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ABSTRACT
As one of the most representative cohesive subgraph mod-
els, k-core model has recently received significant attention
in the literature. In this paper, we investigate the problem
of the minimum k-core search: given a graph G, an inte-
ger k and a set of query vertices Q = {q}, we aim to find
the smallest k-core subgraph containing every query vertex
q ∈ Q. It has been shown that this problem is NP-hard with
a huge search space, and it is very challenging to find the
optimal solution. There are several heuristic algorithms for
this problem, but they rely on simple scoring functions and
there is no guarantee as to the size of the resulting subgraph,
compared with the optimal solution. Our empirical study
also indicates that the size of their resulting subgraphs may
be large in practice. In this paper, we develop an effective
and efficient progressive algorithm, namely PSA, to provide
a good trade-off between the quality of the result and the
search time. Novel lower and upper bound techniques for the
minimum k-core search are designed. Our extensive exper-
iments on 12 real-life graphs demonstrate the effectiveness
and efficiency of the new techniques.
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1. INTRODUCTION
Graphs are widely used to model relationships in various

applications. Query processing and mining with cohesive
subgraphs is one of the fundamental problems in graph ana-
lytics, where the main aim is to find groups of well-connected
graph vertices. k-core is an important cohesive subgraph
model based on k-core constraint : a subgraph is a k-core
(subgraph) if every vertex has at least k neighbors in the
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Figure 1: A Toy Example, k = 3

same subgraph. Problems related to k-core model have been
intensively studied in the literature, with many existing re-
search efforts mainly focusing on the maximum k-core com-
putation, which aims to find the largest induced subgraph
satisfying k-core constraint. Indeed, there are many impor-
tant applications for maximum k-cores, most notably user
engagement [11, 30] and influence evaluation [53, 25, 41].
Nevertheless, in some scenarios especially when one or a set
of query vertices are involved, users may prefer small size
group because the group size may closely related to the costs
(e.g., verification or advertisement/recommendation costs),
and the stableness and homophily of the group. In these
scenarios, the maximum k-core may contain many extrane-
ous vertices, and it is more natural to find k-core subgraphs
containing all query vertices with smallest size. From the-
oretical perspective, it is also an interesting optimization
problem given the degree constraint and optimization goal
(i.e., minimizing the subgraph size).

In Figure 1, the graph G is a k-core with k = 3. However,
for the given query vertex v0, it is more intuitive to return
the subgraph {v0, v2, v3, v9, v10} as a k-core subgraph con-
taining v0 with k = 3, instead of using the whole graph G. In
this paper, we study the problem of minimum k-core search
which aims to find the smallest k-core subgraph contain-
ing the given query vertex. The applications and challenges
associated with this problem are discussed below.

Applications. The importance of the minimum k-core
search problem can be reflected through some concrete ex-
amples in the following representative applications.

Social Networks. It is a common practice to encourage the
engagement of group members in the social network by uti-
lizing the positive influence from their friends in the same
group (e.g., [45, 20, 11, 30]). In some applications such as
group recommendation with one or a set of query vertices
(e.g., specific users), a small k-core subgraph may be pre-
ferred because a large k-core subgraph may contain many
irrelevant vertices for the query vertex. In online social plat-
forms (e.g., Groupon, Pinduoduo and Meetup), the system
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may recommend an item (e.g., ticket or event) to a user
based on the information from a social group containing the
user. Usually, the item has been adopted (e.g., bought) by
some users in the group, and there are certain interactions
among these users. Consider the recommendation cost and
the stableness of the group, using the smallest k-core sub-
graph is more feasible than using the large ones. By doing
this, the recommendation is more likely to be adopted, and
the group members will be better motivated to take action
(e.g., buy items) together due to positive peer influence [28].

Biological networks. It has been reported in [2, 7] that in
protein-protein interaction (PPI) networks, the proteins in
the same k-core subgraph are likely to have the same func-
tionalities. However, our empirical study reveals that such
homophily property only holds for small k-core subgraphs,
not for large ones. Thus, it is more reliable to use the mini-
mum k-core subgraph if we aim to find a group of proteins
such that, with high probability, they have the same func-
tionality as the query vertex (i.e., homophily property). The
cell-assembling theory [22] in neural networks is another ex-
ample. This theory suggests that information processing
in the brain is based on the collective action of groups of
neurons, which is essential for acquiring memories (e.g., [22,
13, 44, 34, 38]). As shown in [34, 38], a neuron can be
fired/activated if a certain number of neighbor neurons have
been activated. This implies that, to activate an area of neu-
rons, we can initially stimulate a small k-core subgraph for
cost-effectiveness purpose.

