
Put an Elephant into a Fridge: Optimizing Cache Efficiency
for In-memory Key-value Stores

Kefei Wang
Computer Science & Engineering

Louisiana State University

kwang@csc.lsu.edu

Jian Liu
Computer Science & Engineering

Louisiana State University

jliu@csc.lsu.edu

Feng Chen
Computer Science & Engineering

Louisiana State University

fchen@csc.lsu.edu

ABSTRACT
In today’s data centers, memory-based key-value systems, such
as Memcached and Redis, play an indispensable role in provid-
ing high-speed data services. The rapidly growing capacity and
quickly falling price of DRAM memory in the past years have en-
abled us to create a large memory-based key-value store, which is
able to serve hundreds of Gigabytes to even Terabytes of key-value
data all in memory. Unfortunately, CPU cache in modern proces-
sors has not seen a similar growth in capacity, still remaining at
the level of a few dozens of Megabytes. Such an extremely low
cache-to-memory ratio (less than 0.1%) poses a significant new
challenge—the limited CPU cache is becoming a severe perfor-
mance bottleneck that hinders us from fully exploiting the great
potential of high-speed memory-based key-value stores.

To address this critical challenge, we propose a highly cache-
efficient scheme, called Cavast, to optimize the cache utilization of
large-capacity in-memory key-value stores. Our goal is to maxi-
mize cache efficiency and system performance without any hard-
ware changes. We first present two light-weight, software-only
mechanisms to enable user to indirectly control the cache content
at application level. Then we propose a set of optimization policies
to address several critical design issues that impair cache’s efficacy
in the current key-value store systems. By carefully reorganizing
the data layout in memory, redesigning the hash indexing structure,
and offloading garbage collection, we can effectively improve the
utilization of the limited cache space. We have developed a mod-
ule in Linux as a kernel-level support, and implemented two pro-
totypes based on Memcached and Redis with the proposed Cavast
scheme. Our experimental studies show promising results. On a 6-
core Intel Xeon processor with only 15-MB cache, we can raise the
cache hit ratio up to 82.7% with a very small cache-to-memory ratio
(0.023%), and significantly increase the key-value system through-
put by a factor of up to 4.2.

PVLDB Reference Format:
Kefei Wang, Jian Liu, and Feng Chen. Put an Elephant into a Fridge: Opti-
mizing Cache Efficiency for In-memory Key-value Stores. PVLDB, 13(9):
1540-1554, 2020.
DOI: https://doi.org/10.14778/3397230.3397247

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3397230.3397247

1. INTRODUCTION
In the past decade, the amount of digital data has been explo-

sively growing at an astonishing rate. According to a recent report
from International Data Corporation (IDC), the global datasphere,
which was 33 Zettabytes in 2018, will grow to 175 Zettabytes by
2025 [60]. As a key component in today’s data centers, key-value
store plays a crucial role in providing high-speed data services.

In order to handle the huge traffic of key-value queries at a high
speed, cloud service providers heavily rely on In-memory Key-value
Stores, represented by Memcached [10] and Redis [13], to offer
high-throughput and low-latency services. Facebook, for example,
has deployed a fleet of over 800 Memcached servers for their daily
operations [15]. Other service providers, such as Google, Twitter,
YouTube, similarly have a large-scale deployment in various pro-
duction environments [14, 18, 19, 43].

1.1 Technical Trend and Challenges
The widespread adoption of in-memory key-value stores is driven

by the recent technical breakthroughs in memory technologies (e.g.,
the 10-nm lithography process, 3D integrated circuits, and multi-
die packaging), which allow the industry to make large-capacity
DRAM memory at a rapidly decreasing cost. In the past 20 years,
the unit capacity of DRAM memory has increased by over 100
times [12, 16], while the price (U.S. $/GB) has decreased by more
than 200 times [53]. Its impact is enormous—our long-held dream
of having the entire data store completely in memory now becomes
an economically viable solution in practice.

In contrast to DRAM memory, CPU cache in modern multi-core
processors has not seen a similar growth in capacity, still remain-
ing at the level of a few dozens of Megabytes. For example, Intel’s
current top-tier processor, Xeon Platinum 9282, supports a maxi-
mum cache of only 77 Megabytes [6]. Such a small capacity is far
from sufficient for memory-based data stores. Consider an entry-
level server with 128 Gigabyte memory, the cache-to-memory ratio
is below 0.06%, which is multiple orders of magnitude lower than
the normally expected ratio for effective caching [17].

Even worse, due to the limited die space and the stringent power
budget, we are unlikely to see a dramatic increase of on-chip cache
size in processors of the near future, meaning that the already sig-
nificant capacity gap (1,000x-10,000x) between cache and DRAM
memory will continue to widen, at an accelerating pace. In other
words, the limited cache space is not only constraining the perfor-
mance of in-memory key-value stores in our present deployment,
but also severely limiting their scalability in the future.

On the other hand, processor’s cache is playing an unprecedent-
edly important role. In traditional systems, data are stored in sec-
ondary storage devices, such as hard drives. The huge speed gap
(nanoseconds vs. milliseconds) between cache and storage dimin-

1540

ishes the relative importance of the small on-chip cache, since the
storage speed dominates the entire system performance. By con-
trast, memory-based key-value stores directly maintain the entire
dataset in memory. The much smaller speed gap (nanoseconds vs.
tens of nanoseconds) between cache and memory makes an effi-
cient use of cache resources crucial for performance.

Such a technical trend poses a grand challenge to system de-
signers and practitioners—given the hardware constraint, we must
carefully optimize the key-value system design to fully exploit the
available cache resources in the existing architecture. To achieve
this goal, we need to address several critical challenges, in both
hardware and software.
• Hardware challenges. Modern processors are designed for gen-
eral applications. In the current architecture, virtual memory ab-
straction separates hardware and software. All the complex CPU
internals, including the cache management, are made opaque to
applications running atop it. Hardware automatically handles the
management of on-chip cache; application software simply allo-
cates and manages data objects in memory. Such a clear separation
simplifies the design but creates a significant barrier, which hinders
applications from being able to explicitly manage the cache con-
tent, leaving applications largely unaware of and unoptimized for
maximizing the efficient use of cache space.
• Software challenges. Besides hardware, key-value systems carry
several unique properties, which make an efficient use of the pre-
cious cache resources particularly difficult.

First, data accesses in key-value workloads are highly skewed. A
recent study from Facebook reports a strong locality in real-world
workloads [24]. A small amount of key-value items are frequently
accessed (millions of times a day), while most are accessed only
a few times after being created. A random blend of hot and cold
data in cache would cause intensive cache conflicts, weakening the
cache’s efficacy and causing unnecessary memory accesses.

Second, keys and values are inherently distinct. For example, the
size of a key is typically much smaller than a value [24], meaning
that caching a value could be at the potential cost of evicting mul-
tiple keys. Moreover, upon a query, the keys must be loaded for
comparison, while the value data are often unneeded (a mismatch
is common). Indistinguishingly mixing and loading keys and val-
ues together into cache would cause a significant waste of the cache
space and also premature evictions of the needed keys.

Third, the linked-list based hash indexing structure is cache un-
friendly. In a key-value store, the indexing structure plays an im-
portant role and facilitates a quick lookup to locate the target data
in memory. In this process, a sequence of random point reads hap-
pens along the list, incurring a chain of small and individual mem-
ory reads, amplifying the amount of data access, and polluting the
cache with irrelevant data.

In short, the existing design of large-capacity in-memory key-
value stores is inadequate in exploiting the very limited cache re-
sources on the current hardware architecture. We need to find a
solution to put the “elephant” into the “fridge”.

1.2 Making Key-value Store Cache Aware
In this paper, we present a highly cache-efficient scheme, called

Cavast, to address the above-said cache challenges. Our goal is to
identify a software-only solution to optimize the cache utilization of
in-memory key-value stores, improving their performance without
incurring additional cost. To the best of our knowledge, this study
is the first software-based work on optimizing processor cache’s
efficacy for in-memory key-value stores.

Our key idea is to leverage the existing memory management
mechanisms in operating systems to virtually partition the cache

and reorganize data layout of key-value stores in memory. Without
need for any hardware change, we are able to indirectly control
the cache content and effectively avoid undesirable cache conflicts
by exploiting the semantic knowledge of key-value store about the
stored data and its internal structures.

Our optimizations are based on three key considerations. First,
exploiting the relative temperatures of the key-value items, we can
determine the best placement of a key-value item according to its
temporal locality, and regroup the hot and cold data in cache. It
allows us to lower the possibility of prematurely evicting hot data
from the cache. Second, recognizing the distinction between keys
and values, we propose to separate and reorganize key and value
data in memory to solve the cache pollution and read amplification
problems. This ensures that when a large value is fetched into the
cache, it would not be at the potential cost of evicting many small
keys, which avoids creating a storm of cache misses at a later time.
Finally, we also propose a redesign of the hash indexing structure,
making it cache-friendly. With a comprehensive package of all
these software techniques, the cache efficiency of memory-based
key-value stores can be significantly improved, without requiring
any change to hardware.

We have implemented two prototypes based on Memcached and
Redis, two representative key-value stores widely used in the indus-
try. We have developed a light-weight, application-level solution to
virtually partition the cache into user-controllable, large memory
chunks for intra-page mapping. As an alternative, an OS kernel
module has also been developed in Linux to assist creating a pool
of pages with distinct cache mappings at a finer granularity.

Our experiments on Memcached and Redis show that our solu-
tion can greatly improve the cache efficiency for in-memory key-
value data stores. Even without any hardware assistance, only by
making small changes to the existing key-value store design, we
can significantly improve the system performance: On a 6-core In-
tel Xeon processor with only 15-MB cache, we are able to raise
the cache hit ratio up to 82.7% with an extremely small cache-
to-memory ratio (0.023%), which in turn increases the key-value
system throughput by a factor of up to 4.2.

The rest of the paper is organized as follows. Section 2 presents
the motivations. Section 3 and 4 introduce the mechanism and pol-
icy design. Section 5 introduces the experimental setup. Section 6
and 7 present our two prototypes on Memcached and Redis. Sec-
tion 8 discusses the overhead and other related issues. Related work
is presented in Section 9. Section 10 concludes this paper.

2. MOTIVATIONS AND CHALLENGES
2.1 The Role of CPU Cache

CPU cache plays an important role in computer systems. It is
designed to bridge the speed gap between processor and memory.
In a typical Intel processor, an L3 cache hit latency is about 30–
75 CPU cycles; a memory access, by contrast, takes much longer,
typically 50–100 nanoseconds [1, 5, 44]. Caching the frequently
accessed data can effectively filter out most memory accesses and
improve performance.

The capacity of on-chip cache, due to the die space and pro-
duction cost, is very limited. In modern processors, the Last-level
Cache (LLC) is often only of a few dozen Megabytes, shared among
the cores. When filled up, the Least Recently Used (LRU) algo-
rithm is used for cache replacement. In this paper, cache refers to
the LLC, unless otherwise noted.

