, confirmed, PVLDB] . [VLDB J., senior, IEEE, PVLDB]
= productive, Europe] 3 |[Europe, confirmed, ICDE] g [female, EDBT, SIGMOD] 2 [Asia, EDBT, confirmed, male]
o S ! . - 5+ [UK/Ireland, very productive, male] - 4 =|[female, Europe, Enc. of DB| S S ’ B .
£ .8 |[female, very productive, SIGIR| 7 v ? 2 . 3 [highly senior, very productive, Europe,
i [female, Europe] | [ICDM, North America, ICDE] % female, prolific, [CDE] o Enc. of DB|
£ 2 il IS y e ; A R N
g S |[[female, EDBT, very productive] 2 | [productive, female, Europe] X | [Europe, confirmed, ICDE] [GRADES]

active # discovered PC: 0 active # discovered PC: active # discovered PC: 1
features ' features ' features '
features ea’:‘::;fj' by-distrib. | by-topic features 2’;‘(’)‘;’;3 by-distrib. by-topic features Z"rz':;' by-distrib. | by-topic
support < 200 -0.04 0.01 0.03 diversity >0.8 0.06 0.04 0.03 diversity > 0.8 0.06 0.04 0.03
no conferences 0.02 0.05 -0.04 e < B 0.11 -0.02 0.01 SUBBOIURICD 0.11 -0.02 0.01
demographic attributes 004 20.02 0.03 conference in label -0.03 -0.04 0.02 conference in label -0.03 -0.04 0.02
¢ 0.06 0.03 0.00 GlearTa i i, 0.04 -0.02 0.03 demographic attribs. 0.04 20.02 0.03
recent papers .06 .02 .
recent papers 0.06 0.03 0.00 recent papers 0.06 0.03 0.00
0-1 t t; 0.14 0.10 -0.00
reen 0-1 targets 0.14 010 -0.00 2-3 targets -0.03 0.01 012
no seniority 0.10 0.02 0.03 seniority -0.07 0.02 0.00 no seniority 0.10 0.02 0.03
=0 -0.12 0.04 0.02 reward=0 -0.12 0.04 0.02 reward=0 -0.12 0.04 0.02
sum 0.2 0.23 0.07 sum 0.19 0.15 0.11 sum 0.19 0.06 0.26

Figure 5: Simulated session example. For each step, the labels of the k groups and their active features are
shown. The agent chooses actions with the highest sum of weights (highlighted in yellow).

= explore-around =1 explore-within
by-facet (gender) = by-facet (country) [|
ﬁbyrlacel (senior.) = by-facet (prod.)

0.1

0.4

by-facet (conf.) =3 by-distribution
by-topic H

5-10°2

0.2

Weight
Weight

5
E
=
e
E—
i

500

0
===
=
—_—
(1550~ o
=
(50~ 100) - ey
=
=
B
=
=

(100 — 200] |-

(200 — 500] |-

(100 — 200] |-

Figure 6: Learned weights for the feature describ-
ing the size of the input group (x-axis), trained on
WebDB 2017 (left) and SIGMOD 2017 (right). Each
line corresponds to one exploration action. For a
given exploration state, only one of the binary fea-
tures displayed here takes value 1, others are 0.

Initially, the agent acts randomly, choosing any explo-
ration action, then over time it discovers useful actions in
the observed states. One can see that the TRANSFER curve
declines which means that the policy based on the state-
action features is useful for similar exploration goals, not
only for the goal used in the training.

The figure shows that the number of steps to find 20, 50,
and 80% of target users decreases over time. This indicates
that the RL agent is able to improve performance, i.e., in-
crease v, through the learning process. We observe that in
general the policy learning improves the agent’s performance
as the agent needs on average fewer steps to find v% of tar-
get users with more training sessions. We also observe that
the performance of the learning variants differs significantly.
For WebDB’18, LAST and OLDEST perform significantly bet-
ter than TRANSFER, as they require fewer exploration steps to
reach the same goal. The low performance of TRANSFER from
SIGMOD to WebDB is potentially due to the large size of
the SIGMOD PC which results in overfitting and increasing
variance drastically. On the other hand, the policies trained
on WebDB’18 perform well for SIGMOD’18, indicating that
policy transfer is useful and could be examined for other
venues in the future.

jpﬂmﬂiﬂl-ﬂﬂmﬁ JMHJB il

= explore-around = explorH(rw\thm

[1° by-facet (gender) = by-facet {country) i

=by-facet (senior.) = by-facet (prod.)

