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ABSTRACT
Given a social network G, a cost associated with each node,
and a budget B, the budgeted influence maximization (BIM)
problem aims to find a set S of nodes, denoted as the seed
set, that maximizes the expected number of influenced users
under the constraint that the total cost of the users in S is
no larger than B. The current state-of-the-art practical so-

lution for BIM problem provides a ( 1−1/e
2
− ε)-approximate

(≈ 0.316− ε) result and is still inefficient on large networks.
We first show that we can improve the approximation guar-
antee to 1 − 1/eβ − ε where 1 − 1/eβ = (1 − β)(1 − 1/e),
achieving a better approximation guarantee (≈ 0.355− ε).

Next, we apply the reverse sampling based technique, a
popular technique for classic influence maximization, to our
studied BIM problem. However, it is non-trivial to design
efficient solutions for large scale networks even the reverse
sampling based technique is applied. On one hand, it is un-
clear how to derive tight bounds for the nodes selected by
the greedy algorithm under the budgeted scenario, where
each time it selects the seed node with the highest benefit-
cost ratio. With tighter bounds, the algorithm can termi-
nate as soon as the approximation ratio is satisfied, thus
saving the running cost. On the other hand, the number of
nodes selected under BIM problem may be quite large since
it may greedily select many nodes with large benefit-cost
ratio but with low costs. The time complexity of existing
influence maximization algorithms heavily depends on the
size of the seed set. To tackle such challenging issues, we
first present new bound estimation techniques for the BIM
problem. Next, we present new node selection strategies to
alleviate the dependency to the size of the seed set. Ex-
tensive experiments show that our proposed solution is far
more efficient than alternatives.
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1. INTRODUCTION
The influence maximization (IM) problem has been stud-

ied for decades due to its important application in viral
marketing [24], rumor monitoring [11], and outbreak detec-
tion [28]. Given a graph G and an integer k, the influence
maximization problem aims to find a set S of nodes, de-
noted as the seed set, that maximizes the expected influence
among all size-k seed sets. In the classic setting, all nodes
are assumed to have equal cost and the cost to invite the k
nodes is ignored. While in reality, the nodes in social net-
works typically have different costs. For instance, based on
the recent report on news and social media [1, 2, 3, 4, 5, 6], it
usually costs more to invite influential users, e.g. Rihanna,
than to invite normal users to do the advertisement.

In this paper, we consider the budgeted influence maxi-
mization (BIM) problem, where each node is associated with
a cost and a budget B is taken as the input. The goal is to
find a seed set S that achieves the highest expected influ-
ence under the constraint that the sum of the costs of each
node in S does not exceed the budget. Notice that the clas-
sic IM problem is a special case of the BIM problem where
the cost of each node is the same. Since the IM problem is
NP-hard [24], it is easy to verify that the BIM problem is
also NP-hard. Therefore, a line of research works focus on
developing heuristic algorithms, e.g., [30, 23], to reduce the
computational costs. Such heuristics, however, provide no
guarantee on the returned answer.

To remedy this deficiency, Khuller et al. [25] first present
a (1 − 1/e)-approximate solution which requires enumerat-
ing all the size-3 seed set and apply the greedy algorithm
to select the remaining nodes. Since there are O(n3) dif-
ferent size-3 seed set, it incurs prohibitive computational
cost and is impractical on large social networks. To over-
come the high computational cost, they further present a

( 1−1/e
2

)-approximate solution by applying a modified greedy
strategy. However, the previous solutions all assume that
we can effectively calculate the expected influence of a seed
set S, which is #P-hard in general. To tackle this issue,
Nguyen et al. [31] present a framework that applies the re-
verse sampling technique to effectively provide an estima-
tion of the expected influence of a seed set S, and returns

a ( 1−1/e
2
− ε)-approximate answer. There also exist some

theoretical studies, e.g., [18], that try to return a (1− 1/e)-
approximate solution with reduced time complexity. How-
ever, such solutions are still of only theoretical interest and
are in general impractical to real scenarios. Therefore, to our
knowledge, the most practical approximate solution is still
the one proposed by Nguyen et al. [31], which simply applied
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the reverse sampling technique that is widely used in the in-
fluence maximization literature. However, as will be shown
in our experimental study, the proposed solution in [31] still
incurs unnecessarily high computational cost since they do
not consider the properties of the BIM problem.

Motivated by this, we present a new framework IMAGE1

to devise more efficient approximate algorithms to the BIM
problem. Our framework first includes a new bound esti-
mation scheme for the BIM problem, which allows the algo-
rithm to terminate as soon as the approximation guarantee
is satisfied. Besides, under the BIM setting, the number
of selected nodes might be quite large since quite a lot of
nodes with low costs might be selected. The computational
cost of existing algorithms heavily depends on the size of
the seed set returned. We show an effective node selection
strategy that alleviates the dependency on the size of the
seed set. We further demonstrate that the time complexity
of our proposed algorithm only depends on the budget B
and the input graph size, not the seed set size. In summary,
we make the following contributions:

• We propose an effective bound estimation scheme for the
BIM problem and it allows the algorithm to terminate as
soon as the approximation ratio is satisfied;

• We present an effective greedy strategy to alleviate the
dependency to the size of the seed set and show that our
algorithm still provides strong approximation guarantee;

• We present theoretical analysis on the time complexity
of our proposed algorithm. We show that the expected
running time of our proposed algorithm depends on the
budget B and the input graph size, not depending on the
size of the seed set returned.

• We conduct extensive experiments to evaluate the per-
formance of our algorithms against alternatives on large
social graphs with up to 41.7 million nodes. Our experi-
mental results show that our proposed solution is far more
efficient than alternatives.

2. PRELIMINARIES
We present problem definition and necessary background

in Section 2.1 and revisit existing solutions for the problem
in Section 2.2. Table 1 shows the frequently used notations.

2.1 Problem Definition
We abstract a social network as a directed graph G =

(V,E), where V is the set of users and E is the set of edges
such that each edge indicates the friendship/followed-by re-
lationship between users. We denote n as the number of
nodes in G and m as the number of edges in G. Besides, for
any two nodes u and v in the social network, if there exists
an edge 〈u, v〉, we say that u is an incoming neighbor of v,
and v is an outgoing neighbor of u. For each directed edge
e = 〈u, v〉, it is associated with a propagation probability
p(e) ∈ [0, 1]. Given the input graph G and seed set S, the
influence propagation follows a certain cascade model C.

In this paper, we focus on two cascade models: the inde-
pendent cascade (IC) model and linear threshold (LT) model,
which are the most widely used models in the literature. At
the beginning of the influence propagation, the seed set S
becomes activated, and other nodes are not activated. When

1Budgeted Influence Maximization with threshold Greedy
and Bound Refinement

Table 1: Notation Table
Notation Description

G(V,E) a social network

n,m the number of nodes and number of edges in G

B the total budget

c(S) the total cost of the seed set S

σ(S) the expected spread of seed set S

R a set of random RR sets

Λ(S) the number of RR sets in R that is covered by S

Λ(v|S) the number of random RR sets in R that is cov-
ered by v but not by S

S′opt the seed set that maximizes the coverage on R
under budget B

τB The number of sets satisfying that such a set has
cost no more than B but adding any other node
to the set will make the cost larger than B

Sopt the optimal seed set for BIM

a node is activated at timestamp i, it has only one chance
to activate its out-neighbors which are inactivated at times-
tamp i + 1. After that, the node is not able to activate
other nodes anymore. The main difference between the two
models lies in how an inactive node gets activated.

• In IC model, if a node u is activated at timestamp i,
then at timestamp (i + 1), u is able to activate v which
is an out-neighbor of u with a probability p(u, v).