Over the years, such a relatively small cache in processor has
been proven effective and also cost-efficient for general applica-
tions. In fact, the amount of LLC is roughly about 2–2.5 MB per

1541

core, which is generally regarded sufficient for serving the pur-
pose of accelerating computation. However, when it comes to in-
memory key-value stores, the long-standing cache architecture falls
short in its very limited capacity. It is essentially because memory
plays a fundamentally different role in such applications—unlike
general applications, which mainly use memory as an intermedi-
ate layer between processor and storage, memory-based key-value
stores use memory as a high-speed main storage media to accom-
modate the huge key-value dataset in complete. As a result, the on-
chip cache has to cache data for a disproportionately large amount
of memory, which could be of hundreds of Gigabytes to even Ter-
abytes. Such an extremely low cache-memory ratio (e.g., 77-MB
cache for 128-GB memory) results in a variety of issues, such as
cache contention, thrashing, inability to scale, etc.

In the following, we use an example to illustrate the impact of
CPU cache on memory-based key-value store performance.

2.2 In-memory Key-value Store
Our example case runs on a 6-core Intel Xeon E5-2630 system

with 15-MB L3 cache (LLC) and 64-GB memory. We use the pop-
ular YCSB benchmark [29] with the default configuration to gen-
erate the key-value datasets in different scales (64 MB to 60 GB).
Despite the distinct dataset sizes, the generated key-value items fol-
low the same Zipfian distribution. We also ensure that the memory
capacity is large enough to contain the dataset completely. We have
obtained several interesting findings in our experiments on Mem-
cached.

 0

 2

 4

 6

 8

 10

 0.125 0.25 0.5 1 2 4 8 16 32
 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

C
P

U
 C

a
c
h

e
 M

is
s
 R

a
ti
o

 (
%

)

Dataset Size (GB)

Throughput

Miss-ratio

Figure 1: Cache miss ratio and overall throughput on Memcached.

As shown in Figure 1, as the dataset size increases, Memcached
performance quickly drops, despite the fact that the datasets are all
completely held in memory. In particular, with a 64-MB dataset,
the throughput can reach 4.1 MOPS (million operations per sec-
ond). As the dataset size increases to 60 GB, the throughput drops
to 1.23 MOPS, which is a slow-down by a factor of 3.3.

To investigate the cause of this unusual and significant perfor-
mance drop, we use Linux’s perf tool [9] to collect hardware per-
formance counters [4] and calculate the LLC miss ratio. In Fig-
ure 1, the dotted line plots the LLC miss ratios on the Memcached
server. We can see a clear trend across the tests. As we increase the
dataset size, the LLC miss ratio increases from 1.2% to nearly 80%,
meaning that the cache is quickly approaching to being almost dis-
abled as the dataset grows. The sharp increase of cache miss ratio
explains the rapidly declining throughput—it is a result of ineffec-
tive caching.

This example demonstrates the strong impact of cache on the
performance of in-memory key-value stores, urging us to carefully
review the competence of the current key-value stores in perform-
ing and scaling on the existing hardware architecture.

2.3 Analysis and Discussions
Modern processors have multiple layers of on-chip caches. The

LLC is typically a set-associative cache with the largest capacity.
In a set-associative cache, the cache space is divided into multiple
(e.g., 2,048) Sets. Each set is further divided into multiple Cache
Lines. A cache line (typically 64 bytes) is the smallest unit for
caching. A block of memory is mapped by the hardware to a spe-
cific set, but can be stored in any cache line of the set. If the set is

filled up, a victim cache line is selected for eviction based on the
LRU order. Cache conflict happens when multiple memory blocks
are mapped to the same set and compete for available cache lines.

In-memory key-value store maintains its data and metadata struc-
tures all in memory. Both are subject to the caching effect. Sev-
eral unique issues in the current design of key-value stores unfortu-
nately undermine the efficacy of the CPU cache.
• Issue #1: Disproportional key and value sizes. Key-value stores
adopt a simple data model: a key serves as a search index and
uniquely identifies the data; the value simply holds the data con-
tent. Keys and values, by nature, are very different in many aspects,
such as size. Typically, a key is of only several bytes. For example,
some applications use an SHA-1 hash digest (20 bytes) or an MD5
hash digest (16 bytes) as a universally unique key. By contrast, a
value is often larger and varies from bytes to Megabytes. Such a
size difference has a strong implication for caching.

Consider a key of 16 bytes and a value of 512 bytes. When a
value needs to be loaded into cache, we have two possible options:
(1) evicting a 512-byte value, or (2) evicting 32 keys, each being
of 16 bytes. Though both serve the same purpose of freeing up
512-byte cache space, the caching effects are different. The latter
would result in a greater chance of cache misses in the future, since
loading the evicted keys back would potentially incur 32 rather than
only 1 memory access. Thus, mixing keys and values in cache
would raise cache contention and severe cache conflicts.
• Issue #2: Low cache utilization in hash indexing. Hash table is
a crucial data structure used for indexing data in key-value systems.
A standard hash table manages an array of buckets. Each bucket
maintains a pointer, either pointing to the next item in a linked list
or indicating the list end (NULL). When searching for the target
key, a bucket is read and the pointer is loaded to walk the list.

As the smallest unit for caching is a cache line (64 bytes), when
a pointer is read, the entire 64-byte memory block, which contains
the pointer and the pointers of adjacent buckets, has to be loaded as
a whole into cache, despite the fact that only 8 bytes (the pointer) of
the cache line is truly needed. Due to the random nature of hashing,
the keys are evenly distributed over the buckets, so the adjacent
buckets are mostly irrelevant, meaning that the rest 56 bytes of the
cache line would be barely of any use, resulting in a waste of 87.5%
cache space.
• Issue #3: Read amplification with key-values. When travers-
ing a hash table list to find the target key-value item, we need to
compare the item’s key with the target key. If a match is found, the
value is returned; otherwise we skip this item and follow the pointer
to check the next one on the list until finding the key or reaching
the end of the list.

When comparing the keys, the entire item, including both the
key and the value, is loaded into cache. If the item’s key does
not match the target key, which is the most likely-to-happen case,
the value part will be of no use, resulting in a Read Amplification
problem. Read amplification is harmful, because it demands more
memory bandwidth for transferring data over the bus and incurs ex-
tra latency. Loading irrelevant data also pollutes the cache, causing
useful data to be evicted prematurely.

All the above-said issues severely damage the cache’s efficacy.
More importantly, when a key-value data store scales up, these
problems would be even worse. We need a full reconsideration
on the structural design of key-value stores.

3. MECHANISM
To address the above-said cache challenges, we propose Cavast,

a cache optimization scheme for memory-based key-value stores.
Following the system design principle, we first introduce a software-
based cache partitioning mechanism that facilitates memory-based

1542

key-value stores to indirectly control the cache content, and then a
set of optimization policies that key-value stores can apply to lever-
age the mechanism for cache optimization.

Cache conflict happens when memory blocks are mapped to the
same sets in cache. A cache-unfriendly, less valuable object (e.g.,
large, cold data) can pollute the cache and prematurely evict more
valuable data. To address this issue, we divide the cache into multi-
ple virtual partitions and allow applications to explicitly map con-
flicting data objects to distinct cache partitions, mitigating the colli-
sion in cache. We adopt a software-only approach by exploiting the
existing mechanisms in Operating Systems (OS) to avoid disruptive
hardware changes.

• Page coloring. In modern processors, the LLC is physically in-
dexed. In order to maximize cache utilization, the hardware maps
contiguous physical memory addresses to cache sets in a sequen-
tial manner. Operating system, which is responsible for virtual-
to-physical mapping, adopts a mechanism, called Page Coloring
(a.k.a. cache coloring). It works as follows.

Physical memory pages, and the corresponding cache sets, are
assigned with different Colors, as shown in Figure 2. The OS tries
to map an application’s contiguous virtual memory pages to dis-
tinctly colored physical pages, which are correspondingly mapped
to different sets in cache. The purpose is to spread an application’s
virtual pages uniformly over the cache.

Page coloring logically divides the cache. Horizontally, the cache
sets with the same color form an independent partition of the cache.
Cache lines in different sets have no effect on each other (i.e., no
competition for space). If an application is aware of page colors,
placing in-memory objects to distinctly colored pages would result
in an effect that, the objects are mapped by the hardware to different
sets in the cache, thus eliminating cache conflicts. The challenge is
how to map a virtual page to a specific color.

•Gaining control on cache. As mentioned above, the cache colors
are associated with physical memory addresses. Applications, due
to the virtual memory abstraction, only see virtual addresses. We
need a way to walk around this abstraction limit.

Figure 3a shows a 64-bit cache address and a 4-KB physical
memory page address. A cache address consists of three parts, Set
Index, Line Offset, and Tag. Set index is used to determine which
set a particular cache line belongs to; Line offset is used to point
to the specific byte in the cache line; Tag is used to compare with
a target address. Since a cache line is fixed to 64 bytes, bit 0-5 are
used as line offset. The number of bits used for set index is deter-
mined by the number of sets, typically 6 to 11 bits. On a typical
Intel processor, bits 6-16 are used for indexing 2,048 sets in the
LLC. More details can be found in prior works [39, 52, 67].

Because an application cannot decide on physical page alloca-
tion (the OS decides the virtual-to-physical mapping), it only has
control on the lower 12 bits. This raises two issues. First, the ap-
plication cannot guarantee to which color a virtual page would be
mapped by the OS. Second, the application has very limited head-
room to move the objects around within a 4-KB range. We find two
possible solutions, as follows.

Option #1: Mapping with Hugepage. One solution is to enlarge the
page size. Operating systems on modern processors support using
a larger page size. For example, Linux on Intel processors supports
two large page sizes, 2 MB and 1 GB, called Hugepage [8], which
use the lower 21 or 30 bits as page offset, respectively. Hugepage
enables us to have the page offset cover the entire set index, leav-
ing all the bits for indexing into LLC (bits 6-16) visible to appli-
cations (see Figure 3b), which removes the need for page coloring.
Since an application can see all cache colors in a large page, it can

completely control the mapping of its memory objects to cache by
carefully arranging the data layout inside a large virtual page.

In Cavast, we logically divide a 2-MB memory page into mul-
tiple Columns. Each column is of 64 × N bytes, where N is the
number of sets of the LLC. Horizontally, we divide it into N / 64
Rows. Each slice is called a Tile, whose size is 4,096 bytes. Taking
a processor with 2,048 sets as an example, the column size would
be 128 KB. A 2-MB page is sliced into 16 columns, and each col-
umn is divided into 32 rows. Figure 4 illustrates the structure.

Since a column spans all cache sets, two tiles of the same row in
any columns share the same cache sets and may incur cache con-
flicts, while accessing two tiles in different rows would not incur
any cache conflict. In our Memcached-based prototype, we use
this approach for memory space management.

Option #2: Mapping with pre-allocated pages. Our second solu-
tion is to create a pool of pre-allocated pages with different page
colors. We use the standard 4-KB page size. A simple module,
get pgcolor, is implemented in the OS kernel to support ap-
plications to query the color of a virtual memory page via a new
system call. At the OS kernel level, the module translates a virtual
page to a physical page, and returns the page color information;
At the application level, we request the OS to allocate a number
of random pages, which are clustered into multiple Colored Page
Pools. Each pool contains pages of the same color. When an appli-
cation needs to assign an object with a specific color, we can simply
allocate the object in a page selected from the target color pool.