Challenges. As shown in [18, 9, 5], the minimum k-core
search problem is NP-hard and cannot be approximated
with any constraint factor. We remark that this problem
is more challenging than finding a k-clique containing q, al-
though the latter is also NP-hard, in the sense that minimum
k-core search needs to explore neighbors with more than one
hop. As such, it is cost-prohibitive to find optimal solution
for minimum k-core search problem in practice given the
huge search space involved.

To circumvent this obstacle, existing studies [18, 9] pro-
pose greedy algorithms to incrementally include candidate
vertices according to their scoring functions till the resulting
subgraph is a k-core subgraph. These algorithms are simple
and time efficient, but they do not offer any quality guaran-
tee over the size of the resulting k-core subgraph. Therefore,
we propose a progressive algorithm by developing novel tech-
niques to incrementally derive lower and upper bounds for
the size of the minimum k-core containing the query vertex.
By doing this, we can safely terminate the search once the
desired approximate ratio is reached.

Contributions. Our principal contributions are as follows.

• We study the problem of the minimum k-core search
which aims to find the smallest k-core subgraph contain-
ing the given query vertices. An effective and efficient
Progressive Search Algorithm, namely PSA, is proposed
to provide an approximate solution by incrementally com-
puting lower and upper bounds of the optimal solution.

• We investigate three approaches to compute the lower
bound of the optimal solution after mapping the prob-
lem of lower bound computation to the set multi-cover
problem. We also design an onion-layer based heuristic
algorithm to find small k-core subgraphs, and the smallest
k-core subgraphs seen so far will serve as the upper bound

Table 1: Summary of Notations

Notation Definition

G an unweighted and undirected graph
V (G), E(G) the vertex set and edge set of G

u, v vertex in the graph
n, m the number of vertices and edges in G
dmax the largest degree value in G

N(u,G) the set of adjacent vertices of u in G
deg(u,G) |N(u,G)|

k the degree constraint for k-core subgraph
Ck(G) k-core of G
P (G) partial solution of G

as well as the approximate solution. The proposed tech-
niques may shed light on other search problems related to
cohesive subgraphs.

• We conduct comprehensive experiments on 12 real-life
graphs to evaluate the proposed techniques. It shows
that the proposed techniques outperform the state-of-the-
art method S-Greedy [9] in two ways: (1) by using our
upper bound technique alone, the corresponding greedy
algorithm, namely L-Greedy, dominates S-Greedy under
all settings in the experiments; and (2) PSA algorithm
equipped with both lower and upper bounds techniques
can further significantly reduce the resulting subgraph size
and provide good trade-off between result quality and the
search time.

2. PRELIMINARIES

2.1 Problem Definition
Let G = (V,E) be an undirected and unweighted graph,

where V and E denote the set of vertices (nodes) and edges
respectively. Let n = |V | and m = |E| be the number of
vertices and edges respectively. We use N(u,G) to denote
the set of adjacent vertices of u in the graph G, which is also
known as the neighbor set of u in G. Let deg(u,G) denote
the degree of u in G, which is the number of adjacent vertices
of u in G. Given a subgraph S of G, we use V (S) to denote
its vertices. The size of the subgraph, denoted by |S|, is the
number of the vertices. When the context is clear, N(u,G),
deg(u,G) and V (S) are simplified to N(u), deg(u) and S
respectively. By dmax we denote the largest vertex degree
in the graph. Table 1 summarizes the notations.

Definition 1. k-core subgraph. Given a graph G, a
subgraph S of G is a k-core subgraph if every vertex in S
has at least k neighbors in S.

For presentation simplicity, we use k-core to represent k-
core subgraph in this paper when there is no ambiguity. In
the literature, many studies focus on the maximum k-core
which is the largest induced subgraph which satisfies the k-
core constraint. Note that the maximum k-core is also the
maximal k-core because the maximal k-core of G is unique
for a given k, as shown in [52].

Problem Statement. Given an undirected and un-
weighted graph G = (V,E), a degree constraint k and a
query set Q = {q1, q2, ...}, the minimum k-core search prob-
lem finds the smallest k-core subgraph containing the query
set Q. Due to the NP-hardness of the problem and the huge
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search space involved to find the exact solution, in this pa-
per we aim to develop an effective and efficient progressive
algorithm to enable users to achieve a good trade-off be-
tween the quality of the results (i.e., the size of the k-core
subgraph retrieved) and the search time.