• In LT model, there is an activation threshold λv which
is a parameter uniformly and randomly selected in range
[0, 1]. If a node v is inactive at timestamp i, node v gets
activated at timestamp i+1 if and only if

∑
u∈N p(u, v) ≥

λv, where N is the set of all the in-neighbors of v that is
activated by timestamp i.

Let σC(S) be the expected number of nodes activated by a
seed set S during the influence propagation under cascade
model C, referred to as the expected influence of S. We omit
the subscript C and use σ(S) to denote the expected influ-
ence if the context is clear. The IM problem asks for a size-k
seed set S that maximizes the expected influence. However,
as we mentioned in Section 1, the cost to invite a user to
do advertisements for a product usually differs a lot and
it is sometimes impractical to ignore such cost differences.
Hence, we study the budgeted influence maximization prob-
lem, which takes different costs into account.

Definition 1. (Budgeted Influence Maximization). Let
G = (V,E) be the input graph where each edge e ∈ E is
associated with a probability p(e) and each node v ∈ V is
associated with a cost c(v). Given a budget B and a cascade
model C, the goal of the budgeted influence maximization is
to find the seed set S that gains the largest expected influence
under C while satisfying

∑
s∈S c(s) ≤ B.

2.2 Existing Solutions Revisited
Classic Influence Maximization. In the literature, most
existing approximate algorithms for IM rely on the reverse
sampling based technique proposed by Borgs et al. [10]. This
technique is based on the concept of random reverse reach-
able (RR) sets. A random RR set is generated in two steps:

• Select a node v from V uniformly at random;
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Figure 1: An example of the RR set construction.

• Produce a sample set R of the nodes in V , such that
the probability a node u appears in R is equal to the
probability that u can activate node v.

As shown in previous work [37, 36, 35], a random RR set can
be efficiently generated for both the IC model and LT model
with a stochastic BFS traversal from a randomly selected
node following the reverse direction of the edges in graph G.
Below shows an example of the RR set construction under
the IC model. We refer readers to [35] for how random RR
sets are generated under the LT model.

Example 1. Consider the social networkG in Figure 1(a).
The number on each edge denotes the propagation probabil-
ity of the edge. A random RR set sample in Figure 1(b) is
constructed as follows. Firstly, node v2 is sampled uniformly
at random from G, leading to R = {v2} at this moment.
Then we perform a stochastic BFS from v2, following the
reverse direction of incoming edges. We generate random
numbers r1 = 0.1 and r2 = 0.2 for the incoming edges of
node v2, (v1, v2) and (v6, v2), respectively. Since r1 < 0.2
and r2 < 0.3, nodes v1 and v6 are activated by v2, and are
put into R; that is, R = {v2, v1, v6}. Since node v1 has only
one in-neighbor v6 and v6 ∈ R, we do nothing for node v1.
Then we generate a random number r3 = 0.4 for the incom-
ing edge (v5, v6) of node v6. Node v5 is not activated and
we do not add v5 into R since r3 > 0.2. In Figure 1(b), the
dashed line between node v5 and v6 indicates this traversal
failure. At this time, no more nodes can be traversed, so the
stochastic BFS terminates with R = {v2, v1, v6}. �

Borgs et al. [10] establish the following lemma to use random
RR sets to estimate the expected influence of a seed set S.

Lemma 1. Assume that θ random RR sets are generated.
Let xi (i ∈ [1, θ]) be a random variable to be 1 if S ∩Ri 6= ∅
and 0 otherwise. Let σ(S) be the expected influence of seed
set S. The following equation holds.

σ(S) =
n

θ
· E[

θ∑
i=1

xi] =
n

θ

θ∑
i=1

E[xi] (1)

Given θ samples of the RR sets, we say a set S covers a
RR set R if S∩R 6= ∅ and denote Λ(S) as the number of RR
sets that are covered by S in the θ RR sets. Then the above
lemma indicates that the expected influence of S is linearly
dependent on the fraction of random RR sets covered by S.
Based on the above equation, Borg et al. [10] propose to: (i)
sample a sufficient number θ of random RR set; (ii) apply a
greedy algorithm to select k nodes such that in each iteration
we select the node that covers the maximum number of RR
sets that are not covered by previously selected nodes. The
pseudo-code of the greedy algorithm is shown in Algorithm

Algorithm 1: Maximum-Coverage Greedy

Input: An integer k and a set R of random RR sets
Output: A seed set S

1 S ← ∅;
2 for i from 1 to k do
3 u = arg maxv∈V \S Λ(v|S);
4 S ← S ∪ {u};
5 return S;

1. Note that Λ(v|S) indicates the number of RR set covered
by S ∪ {v} but not covered by S., i.e.,

Λ(v|S) = Λ(S ∪ {v})− Λ(S).

Borgs et al. prove that by utilizing the simple greedy
algorithm, one can obtain a seed set S which provides a
(1 − 1/e − ε)-approximate solution for the classic influence
maximization problem with 1 − δ probablity with a time
complexity of O(k · (n + m) · ln2(n) · ε−3). Later, Tang et
al. [37, 36] propose TIM/TIM+ and IMM that improves the
performance over Borgs et al.’s method and reduce the time
complexity to O(k · (n+m) · ln(n) · ε−2). Nguyen et al. [32]
present SSA/DSSA and Tang et al. [35] present OPIM-C
to further improve the practical performance but retain the
same expected time complexity.

Budgeted Influence Maximization. However, all the
above solutions are designed for the classic influence max-
imization and do not take the cost into consideration. To
apply to the budgeted influence maximization problem, a
natural idea is to modify the greedy algorithm so that each
time it greedily selects the node that maximizes the benefit-
cost ratio, i.e., the node whose gain on the expected influence
(given previously selected nodes) over its cost is maximized.
However, such an extension provides no constant approxi-
mation guarantee. We explain with the following example.

Example 2. Given a social network with a node set V =
{u, v1, v2, · · · , vn−1}, where node u is an isolated node, while
nodes v1, v2, · · · , vn−1 are fully connected with edges whose
propagation probability all equal 1. The cost c(u) = 1 − ε
and c(vi) = n−1 for 1 ≤ i ≤ n−1. Given a budget B = n−1,
the optimal solution for this problem is to choose an arbi-
trary node from {v1, v2, · · · , vn−1}. However, if we greedily
select the node with the maximum benefit-cost ratio, node
u will be selected first, since it has the largest benefit-cost
ratio 1/(1− ε) while all the other nodes have a benefit-cost
ratio of 1. After taking node u, no more node can be added
since otherwise it will exceed the budget. Then, the ap-
proximation ratio for this algorithm is 1/(n − 1) and the
approximation ratio can be arbitrarily bad as n grows. �

The greedy strategy which iteratively selects the node with
the maximum benefit-cost ratio provides no constant ap-
proximation guarantee but by a slight modification, it can
help obtain a constant approximation guarantee. Since it is
#P-hard to derive the exact expected influence, we follow
the paradigm in classic influence maximization and consider
the coverage Λ(S) of a set S on a set R of random RR sets,
whose expectation is exactly the expected influence σ(S) of
a set S. The modified version, dubbed as budgeted greedy,
is proposed by Khuller et al. [25]. The pseudo-code (tailed
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Algorithm 2: Budgeted Maximum-Coverage
Greedy

Input: G = (V,E), budget B, a set R of RR sets
Output: A seed set S

1 S ← ∅, V ′ ← V ;
2 while V ′ 6= ∅ do
3 u← arg maxv∈V ′(Λ(v|S)/c(v));
4 if c(S ∪ {u}) ≤ B then
5 S ← S ∪ {u};
6 V ′ ← V ′ \ {u};
7 s← arg maxv∈V,c(v)≤B Λ({v});
8 return arg max (Λ({s}),Λ(S));

for BIM) is shown in Algorithm 2. The main idea is to gen-
erate two sets of seed set. The first seed set S is generated
by greedily selecting the node with the maximum benefit-
cost ratio, i.e., the node whose marginal coverage Λ(v|S)
over its cost c(v) is maximum, until adding a new node will
make the cost of the seed set exceed the budget (Algorithm
2 Lines 3-6). The other seed set contains only a single node,
which is the node that has the largest coverage on R among
all nodes whose cost is no larger than B (Algorithm 2 Line
7). Finally, it selects the seed set that has larger expected
influence (Algorithm 2 Line 8). The following example is
given to illustrate Algorithm 2.