= by-facet (conf.) = by-distribution
by-topic

0.1

Weight
Weight
0

0.1
T
I

|

B
]

®

—0.15 —0.-5-10% 0 5-1072 0.1

B
]
®

-2}
[5-6lff
(78]
-2}
B4}
[5-6] |-
[T-81

Figure 7: Learned weights for the features showing
the number of targets discovered so far in the explo-
ration (x-axis), trained on WebDB 2017 (left) and
SIGMOD 2017 (right).

While different exploration tasks require different policies,
it is also possible to transfer policies between similar tasks.
We also observe that the difference in performance between
learning variants increases with v. The task becomes more
specific when the goal is to discover more target users, so
it is useful to train the policy on similar tasks. Finally, we
validate the usefulness of our state-action features in guiding
the learning process.

5.5 Decision making

To better understand how the RL agent makes decisions
during exploration, we delve into the EDA process and vi-
sualize several steps in Figure 5. Our general observation
is that the decision highly depends on the weights that are
assigned to different features of the exploration.

To interpret and compare different policies discussed in
Section 5.4, we examine the vector w of the learned feature
weights describing the size of the input group (Figure 6) and
the number of discovered targets (Figure 7). In both figures,
WebDB’17 is used as a train set on the left and SIGMOD’17
is used as a train set on the right. Both policies use mostly
explore-around and by-distribution. These two actions return
many diverse groups, which is beneficial when target users
are scattered over many different groups.

One can notice similar patterns in the policies: when in-
creasing the number of targets discovered so far, the like-
lihood of using explore-around decreases (Figure 7). As it

1479

@)

i T T T T o T T T

A — LAST S —— LAST

2 eop —— OLDEST = —— OLDEST

g —— TRANSFER E eof —— TRANSFER ||

X sl — RANDOM || e —— RANDOM

=) S sl i

[\ [}

Ao 1

Z. Z a0l ,

S so0p 1 8

@ o a0l |

2 g

S 20f 1 9]

% %

$ | | | | | | | % | | | | | ||
0 50 100 150 200 250 300 0 50 100 150 200 250 300

simulated sessions # simulated sessions

) 2

= T T T T z T T T T

5] —— LAST 5] —— LAST

= ARy —— OLDEST 2 M —— OLDEST

= — TRANSFER Z 150l — TRANSFER ||

xe 150 — RANDOM e ‘ —— RANDOM

= =) |

0 n

Il I \

7‘ 7‘ 100 - B

o 100} - °

3 =

@ @

5 5

= (Xood B n AN e v

S S0 [[[[[| S o I | | I I I]
0 50 100 150 200 250 300 0 50 100 150 200 250 300

simulated sessions # simulated sessions

2 —— S [y S — S

& 00| — LAST 5] LAST
e

%ﬁ —— OLDEST %c e —— OLDEST

E ol — TRANSFER || 8 350 — TRANSFER ||

N —— RANDOM x — RANDOM

3 3

= S s00(- !

Oﬁ 300 1 Oﬁ

Z 250 1

250 —

2 2 200

A, 200 y 2

[} [}

Z 2 150f

50| 1

| I | | | | | |

e 100 150 200 250 300 W

I I I | I I
0 50 0 50 100 150 200 250 300

simulated sessions # simulated sessions
Figure 8: Learning curves of simulated sessions that
run until discovering 20% (top), 50% (middle), 80%
(bottom) of WebDB (left) and SIGMOD (right)
PCs. The curves show the average number of steps
the agent takes to reach the exploration goal after
learning in a number of simulated sessions displayed
in the x-axis. Each point in each run is the mean
over a window of 10 last exploration sessions. Ex-
ploration probability decreases with the number of
sessions leading to convergence.

becomes less probable to find new targets in the groups over-
lapping with an input group (via other actions than explore-
around), it is better to jump to new groups to increase the
likelihood of finding target users.