We note that the OS kernel does not guarantee to return a page
of a specific color. However, requesting a number of contiguous
memory pages would cover almost all colors due to the OS page
coloring mechanism. If a colored page pool exhausts its pages,
we can keep requesting the OS to allocate pages until we collect
enough amount of pages of the specific color. The pages of the
unwanted colors can be deallocated immediately.

This mechanism can simulate the column-row structure as de-
scribed in the hugepage approach—each 4KB page of a color is a
“tile”; the pages of the same color logically form a “row”; a group
of pages, each having a distinct color, logically forms a “column”.
Similarly, accessing two pages from the same row (i.e., the same
color) may incur cache conflicts, while accessing two pages from
different rows incurs no cache conflicts.

This approach is simple and satisfies our needs. Although it is
possible to modify the kernel code and directly request the OS to al-
locate a page of a specific color on demand [47, 48], it would pose
intrusive and significant changes to the current memory manage-
ment in the OS. Our solution only involves very minor changes and
introduces minimum impact. In our Redis-based prototype, which
allocates memory in small pieces individually, we use this approach
to achieve fine-grained control on cache colors.

4. POLICY
Memory-based key-value store maintains a large amount of data

and metadata in memory. Leveraging the Cavast mechanisms, we
can manipulate the data layout in memory to achieve the desired
caching effect. In this section, we discuss several general policies
for cache optimizations in memory-based key-value stores.

4.1 Handling Hot and Cold Key-value Data
Key-value workloads are known for their highly skewed access

patterns. Disregarding the locality difference and randomly placing
data in cache would result in conflicts. Our first optimization policy
is to avoid such conflicts and retain the hot data in cache.

In processor’s cache, if a cache set is filled up, the LRU re-
placement evicts the relatively cold cache line. Data placement in
cache can result in drastically different effects. If hot key-values are

1543

...Color #0

...

...

...

...

...Color #1 ...

...

...

...Color #31

...

...

...

...
...

...

...

...

...

16-way set associate LLC

Figure 2: An illustration of Last Level Cache and
page coloring. Each box represents a 64B cache line.

Page offset

11 012

Set index

5 0616

Line offset

63

Page number

1763

Tag LLC address

4KB page address

(a) LLC vs. 4-KB memory page.

Page offset

02021

Set index

5 0616

Line offset

63

1763

Tag

Page number

LLC address

2MB page address

(b) LLC vs. 2-MB memory page.
Figure 3: Address layout in LLC and memory page.

Set 0, 64B

Row #0

...

Column 0 Column 1 Column 2 Column 15

Set 1, 64B

Set 63, 64B

Set 64, 64B

Row #1

...

Set 65, 64B

Set 127, 64B

Set 0, 64B

...

Set 1, 64B

Set 63, 64B

...

Set 0, 64B

...

Set 1, 64B

Set 63, 64B

...

Set 0, 64B

...

Set 1, 64B

Set 63, 64B

...

...

...

Set 1984, 64B

Row #31

...

Set 1985, 64B

Set 2047, 64B

...

...

......

...

...

...

...

Figure 4: An illustration of column-row division.

cached together, a relatively less hotter item will be evicted, even
though there might exist much colder items in other sets. Thus, to
maximize the cache’s efficacy, we desire to have a mixed combina-
tion of both hot and cold items in a “row” (see Figure 4). In other
words, we desire to see that each row is filled up with both cold
and hot data, which compete for the space within the row, and upon
eviction, the victims would be the cold ones.

To accomplish such an effect, we first need to know the tem-
perature (temporal locality) of the key-value items. Memcached
maintains an LRU list per slab class to track each key-value item’s
relatively locality, while Redis maintains a pool of weak-locality
(cold) key-values for eviction by sampling the dataset periodically.
Leveraging these existing facilities, we can differentiate cold and
hot data, and spread the data with similar locality across the rows.
The process of relocating data is called Re-partitioning. In Sec-
tion 6 and 7, we will discuss particular implementations in our
Memcached and Redis prototypes.

4.2 Separating Key and Value Data
In current memory-based key-value stores, keys and values are

placed together in memory (e.g., the item struct in Memcached).
As so, keys and values are also loaded together into the cache, even
if only the keys are needed (upon a mismatch). This is a significant
waste of the limited cache space. Worse, since values are typically
larger than keys, loading an unneeded value would be at the poten-
tial cost of prematurely evicting many small-size keys.

In Cavast, we restructure the in-memory layout of keys and val-
ues by placing them in separate rows. The effect we desire to
achieve is that, in the cache, the keys are mapped to the same group
of cache sets, while the values are mapped to a different group of
cache sets. Such an arrangement brings two benefits. First, it pro-
tects relatively small keys from being polluted by large, unneeded
values (so large values would evict each other). Second, since keys
are grouped together, an access to a key would load the entire cache
line into the cache, which in effect prefetches multiple keys in one
access and further improves performance.

A side effect is that if the target key is found (a match), an ex-
tra memory access is needed to load the value data, which may
increase the latency for individual requests. We have two meth-
ods to mitigate this effect. (1) Parallel access. We can maintain
two pointers (one for the key and the other for the value) for each
item, and use two threads to access them in parallel. If a match
is found, the value is immediately returned; otherwise, the value
is simply discarded. Since the two parallel memory accesses are
overlapped, there is no extra delay for loading the value, but its
limitation is the need for a second pointer to the value and the po-
tential waste of bandwidth. (2) Concurrent access. We maintain
two separate queues for key and value requests, each being served
by dedicated threads. An incoming request is first put into the key
queue, where the worker threads search the hash table for the tar-
get key. A pointer to the value is stored alongside the key, which
avoids occupying the hash bucket space and making the hash table
more compact. If a match is found, a request of retrieving the value
is placed to the value queue, where the worker thread can follow
the pointer to fetch and return the target value. Thus no value fetch

happens until a match is found. Although it does not improve the
latency for each individual request, using separate queues signif-
icantly improves throughput, which in turn decreases the average
request latency. We have studied both approaches and find that the
latter brings more benefits (see Section 6.2).

4.3 Cache-friendly Hash Indexing
Hash indexing structure is a crucial component in memory-based

key-value stores. It is responsible for quickly locating the position
of the key-value item in memory. Traditional hash table structure
is very simple: An array of buckets divides the hash space into
multiple segments. Each bucket maintains a linked list of key-value
items. For a given key, it is first hashed into a bucket, and then
traverses the linked list, following the pointers to locate the target
key and the value. An example is illustrated in Figure 5a.

Such a classic hash table structure is simple and widely used
but is inefficient for caching. First, traversing the linked list incurs
a chain of small, random memory reads. Though each read only
accesses a small amount of data, a complete cache line has to be
loaded into the cache, causing read amplification. Second, since
each pointer does not contain information about the key, an extra
memory read is needed to load the key for confirmation. Third,
when the hash table needs to be expanded, the entire structure has
to be reconstructed, completely voiding the cache content.

We have developed three measures to optimize cache efficiency
particularly for the hash indexing structure, described as follows.
• Cacheline-based hash bucket. Traditional hash table uses a set
of small buckets, each containing only one 64-bit pointer as a list
head pointing to the first key-value item in the list. A 64-byte cache
line contains 8 buckets, corresponding to 8 linked lists.

In order to remove read amplification, we expand a hash bucket
to contain a Pointer Set, which occupies a full cache line (64 bytes).
Each bucket stores an array of up to eight 64-bit pointers, each
pointing to a key-value item. A newly inserted pointer is stored in
an empty slot of the 64-byte bucket. When a bucket is filled up,
similar to the traditional approach, the hash table can be expanded
by doubling the number of hash buckets. Later in this section, we
will discuss a more efficient hash table expansion method.

The benefit is clear. As illustrated in Figure 5, the traditional
hash table structure demands a sequence of memory accesses to
traverse the list. Each access loads in a cache line but only uses
a small amount of data. In our design, a cluster of 8 pointers can
be loaded into the cache with only one single memory read, which
minimizes the read amplification problem.
• Tagging pointers. In the traditional hash indexing structure, a
pointer only specifies the memory location of the corresponding
key-value item. An extra memory access is needed to load the key-
value item for the key comparison. This incurs several issues. First,
an extra memory read is needed, slowing down the search process.
Second, since the key-value item and the pointer are stored sep-
arately, two cache lines are needed, polluting the cache. Third,
finding a mismatch is a common case, meaning that most such ad-
ditional costs are unnecessary.

To solve the above-said issues, we attach a Tag with each pointer
to screen out the most unlikely keys before accessing the complete

1544

8
B

-B
u

c
k
e

t

6
4

B
-B

u
c
k
e

t

8
B

-S
lo

t

1
0

B
-S

lo
t

6
4

B
-B

u
c
k
e

t

*next ...*prev data

... ...

Traditional

buckets

Bucket with

pointer set

Expanded bucket with

pointer set and tag

Bucket

Key-value item

Tag

Expansion pointers

(a) (b) (c)

Figure 5: Hash table optimizations.

key-value item. We calculate a 16-bit hash digest as a tag summa-
rizing the key (using Murmur3 hash [11]). The 2-byte tag is stored
together with the 8-byte pointer as a slot of the pointer set in the
bucket. Each bucket thus contains 6 slots in total, leaving 4 bytes
for hash table expansion (see below). Upon a query, we first lo-
cate the hash bucket using Jenkins hash [7], then load the entire
bucket in only one memory read and examine the pointers one by
one (in cache). Only when we find the tag associated with a pointer
matches the target key, we load the complete key-value item for a
full comparison. This optimization reduces seven memory accesses
to at most two memory accesses, and correspondingly, only needs
two rather than seven cache lines. Prior works have used a similar
hash-based method for fingerprinting data [20, 26, 65].
• Localized hash table expansion. The efficacy of a hash table
decreases as the number of items held in a bucket increases (i.e., a
bucket’s list grows too long). To address this issue, the hash table
needs to be expanded. Memcached, for example, expands its hash
table by doubling the number of buckets, when the item-to-bucket
ratio (a.k.a. load factor or fill ratio) exceeds 1.5.

Such an expansion process has two strong negative effects. First,
the whole hash table needs to be reconstructed and the pointers
need to be moved across buckets, which in effect invalidates the
cached content completely, causing a disruptive performance drop.
Second, the expansion happens over the entire hash table, including
those underloaded buckets, which would create more holes (empty
buckets) in memory, leaving hot buckets scattered in a sparse space
and further reducing the efficiency of cache utilization.

To preserve the cache content and to keep the hash table struc-
ture stable, in Cavast, we adopt a lazy expansion approach, called
Localized Expansion, to fully utilizing the spatial locality in the
hash space. The key idea is to perform on-demand, small-scale ex-
pansion by only expanding the buckets that are heavily overloaded.
When a 64-byte bucket is filled up, a set of sub-buckets (4 in our
prototype) is created and linked to the original bucket (using the
leftover 4 bytes for four pointers, each pointing to a sub-bucket).
We support up to 255 sub-buckets in total before a global expan-
sion is conducted. As the memory space for the 255 sub-buckets is
pre-allocated, a 1-byte sub-bucket pointer is sufficient as an index
into the array of sub-buckets. We reserve the sub-bucket pointer
value “zero” as an expansion indicator. If all four pointers are zero,
it means that the bucket is not expanded. Figure 5c illustrates this
expansion structure.