Example 3. Consider the social networkG in Figure 1(a).
Given buddget B = 3 and assume that the cost of the nodes
are c(v1) = 1, c(v2) = 2, c(v3) = 2, c(v4) = 1, c(v5) = 2, and
c(v6) = 2, respectively. We then sample a set R of RR sets,
and assume that R = {{v2, v6}, {v1, v6}, {v3}, {v5, v2}, {v3,
v1, v6}}. According to Algorithm 2 Lines 2-6, the first node
we select is v1 since v1 has the maximum benefit-cost ratio,
2/1 = 2. After node v1 is selected, the marginal benefit-cost
ratio of v2, v3, v4, v5 and v6 becomes 2/2, 1/2, 0/1, 1/2 and
1/2, respectively. Thus, we select v2 as the second seed.
Notice that at this moment, c(S) = c(v1) + c(v2) = 3. It
reaches the budget B, and no more node will be added into
S. So the first solution is S = {v1, v2}. Then according
to Algorithm 2 Line 7, we obtain the second solution {v6},
since node v6 has the maximum benefit Λ({v6}) = 3 among
all nodes. Because Λ({v1, v2}) > Λ({v6}), the final output
of Algorithm 2 is {v1, v2}. �

Khuller et al. [25] show that the budgeted greedy, i.e., Algo-

rithm 2, provides a ( 1−1/e
2

)-approximate solution for max-
imizing the coverage under budget B, and further demon-
strate that a tighter bound of (1−1/

√
e) can be achieved for

Algorithm 2. However, Zhang et al. [39] pinpoint out that
the proof of the (1 − 1/

√
e)-approximation is problematic.

Nguyen et al. [31] present a seminal work by combing the
RR-set based technique and the budgeted greedy to derive
a (1−1/

√
e− ε)-approximate solution. Their proof contains

the same loopholes as that in [25] and therefore only pro-

vides a 1−1/e
2
− ε approximation guarantee. The main idea

is to sample a sufficient number of random RR sets and then
apply the budgeted greedy algorithm based on the coverage
of the seed nodes on the RR sets. However, their solution
still leaves much room for improvement in terms of running
time since they do not take into account the properties of

Algorithm 3: IMAGE(G, B, δ)

1 Initialize θ0 and θmax;
2 θ ← θ0, imax ← log2 θmax/θ0;
3 while θ ≤ θmax do
4 sample R1 and R2, each with θ random RR sets;
5 select the seed node S with R1 with certain

greedy strategy, e.g., budgeted greedy;
6 verify if S provides approximation ratio on R2

with at least 1− 2δ
3imax

probability;

7 if S provides desired approximation ratio then
8 return S;

9 θ ← 2θ;

10 return S;

the BIM problem. This motivates us to propose our IMAGE
framework, detailed as follows.

3. PROPOSED FRAMEWORK

3.1 Overview
At a high level, our proposed IMAGE shares a similar

framework of existing approximate IM algorithms [35, 32]
in that our IMAGE also runs in an iterative manner and in
each iteration, it includes three phases:

1. RR set generation phase. In this phase, we sample
two sets, denoted as R1 and R2 of random RR sets, both
containing θ random RR sets.

2. Seed set selection phase. In this phase, we use R1

to select seed nodes. For instance, we may apply the
budgeted greedy algorithm onR1 to select the seed nodes.

3. Seed set verification phase. In this phase, we use R2

to verify if the seed set selected in the previous phase
provides an approximation guarantee. If the seed set can
provide the approximation ratio as desired, the seed set
is returned. Otherwise, the number of RR sets in R1 and
R2 is doubled to 2 · θ and we repeat the above process.

Algorithm 3 shows the pseudo-code of our IMAGE frame-
work. We will elaborate on how we select θ0 and θmax later
in Section 4. Currently, we assume that these two parame-
ters are given. In [31], Nguyen et al. simply apply the bud-
geted greedy to select the seed set S (Algorithm 3 Line 5).

To check if the algorithm provides ( 1−1/e
2
− ε)-approximate

solution, it simply checks if the RR set covered by the seed
set S selected exceeds certain thresholds depending on ε,
which is rather conservative. Both strategies are ineffective
and result in unnecessarily high computational costs. Next,
we present our first algorithm by deriving new bounds based
on the seed sets selected with the budgeted greedy algorithm
so as to reduce the computational cost.

3.2 Tightened Bounds of BIM
According to Equation 1, a random RR set provides an un-

biased estimation for the expected influence of an arbitrary
seed set S. Therefore, we can first sample a sufficient num-
ber of random RR set and then apply concentration bound
to derive the estimation errors of σ(S). We use the following
concentration bounds tailed for influence maximization.
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Lemma 2 ([35, 36]). Given a set R of θ random RR
sets and a seed set S, let Λ(S) stands for the coverage of S
on R. Given η ≥ 0, the following inequalities hold:

Pr[Λ(S)− σ(S) · θ
n
≥ η] ≤ exp(− η2

2σ(S) · θ
n

+ 2
3
η

)

Pr[Λ(S)− σ(S) · θ
n
≤ −η] ≤ exp(− η2

2σ(S) · θ
n

).

Given Lemma 2, we can provide an upper bound and a lower
bound for any fixed set S. Therefore, we can first apply the
budgeted greedy on R1 to find the seed set S. According

to [25, 31], we can derive a ( 1−1/e
2

)-approximate solution in
terms of the coverage on R1 under budget B. That is to
say, let Sg be the seed set selected by the budgeted greedy

algorithm, it guarantees that Λ(S) ≥ ( 1−1/e
2

)·Λ(S′opt), where
S′opt is the seed set that maximizes the coverage on R1. Let
Sopt be the optimal seed set that maximizes the expected
influence. Then, we have that:

Λ(Sg) ≥
1− 1/e

2
· Λ(S′opt) ≥

1− 1/e

2
· Λ(Sopt)

By applying Lemma 2, we can derive an upper bound
σ+(Sopt) of σ(Sopt) according to Λ(Sopt). With R2, we can
further derive a lower bound σ−(Sg) of σ(Sg). We did not
use R1 to derive the upper bound of σ(Sg) since there is
dependency between R1 and Sg, i.e., Sg is selected based on
R1. The algorithm terminates as soon as σ−(Sg)/σ

+(Sopt)
is larger than the approximation ratio required.

However, such an upper bound is still very loose in two
aspects. Firstly, the current worst-case approximation ra-

tio 1−1/e
2

of the budgeted greedy algorithm is actually still
quite loose. Secondly, the actual approximation ratio is usu-
ally much better than the worst-case scenario. If we can de-
rive a more accurate upper bound, then the algorithm can
terminate earlier and save running costs.

Improved worst-case bound. We show that we can im-

prove the worst-case approximation ratio from ( 1−1/e
2

) (≈
0.316) to (1−1/eβ) where β satisfies that (1−β)(1−1/e) =
1−1/eβ , in which case (1−1/eβ) ≈ 0.355. Let Sg be the seed
set selected by the budgeted greedy algorithm (Algorithm 2
Lines 2-6). Denote Si as the set of seed nodes selected by the
first i iterations without skipping any node. The following
lemma2 holds for Si.