One can also see some differences: the policy trained for
SIGMOD strongly prefers by-distribution. A possible expla-
nation is the larger ratio of target users to all users for
the SIGMOD PC, as by-distribution can return more users
with recent papers regardless of their research topics. The
agent sees more active researchers from various areas which
increases the likelihood of discovering SIGMOD PC mem-
bers that make almost 20% of the dataset. On the other
hand, the policy trained for WebDB strongly prefers explore-
around, most likely because the agent explores more groups
to locate sparsely distributed WebDB PC members that only
make around 1% of the dataset.

5.6 Impact of features

Figure 9 shows how our state features described in Table 2,
impact the performance of learned policies. We run the same
experiments as in Figure 8 using only a subset of the fea-
tures to see how that impacts the number of steps needed
to reach target users. In particular, for each learning task
we choose 5 features (10% of all features) that have high ab-

1480

o) w
] T T] T T
[-— all features [- all features
o0 0 & 60
= fl 5 highest-weight features = A —— 5 high
Z ol 5 low-weight features = '\ +—
X X s0f R
=) =)
[\ [}
Il Il
Z, 40 1z wf 1
]]
3 2
) A sof 1
I 20p 102
7 %
| | | | | | | 20 | | | | | |
** 0 50 100 150 200 250 300 ** 0 50 100 150 200 250 300
simulated sessions # simulated sessions
2 T T £ o i
S - all features S - all features
z —— 5 highest-weight features = —— 5 highest-weight features
= 2001 —— 5 low-weight features [| S 120f — i
3 3
b 7 L |
7o 1 P
Z. Z.
=l S s
n 100 - n
o, 2
2 L 6o} -+
% 7
50| 1
i i i i i i i | | | | | | |
¥ 0 50 100 150 200 250 300 H* 0 50 100 150 200 250 300
simulated sessions # simulated sessions
12} T T T T T 12} T T T T T
2 2
23 — all features g — all features
= ol 5 highest-weight features | | = 5 highest-weight features
I \ 5 low-weight features E 300 — 5 low-weight features
X =X
S 300f =)
ES) D
” H 50 - B
Z 250} . 7z
o o
= = 200 |
2 200 1 2
[} [}
@ T 150
150 - 1 501~ 1
| I | | | | | | | | |
I 100 150 200 250 300 **

I I I
0 50 0 50 100 150 200 250

simulated sessions # simulated sessions
Figure 9: Learning curves for the experiments from
Figure 8 run with three different sets of features:
all the features from Table 2 (blue line), 5 features
that had the greatest absolute weights in the policy
learned with all the features (red line), 5 diversity
features from Table 2 that had low weights in all the
policies trained with all the features (brown line).

solute weights in the policy trained with all the features. A
high feature weight reflects that it contributes to the action-
value function Q(w,s,e) = w” f(s,e) and thus significantly
impacts decision making. We also choose a subset of features
that have low weights in all experiments, i.e., 5 diversity fea-
tures from Table 2. One can see in Figure 9 that the subset
of the high-weight features yields better performance in all
experiments in comparison with the subset of low-weight
features. However, the set of all features still outperforms
both subsets. One can also see that the difference in per-
formance is significant for N = 50% and N = 80% while
to reach the smallest number of targets (i.e., N = 20%), all
policies are comparable because they are simpler and mostly
rely on explore-around regardless of the state features.

6. CONCLUSION

We examined and validated the applicability of machine
learning techniques to EDA on user data where the task is
to find a set of users. Our unified formalization leverages a
wide range of user data exploration actions, and our solution
is based on reinforcement learning to learn an exploration
policy. Our experiments validate the choice of state features
we made, allowing us to claim generality for the task of
finding a set of users.

We are currently addressing new challenges raised by add-
ing text-based exploration operations that are applicable to
reviews and tags.

7.
(1]

2]
(3]
(4]
(5]

[6]

[7]

8

(9]

(10]

11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

REFERENCES

Behrooz Omidvar-Tehrani and Sihem Amer-Yahia. User
group analytics survey and research opportunities. I[EEE
Transactions on Knowledge and Data Engineering, 2019.
Qualtrics Marketplace (SAP).
https://www.qualtrics.com/marketplace/.

Amplitude Behavioral Analytics Platform.
https://amplitude.com/behavioral-analytics-platform/.
DBLP computer science bibliography.
https://dblp.uni-trier.de/db/.

GroupLens Research. MovieLens dataset.
https://grouplens.org/datasets/movielens/, 2019.