For presentation simplicity and the ease of understanding,
we first focus on computing the minimum k-core containing
one query vertex q. The proposed algorithms are adapted
for the query of multiple vertices in Section 3.4.

2.2 Existing Solutions
As discussed in Section 1, the search space of the exact so-

lution is prohibitively large, and existing solutions resort to
simple heuristic algorithms. In particular, existing solutions
follow two search strategies: (1) shrink strategy [37], called
global search; and (2) expansion strategy [9, 18], called local
search. In the global search strategy [37], the maximal k-
core is the initial result, which can be efficiently computed in
linear time [10]. Then the size of the resulting subgraph will
be shrunken by repeatedly removing the vertex while keep-
ing q in the resulting k-core subgraph1. As shown in [9],
the global search method in [37] is ineffective because the
size of maximal k-core is usually very large, and the quality
of the resulting k-core subgraph is not competitive with the
local search approaches. In recent studies [9, 18], the local
search strategy is adopted which starts from the query ver-
tex and then expands the resulting subgraph by incremen-
tally including the most promising candidate vertex at each
step following some greedy heuristics. Below, we present the
state-of-the-art technique proposed in [9].

State-of-the-art. In [9], a greedy algorithm, named S-
Greedy , is proposed to find the minimum k-core subgraph
containing the query vertex. Let P denote the resulting
subgraph, which is initialized as {q}. By C we denote can-
didate vertices which are neighbors of the vertices in P , not
contained by P . In each iteration, the most promising can-
didate vertex is chosen for inclusion in P , and the candidate
set C is updated accordingly. P is returned when every
vertex in P satisfies the k-core constraint. The key of the
algorithm is the design of the scoring function to measure
the goodness of candidates. In [9], the authors employ two
functions to qualitatively measure the advantage and disad-
vantage of including a vertex u in P , denoted by p+(u) and
p−(u) respectively. Specifically, p+(u) records the number
of neighbors of u in P with a degree still less than k, i.e.,

p+(u) = |{v|v ∈ N(u, P ), deg(v, P ) < k}|

Intuitively, the larger the p+(u) value, the better chance
that u can make more vertices in P to satisfy the k-core
constraint. The cost of including u in P is that an extra
number of vertices needed to make u have at least k neigh-
bors in P , i.e.,

p−(u) = max{0, k − |N(u, P )|}

Then the score of the vertex u is defined as p+(u)− p−(u),
where the larger value is preferred.

Discussion. The proposed algorithm is time efficient. The
time complexity of the score computation at each iteration
is O(dmax) as only the neighbors of the vertex u are involved
and it takes O(ln(n)) time to maintain the most promising

1There is no k-core subgraph containing the query vertex q
if it is not in the maximal k-core.

candidate vertex. Thus, the time complexity of S-Greedy is
O(s(dmax + log(n))) where s is the size of the resulting sub-
graph. In [9], the maximal k-core will be computed for the
following computation and hence s is bounded by the size of
maximal k-core, which is usually a large number in practice.
Experiments show that S-Greedy significantly outperforms
other competitors by means of the resulting subgraph size.
However, our empirical study indicates that there is still a
big gap between its resulting subgraph and the optimal so-
lution. Moreover, all existing algorithms do not have the
quality guarantee about the size of the resulting subgraph
and hence it is difficult for users to make a trade-off between
result quality and search time. This motivates us to develop
a progressive algorithm in this paper.

3. PROGRESSIVE SEARCH ALGORITHM

3.1 Motivation and Framework
In this paper, we devise a progressive search algorithm,

namely PSA. Given a vertex set Vt as a partial solution, we
find that it is feasible to compute the upper/lower bounds
of the minimum size of a k-core containing Vt (the details
are introduced in later sections). Thus, if we can progres-
sively converge the size upper/lower bounds of the partial
solutions in a search, it is possible to compute a k-core with
guaranteed size approximation ratio regarding the size of
optimally-minimum k-core. Then, the framework of PSA is
designed as a Best-First Search (BesFS) which computes the
result in an expansion manner and visits the most promising
branch at each search step.