Lemma 3 ([25, 31]). Let vi be the node selected in the
i-th iteration without skipping any nodes, i.e., Algorithm 2
Line 4 holds for all i iterations, and Si be the set of nodes
selected in the first i iterations (i = 1, 2, 3, · · · ) by Algorithm
2 Lines 3-6, the following inequality holds:

Λ(Si) ≥ [1−
i∏

k=1

(1− ck
B

)] · Λ(S′opt)

According to Lemma 3, we prove that the budgeted greedy
algorithm proposed by Khuller et al. [25] can achieve a (1−
1/eβ)-approximate solution, where (1 − β)(1 − 1/e) = 1 −
1/eβ and 1 − 1/eβ ≈ 0.355. Let Sg be the set returned by
budgeted greedy, S′opt be the set maximizing the coverage
on R1 under budget B, and Sopt be the set maximizing the
expected influence under budget B. We have Theorem 1.

2Omitted proofs can be found in appendix.

Theorem 1. The budgeted greedy returns a (1 − 1/eβ)-
approximate solution with (1− β)(1− 1/e) = 1− 1/eβ, i.e.,

Λ(Sg) ≥ (1− 1/eβ)Λ(S′opt) ≥ (1− 1/eβ)Λ(Sopt).

With Theorem 1 and Lemma 2, we can derive a tighter

upper bound σ+
opt for σ(Sopt) as follows. We use

Λ(Sg)

(1−1/eβ)

as an upper bound for Λ(Sopt). Then, we further apply

Lemma 2 to derive an upper bound σ+
opt =

Λ(Sg)

(1−1/eβ)
+ η of

σ(Sopt). However, this upper bound is still loose in practice
since it is the worst-case guarantee and in practice it is rare
for such worst-case bound occurs. In the literature, some
existing works focus on improving the upper bound [28, 35]
for classic influence maximization problems. However, all
these bounds cannot be applied to our studied problem since
they do not take into account the impact of cost differences.
This motivates us to derive new upper bounds for BIM.

Tightened upper bound. Recap that Λ(v|S) indicates
the number of RR sets that are covered by v but not covered
by S. Given an arbitrary set S, define ui as the node that
has the i-th largest benefit-cost ratio with respect to S, i.e.,
Λ(ui|S) is the i-th largest. Let S′opt be the seed set that
maximizes the coverage on R. We further define S′′opt as
the seed set that maximizes the coverage on R but allows
containing some fraction of a node. Therefore, the difference
between the S′opt and S′′opt is that S′′opt could contain at most
one broken node among all nodes, while S′opt only includes
integral nodes. The broken node means that if the cost of
the node v is c(v), when we pay the node budget b, the
influence it will return is Λ(v) · b/c(v). We further define
κ(S,B) as the set that includes u1, u2, · · · , ui−1, and part
of the ui which makes the budget equal to B. We have the
following lemma to upper bound the Λ(Sopt), where Sopt is
optimal solution under budget B for BIM problem.

Lemma 4. For any seed set S, we have that:

Λ(Sopt) ≤ Λ(S′opt) ≤ Λ(S′′opt) ≤ Λ(S) +
∑

v∈κ(S,B)

Λ(v|S)

Proof. Λ(Sopt) ≤ Λ(S′opt) ≤ Λ(S′′opt) naturally holds due
to their definitions. Next we prove the second part.

Λ(S′′opt) ≤ Λ(S′′opt ∪ S) ≤ Λ(S) +
∑

v∈S′′opt\S

Λ(v|S)

≤ Λ(S) +
∑

v∈κ(S,c(S′′opt\S))

Λ(v|S) ≤ Λ(S) +
∑

v∈κ(S,B)

Λ(v|S)

The third equality is due to the following reason: if the
set is allowed to contain at most one broken node, then,
we assume that we have a set S = {v1, v2, · · · , vk} which is
ordered by the benefit-cost ratio of each node from large to
small. We also assume that S′′opt \ S = {vo1, vo2, · · · , vok}
which is also ordered by the benefit-cost ratio of each node
from large to small. Then, if for any 0 ≤ i ≤ k, vi = voi,
we could get that the third inequality holds. While if there
exists vi > voi, then we could replace voi with vi to obtain
a better solution than S′′opt \ S. Therefore, κ(S,B) achieves
a larger coverage than S′′opt \ S, and this indicates why the
third inequality holds, which finishes the proof.

Let Si be the set of nodes selected in the first i iterations
by Algorithm 2 Lines 2-6. Let k be the number of nodes
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selected by Algorithm 2 Lines 2-6. Combining with Lemma
4, we have a new upper bound of Λ(Sopt) as follows:

Λ+
1 (Sopt) = min

0≤i≤k
(Λ(Si) +

∑
v∈κ(Si,B)

Λ(v|Si))

Then, we use min(Λ(Sg)/(1− e−β),Λ+
1 (Sopt)) as the final

upper bound, which is in practice usually tighter than the
worst-case bound. Despite effective the new bounds are,
the budgeted greedy is still inefficient since it may include
many iterations, and the running cost linearly depends on
the number of seed selected. Next, we present our new seed
selection strategy to alleviate such dependencies while still
providing an approximation guarantee.

3.3 Efficient Node Selection
In the budgeted influence maximization, one big challenge

is that given budget B, we may select many nodes with
low costs but with a high benefit-cost ratio. However, the
time complexity of existing RR-set based solutions heavily
depends on the size of the seed set. On one hand, the number
of RR set samples in the worst case scenario depends on
the size of the seed set. This can be alleviated by being
optimistic about the seed set selected as shown in [35, 32].

Another issue is that the time complexity of budgeted
greedy linearly depends on the size of the seed set selected
by Algorithm 2 Lines 2-6. This differs from the classic IM
problems, where we can maintain an inverted index and the
time complexity linearly depends on the input size of the
RR sets. To explain, the budgeted greedy algorithm needs
to repeatedly select the node with the maximum benefit-cost
ratio that is usually non-integers, which are more challenging
than maximizing the coverage that is integers.

To tackle this challenging issue, we borrow the idea of
the threshold-greedy algorithm presented in [9] which was
only designed for the case without budget. We extend the
idea to budgeted case and prove that we can still provide an
approximate solution with a strong theoretical guarantee.

Algorithm details and optimizations. The overall frame-
work of our proposed new algorithm, budgeted threshold-
greedy, shares a similar framework of the budgeted greedy
algorithm in that they both find two sets of seed set and one
set includes only a single node which has the maximum cov-
erage whose cost is no larger than B. The main difference
lies in Algorithm 4 Lines 2-9. In particular, we first find
the node with the maximum benefit-cost ratio (Algorithm 4
Line 2). Denote this maximum benefit-cost-ratio as dmax.
Then, the algorithm runs in an iterative manner. In the
i-th iteration, it uses d · (1 − ξ)i as the threshold, scans all
the remaining node, and add a node v to S if Λ(v|S)/c(v)
is no smaller than the threshold d · (1 − ξ)i (Algorithm 4
Lines 5-7). This allows us to add more than one node in
a single iteration, which relaxes the dependency to k. The
algorithm terminates either when we cannot add any node
to S or when the benefit-cost ratio is below 1/maxv∈V c(v).
To explain, the coverage of a node is at least 1, otherwise, it
is meaningless to add this node. Therefore, the min benefit-
cost ratio is at least 1/maxv∈V c(v). Finally, the algorithm
returns the set with larger coverage (Algorithm 4 Line 10).