When an item needs to be added into the expanded bucket, the
least significant 2 bits of its tag are used as an index to determine
the corresponding sub-bucket for insertion. Note that a sub-bucket
could continue to expand in this manner, which eventually forms
a tree of sub-buckets. Upon a query, we first search the bucket,
if any non-zero sub-bucket pointer value is found, it means this
bucket is expanded. We continue to look up the key in the linked
sub-buckets. The tag associated with each pointer accelerates the
searching. This process repeats until the list of buckets is traversed
completely. An alternative is to only use one pointer, creating a list
of sub-buckets. In Section 6, we will compare the two structures.

In essence, this bucket structure converts a fine-grained (item
level) linked list structure into a tree structure with a grainier unit

(64-byte pointer set bucket). This brings several important benefits.
First, a bucket fits into a cache line perfectly, which minimizes the
read amplification problem, since all the pointers of the bucket need
to be examined anyway. Second, the linked list structure is con-
densed into a block of contiguous memory, which removes point
chasing and the involved small, random memory accesses in differ-
ent locations, eliminating the cache pollution problem. Third, when
a bucket is overloaded, the changes can be confined in a subset of
buckets, which protects the content in cache and stabilizes the hash
table structure as well as performance. Forth, the tree structure di-
vides the items, and together with the tags, accelerates the search.
Finally, since the expansion only happens on overloaded buckets,
we can avoid expanding those buckets that are largely empty or
partially full, which avoids creating a sparse hash table with many
holes in memory and preserves the spatial locality.

4.4 Cache-efficient Garbage Collection
In memory-based key-value stores, each key-value item is of-

ten associated with an Expiration Time to indicate its lifetime. A
Garbage Collection (GC) process runs in the background and pe-
riodically scans the key-value items to recycle the memory space
occupied by the expired items. For example, Memcached runs a
service thread, called LRU Crawler, which constantly scans the
LRU lists in the background. Redis applies a different policy. It
attempts to keep the ratio of expired key-value items under 25%.
In Redis, a service thread scans 200 items every second to remove
the expired ones. This process does not cease running until less
than 25% of the scanned items are found expired.

Although the GC process improves the memory space utiliza-
tion, it foils the caching effort, since each scanned item has to be
loaded into cache for validating its timestamp and then dropped.
Such a one-time scan pattern is the worst case for caching, which
pollutes the entire cache and evicts useful data out of cache [40].
We leverage the re-partitioning process (Section 4.1) to take a free
ride for recycling the space. During re-partitioning, if any item
is found expired, we simply skip it and reclaim its occupied space.
This recycling is sufficient in normal conditions. The heavy-handed
GC is only activated when the system is under severe memory pres-
sure (e.g., lower than 5% in our prototype).

5. EXPERIMENTAL SETUP
We run our key-value store server on a Dell T620 server equipped

with a 6-core Intel Xeon E5-2630 2.3 GHz processor with 15-MB
L3 cache (LLC) and 64-GB 1600MHz DDR3 DRAM memory.
We use two Lenovo TS440 ThinkServers as clients, each being
equipped with a 4-core Intel Xeon E3-1245 3.4 GHz processor,
16-GB memory, and a 7,200 RPM 1-TB Seagate disk drive. Each
client server runs 32 clients to generate requests to the key-value
server. For sufficient network bandwidth, we configure a 20-Gbps
network on the key-value server by bonding two 10-Gbps Ethernet
ports together. Each client uses a 10-Gbps Ethernet connection to
the server. We use Ubuntu 16.04 with Linux kernel 4.15 and Ext4
file system. For the hugepage setup, we configure the page size to
2 MB during the Linux boot time.

To test our design with faithful workloads, we synthesize three
data sets, namely APP, ETC, and SYS, with three different key
and value size distributions following a study of Facebook work-
loads [24]. Except that the value size in ETC follows a generalized
Pareto distribution [3], all the other item sizes follow a generalized
extreme value distribution [2]. Both distributions are found popular
in Facebook workloads. Figure 6a shows the size distributions of
keys and values in our datasets. We can see that each dataset has
unique characteristics. For example, in APP, most of the keys are of
about 31 bytes, and around 80% of the values are about 270 bytes.

1545

SYS shows a similar trend but with more scattered sizes and a larger
gap between keys and values. Most of the keys in ETC are from 20
to 50 bytes, this is in line with APP and SYS. However, unlike the
other datasets, the value sizes in ETC are much more evenly dis-
tributed. We see more small values (the items with a value size of
11 byte or smaller account for about 40% of the entire dataset). The
value sizes spread more evenly from 12 bytes to around 1 Kilobyte.
Each dataset accounts for about 50 GB and is stored in memory in
complete during our tests.

We use the Yahoo! Cloud Serving Benchmark (YCSB) [29] to
generate workloads with two popular access patterns, Zipfian and
Hotspot, to emulate realistic workloads [25, 30], and collect all the
traces. Figure 6b shows the access distributions of the workloads.
We find that Zipfian is relatively more skewed, a small portion of
the keys serves the majority of requests. Whereas in Hotspot, the
most popular 10% keys have similar hotness, leaving the rest 90%
of keys to be similarly cold.

We use a homegrown tool, called keystone, to replay the work-
load traces against the key-value data stores. This tool allows us to
precisely repeat a workload with any specified number of clients.
We use the Linux’s perf tool [9] to collect the hardware perfor-
mance counters and calculate the LLC hit ratio.

6. CASE STUDY 1: MEMCACHED
Memcached is a widely deployed memory-based key-value store

in industry. In Memcached, the basic memory management unit
is called a Slab, which is a chunk of contiguous memory. Each
slab is further divided into multiple Slots of a fixed size. Slabs
with the same slot size are logically grouped into a Slab Class.
Upon inserting a key-value item, a slab from the slab class with the
smallest slot size that can accommodate the item is selected.

The current design of Memcached is sub-optimal for cache effi-
ciency. Leveraging the Cavast mechanism, we enhance several key
components in Memcached for cache optimizations.

6.1 Optimizations
• Slab allocation. Two mechanisms are provided in Cavast to en-
able application’s indirect control on the cache, (1) statically using
large-size hugepages, and (2) dynamically requesting pages with
different colors. A key difference between the two methods is that,
the former allows us to directly control a block of contiguous mem-
ory space (within a 2-MB page), which covers the range of all cache
colors, while the latter gives us a fine-grained control on smaller 4-
KB pages with distinct colors.

In Memcached, the slab system allocates memory in large chunks
and then divides into fixed-size slots. Thus it suits the former
method better. In our prototype, we allocate a 2-MB slab, which
is a memory page. Since all cache colors are exposed to the appli-
cation, we can manipulate the data layout within a slab to control
their corresponding mapping locations in the cache.
• Re-partitioning hot and cold data. Memcached maintains an
LRU list for each slab class. The hot (MRU) items are at the list
head, and the cold (LRU) items are at the list tail. A limitation is
that the LRU list could grow too long, causing several issues. First,
list walking involves many memory accesses, increasing the chance
of cache pollution. Second, the data relocation process would in-
volve a large number of items, which are of different sizes. Third,
the benefit of multi-threading is weakened due to the lock con-
tention. Thus we split the LRU list into multiple smaller ones, each
being attached to a slab (i.e., a 2-MB memory page).

For cache optimization, our goal is to lay out the hot and cold
data evenly across all cache sets (so hot data would not evict each
other). We use column as an allocation unit to contain a set of
key-value items with similar locality. As the size of a column is

128 KB, a 2-MB Memcached slab can be divided into 16 physical
partitions, each of which is a column. Accordingly, we divide the
slab’s LRU list into 16 logical zones, from hot to cold.

Our goal is to place the items of the same logical zone in the
LRU list together in a physical partition in the slab. In this way, we
can ensure that each cache set receives a roughly equal mix of hot
and cold items. However, achieving this goal is non-trivial.

A critical challenge is that the position of key-value items on the
LRU list dynamically changes. Upon an access, the item moves
to the MRU position, pushing the other items one position down
the list. It is unrealistic to update every item’s physical location to
accurately and immediately reflect its logical position in the LRU
list, since it would raise excessive overhead.

We apply several rules to mitigate this problem. (1) No intra-
partition movement. A key-value item does not change its phys-
ical location, unless it moves into a different zone on the LRU
list, which indicates a significant change in locality. (2) Lazy re-
partitioning. The cross-partition data movements are batched up
to update the physical data layout periodically. (3) Point-to-point
movement. We only move an item to a new position by swapping it
with another item in the target partition to avoid the chaining effect
(i.e., moving item A causes the movement of item B, which causes
the movement of item C, and so on).

Algorithm 1 : Re-partitioning Process
Plogical: Logical LRU partition;
Pi(a): Current physical partition of candidate a (Partition ID: i);
Pt(a): Target physical partition of candidate a (Partition ID: t);
for every other M requests do

Check each candidate a in Plogical: bottom→ top;
if Pi(a) 6= Pt(a) then

Check each candidate b in Pt(a);
if Pt(b) = Pi(a) then

Select b as the victim;
Swap a and b in physical partitions;
goto done;

end
Find the LRU item c in Pi−1(a) as the victim;
Swap a and c in physical partitions;
done;

end
end

Algorithm 1 shows the re-partitioning process. It works as fol-
lows. Upon a change to the LRU list, for the affected items that
move into a different LRU zone, we simply mark them as candi-
dates for re-partitioning without further actions. Every M requests,
we start from the bottom LRU zone. Assume an item, called an
initiator, in partition Pi moves up to a (hotter) zone, which is cor-
responding to partition Pt, where t < i. We first try to find a victim
in the target partition Pt that needs to move down to the initiator’s
current partition Pi. If found, we swap the victim and the initia-
tor; Otherwise, we choose the LRU item in partition Pi−1, which
is above the initiator’s current partition, as the victim for swapping.
This process repeats until all marked candidates are scanned. Fig-
ure 7 gives an illustration of before and after data re-partitioning.

Our per-slab LRU list design brings several benefits in this pro-
cess. First, since the sizes of the slots in a slab are identical, swap-
ping two slots in a slab does not need to consider the size mismatch
problem. Second, all swapping operations are confined in a slab
(i.e., a page), on which the application has full control. Third, the
complexity of searching and identifying the initiator and victim is
reduced and the search scope is limited in one slab.
• Separating key and value data. Keys and values have very dis-
tinct properties. Memcached stores both key and value together in

1546

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

D
is

tr
ib

u
ti
o
n

Size (bytes)

APP-key
SYS-key
ETC-key

APP-value
SYS-value
ETC-value

(a) Size distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
o
rt

io
n
 o

f
R

e
q
u
e
s
ts

Portion of Keys

Zipfian
Hotspot

(b) Access distribution
Figure 6: Dataset and workload characterizations.

...
...

Column 0

...
...

...
...

...
...

...
...

...
...

...

...

...

Column 15Column 1

...
...

...
...

...
...

...
...

...
...

...
...

...

...