A search tree of BesFS is constructed along with the pro-
cedure of BesFS where the root is the query vertex and every
tree node contains one vertex. For each tree node t, its par-
tial solution Vt contains the vertex in the node and all the
vertices in the ancestor nodes. In PSA, when a tree node
t is visited and t contains the vertex u, we add the child
nodes of t to the search tree where each child node contains
a unique neighbor of a vertex in Vt with vertex id larger than
u. Then, the search step at node t is processed as follows:

(i) Lower bound driven. For the partial solution V ′t of
every child node t′ of the node t, we compute a size lower
bound s−(t) of the minimum k-core containing V ′t (intro-
duced in Section 3.2). The next node to visit (the most
promising node) is the one with the smallest lower bound
s−(·) from all the leaf nodes in current search tree.

(ii) Upper bound driven. For the partial solution V ′t of
every child node t′ of the node t, we conduct a Depth-First
Search (DFS) to compute a minimal k-core containing V ′t by
heuristics (introduced in Section 3.3), to update the global
size upper bound s+ of the optimally-minimum k-core.

The algorithm PSA will return if s+

s− ≤ c is satisfied for
current search node, where c is the approximate ratio.

Example 1. Figure 2 illustrates a part of the search tree
T of our PSA algorithm, where the root is the query vertex
v0. There are 4 neighbors of v0 with vertex id larger than
v0: v2, v3, v4 and v10. When v0 is visited, for each neighbor
of v0, we attach a child node to the current visited node
in T , where each child node contains exactly one unique
neighbor of v0. The partial solution for the node containing
v3 is {v0, v3}. In the BesFS, suppose the node t has the
smallest size lower bound of the minimum k-core containing
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Figure 2: Tree Construction

its partial solution, t will be explored in the next search step,
e.g., the node containing v3 in Figure 2(a).

For each child node with partial solution Vt, we also com-
pute a minimal k-core containing Vt in a DFS which heuris-
tically adds vertices to Vt. In Figure 2(b), a k-core induced
by v0, v2, v3, v9 and v10 is computed for Vt = {v0, v2}, and
the size upper bound is updated to s+ = 5 if it is smaller
than existing upper bound.

Iteratively, the search will return when it finds a k-core
satisfying approximation ratio c regarding the size of the
optimally-minimum k-core.

Algorithm 1: PSA(G, k, q, c)

Input : G : a graph, k : degree constraint,
c : approximation ratio, q : query vertex

Output : R : the approximate minimum k-core
if q 6∈ the maximal k-core of G then return ∅;1

t← the (root) node of search tree T , where t.v = q;2

Q.push(t); R := GetUpper(Vt);3

s+ := |R|; s−(t) := 1;4

while Q 6= ∅ do5

t← Q.pop(); //Q is a priority queue with key on6

s−(t);
for every u ∈ N(t.v) with id(u) > id(t.v) do7

t′ ← the child node of t, where t′.v := u;8

s−(t′) := GetLower(Vt′ );9

if s−(t′) < s−(t) then s−(t′) := s−(t);10

if s−(t′) < s+ then11

R′ := GetUpper(Vt′ ); s
+(t′) := |R′|;12

if s+(t′) < s+ then13

R := R′; s+ := s+(t′);14

Q.push(t′); attach child node t′ to t in T ;15

else16

s−(t′)← +∞ ;17

s− ← smallest key value among nodes in Q ;18

if s+

s−
≤ c then return R;19

return R20

Algorithm 1 shows the pseudo-code of our progressive
search algorithm. We use t to denote a tree node in the
search tree T . The vertex set Vt of a node t consists of the
vertex t.v in t and all the vertices in the ancestor nodes of t.
Let s+ denote the size upper bound of optimally-minimum
k-core, and s−(t) denote the size lower bound of the min-
imum k-core containing Vt. Similar to the A* search [8,
47], we use a set Q to denote the the leaf nodes in T to
be visited, where the key of a node t is s−(t) in ascending

order. GetUpper(Vt) computes a minimal k-core R contain-
ing Vt by heuristics (introduced in Section 3.3). Lines 2-4
initializes the above notations.