Notice that, when a node is selected, we need to update
the coverage and the benefit-cost ratio of nodes gets affected.
This may cause unnecessarily high computational costs and
the cost will depend on the number of seed nodes selected,
which might be very large. To overcome such a deficiency,

Algorithm 4: Budgeted Threshold-Greedy

Input: Graph G = (V,E), budget B, a threshold ξ,
and a set R of RR sets,

Output: A seed set S
1 S ← ∅;
2 dmax ← maxv∈V Λ({v})/c(v);
3 dmin ← 1/maxv∈V c(v);
4 for w = dmax;w ≥ dmin · (1− ξ);w = w · (1− ξ) do
5 foreach v ∈ V do
6 if c(S ∪ {v}) ≤ B and Λ(v|S)/c(v) ≥ w then
7 S = S ∪ {v};
8 if c(S) + minv∈V c(v) > B then
9 break;

10 s← arg maxv∈V,c(v)≤B Λ({v});
11 return arg max (Λ({s}),Λ(S));

for threshold greedy, we maintain a list for each threshold,
i.e, dmax, dmax ·(1−ξ), dmax ·(1−ξ)2, , · · · dmax ·(1−ξ)i, · · · ,
such that list i includes a node whose benefit-cost ratio falls
in (dmax · (1− ξ)i, dmax · (1− ξ)i−1]. We further maintain an
inverted index for each node v such that each list includes
the RR sets covered by v. When a node u is selected as the
seed set, it first retrieves all the RR sets covered by u, and
then for each RR set R, it updates the benefit-cost ratio of a
node x ∈ R and updates its threshold list if necessary. This
can be done all in O(1) cost. Based on the above analysis,
we have the following lemma to control the running cost of
the budgeted threshold-greedy algorithm.

Lemma 5. Given an input R of random RR sets, the time
complexity of Algorithm 4 can be bounded by

∑
R∈R |R|.

Approximation guarantee. Next, we prove that the bud-
geted threshold-greedy algorithm still provides an approx-
imate solution with a strong theoretical guarantee. For
budgeted threshold-greedy algorithm, we have the following
lemma:

Lemma 6. Let Si be the set of first i nodes selected by
Algorithm 4 Lines 2-9 without skipping any nodes. Let vi be
the i-th node selected. We have that:

Λ(Si) ≥ [1−
i∏

k=1

(1− c(vk)(1− ξ)
B

)]Λ(S′opt)

Proof. Let S′opt be the optimal solution for maximizing
the coverage on R with budget B.

Let u be the next chosen node to be added to S and w
be the threshold value in an iteration. Then we have the
following inequalities:

Λ(x|S)

c(x)
=

{
≥ w, if x = u

≤ w/(1− ξ), if x ∈ S′opt \ (S ∪ {u})

To explain, if a node x is not added to S yet and it is not
u, then its marginal gain will be no larger than w/(1 − ξ),
which otherwise should have been added to S in previous
iterations. Then the following inequality holds:

Λ(u|S)

c(u)
≥ (1− ξ) max

x∈S′opt\S

Λ(x|S)

c(x)
(2)

1503



Let rmax = maxx∈S′opt\S
Λ(x|S)
c(x)

. Then for any node x ∈
S′opt \ S, we have that

Λ(x|S) ≤ c(x) · rmax

Therefore, we can derive that:

rmax = max
x∈S′opt\S

Λ(x|S)

c(x)
=

∑
x∈S′opt\S

c(x) · rmax∑
x∈S′opt\S

c(x)

≥

∑
x∈S′opt\S

Λ(x|S)∑
x∈S′opt\S

c(x)
≥

∑
x∈S′opt\S

Λ(x|S)

B
(3)

Combining Equations 2 and 3, we get:

Λ(u|S)

c(u)
≥ (1− ξ)

∑
x∈S′opt\S

Λ(x|S)

B
(4)

Let Si be the set of first i nodes selected by Algorithm 4
Lines 2-9. Let vi be the i-th node selected. By Equation 4,
we can derive that:

Λ(Si)− Λ(Si−1) ≥ c(vi)(1− ξ)
B

(Λ(S′opt)− Λ(Si−1))

Given above equation, we can prove that:

Λ(Si) ≥ [1−
i∏

k=1

(1− c(vk)(1− ξ)
B

)]Λ(S′opt),

using similar technique in the proof of Lemma 3. We omit
the details for simplicity.

The following theorem establishes the approximation guar-
antee of the budgeted threshold-greedy algorithm.

Theorem 2. The budgeted threshold-greedy returns a (1−
1/eη(1−ξ))-approximate solution for maximizing the coverage
on R under budget B, where (1−η)(1−1/e1−ξ) = 1− 1

eη(1−ξ)
.

According to Theorem 2, we can see that the approxima-
tion ratio is affected by the threshold-greedy parameter ξ.
Figure 2 shows the impact of ξ to the worst-case approxi-
mation guarantee. As we can observe, when we increase ξ,
the worst-case approximation ratio decreases. In the mean-
time, a larger ξ indicates a faster running time since the
budgeted threshold-greedy algorithm can finish with much
fewer iterations. Hence, there is a trade-off between the
query efficiency and the approximation guarantee. We will
examine its impact in our experiment.

Tightened upper bounds. We can apply a similar idea in
Section 3.2 to derive a tighter upper bound for the budgeted
threshold-greedy algorithm. Recap that we maintain thresh-
old lists such that the i-th list contains the nodes whose
benefit-cost ratio falls in (dmax · (1− ξ)i, dmax · (1− ξ)i−1].
We further maintain the total cost ci for the nodes in the
i-th threshold list. When deriving the upper bound, we re-
peatedly obtain the nodes with the largest benefit-cost ratio
until the cost exceeds B. A naive solution is to first sort all
the nodes according to their benefit-cost ratio. Yet, since we
have maintained the threshold lists, we check the total cost
c1 of the first threshold list and add all the nodes to κ(S,B)
if the total cost is no larger than B. Then we further check if
c2 < B−c1, and if it is true, we add all the nodes in the sec-
ond threshold list to κ(S,B) until the current i-th threshold

list incurs a cost larger than B−
∑i−1
j=1 cj . Then, we sort the

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0

approximation guarantee

ξ

Figure 2: The impact of ξ to worst case approxima-
tion guarantee of budgeted threshold-greedy.

nodes in the i-th threshold list according to their benefit-cost
ratio and repeatedly add the nodes with the largest benefit-
cost ratio in this list until adding a new node makes the total
budget exceed B. We add the last node as a broken node
and the seed set returns as κ(S,B). But this may make the
total running cost for bound refinement linearly depend on
the seed set size. To alleviate such a dependency, we impose
that the time for deriving upper bounds does not exceed the
time for random RR set generation.

4. TIME COMPLEXITY ANALYSIS
In this section, we present theoretical analysis for our pro-

posed IMAGE framework. Notice that IMAGE indicates the
full-fledged algorithm mentioned in Section 3.3. We present
the detailed analysis for IMAGE and omit the result for
IMAGE-BR for simplicity. We first define several constants
that only depend on the input graph and budget B. Let S−

be a set such that adding any node from V \ S− will make
the total budget exceed B. Further define S− as the set that
includes all such S− and let τB = |S−|. Now assume that
we generate a set Sc by repeatedly adding the node with the
smallest cost not in Sc until adding another node will exceed
the budget. Let kmax be the number of nodes picked in Sc.
Then, it is easy to verify that nkmax is an upper bound of
τB . Besides, kmax is a lower bound of the expected influ-
ence under budget B. We first have the following lemma to
control the number of RR set required by IMAGE.

Lemma 7. Let ε be an approximation error parameter and
δ be a failure probability. Let R be the set of RR sets sampled
by IMAGE and z = 1/eη(1−ξ). IMAGE provides a (1−z−ε)-
approximate solution with 1− δ probability when

|R| ≥
2n ·

(
(1− z)

√
ln 2

δ
+
√

(1− z)(kmax lnn+ ln 2
δ
)
)2

ε2kmax
.