...

ConflictNo Conflict

Column 0 Column 1 Column 15

Figure 7: Data re-partitioning.

Keys

Values

Key

Value

Cache Line

Column Column

Thread 0

Thread 1

Figure 8: Key-value separation.

a slab slot as an item struct. As the key-value items are grouped
in one slot after another sequentially, the keys and the values are
mixed and interleavingly stored in a slab, raising the previously
discussed cache pollution and read amplification problems.

To optimize the cache efficiency, we divide a slab into two sep-
arate regions, one for keys and the other for values. Figure 8 il-
lustrates a 2-MB slab, each item of which has a 16-byte key and a
240-byte value. Each box represents a 64-byte cache line. The blue
boxes represent the space occupied by keys, and the grey boxes rep-
resent the space taken by values. In the original design (on the left
side), each item’s key and value are stored together in memory and
referenced with a single address. In Cavast (on the right side), all
the keys are concentrated in a contiguous range of memory, being
separated from the values. To connect a key with its corresponding
value, we associate with each key a 3-byte pointer, pointing to the
offset of the corresponding value within the slab. The hash index
points to the key, from which we can locate the value.

A challenge is how to determine the sizes of the two regions
in a slab. One simple solution is to assume certain static key-to-
value size ratio based on workload analysis. However, workloads
may change. This approach could incur substantial space waste, if
a region cannot fully use the statically allocated space. We adopt
an alternative solution, called Head-to-head Allocation. It works
as follows. Rather than statically segmenting the slab space, we
dynamically determine the space by allocating the key space from
the top down (downwards), and allocating the value space from the
bottom up (upwards). The two regions grow into each other until
there is not enough space in between. If a head-to-head collision is
to happen, a new slab should be allocated.

6.2 Performance Evaluations
We have implemented a prototype based on Memcached 1.5.12

by adding about 2,200 lines of C code. We configure Memcached
and Cavast to use 6 worker threads on our 6-core test bed. The
workloads are as described in Section 5.
• Hot/cold data placement policies. The hot and cold data place-
ment in memory has a significant impact on the cache performance.
To show an ideal case as a reference baseline, we first run a static
re-partitioning test with three data placement policies, namely ran-
dom, row-partition, and column-partition, which place the hot and
cold items randomly, separately in different rows, and separately in
different columns, respectively.

In this micro-benchmark, we first build the LRU lists offline us-
ing the traces. Based on the LRU lists, we can determine the tem-
peratures of the key-value items and decide the data placement ac-
cordingly. Figure 9 shows the cache hit ratio and throughput with
the Zipfian workloads. Cavast-Random, Cavast-Row, and Cavast-
Column denote the three data placement policies, respectively.

We find the stock Memcached performs close to Cavast-Random.
Both have a low hit ratio (around 20%) and a similar throughput
(around 1 MOPS). It means that the stock Memcached’s placement
policy is no better than a random decision, completely disregard-
ing the caching effect. Interestingly, separating hot and cold data
in rows (Cavast-Row) performs even worse than random place-
ment. This vividly illustrates the effect that hot key-value items

are mapped to the same cache sets and evict each other, severely
impairing the cache’s efficacy. It also shows that the Cavast mech-
anisms enable us to control the cache, for good or bad effects.
By contrast, Cavast-Column exploits the locality information and
can avoid premature evictions of hot data, achieving a significantly
higher hit ratio (64.3%) and throughput (2.865 MOPS).
• Dynamic data re-partitioning. In practical deployment, since
the LRU list dynamically changes, key-value items need to move
across partitions (re-partitioned). In our prototype, re-partitioning
happens every 1,000 accesses (SET or GET) to a slab. In this ex-
periment, we show the effect of dynamic data re-partitioning.

When the dataset is first loaded, all the items are randomly stored
in memory. Therefore, Cavast undergoes two stages when serving
the GET requests: (1) Warm-up stage. Initially, the key-value store
needs to restructure the data layout in memory and relocate the key-
value data according to the locality information. (2) Stable stage.
After the initial warm up, the server continues to monitor changes
in locality and make relatively small adjustments dynamically dur-
ing run time. Naturally, we expect to see sub-optimal performance
during the first stage. To obtain a complete picture, we show the
performance in both stages. We identify the two stages by monitor-
ing the average throughput of every 1,000 requests. If only minimal
change (less than 5% difference for continuous 10,000 requests) is
observed, we consider the system has entered the stable stage.

We first load the entire dataset into the Memcached server with
random data placement policy, and then generate 500 million GET
requests. Figure 10 shows the cache hit ratio and throughput for the
stock Memcached and Cavast with Zipfian distributions. Cavast-
WarmUp and Cavast-Stable denote the Cavast performance during
the initial warm-up stage and the stable stage, respectively. We use
the column-partition data placement policy for re-partitioning.

Our experimental results show that Cavast reorganizes the orig-
inally randomly placed data layout to a stable, column-based data
placement status within 10 millions requests. It only takes 5-7 sec-
onds to re-partition the entire 50-GB dataset, being warmed up for
optimal cache efficiency. We also find that once reaching the stable
status, our dynamic re-partitioning mechanism provides compara-
ble performance to that in the previous static test, meaning that dy-
namic relocation involves minimal overhead. For example, Cavast-
Stable has a hit ratio of 62.6%, 37.3%, and 15.2% for APP, SYS,
and ETC, respectively, where the ideal-case results with static re-
partitioning are 64.3%, 40.8%, and 15.5% (see Figure 9) .
• Key-value separation and multi-queue. Separating keys and
values can effectively mitigate the cache pollution and read am-
plification problems. In this set of experiments we only test on the
key-value separation policy and keep other components unchanged.

In Section 4.2, we have discussed two approaches, parallel and
concurrent access, to offset the negative effect caused by the extra
memory access. We have evaluated both methods using APP with
Zipfian distribution. We find that the 99th percentile latency for the
stock Memcached is 2.1 ms. Our parallel access method achieves
the same result. For concurrent access method, the tail latency is
higher (2.4 ms), because for each request, the value is always read
after the key. However, due to the throughput increase, when us-

1547

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Memcached
Cavast-Random

Cavast-Row
Cavast-Column

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Memcached
Cavast-Random

Cavast-Row
Cavast-Column

(b) Throughput
Figure 9: Memcached - Cache data placement policies (Zipfian).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Memcached
Cavast-WarmUp

Cavast-Stable

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Memcached
Cavast-WarmUp

Cavast-Stable

(b) Throughput
Figure 10: Memcached - Dynamic data re-partitioning (Zipfian).

 0

 20

 40

 60

 80

 100

Memcached

Cavast-1
Q

Cavast-2
Q-1:5

Cavast-2
Q-2:4

Cavast-2
Q-3:3C

P
U

 C
a

c
h

e
 H

it
 R

a
ti
o

 (
%

) APP SYS ETC

(a) Hit Ratio

 0

 1

 2

 3

 4

 5

Memcached

Cavast-1
Q

Cavast-2
Q-1:5

Cavast-2
Q-2:4

Cavast-2
Q-3:3

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
) APP SYS ETC

(b) Throughput
Figure 11: Memcached - Key-value separation with queues (Zipfian).

 0

 5

 10

 15

 20

 25

100:0 75:25 50:50 25:75 0:100A
v
g
 C

a
c
h
e
 L

in
e
 F

e
tc

h
e
s
/R

e
q
u
e
s
t

SET:GET

Memcached Cavast-Link Cavast-Tree

(a) Cache line Fetches

 0

 1

 2

 3

 4

 5

100:0 75:25 50:50 25:75 0:100

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

SET:GET

Memcached Cavast-Link Cavast-Tree

(b) Throughput
Figure 12: Memcached - Hash table restructuring (Zipfian).

ing concurrent access, the average latency actually decreases from
1.9 ms to 1.6 ms. As a tradeoff for space, we deem a slight (14.3%)
increase in tail latency is acceptable. Thus we choose the concur-
rent access and further study its parallelization effect.

Figure 11 shows the results. In particular, Cavast-1Q shows sep-
arating key and value data without concurrency, meaning that the
key and the value of an item are retrieved using one thread in a se-
quential manner, despite being stored separately. Cavast-2Q with
suffix denotes the case using the multi-queue design with a differ-
ent number of threads for the key and value queues. For instance,
Cavast-2Q-1:5 means that 1 thread is used for the key queue and 5
threads for the value queue, making the total of 6 worker threads.

All the Cavast cases show a higher hit ratio than the stock Mem-
cached. Since the keys and values are separated, it avoids evicting
each other from the cache. Compared to the stock Memcached,
Cavast increases the hit ratio by up to 16.8 percentage points (p.p.).
Another interesting finding is that although Cavast with one queue
or two queues have a similar cache hit ratio, they achieve very dif-
ferent throughputs. In our test, configuring 2 threads for the key
queue and 4 threads for the value queue yields the most signifi-
cant gain. Comparing Cavast 2Q-2:4 to Cavast-1Q, it results in a
56.4%–72.8% higher throughput. Our tests show that with key and
value being separately stored, and with a reasonable resource al-
location policy, Cavast is able to achieve much better performance
than the stock Memcached.
• Cache-friendly hash indexing. The hash indexing structure im-
pacts cache’s efficacy. In this micro-benchmark test, we focus on
studying the effectiveness of our new hash indexing structure, leav-
ing other components unchanged. We design a set of tests using
the SYS dataset (most keys are around 30 bytes and most values are
around 500 bytes) with different SET/GET ratios. The read-only
tests (ratio of 0:100) are performed after filling up the entire key-
value store; the other tests are performed starting from an empty
data store. For Memcached, we use the default 8-byte bucket size,
which only contains the h next pointer. For Cavast, we use the
64-byte, cache line based hash bucket (see Section 4.3) with local-
ized expansion. We use the default load factor 1.5 as the threshold
for expansion in both Memcached and Cavast. If the global load
factor reaches 1.5, the hash table size is doubled.

In order to quantitatively measure how well Cavast mitigates
read amplification in hash table, we calculate the average number
of Cache Line Fetches (CLF) for each key-value request. In partic-
ular, each access to a hash table bucket accounts for one CLF; each
key-value item access accounts for d item size

cacheline size
e CLFs. For ex-

ample, a key-value item of 300 bytes needs 5 fetches of 64-byte
cache lines. Figure 12 shows the average numbers of CLFs per
request and the throughputs for 500 million requests.

For the stock Memcached, the average number of CLFs needed
for one key-value item is about 21.6, which translates into 1,382
bytes, much larger (by a factor of 2.6) than the actual average key-
value item size, 530 bytes. The result vividly illustrates our analysis
of the read amplification problem caused by the inefficient design
of the current hash table structure. By contrast, the degree of read
amplification with Cavast is much lower. The average number of
CLFs is 11.3 for Cavast-Link and 10.2 for Cavast-Tree, which is
only half of that for the stock Memcached.