In each iteration (Lines 6-19), the node t with the small-
est lower bound value s−(t) is popped at Line 6. To
avoid duplicated computations, for current visited vertex
t.v, we expand it by each neighbor u of a vertex in Vt with
id(u) > id(t.v) (Line 7), where id(u) is the identifier of u. At
Lines 8-9, for each child node t′ of t, GetLower(Vt) computes
the size lower bound of the minimum k-core containing V ′t
(introduced in Section 3.2), where V ′t contains t′.v and all
the vertices in Vt. At Line 10, s−(t′) is assigned by s−(t) if
s−(t′) is smaller, because the size lower bound of V ′t should
not be smaller than Vt. For the size upper bound s+(t′), at
Line 12, we conduct a heuristic search to incrementally add
promising vertices to V ′t till it becomes a k-core subgraph,
denoted by R′, with s+(t′) = |R′|. The global upper bound
s+ and current best solution R will be updated by s+(t′)
and R′ if s+(t′) < s+, since smaller k-core subgraph is pre-
ferred (Lines 13-14). Note that a search branch following t′

can be safely terminated (Line 17) if s−(t′) ≥ s+ because
the resulting subgraph derived from V ′t cannot outperform
the current best solution R.

The global lower bound s− is updated as the smallest
s−(·) among all nodes in Q at Line 18. The algorithm will

return if s
+

s− ≤ c is satisfied at Line 19 or the queue is empty.
R is returned as an approximate solution of the minimum
k-core containing q.

Time complexity. The time cost of Algorithm 1 is O(l ×
(tl + tu)) where l is the number of iterations and tl (resp.
tu) denotes the computing cost of the lower (resp. upper)
bounds at Lines 9 (resp. 12).

Correctness. Every subgraphR′ retrieved at Line 12 is a k-
core subgraph containing q, and hence the upper bound s+ is
correctly maintained in Algorithm 1. Given the correctness
of the lower bound s−, we have s− ≤ |R∗| ≤ s+, where R∗

is the optimal solution. Thus, the termination of the search
branches at Line 17 is safe as all possible search branches are
considered for lower bound computation. When Algorithm 1
terminates, we will return R (best solution obtained so far)

with s+

s− ≤ c.

3.2 Lower Bounds Computation
Given a partial solution P = {v1, v2, ...} and a vertex

v ∈ P , we use d(v) to denote the demand of v, i.e., the
number of extra neighbors (supports) needed from vertices
outside of P such that v can satisfy the degree constraint,
i.e., d(v) = max{k − deg(v, P ), 0}. For every vertex v ∈
P with d(v) > 0, we must include at least d(v) vertices
in N(v,G) \ P such that P can be expanded to a k-core
subgraph. Let M∗ be the minimal subset of vertices from
V \P , such that there are at least d(v) neighbors in M∗ for
every vertex v ∈ P . Clearly, |P |+ |M∗| is a size lower bound
of any k-core subgraph derived from P , denoted by L(P ),
because M∗ is the minimal set of vertices required to satisfy
the degree constraint for vertices in P , without considering
the degree constraint for vertices in M∗.

We show that the computation of M∗ for a given partial
solution P can be converted to a variant of the set cover
problem as follows.

Set Multi-Cover Problem [16]. Let U be the universe
of n elements with U = {e1, e2, ..., en}, and there is a count
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for each element ei. We use C = {c1, c2, . . . , cn} to denote
the counts of the elements. For a family of m subsets of U ,
X = {S1, S2, ..., Sm}, where Si is a subset of U . The goal
is to find a set I ⊆ {S1, S2, ..., Sm}, such that every element
ei ∈ U is covered by at least ci subsets from I.

Mapping of the problem. Each vertex v in the partial
solution P with d(v) > 0 corresponds to an element ei of
U . The element count ci is set to d(v), i.e., the demand
of v. Let N(P ) denote the neighbor vertices of the partial
solution P with N(P ) = (

⋃
v∈P&d(v)>0N(v,G)) \ P , every

neighbor vertex u in N(P ) corresponds to a subset S which
consists of vertices in P (i.e., U) adjacent to u. By doing
this, the optimal solution of the set multi-cover problem,
denoted by I∗, corresponds to M∗ in the above lower bound
computation.
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v 4 v 1v 12 v 11
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Figure 3: Map to Set Multi-cover

Example 2. Consider the graph in Figure 1 with k = 3,
and the partial solution P = {v10, v2, v0}. We show the re-
lated part of Figure 1 in the left of Figure 3. For P , we have
d(v0) = 1, d(v2) = 2, d(v10) = 2, and the neighbor set of
P is N(P ) = {v9, v3, v12, v4, v11, v1}. Mapping to set multi-
cover problem, we have U = {v10, v2, v0}, C = {2, 2, 1}, and
X = {{v2, v10}, {v0, v2, v10}, {v10}, {v0}, {v2}, {v2}}, e.g.,
the set {v2, v10} is associated with the vertex v9 ∈ N(P )
as shown in the figure.