Based on Lemma 7, we set θ0 and θmax for IMAGE as
follows to provide approximation guarantee. We set

θmax =
2n ·

(
(1− z)

√
ln 6

δ
+
√

(1− z)(kmax lnn+ ln 6
δ
)
)2

ε2kmax
,

(5)
which provides (1 − z − ε)-approximate solution with 1 −
δ/3 probability when we sample θmax random RR sets. Let
kmin be the number of nodes selected by repeatedly selecting
nodes with the maximum cost until no node can be added.
Then, we further set:
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Table 2: Dataset Statistics (M = 106, B = 109)
Name n m Type Avg. deg
Pokec 1.6M 30.6M directed 37.5
Orkut 3.1M 117.2M undirected 76.3
Weibo 1.8M 414M directed 462.7

Twitter 41.7M 1.5B directed 70.5

θ0 =
2n ·

(
(1− z)

√
ln 6

δ
+
√

(1− z)(kmin lnn+ ln 6
δ
)
)2

ε2n
(6)

in which case we have the minimum size of seed set and
the expected influence is n, and the above number θ0 is the
minimum number of RR sets required by such best scenario.
By setting θmax and θ0 according to Equations 5 and 6 re-
spectively, we have the following lemma.

Lemma 8. When IMAGE terminates, it provides a (1 −
1/eη(1−ξ) − ε)-approximate solution with 1− δ probability.

Finally, we have the following theorem to bound the ex-
pected running time of IMAGE algorithm.

Theorem 3. Under both IC and LT model, IMAGE runs
in O((ln(1/τB) + ln(1/δ))(n+m)ε−2) expected time.

5. EXPERIMENTS
This section experimentally evaluates our solutions against

alternatives. All experiments are conducted on a Linux ma-
chine with an Intel Xeon 2.70GHz CPU and 400GB memory.

5.1 Experimental Setup
Datasets. We test on four real social networks: Pokec [29],
Orkut [29], Weibo [38], and Twitter [26], which are widely
used in the literature for evaluating influence maximization
algorithms. Table 2 shows the statistics of each dataset.

Algorithms. We evaluate our IMAGE-BR and IMAGE al-
gorithms against the baseline solution [31], dubbed as Base-
line, which applies the budgeted greedy on random RR sets
with no bound refinement. The IMAGE-BR algorithm in-
cludes the bound refinement technique mentioned in Sec-
tion 3.2. The IMAGE algorithm is the full-fledged algo-
rithm mentioned in Section 3.3. We implement all algo-
rithms in C++ and compile them with full optimization.
For each algorithm, we repeat 5 times and report the av-
erage as the evaluation result when evaluating the running
time, expected influence, and number of RR sets.

Parameters. We evaluate our algorithms on both IC model
and LT model. Following existing work [37, 36, 35], for both
IC model and LT model, we set the probability of each edge
〈u, v〉 as 1/din(u), where din(u) is the in-degree of node u.

Based on the report on news and social media [1, 2, 3, 4, 5,
6], only the top 0.001%−0.0001% users could be regarded as
social media influencers. We set the top 0.001% of the user
as the influencers. According to the statistics of pay-rate to
social media influencers and non-influencers [1, 2, 3, 4, 5, 6],
the payment to influencers is assigned as c(u) = 0.01 ·din(u)
and the pay-rate to non-influencers is set as c(u) = 2·din(u).
This is consistent with real scenarios [1, 2, 3, 4, 5, 6] where
the pay-rate per follower for celebrities are usually much
lower than the pay-rate per follower for normal users. For

budget B, we set the default value to be 0.0002 · n. Recall
that our IMAGE includes a parameter ξ to balance the cost
of node selection and the approximation guarantee. We tune
the parameter in Section 5.4. We observe that when ξ = 0.05
achieves a good trade-off in all tested datasets and set it as
the default value in all remaining experiments.

5.2 Efficiency and Effectiveness
In the first set of experiments, we evaluate the running

time of our methods against the baseline methods. We ex-
amine the running time required to achieve a user-defined
approximation ratio in the range of [0, 0.9). Note that for a
user-defined approximation ratio x that is no larger than
the worst-case guarantee y, ε is set as y − x. However,
Baseline cannot provide an answer when the user-defined
approximation ratio is larger than its worst-case guarantee.
In contrast, our IMAGE-BR and IMAGE can still provide
approximation ratio that is larger than the worst-case ratio
since the upper bound we derived are typically far better
than the worst-case bound.

Figure 3 reports the running time under the IC model. As
we can observe, our IMAGE-BR and IMAGE are more effi-
cient than Baseline to provide the same approximation guar-
antee. For example, when the approximation ratio is 0.3,
IMAGE-BR (resp. IMAGE) is up to 15x (resp. 40x) faster
than Baseline. Our IMAGE is further up to 4x faster than
IMAGE-BR. To explain, IMAGE uses the budgeted thresh-
old greedy and it can help reduce the cost for bound esti-
mation and seed selection, achieving smaller running costs.
Figure 4 reports the results under the LT model. It shows
a similar trend: IMAGE is still 1 order of magnitude faster
than Baseline and IMAGE-BR is several times faster than
Baseline when the approximation ratio is 0.3.

In the next set of experiments, we examine the impact of
the number of RR sets to the approximation ratio of each
algorithm. For the ease of comparison, we fix the initial
number of random RR sets to be 24 × 103. By this ini-
tial set, we can examine the approximation ratio achieved
by each method with the same number of random RR sets.
Figure 5 (resp. Figure 6) reports the approximation ratio
when the number of RR sets varies under the IC model (resp.
LT model). As we can observe, in both IC and LT model,
IMAGE and IMAGE-BR achieve better approximation ra-
tio than Baseline since IMAGE and IMAGE-BR adopt the
new bound estimation method. In the meantime, with the
same number of RR sets, IMAGE and IMAGE-BR achieves
identical approximation guarantee in most of the cases and
their approximation ratios increase with the number of RR
sets. We note that IMAGE may require a slightly larger
number of RR sets to achieve the same approximation ratio
in some cases. However, as shown in Figures 3-4, IMAGE
is still more efficient than the IMAGE-BR to achieve the
same approximation ratio. To explain, IMAGE adopts the
budgeted threshold greedy, which makes it more efficient in
bound estimation and node selection, thus saving the run-
ning costs and outperforming IMAGE-BR.

Finally, we examine the quality of the seed set returned
by each algorithm. As shown in Figures 7-8, the expected
influence of the seed set returned by the Baseline, IMAGE-
BR, and IMAGE are identical on both the IC and LT mod-
els. When the same number of RR sets are sampled, all
the three algorithms tend to provide seed set with identi-
cal quality. Moreover, with a larger number of RR sets, all
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Figure 3: Running time vs. approximation guarantee under the IC model
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Figure 4: Running time vs. approximation guarantee under the LT model

0.0

0.2

0.4

0.6

0.8

1.0

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

approximation guarantee

# of RR sets (× 1000)

0.0

0.2

0.4

0.6

0.8

1.0

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

approximation guarantee

# of RR sets (× 1000)

0.0

0.2

0.4

0.6

0.8

1.0

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

approximation guarantee

# of RR sets (× 1000)

0.0

0.2

0.4

0.6

0.8

1.0

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

approximation guarantee

# of RR sets (× 1000)

(a) Pokec (b) Orkut (c) Weibo (d) Twitter

Figure 5: Approximation guarantee vs. # of RR sets under the IC model
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Figure 6: Approximation guarantee vs. # of RR sets under the LT model

three algorithms tend to provide seed with better quality.
This is expected since with more RR sets, the estimation of
the expected influence becomes more accurate and helps the
greedy algorithms select node sets with better quality. How-
ever, since Baseline only uses the worst-case bound to derive
the approximation ratio, it cannot stop promptly when it
has actually selected a seed set satisfying the user-specified
approximation ratio, thus wasting the computational costs.