Comparing the two expansion structures, expanding a bucket us-
ing four sub-bucket pointers, which forms a tree of sub-buckets as
described in Section 4.3, is more efficient than expanding using
only one pointer, which forms a linked list of sub-buckets. It is be-
cause the tree structure splits the items into four sub-buckets. Only
one sub-bucket needs to be searched, and less data need to be read
from memory. Thus Cavast-Tree shows a 36%–93% throughput
improvement over the stock Memcached, and a 8%–29% through-
put increase over the linked list structure (Cavast-Link).
• Put it all together. In this test set, we enable and configure each
component of Cavast with the optimal setting found in the previous
tests. Namely, we use the column-partition data placement policy,
concurrent accesses with two queues for serving the requests with
2 threads for keys and 4 threads for values, and a tree structure for
the localized hash table expansion.

Figure 13-14 show the results. The performance difference is
massive. Cavast improves the LLC hit ratio by up to 59.8 p.p.,
as compared to stock Memcached. The increased cache hit ratio
in turn boosts the throughput by a factor of 3.9. In the best case
scenario, Cavast shows a cache hit ratio of up to 81.3% for a 50-
GB dataset with only 15-MB on-chip cache. It should be noted that
such results are achieved without any hardware change and with
an extremely small cache-to-memory ratio (only 0.023%). All the
performance gains come solely from software optimizations.

We have also tested Cavast-GC, which is configured with all the
above settings and the optimized GC (see Section 6.1). In the opti-
mized GC, we turn off the background GC function in Memcached
and recycle the expired items during data re-partitioning. Our opti-
mization reduces the background GC’s interference to cache, reach-
ing a hit ratio of up to 82.7% and further improving the throughput
by a factor of up to 4.2.
• Worst-case study. We have also conducted a worst case study,
where the workload has a very weak locality, in which our opti-
mizations could achieve little or no benefit. We create a set of
workloads with uniform distribution. Figure 15 shows the cache
hit ratio and throughput. Despite the weak locality, Cavast still
tries to warm up the system by re-partitioning the key-value data
in memory, which does not improve the cache hit ratio and incurs

1548

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Memcached Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Memcached Cavast Cavast-GC

(b) Throughput
Figure 13: Memcached - Put it all together (Zipfian).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Memcached Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYC ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Memcached Cavast Cavast-GC

(b) Throughput
Figure 14: Memcached - Put it all together (Hotspot).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Memcached Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYC ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Memcached Cavast Cavast-GC

(b) Throughput
Figure 15: Memcached - Worst case study (Uniform).

overhead. However, due to the lazy re-partitioning, the system is
only slightly impacted by the extra overhead. In fact, both Cavast
and Cavast-GC show nearly identical performance as the baseline
stock Memcached (performance difference within 2%).

7. CASE STUDY 2: REDIS
As another popular key-value store, Redis is different from Mem-

cached in several aspects. First, unlike Memcached, which uses a
multi-threaded design, Redis is single-threaded. Second, Redis is
not slab based. It uses zmalloc/zfree for memory manage-
ment. Third, Redis does not implement an LRU list for eviction.
Instead, it maintains a pool of victim items via sampling.

Leveraging the Cavast mechanism, Redis can be optimized for
cache efficiency. In this section, due to space constraint, we mainly
focus on the aspects that are structurally different from Memcached.
Other parts, such as hash indexing and GC optimizations, are simi-
lar to Memcached as we described in the prior section.

7.1 Optimizations
•Memory space allocation. Redis does not have a slab structure.
It maintains a large chunk of pre-allocated memory space. The
allocation requests for key-value items are served in their arrival
order, disregarding other factors, such as size. As so, the key-value
items are mixed and randomly placed at runtime.

To avoid intrusive modifications, we choose the approach of pre-
allocating colored pages. We group the pre-allocated pages into
32 colors, each representing a “row” in the cache. A group of
pages, each from an individual color, logically forms a “column”.
If needed, we can further group multiple colors together to a Color
Set to divide the cache space at a coarser granularity. In this way,
we can realize cache partitioning similar to that in Memcached.
• Re-partitioning hot and cold data. Redis also evicts key-value
data based on their locality, but unlike Memcached, it does not im-
plement an LRU list structure. It is partially because Redis does
not partition memory space into slabs. Maintaining a complete
LRU list would raise excessive overhead. To identify the victims
for eviction, Redis associates with each item an LRU clock, which
records the UNIX time when being accessed. In the background, a
service thread periodically (10 times per second) samples a set of
randomly picked items. The item with the smallest LRU clock is
regarded as a cold item (victim). In default, the sample size is 5
items (i.e., five items are scanned each time). A pool of 16 victim
items is maintained and ready for eviction.

We take advantage of this victim-identifying process to construct
a “virtual” LRU list. Each time when the thread scans items, we
collect the scanned items and sort them in the order of their LRU
clocks. According to their access timestamps, we can form an LRU
list of items, which account for 2 MB in total. Similar to our Mem-
cached prototype, we divide the list into multiple logical zones,

and then apply the re-partitioning algorithm to relocate the key-
value items according to their temporal locality. In our prototype,
we divide the items into 16 zones, each corresponding to a column
partition.
• Separating key and value data. Redis stores keys and values
in a different way than in Memcached. In Memcached, the slab
system slices each 2-MB slab into fixed-size slots. Redis stores
key-value items of different sizes in a mixed way. Thus, separating
keys and values in the same page would be less suitable for Redis.

In Redis, we store keys and values in separate pages with differ-
ent colors (i.e., rows). A challenge is how to divide the colors for
storing key and value data. Without knowing a fixed key-to-value
size ratio with Redis, we use an adaptive approach to dynamically
determine the ratio of key pages to value pages, as follows.

Upon an insertion request, we split the item and separately place
the key and the value parts to a key page and a value page, respec-
tively. The hash index points to a block of two 8-byte pointers,
which point to the key and the value parts, accordingly. If a page is
consumed up, we take another free page with an unused color from
the column. Note that once a color is used for keys, the color is re-
served for keys thereafter. The same policy applies to the colors for
values as well. Thus, after the first column is consumed, the ratio
of key pages to value pages is determined and set thereafter. This
approach automatically adapts to the workload during runtime. In
our experiments, we find that the key-to-value ratio is rather stable
and this adaptive solution works well.

7.2 Implementations and Evaluations
Our Redis-based Cavast implementation has two parts. An OS

kernel module, get pgcolor, is implemented in Linux kernel
3.18.12, with minimal changes, only about 200 lines of code. An-
other 2,000 lines of C code are added into Redis 4.10.14. Since
Redis is a single-threaded key-value store, in order to fully exer-
cise our prototype, we run 4 server instances simultaneously for
performance evaluation.
• Data re-partitioning with locality sampling. Redis uses a sam-
pling method to identify the cold key-value items. In this test, we
study how well this approach emulates LRU and the effect of the
sample size on cache hit ratio and system throughput.

We configure our Redis-based prototype with the sample size
varying from 5 to 20 items each time. As a reference baseline, we
build a real complete LRU list offline using the traces and partition
the hot and cold data into LRU zones accordingly. We compare
Cavast with different sample sizes to the stock Redis and the LRU
baseline, which is considered as the ideal case. Figure 16 shows
the cache hit ratio and throughput results. After reaching stable
status, all Cavast versions show significantly higher cache hit ratios
than the stock Redis. For example, in the Zipfian workloads with
the APP dataset, we achieve a hit ratio of 46.7%–55.8%, and by
contrast, the cache hit ratio of the stock Redis is only 22.5%.

We also find that a small sample size (5 items) consistently shows
relatively worse result, since frequent sampling with a small sample
size causes interference to the cache and disrupts the system. A rea-
sonably large sample size (10 items each time) generally achieves a
hit ratio close to the LRU baseline (57.3%), meaning that our sam-
pling approach to emulating the LRU list works well in practice.

1549

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Redis
LRU

5 Samples
10 Samples

15 Samples
20 Samples

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Redis
LRU

5 Samples
10 Samples

15 Samples
20 Samples

(b) Throughput
Figure 16: Redis - Data re-partitioning with sampling (Zipfian).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Redis Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Redis Cavast Cavast-GC

(b) Throughput
Figure 17: Redis - Put it all together (Zipfian).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Redis Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Redis Cavast Cavast-GC

(b) Throughput
Figure 18: Redis - Put it all together (Hotspot).

 0

 20

 40

 60

 80

 100

APP SYS ETC

C
P

U
 C

a
c
h

e
 H

it
 R

a
ti
o

 (
%

)

Redis Cavast Cavast-GC

(a) Hit Ratio
 0

 1

 2

 3

 4

 5

APP SYS ETC

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

Redis Cavast Cavast-GC

(b) Throughput
Figure 19: Redis - Worst case study (Uniform).

• Put it all together. Our Redis-based prototype implements the
same functions as the Memcached-based prototype. Our experi-
ments show that Redis can benefit from our optimizations as de-
scribed previously. For example, separating keys and values im-
proves cache hit ratio by up to 18 p.p., translating into a 56% in-
crease in throughput. Similarly, the optimized hash indexing struc-
ture also brings a throughput improvement of 62%. It is noteworthy
that Redis by default expands the hash table when the load factor
reaches 1 (in contrast, 1.5 in Memcached). Even with a more ag-
gressive expansion, Cavast still shows the benefits of using a care-
fully designed bucket and localized expansion.

Due to space constraint, we only show the performance of a fully
configured prototype, which is optimized with column-based data
partitioning, hot and cold data separation with a sample size of 10,
key-value separation, and the restructured hash table for indexing.
Figure 17 and 18 show the experimental results. We compare our
prototype against the stock Redis. Another further improvement,
denoted as Cavast-GC, enhances the GC operations. Similar to the
test case in Memcached, Cavast-GC in Redis turns off the stock
background GC thread, which samples at the rate of 10 times per
second to look for expired key-value data, and only reclaims the
expired items during data re-partitioning.

In Figure 17 and 18, we can observe significant performance
gains with Cavast. In particular, for the Zipfian workload, Cavast
achieves a cache hit ratio of 73.3%, 42.8%, and 31.2% for APP,
SYS, and ETC, respectively. The stock Redis, in contrast, reports a
cache hit ratio of only 22.5%, 12.3%, and 4.1%, respectively. The
more efficient cache usage in turn brings a throughput improvement
over the stock Redis by a factor of 3.1, 2.9, and 2.9, respectively.
Comparing Cavast and Cavast-GC, we see a further improvement
on cache hit ratio. Suspending the GC thread can reduce cache pol-
lution and increase the hit ratio by up to 2.4 p.p., in which case the
throughput is further increased by 4%.
• Worst case study. We have also tested Cavast using workloads
with uniform distribution to study the worst case scenario. Results
in Figure 19 show that Cavast performs no worse than the stock
Redis even with a more complex design. The added kernel-level
page coloring slightly lowers the performance by less than 1%.

8. DISCUSSIONS
8.1 Related Issues

Cavast provides an effective, software-only solution to optimize
the cache usage in key-value stores. Here we discuss two related is-
sues. (1) Effect of cache sets. Cache coloring enables us to control
the mapping of memory objects to cache sets. As long as we have a
reasonable number of cache sets for separating different data, hav-
ing more cache sets in hardware is not expected to bring signifi-

cantly more benefits. For example, optimizations, such as mixing
hot and cold data, happens within a cache set; separating keys and
values only divides the cache sets into two categories. Other opti-
mizations, such as hash indexing restructuring, are also insensitive
to the number of cache sets. (2) Side effect of hugepage. A larger
page means more significant internal fragmentation. Thus it does
not suit applications allocating memory in small pieces. In our cur-
rent prototype, the hugepage is a system-wide setting, which affects
all applications, meaning that any application could manipulate its
data layout and disturb the shared cache, which might raise security
and performance concerns (e.g., a malicious application can pollute
the cache intentionally). A possible alternative solution (not imple-
mented in current prototype) is to configure variable-sized pages
for different applications, which is worth exploring in the future.