Behrooz Omidvar-Tehrani and Sihem Amer-Yahia. Tutorial
on user group analytics: Discovery, exploration and
visualization. In International Conference on Information
and Knowledge Management (CIKM), pages 2307-2308,
2018.

Fabian Colque Zegarra, Juan C Carbajal Ipenza, Behrooz
Omidvar-Tehrani, Viviane P Moreira, Sihem Amer-Yahia,
and Joao LD Comba. Visual exploration of rating datasets
and user groups. Future Generation Computer Systems
(FGCS), 105:547-561, 2020.

Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and
Alexandre Termier. Interactive user group analysis. In
International Conference on Information and Knowledge
Management (CIKM), pages 403—-412, 2015.

Tova Milo and Amit Somech. Next-step suggestions for
modern interactive data analysis platforms. In
International Conference on Knowledge Discovery € Data
Mining (KDD), pages 576585, 2018.

Ori Bar El, Tova Milo, and Amit Somech. ATENA: an
autonomous system for data exploration based on deep
reinforcement learning. In International Conference on
Information and Knowledge Management (CIKM), pages
2873-2876, 2019.

Ori Bar El, Tova Milo, and Amit Somech. Automatically
generating data exploration sessions using deep
reinforcement learning. In International Conference on
Management of Data (SIGMOD), 2020.

Ning Yan, Chengkai Li, Senjuti B Roy, Rakesh
Ramegowda, and Gautam Das. Facetedpedia: enabling
query-dependent faceted search for wikipedia. In
International Conference on Information and Knowledge
Management (CIKM), pages 1927-1928, 2010.

Lanbo Zhang and Yi Zhang. Interactive retrieval based on
faceted feedback. In International Conference on Research
and Development in Information Retrieval (SIGIR), pages
363-370, 2010.

Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar
Kolloju, Laks V.S. Lakshmanan, and Ruben H. Zamar.
Exploring rated datasets with rating maps. In International
Conference on World Wide Web (WWW), 2017.
Mahashweta Das, Saravanan Thirumuruganathan, Sihem
Amer-Yahia, Gautam Das, and Cong Yu. Who tags what?
an analysis framework. Proc. VLDB Endow.,
5(11):1567-1578, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Amit Somech, Tova Milo, and Chai Ozeri. Predicting “what
is interesting” by mining interactive-data-analysis session
logs. In International Conference on Extending Database
Technology (EDBT), pages 456-467, 2019.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personalized
news article recommendation. In International Conference
on World Wide Web (WWW), pages 661-670, 2010.
Shuai Li, Alexandros Karatzoglou, and Claudio Gentile.
Collaborative filtering bandits. In International Conference
on Research and Development in Information Retrieval
(SIGIR), pages 539-548, 2016.

Yilin Shen and Hongxia Jin. Epicrec: Towards practical
differentially private framework for personalized

1481

21]

(22]

(23]

[24]

(25]

[26]

27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

recommendation. In International Conference on Computer
and Communications Security (SIGSAC), pages 180-191.
ACM, 2016.

Francesco Bonchi, Fosca Giannotti, Claudio Lucchese,
Salvatore Orlando, Raffaele Perego, and Roberto Trasarti.
Conquest: a constraint-based querying system for
exploratory pattern discovery. In International Conference
on Data Engineering (ICDE), pages 159-159, 2006.
Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and
Dino Pedreschi. Exante: Anticipated data reduction in
constrained pattern mining. In European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD), volume 2838, pages 59-70. Springer,
2003.

Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga,
and Arnab Nandi. Distributed and interactive cube
exploration. In International Conference on Data
Engineering (ICDE), pages 472-483, 2014.

Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and
Themis Palpanas. New trends on exploratory methods for
data analytics. Proc. VLDB Endow., 10(12):1977-1980,
2017.

Minsuk Kahng, Shamkant B. Navathe, John T. Stasko, and
Duen Horng (Polo) Chau. Interactive browsing and
navigation in relational databases. Proc. VLDB Endow.,
9(12):1017-1028, 2016.

Florian Lemmerich, Martin Becker, Philipp Singer, Denis
Helic, Andreas Hotho, and Markus Strohmaier. Mining
subgroups with exceptional transition behavior. In
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 965-974, 2016.

Mikalai Tsytsarau, Sihem Amer-Yahia, and Themis
Palpanas. Efficient sentiment correlation for large-scale
demographics. In International Conference on
Management of Data (SIGMOD), pages 253-264, 2013.

Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng
Zhou, and John CS Lui. Diversified temporal subgraph
pattern mining. In International Conference on Knowledge
Discovery & Data Mining (KDD), pages 1965-1974, 2016.
Tianyang Zhang, Peng Cui, Christos Faloutsos, Yunfei Lu,
Hao Ye, Wenwu Zhu, and Shigiang Yang. Come-and-go
patterns of group evolution: A dynamic model. In
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1355-1364, 2016.

Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis
Polyzotis. Query recommendations for interactive database
exploration. In International Conference on Scientific and
Statistical Database Management (SSDBM), pages 3-18.
Springer, 2009.

Roee Ebenstein, Niranjan Kamat, and Arnab Nandi.
Fluxquery: An execution framework for highly interactive
query workloads. In International Conference on
Management of Data (SIGMOD), pages 1333-1345, 2016.
Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and
Naushin Shaikh. Querie: Collaborative database
exploration. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 26(7):1778-1790, 2014.

Nodira Khoussainova, YongChul Kwon, Magdalena
Balazinska, and Dan Suciu. Snipsuggest: Context-aware
autocompletion for SQL. Proc. VLDB Endow., 4(1):22-33,
2010.

Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick
Marcel, and Stefano Rizzi. A collaborative filtering
approach for recommending OLAP sessions. Decision
Support Systems, 69:20-30, 2015.

Patrick Marcel and Elsa Negre. A survey of query
recommendation techniques for data warehouse
exploration. In Journées Francophones sur les Entrepdts de
Données et I’Analyse en ligne (EDA), pages 119-134, 2011.
Cristiana Bolchini, Elisa Quintarelli, and Letizia Tanca.
Context support for designing analytical queries. In
Methodologies and Technologies for Networked Enterprises

(37]

(38]

(39]

[40]

[41]

42]

- ArtDeco: Adaptive Infrastructures for Decentralised
Organisations, pages 277-289. Springer, 2012.

Marina Drosou and Evaggelia Pitoura. Ymaldb: exploring
relational databases via result-driven recommendations.
VLDB J., 22(6):849-874, 2013.

Manas Joglekar, Hector Garcia-Molina, and Aditya G.
Parameswaran. Interactive data exploration with smart
drill-down. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 31(1):46-60, 2019.

Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo.
Discovery-driven exploration of OLAP data cubes. In
International Conference on Extending Database
Technology (EDBT), pages 168-182, 1998.

Manish Singh, Michael J Cafarella, and HV Jagadish.
DBExplorer: Exploratory search in databases. In
International Conference on Extending Database
Technology (EDBT), pages 89-100, 2016.

Liangda Li, Hongbo Deng, Yunlong He, Anlei Dong,

Yi Chang, and Hongyuan Zha. Behavior driven topic
transition for search task identification. In International
Conference on World Wide Web (WWW), pages 555-565,
2016.

Toannis Arapakis, Mounia Lalmas, and George Valkanas.
Understanding within-content engagement through pattern
analysis of mouse gestures. In International Conference on
Information and Knowledge Management (CIKM), pages

(43]

[44]

[45]

[46]

[47]

(48]

1439-1448, 2014.

Tobias Scheffer and Stefan Wrobel. A sequential sampling
algorithm for a general class of utility criteria. In
International Conference on Knowledge Discovery and
Data Mining (KDD), 2000.

Marti A. Hearst. Clustering versus faceted categories for
information exploration. Communications of the ACM
(CACM), 49(4), April 2006.

Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui
Jiang, Yanchao Li, and Liang Zhao. Latent dirichlet
allocation (LDA) and topic modeling: models, applications,
a survey. Multimedia Tools and Applications,
78(11):15169-15211, 2019

Zhiwen Tang and Grace Hui Yang. Deeptilebars:
Visualizing term distribution for neural information
retrieval. In International Conference on Artificial
Intelligence (AAAI), volume 33, pages 289-296, 2019.
Jack Clark and Dario Amodei. Faulty reward functions in
the wild.
https://blog.openai.com/faulty-reward-functions/, 2016.
Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. LCM
ver. 2: Efficient mining algorithms for

frequent/closed /maximal itemsets. In IEEE ICDM
Workshop on Frequent Itemset Mining Implementations

(FIMI), volume 126, 2004.

1482