In summary, our IMAGE is orders of magnitude faster
than alternatives while providing similarly high-quality seed
set, which is the preferred choice for the BIM problem.

5.3 Cost of Bound Estimation and Greedy
Next, we examine the cost of three major phases: the

RR set generation, bound estimation, and node selection.
Figures 9 and 10 reports the running cost of each phase
on the four datasets when the approximation ratio is 0.3.
Notice that PK, WB, OR, and TW are short for Pokec,
Weibo, Orkut, and Twitter, respectively. Since Baseline

and IMAGE-BR adopt the same greedy algorithm (Algo-
rithm 2), their running cost with greedy is similarly high.
In contrast, IMAGE adopts the budgeted threshold greedy
algorithm (Algorithm 4) for the node selection, and may se-
lect multiple nodes in a single iteration, thus reducing the
running costs. Besides, as we can observe, the bound esti-
mation cost of IMAGE-BR increases when the size of the
graph increases, and may dominate the cost of RR set gen-
eration, e.g., on Twitter dataset under LT model. How-
ever, the bound estimation cost of IMAGE is far less than
IMAGE-BR. To explain, as mentioned in Section 3.3, we can
use the threshold list maintained in Algorithm 4 to reduce
the computational costs in the bound estimation phase.

5.4 Impact of ξ
Recap that our IMAGE algorithm includes a parameter

ξ that provides a trade-off between the query efficiency and
approximation guarantee. We inspect the impact of ξ to IM-
AGE and report the results on two representative datasets:
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Figure 7: Expected influence vs. # of RR sets under the IC model
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Figure 8: Expected influence vs. # of RR sets under the LT model
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Figure 10: Cost of different phases: LT model

Weibo and Twitter under the LT model. As shown in Fig-
ures 11, a smaller ξ indicates a larger running cost, e.g.
with ξ = 0.01 on Twitter dataset. To explain, when ξ is
quite small, it is highly likely that the algorithm involves
many iterations to select the seed nodes, which increases
the running cost. For ξ = 0.05 and ξ = 0.1, they have
the similar running time and expected influence as shown
in Figures 11-12. However, when ξ increases, it indicates a
looser approximation guarantee and may affect the quality
of the selected seed set in worst-case scenarios. We have
also tested the impact of ξ under the IC model and have a
similar observation. For the interest of space, we omit the
results here. Interested readers may refer to our technical
report [7] for the details.

According to above experimental study, we set ξ = 0.05
as the default setting since it strikes a good balance between
the running cost and worst-case approximation guarantee.

5.5 BIM v.s. IM
Finally, we examine the effectiveness of BIM against clas-

sic IM when we consider cost differences. We first apply the
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Figure 11: ξ vs. running time: LT model
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Figure 12: ξ vs. expected influence: LT model

classic IM algorithms to solve the BIM problem and choose
the seed set with the maximum coverage greedy algorithm
(Algorithm 1) select the first the nodes and skip a node if
adding it will make the cost exceed the budget, until no node
can be added into the seed set. We compare the expected
influence of the seed set returned by using classic IM algo-
rithm and the seed set returned by using our BIM algorithm
IMAGE. As we can see in Figures 13-14, the solution con-
sidering cost achieves far better expected influence when we
provide different settings of the budget. In the meantime, for
classic IM algorithms, an increased budget does not always
guarantee to return a seed set with an increased expected
influence. To explain, with the growth of the budget, the
classic IM algorithms may select some nodes with a large
expected influence but with a low benefit-cost ratio, result-
ing in inferior seed sets compared to the seed sets returned
with even smaller budgets. In contrast, for BIM algorithms,
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Figure 14: IM vs. BIM under LT model

we can see that with the growth of the budget, BIM algo-
rithms always return seed sets with an increased expected
influence since BIM algorithms take the cost of each node
into consideration as well. This indicates that BIM is the
preferred solution when different users have different costs.

6. RELATED WORK
Kempe et al. [24] present the first study on influence max-

imization problem, and prove that the influence maximiza-
tion problem is NP-hard. They provide a greedy framework
and show that the proposed algorithm obtains a (1−1/e−ε)-
approximate solution for both IC and LT models. However,
the time complexity of the proposed algorithm is Ω(kmn ·
poly(1/ε)), which is too expensive for large social networks.
After that, a large number of research works [8, 10, 12, 13,
14, 15, 16, 17, 19, 20, 21, 22, 27, 34] aim to improve Kempe
et al.’s solution to make their algorithms more efficient and
scalable to large social networks. Many of them focus on
heuristic solutions, which tend to improve the practical per-
formance over previous solutions. However, such solutions
provide no guarantee on the quality of the returned result.

To tackle such a challenging issue, Borgs et al. present
a seminar work [10] and propose the random reverse reach-
able (RR) set technique to solve the influence maximization
problem. The proposed solution reduces the time complex-
ity to almost linear to the graph size. In particular, the
algorithm can return a (1 − 1/e − ε)-approximate solution
with 1−1/n probability with O(k(m+n)ε−3 log2 n) running
time. Then, a plethora of research works [37, 36, 32, 35] im-
prove the efficiency on IM problem based on the random RR
set based techniques. Tang et al. [37] propose TIM to reduce
the number of random RR samples, and show that the time
complexity can be improved to O(k(m + n)ε−2 logn) while
providing the same approximation guarantee with the same
success probability under both LT and IC model. Tang et
al. [36] further present IMM, an enhanced version of TIM,
by exploring the martingale property of the random RR sets
and can reuse some random samples even though there are
some weak dependencies between different random RR sets.
They show that IMM retains the same time complexity and

approximation guarantee as TIM but is far more efficient
in practice since it reduces the number of random RR sets.
Nguyen et al. [32, 33] propose SSA, SSA-Fix, D-SSA and D-
SSA-Fix to further improve the practical performance over
TIM and IMM. The main idea is to reduce the dependency
to the seed set size by a verification phase to see if the se-
lected seed is good or not, thus saving running costs. Lately,
Tang et al. [35] propose OPIM-C to derive tighter upper and
lower bounds so that the algorithm can terminate as soon
as the approximation ratio is satisfied, reducing the running
costs. However, all these solutions focus on classic IM prob-
lem and do not take into account the cost differences.

For the BIM problem, a line of research works focus on
developing heuristic algorithms, e.g., [30, 23, 28], to reduce
the computational costs. Such heuristics, however, provides
no guarantee on the returned answer. Khuller et al. [25]
propose the budgeted greedy so that the algorithm returns

a ( 1−1/e
2

)-approximate solution if one can calculate the ex-
act expected influence of any set. They further claim that
the approximation ratio can be improved to 1−1/

√
e. How-

ever, as shown in [39], the proof contains loopholes and the
approximation ratio does not hold. Nguyen et al. [31] ex-
tend the RR set based solution to the budgeted IM problem
by first sampling a sufficient number of RR set and then ap-
plying the budgeted greedy algorithm. They claim that the
proposed algorithm returns a (1−1/

√
e−ε)-approximate so-

lution, while should be ( 1−1/e
2
−ε) since their proof contains

the same loopholes as the one in [25]. As we have shown in
our experiment, the proposed solution is still inefficient and
leaves much room for improvement, which motivates us to
propose the IMAGE framework.

7. CONCLUSIONS
In this paper, we present an efficient framework IMAGE

for BIM problem. We propose new bound refinement strate-
gies and node selection optimizations to improve the per-
formance for such queries. We further present theoretical
analysis and show that our proposed solution has a time
complexity of O((ln 1/δ + ln τB)(n + m)/ε2). Experiments
show that our solution is far more efficient than alternatives.
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9. APPENDIX
We omit some of the proofs due to the interest of space.