8.2 System Resource Usage
• Memory usage. In Cavast, the main memory overhead is for
managing the separated key and value areas, which demands two
pointers for each item. If using the hugepage approach (Cavast-
Memcached), an extra 3-byte pointer is needed for indexing the
value within the same 2-MB page of the key; if using the pre-
allocated pages (Cavast-Redis), an extra 8-byte pointer is needed
to locate the value stored in a different page.

Other minor memory overhead includes the following. (1) The
zoned LRU list. In Cavast, each item needs additional 4 bits to
record its logical zone (see Section 6.1) for re-partitioning. (2) The
enhanced hash table. In Cavast, each item in the hash bucket is
associated with a 2-byte tag. Each bucket also needs 4 bytes to
link to its sub-buckets. In our current prototype, the memory over-
head in Cavast-Memcached is 1.8%, 1.2%, and 0.6% for APP, SYS,
and ETC, respectively, and 3.2%, 2.1%, and 1.1%, respectively in
Cavast-Redis.
• CPU usage. The computational overhead of Cavast is mainly
on handling the extra memory access for fetching the value data.
The stock Memcached and Cavast-Memcached both use the same
number of worker threads (6 in our prototype), but Cavast keeps a
separate queue to serve the value requests rather than a single queue
in Memcached. Unlike Memcached, the stock Redis only has one
worker thread. Thus Cavast-Redis adds an extra thread to fetch the
value data. Besides, Cavast also demands additional CPU resources
for maintaining a background thread for data re-partitioning, and
another background thread to expand hash table locally.

Table 1 shows a sample of the average CPU usage data collected
in the “put it all together” experiments with Zipfian workloads. We
find that the CPU usage overhead in Cavast is small. The worst
case is observed with ETC, in which Cavast-GC uses an extra of
6.1% CPU resource over the stock Memcached.

1550

Table 1: CPU Usage for Memcached, Redis, and Cavast with Zipfian.

Memcached Cavast Cavast-GC Redis Cavast Cavast-GC
APP 67.6% 70.2% 71.8% 58.2% 61.3% 62.2%
SYS 58.3% 61.1% 61.9% 55.9% 60.4% 60.8%
ETC 55.2% 59.7% 61.3% 56.3% 57.5% 57.8%

9. RELATED WORK
In recent years, key-value systems have gained popularity in both

academia and industry [20, 28, 31–33, 38, 45, 46, 49, 51, 61–63, 66,
70]. Most of these prior works focus on how to efficiently uti-
lize the limited DRAM space for performance. In order to reduce
the high overhead of linked-list based LRU cache management for
Memcached, Fan et al. [33] design an LRU-like caching algorithm
based on the classic clock algorithm to lower the memory con-
sumption (e.g., 1 bit per key). Rumble et al. [61] propose a new
log-structured memory allocation mechanism to replace the con-
ventional memory allocator (e.g., malloc) to enhance memory
efficiency. Cidon et al. [28] use a dynamic partitioning policy in-
stead of static partitioning for in-memory key-value cache to im-
prove the memory utilization. Hu et al. [38] and Pan et al. [57] fo-
cus on using locality-aware memory allocation to replace the origi-
nal naı̈ve slab allocation in Memcached, hence improving memory
efficiency. Wu et al. [64] dynamically partition the memory into
two sub-zones. One zone is used for caching the hot data without
compression to quickly serve the frequent accesses, and another
larger one is used for holding the cold data with compression to
improve the space efficiency. Zhang et al. [69] propose a hybrid
data redundancy protection scheme to enhance the availability and
efficiency of in-memory key-value store. Different from the above
methods, which directly optimize memory usage for in-memory
key-value systems, our work focuses on improving CPU cache ef-
ficiency thereby improving the performance.

There are also many researches focusing on designing cache-
aware data structures and algorithms [21–23, 27, 34–37, 41, 54, 58,
59,68,72]. For example, Zuo et al. [72] find that the irrelevant small
items of a hash table can pollute the cache line, causing low cache
line efficiency. As such, they reorganize the hash table into an in-
verted binary tree, and the nodes in the same path of the tree used
for resolving hash collision are stored in the continuous memory
space to enhance the cache efficiency. Similarly, Zhang et al. [68]
also point out the issue of low cache efficiency in regular hash ta-
bles. They modify the cache controller to enable L1 cache to fetch
and serve an individual key-value pair rather than a cache line for
improving the cache spacial locality. Hopscotch hashing [37, 41]
also improves the cache line utilization by storing the items with
hash collision in the consecutive buckets. Our work further care-
fully considers memory alignment with dedicated space and a tree-
like structure for localized expansion. CSB+-Tree [35, 59] tries
to store all the child nodes of a given node in continuous mem-
ory addresses for optimized cache line utilization. To enhance the
cache space efficiency for in-memory string management, the prior
works [21–23,36] focus on designing a cache-aware trie by replac-
ing the pointer-based data structure with an array. Our work focuses
on solving cache conflicts and uses various techniques, such as tags
and expansion tree, to maximize the cache utilization. Psaropoulos
et al. [58] propose to mitigate the cache miss penalty and improve
the performance of index joins by interleaving instruction stream
at the language level using coroutines. Metreveli et al. [54] split
a hash table into multiple partitions and distribute the partitions
to different cores. An operation (e.g., insert, lookup) thus can be
forwarded directly to the corresponding core for execution rather
than fetching the entry and lock from that core and running locally.
Benefiting from the cache affinity and less lock contention, a higher

throughput can be achieved. Similarly, Farshin et al. [34] design a
network I/O solution, called CacheDirector, which also considers
the cache affinity to accelerate the network packet processing.

Most of the above-said prior works focus on increasing cache
space efficiency by optimizing cache line utilization [21–23,27,36,
37,41,42,59,68,72] for in-memory data structures such as hash ta-
ble, tree, and trie. Some prior works try to alleviate cache miss
penalty [58], or utilize the cache affinity to speed up data pro-
cessing [34, 54]. Sharing a similar principle, our work focuses on
addressing the cache efficiency issues specifically for in-memory
key-value store by considering its unique properties and using a
software-only solution and various techniques, such as relocating
data, tagging keys, localizing hash table expansion, etc.

Cache partitioning has been extensively studied in multi-core ap-
plications. Noll et al. [56] point out that cache-insensitive opera-
tions, such as sequential scanning, can cause severe cache pollu-
tion for cache-sensitive operations, such as aggregation. They pro-
pose to allocate cache space separately for the two different opera-
tions, thus avoiding cache pollution and decreasing cache miss ra-
tio. Lin et al. [47] propose to overcome the limitations of traditional
simulation-based approaches by using page coloring to partition the
cache in software, which enables a faithful evaluation of cache par-
titioning policies. Later, they further propose a light-weight hard-
ware solution to reduce the overhead involved in the software-only
cache partitioning [48] . To address the same problem, Zhang et
al. [71] also propose a solution by enforcing coloring only on hot
pages. Lu et al. [50] also present a software-based cache partition-
ing solution to optimize cache usage at the object level. Unlike the
general-purpose solutions, we leverage cache coloring to enable the
key-value stores to decide its data placement in cache, improving
the cache utilization and performance.

A more recent work is called SDC [55]. Similar to our work,
SDC also recognizes the cache under-utilization problem in key-
value stores. They propose a new hardware support in processors
by revising the cache management to allow application software to
explicitly manage the cache as a look-aside buffer. As a hardware
solution, this method is largely orthogonal to our work. We aim to
provide a software-only solution, leveraging the existing available
mechanisms in the OS to virtually partition the cache and optimize
cache efficiency accordingly. In fact, an essential goal of our work
is to avoid any hardware changes, which makes it practically and
immediately applicable to real applications.

10. CONCLUSION
Memory-based key-value system is essential in data centers. Un-

fortunately, its performance potential has not been fully exploited
due to the inefficient use of the very limited CPU cache space. As
memory capacity continues to increase, the huge capacity gap be-
tween cache and memory poses a significant challenge in perfor-
mance and scalability. In this paper, we present a highly cache-
efficient scheme, called Cavast, to optimize the cache utilization in
key-value systems. We have developed two prototypes based on
Memcached and Redis. Our experimental results show that as a
versatile design, Cavast can be seamlessly adopted into the exist-
ing systems, and substantially improve the cache efficacy and the
system performance.

Acknowledgments
We thank the anonymous reviewers for their constructive feedback
and insightful comments. We also thank Dr. John C. McCallum for
collecting the memory price data for years. This work was partially
supported by the U.S. National Science Foundation under Grants
CCF-1453705, CCF-1629291, and CCF-1910958.

1551

11. REFERENCES
[1] CAS latency. https:

//en.wikipedia.org/wiki/CAS_latency.
[2] Generalized extreme value distribution.

https://en.wikipedia.org/wiki/Generalize
d_extreme_value_distribution.

[3] Generalized Pareto distribution.
https://en.wikipedia.org/wiki/Generalize
d_Pareto_distribution.

[4] Hardware performance counter. https://en.wikiped
ia.org/wiki/Hardware_performance_counter.

[5] Intel Skylake.
https://www.7-cpu.com/cpu/Skylake.html.

[6] Intel Xeon Platinum 9282. https:
//ark.intel.com/content/www/us/en/ark/pr
oducts/194146/intel-xeon-platinum-9282-p
rocessor-77m-cache-2-60-ghz.html.

[7] Jenkins Hash. https://en.wikipedia.org/wiki/
Jenkins_hash_function.

[8] Linux hugepage. https://www.kernel.org/doc/D
ocumentation/vm/hugetlbpage.txt.

[9] Linux Perf. https:
//en.wikipedia.org/wiki/Perf_(Linux).

[10] Memcached. https://memcached.org.
[11] MurmurHash3. https://github.com/aappleby/

smhasher/wiki/MurmurHash3.
[12] Random-access memory. https://en.wikipedia.o

rg/wiki/Random-access_memory#Timeline.
[13] Redis. https://redis.io.
[14] Redis-based applications.

https://techstacks.io/tech/redis.
[15] Scaling memcached at Facebook. https://www.face

book.com/notes/facebook-engineering/sca
ling-memcached-at-facebook/39391378919/.

[16] Synchronous dynamic random-access memory (SDRAM).
https://en.wikipedia.org/wiki/Synchronou
s_dynamic_random-access_memory.

[17] The 10% rule for VSAN caching, calculate it on a VM basis
not disk capacity! http://www.yellow-bricks.
com/2016/02/16/10-rule-vsan-caching-cal
culate-vm-basis-not-disk-capacity/.

[18] Twemcache.
https://github.com/twitter/twemcache.

[19] A. Adya, R. Grandl, D. Myers, and H. Qin. Fast key-value
stores: An idea whose time has come and gone. In
Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’19), pages 113–119, 2019.