Please refer to [7] for omitted proofs.

Proof of Lemma 3. Before proving Lemma 3, we first
prove the following lemma.

Lemma 9. Given an input set R of random RR sets and
budget B, let vi be the node selected in the i-th iteration
and Si be the set of nodes selected after iteration i (i =
1, 2, 3, · · · ) by the budgeted greedy algorithm (Algorithm 2
Lines 3-6) based on R. The following inequality holds:

Λ(Si)− Λ(Si−1) ≥ c(vi)

B
· (Λ(Sopt)− Λ(Si−1)), (7)

1508



where S′opt is the optimal set that maximizes the coverage on
R under budget B. �

It is obvious that Λ(S′opt)−Λ(Si−1) is smaller than Λ(S′opt\
Si−1). For each seed node v in S′opt \ Si−1, the ratio of the
marginal gain Λ(v|Si−1) on R1 to its cost c(v) is at most
(Λ(Si) − Λ(Si−1))/c(vi). Due to the property of the bud-
geted greedy algorithm, vi maximizes the ratio over all can-
didate seed nodes which are not selected into Si−1. Because
the total cost of seed set is constrained by budget B, then
Λ(S′opt \Si−1) is at most B · (Λ(Si)−Λ(Si−1))/c(vi). There-
fore, we could get the following equation:

Λ(S′opt)− Λ(Si−1) ≤ B · Λ(Si)− Λ(Si−1)

c(vi)

Lemma 9 has been proved. Next, we prove Lemma 3. It
is known that ∀i,Λ(S1)/c1 ≥ Λ(vi)/ci. Because the greedy
algorithm chooses the most cost-effective node first. We
assume that the lemma holds for iterations 1, 2, . . . , i − 1.
Then, at the ith iteration we could conclude that:

Λ(Si) = Λ(Si−1) + [Λ(Si)− Λ(Si−1)]

≥ Λ(Si−1) +
c(vi)

B
· (Λ(S′opt)− Λ(Si−1))

= (1− c(vi)

B
) · Λ(Si−1) +

c(vi)

B
· Λ(S′opt)

≥ (1− c(vi)

B
) · (1−

i−1∏
k=1

(1− c(vk)

B
)) · Λ(S′opt)

+
c(vi)

B
· Λ(S′opt) =

(
1−

i∏
k=1

(1− c(vk)

B
)

)
· Λ(S′opt)

This finishes the proof of Lemma 3. �

Proof of Theorem 1. We omit the proof since it can follow
the proof of Theorem 2 by setting ξ → 0 and η = β. �

Proof of Theorem 2. First, we introduce a classic in-
equality. If we have a1, · · · , an ∈ R+ which satisfies that∑n
i=1 ai = αA, the objective function

(1−
n∏
i=1

(1− ai
A

)) (8)

achieves its minimum value: 1 − (1 − α/n)n, when a1 =
a2 = · · · = an = αA/n, for A,α > 0. Based on Lemma 3,
we can prove Theorem 2 by case analysis. We first assume
that we have eliminated any node whose budget exceeds B.
Therefore, any nodes remained have a cost no larger than
B. Then, we have two cases.

• Case 1: There exists a node whose coverage is larger than
ηΛ(S′opt), then in Algorithm 4 Line 10, node s selected
provides at least η-approximate solution.

• Case 2: There does not exist no such a node u whose
coverage is no smaller than η · Λ(S′opt). Let S be the set
selected by Algorithm 4 Lines 4-9. We have two sub-cases.

– Case 2.1: c(S) < ηB, it is not difficult for us to have
that c(u) > (1 − η) · B, ∀u /∈ S. Because if ∃u /∈ S and
c(u) ≤ (1− η) ·B, we can add u to S, which is conflicted
with Algorithm 4. We assume that S 6= S′opt (otherwise
the approximation ratio is 1) and η ≤ 1

2
. Then, S′opt \ S

contains at most one such u, i.e., a node with budget

larger than (1− η) · B. Otherwise, c(S′opt) > B. Since Λ
is submodular, we have:

Λ(S′opt) = Λ
(
(S′opt ∩ S) ∪ (S′opt \ S)

)
≤ Λ(S′opt ∩ S) + Λ(S′opt \ S) ≤ Λ(S) + Λ({u})

According to Case 2, we have Λ({u}) < ηΛ(S′opt). There-
fore, Λ(S) ≥ (1− η)Λ(S′opt).

– Case 2.2: c(S) ≥ ηB. According to Lemma 6 and the
inequality for Equation 8, we have that:

Λ(Si) ≥ [1−
i∏

k=1

(1− c(vk)(1− ξ)
B

)] · Λ(S′opt)

≥ [1− (1− η(1− ξ)
i

)i] · Λ(S′opt) (9)

Note that Λ(S) ≥ Λ(Si) ≥ (1− 1/eη(1−ξ)) ·Λ(S′opt) holds
if c(Si) ≥ ηB. If c(Si) < ηB, we analyze case by case.

∗ Case 2.2.i: c(Si) < ηB while vi+1 ∈ S′opt and it could
not be added to Si. Then we could construct another
seed set S+ = S′opt \ {vi+1}. According to Case 2.1, we

get that Λ(S+) ≥ (1−η)Λ(S′opt). Let S+
opt be the optimal

seed set with the maximum coverage onR under a budget
of c(S+). According to the definition, we know Λ(S+

opt) ≥
Λ(S+). Besides, c(S) ≤ B and c(S+) = c(S+

opt) ≤ ηB.

We then construct another set Sfj as follows: we add
v1, v2, v3, · · · , vj−1 (vx is the x-th node selected by Algo-

rithm 4 without skipping any node) to Sfj until adding

vj will cause the total budget to exceed c(S+). We then

add a fraction of node vj to Sfj so that the total budget

is exactly c(S+). If this node vj can be added fully to Si,

then, since we only add part of this node to Sfj , we can

easily conclude that Λ(Si) ≥ Λ(Sfj ). If this node vj can
not be added into Si, which means c(vj) ≥ (1− η)B and

η ≤ 1
2
, then this node vj will not be added to Sfj as well.

To explain, the cost of vj exceeds budget c(S+), and by
removing such a node, it does not affect the node selection
and the optimal solution. Therefore, we simply discard
this node vj and in both cases Λ(Si) ≥ Λ(Sfj ). For Sfj ,

it can be verified that Λ(Sfj ) ≥ (1− 1/e1−ξ)Λ(S+
opt) with

Equation 9 since B = c(Sfj ) = c(S+
opt) and η = 1. Then,

in Case 2.2.i, we have that:

Λ(S) ≥ Λ(Si) ≥ Λ(Sfj ) ≥ (1− 1/e1−ξ) · Λ(S+
opt)

≥ (1− 1/e1−ξ) · Λ(S+) ≥ (1− η)(1− 1/e1−ξ) · Λ(S′opt)

∗ Case 2.2.ii: c(Si) < ηB and c(vi+1 ∪ Si) > B but
vi+1 /∈ S′opt. In this case, it is safe to skip node ui+1

since Equation 7 still holds for any node selected next
(if any). Hence, the inequality for Equation 8 still holds.
Then, Case 2.2.ii either falls to Case 2.2.i or makes the
budget no smaller than η ·B, where the solution provides
a 1− 1/eη(1−ξ) approximation ratio.

The above case analysis indicates that we could get the
lower bound of Λ(S), when (1−η)(1−1/e1−ξ) = 1− 1

eη(1−ξ)
.

In this case, η < 0.5, which meets our requirement of η
in the discussion of Case 2.1. Let Sopt be the seed set
maximizing the expected influence under budget B, then
Λ(S′opt) ≥ Λ(Sopt). This finishes the proof. �
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