[20] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (SOSP ’09), pages 1–14,
2009.

[21] N. Askitis and R. Sinha. HAT-trie: A cache-conscious
trie-based data structure for strings. In Proceedings of the
30th Australasian Conference on Computer Science, pages
97–105, 2007.

[22] N. Askitis and R. Sinha. Engineering scalable, cache and
space efficient tries for strings. The VLDB Journal,
19(5):633–660, 2010.

[23] N. Askitis and J. Zobel. Redesigning the string hash table,
burst trie, and BST to exploit cache. Journal of Experimental

Algorithmics (JEA), 15(1):1–61, 2011.
[24] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-value
store. In Proceedings of 2012 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12), volume 40, pages 53–64, 2012.

[25] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and
implications. In Proceedings of IEEE Conference on
Computer Communications (INFOCOM ’99), volume 1,
pages 126–134, 1999.

[26] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-aware
flash translation layer enhancing the lifespan of flash
memory based solid state drives. In Proceedings of the 9th
USENIX Conference on File and Storage Technologies
(FAST ’11), San Jose, CA, Feb 15-17 2011.

[27] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making
pointer-based data structures cache conscious. Computer,
33(12):67–74, 2000.

[28] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: A dynamic multi-tenant key-value cache. In
Proceedings of 2017 USENIX Annual Technical Conference
(USENIX ATC ’17), pages 321–334, 2017.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud
Computing (SoCC ’10), pages 143–154, 2010.

[30] C. R. Cunha, A. Bestavros, and M. E. Crovella.
Characteristics of WWW client-based traces. Technical
report, Boston University Computer Science Department,
1995.

[31] B. Debnath, S. Sengupta, and J. Li. FlashStore: High
throughput persistent key-value store. PVLDB,
3(2):1414–1425, 2010.

[32] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM
space skimpy key-value store on flash-based storage. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data (SIGMOD ’11), pages
25–36, 2011.

[33] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber caching
and smarter hashing. In Proceedings of the 10th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI ’13), pages 371–384, 2013.

[34] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić.
Make the most out of last level cache in Intel processors. In
Proceedings of the Fourteenth EuroSys Conference
(EuroSys ’19), pages 1–17, 2019.

[35] R. A. Hankins and J. M. Patel. Effect of node size on the
performance of cache-conscious B+-trees. In Proceedings of
the 2003 ACM SIGMETRICS International Conference on
Measurement and Modeling of computer systems
(SIGMETRICS ’03), pages 283–294, 2003.

[36] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast,
efficient data structure for string keys. ACM Transactions on
Information Systems (TOIS), 20(2):192–223, 2002.

[37] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In
Proceedings of International Symposium on Distributed
Computing (DISC ’08), pages 350–364, 2008.

[38] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, and
Z. Wang. LAMA: Optimized locality-aware memory
allocation for key-value cache. In Proceedings of 2015

1552

https://en.wikipedia.org/wiki/CAS_latency
https://en.wikipedia.org/wiki/CAS_latency
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Hardware_performance_counter
https://en.wikipedia.org/wiki/Hardware_performance_counter
https://www.7-cpu.com/cpu/Skylake.html
https://www.7-cpu.com/cpu/Skylake.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://en.wikipedia.org/wiki/Jenkins_hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)
https://memcached.org
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://en.wikipedia.org/wiki/Random-access_memory#Timeline
https://en.wikipedia.org/wiki/Random-access_memory#Timeline
https://redis.io
https://techstacks.io/tech/redis
https://techstacks.io/tech/redis
https://www.facebook.com/notes/facebook-engineering/scaling-memcached-at-facebook/39391378919/
https://www.facebook.com/notes/facebook-engineering/scaling-memcached-at-facebook/39391378919/
https://www.facebook.com/notes/facebook-engineering/scaling-memcached-at-facebook/39391378919/
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://www.yellow-bricks.com/2016/02/16/10-rule-vsan-caching-calculate-vm-basis-not-disk-capacity/
http://www.yellow-bricks.com/2016/02/16/10-rule-vsan-caching-calculate-vm-basis-not-disk-capacity/
http://www.yellow-bricks.com/2016/02/16/10-rule-vsan-caching-calculate-vm-basis-not-disk-capacity/
https://github.com/twitter/twemcache
https://github.com/twitter/twemcache

USENIX Annual Technical Conference (USENIX ATC ’15),
pages 57–69, 2015.

[39] R. Hund, C. Willems, and T. Holz. Practical timing side
channel attacks against kernel space ASLR. In Proceedings
of 2013 IEEE Symposium on Security and Privacy, pages
191–205, 2013.

[40] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An effective
improvement of the CLOCK replacement. In Proceedings of
2005 USENIX Annual Technical Conference (USENIX
ATC ’05), pages 323–336, 2005.

[41] R. Kelly, B. A. Pearlmutter, and P. Maguire. Lock-free
hopscotch hashing. In arXiv preprint arXiv:1911.03028,
2019.

[42] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, and
et al. FAST: Fast architecture sensitive tree search on modern
CPUs and GPUs. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data
(SIGMOD ’10), pages 339–350, 2010.

[43] M. C. Lee, F. Y. Leu, and Y. P. Chen. Pareto-based cache
replacement for YouTube. In World Wide Web, pages
1523–1540, 2015.

[44] D. Levinthal. Performance analysis guide for Intel Core i7
processor and Intel Xeon 5500 processors.
https://software.intel.com/sites/product
s/collateral/hpc/vtune/performance_analy
sis_guide.pdf.

[45] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A
memory-efficient, high-performance key-value store. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), pages 1–13, 2011.

[46] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA:
A holistic approach to fast in-memory key-value storage. In
Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’14), pages
429–444, 2014.

[47] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real
systems. In Proceedings of 14th IEEE International
Symposium on High Performance Computer Architecture
(HPCA ’08), pages 367–378, 2008.

[48] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Enabling software management for multicore
caches with a lightweight hardware support. In Proceedings
of the Conference on High Performance Computing
Networking, Storage and Analysis (SC ’09), page 14, 2009.

[49] G. Lu, Y. J. Nam, and D. H. Du. BloomStore: Bloom-filter
based memory-efficient key-value store for indexing of data
deduplication on flash. In Proceedings of 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies
(MSST ’12), pages 1–11, 2012.

[50] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Soft-OLP: Improving hardware cache
performance through software-controlled object-level
partitioning. In Proceedings of the 2009 18th International
Conference on Parallel Architectures and Compilation
Techniques (PACT ’09), pages 246–257, 2009.

[51] L. Marmol, S. Sundararaman, N. Talagala, and
R. Rangaswami. NVMKV: A scalable, lightweight,
FTL-aware key-value store. In Proceedings of 2015 USENIX
Annual Technical Conference (USENIX ATC ’15), pages
207–219, 2015.

[52] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and
A. Francillon. Reverse engineering Intel last-level cache
complex addressing using performance counters. In
International Symposium on Recent Advances in Intrusion
Detection, pages 48–65, 2015.

[53] J. C. McCallum. Memory prices 1957+.
https://jcmit.net/memoryprice.htm.

[54] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHash: A
cache-partitioned hash table. ACM SIGPLAN Notices,
47(8):319–320, 2012.

[55] F. Ni, S. Jiang, H. Jiang, J. Huang, and X. Wu. SDC: A
software defined cache for efficient data indexing. In
Proceedings of the ACM International Conference on
Supercomputing (ICS ’19), pages 82–93, 2019.

[56] S. Noll, J. Teubner, N. May, and A. Böhm. Accelerating
concurrent workloads with CPU cache partitioning. In
Proceedings of 2018 IEEE 34th International Conference on
Data Engineering (ICDE ’18), pages 437–448, 2018.

[57] C. Pan, L. Zhou, Y. Luo, X. Wang, and Z. Wang.
Lightweight and accurate memory allocation in key-value
cache. International Journal of Parallel Programming,
47(3):451–466, 2019.

[58] G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with coroutines: A practical approach for robust
index joins. PVLDB, 11(2):230–242, 2017.

[59] J. Rao and K. A. Ross. Making B+-trees cache conscious in
main memory. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD ’00), pages 475–486, 2000.

[60] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025: The
digitization of the world from edge to core. IDC White
Paper, 2018.

[61] S. M. Rumble, A. Kejriwal, and J. Ousterhout.
Log-structured memory for DRAM-based storage. In
Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST ’14), pages 1–16, 2014.

[62] Z. Shen, F. Chen, Y. Jia, and Z. Shao. DIDACache: A deep
integration of device and application for flash based
key-value caching. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST ’17),
pages 391–405, 2017.

[63] K. Wang and F. Chen. Cascade mapping: Optimizing
memory efficiency for flash-based key-value caching. In
Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’18), pages 464–476, 2018.

[64] X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and S. Jiang.
zExpander: A key-value cache with both high performance
and fewer misses. In Proceedings of the Eleventh European
Conference on Computer Systems (Eurosys ’16), pages 1–15,
2016.

[65] L. Xu, A. Pavlo, S. Sengupta, and G. R. Ganger. Online
deduplication for databases. In Proceedings of the 2017 ACM
International Conference on Management of Data
(SIGMOD ’17), page 1355–1368, 2017.

[66] S. Xu, S. Lee, S. W. Jun, M. Liu, and J. Hicks. BlueCache: A
scalable distributed flash-based key-value store. PVLDB,
10(4):301–312, 2016.

[67] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser. Mapping
the Intel last-level cache. Cryptology ePrint Archive, Report
2015/905, 2015.

[68] G. Zhang and D. Sanchez. Leveraging caches to accelerate

1553

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://jcmit.net/memoryprice.htm
https://jcmit.net/memoryprice.htm

hash tables and memoization. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’19), pages 440–452, 2019.

[69] H. Zhang, M. Dong, and H. Chen. Efficient and available
in-memory KV-store with hybrid erasure coding and
replication. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST ’16), pages
167–180, 2016.

[70] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang.
Mega-KV: A case for GPUs to maximize the throughput of
in-memory key-value stores. PVLDB, 8(11):1226–1237,
2015.

[71] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical
page coloring-based multicore cache management. In
Proceedings of the 4th ACM European Conference on
Computer Systems (EuroSys ’09), pages 89–102, 2009.

[72] P. Zuo and Y. Hua. A write-friendly and cache-optimized
hashing scheme for non-volatile memory systems. IEEE
Transactions on Parallel and Distributed Systems,
29(5):985–998, 2017.

1554

	Introduction
	Technical Trend and Challenges
	Making Key-value Store Cache Aware

	Motivations and Challenges
	The Role of CPU Cache
	In-memory Key-value Store
	Analysis and Discussions

	Mechanism
	Policy
	Handling Hot and Cold Key-value Data
	Separating Key and Value Data
	Cache-friendly Hash Indexing
	Cache-efficient Garbage Collection

	Experimental Setup
	Case Study 1: Memcached
	Optimizations
	Performance Evaluations

	Case Study 2: Redis
	Optimizations
	Implementations and Evaluations

	Discussions
	Related Issues
	System Resource Usage

	Related Work
	Conclusion
	References