Lower bound computation. For the given partial solu-
tion P = Pu∪{v} at Line 9 of Algorithm 1, we can construct
an instance of the set multi-cover problem accordingly. We
aim to derive a size lower bound of its optimal solution I∗,
denoted by L. Then we can use |P |+L as the lower bound
since |P |+L ≤ |P |+ |I∗| = |P |+ |M∗|. Here, we stress that
our focus is the computation of L, not a feasible solution for
the set multi-cover problem.

In this subsection, we introduce three approaches to com-
pute L: greedy-based approach (Lg), structure relaxation
based approach (Lsr) and inclusion-exclusion based ap-
proach (Lie).

3.2.1 Greedy-based Lower Bound
In [19], Dobson proposed a greedy algorithm for the

set multi-cover problem with an approximation ratio ln(δ),
where δ is the largest size of the subsets in X. Specifi-
cally, the greedy algorithm repeatedly chooses a subset Si
from X \ I that covers the largest number of elements in
U , which are not yet fully covered by the current sets in
I. It stops and returns the chosen subsets in I when every
element ei ∈ U are covered by at least ci chosen subsets.
Let |I| denote the number of subsets in I when the greedy

algorithm terminates, |I|
ln(δ)

is a lower bound of the optimal

solution |I∗|, i.e., |I∗| ≥ b |I|
ln(δ)
c. In this paper, we use Lg to

denote this greedy heuristic based lower bound for I∗.

Example 3. Consider the set multi-cover problem in
Figure 4, where U = {e1, e2, e3, e4, e5}, C = {3, 2, 3, 2, 2},

C: 2 233

U:

X:

2 0 000 0

…

…

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

Figure 4: Greedy Based Lower Bound

and X = {S1, S2, S3, S4, S5, S6}. The elements in a set Si
are the ones connected to Si as shown in the figure. In a
greedy manner, S3 is the first subset to be chosen, which cov-
ers e1, e2, e3, and e4 first. The count set C = {2, 1, 2, 1, 2}
is updated. Iteratively, S4, S5, S2, S1 and S6 are chosen se-
quentially. The greedy result is I = {S3, S4, S5, S2, S1, S6}.
Since the maximum size subset in X is |S3| = 4 (i.e., δ = 4),

the lower bound is Lg = b |I|
ln(δ)
c = b 6

ln(4)
c = 4.

Discussion. Although the computation of the lower bound
can be naturally mapped to the set multi-cover problem,
our empirical study indicates that the δ value is usually not
small on real-life graphs, which may lead to the poor perfor-
mance of the greedy-based lower bound. We note that the
main focus of the greedy algorithm in [19] is to find a feasible
solution I for the set multi-cover problem, which meanwhile
can derive the lower bound of |I∗|. Considering that our
purpose is to derive the lower bound of |I∗|, in the follow-
ing two subsections we develop two new techniques which
aim to design some heuristic approaches to directly derive
a tighter lower bound L for |I∗|, without considering the
feasible solution to the problem.

3.2.2 Structure Relaxation Based Lower Bound.
In this subsection, we introduce the Structure

Relaxation Based Lower Bound, denoted by Lsr.
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Figure 5: Lsr Motivating Example

Motivation. The key idea is to directly obtain a lower
bound for |I∗| by re-constructing subsets {Si} in X (i.e.,
a structure relaxation if we treat set U and X as a bi-
partite graph as shown in Figure 5). Suppose we have
U = {e1, e2, e3}, C = {3, 2, 3} and X = {S1, S2, S3, S4, S5}
in the set multi-cover problem as shown in Figure 5(a).
For instance, we have S4 = {e2, e3}. We have I∗ =
{S1, S2, S3, S4, S5} in this example since all Si must be in-
cluded, i.e., |I∗| = 5. However, suppose we allow each Si
to include arbitrary |Si| elements (i.e., change with the size
constraint), denoted by S′i. Then we may re-construct X,
denoted by X ′, as shown in Figure 5(b) with |Si| = |S′i|.
For instance, we have S′4 = {e1, e3}. Now we have I ′ =
{S′2, S′3, S′4, S′5} (i.e., L = 4) to cover all elements under the
new setting, with L = |I ′| ≤ |I∗|. Note that although I ′ is
not a valid solution for the original set multi-cover problem,
|I ′| indeed can serve as the lower bound of |I∗|.
Lower bound computation. In this subsection, we intro-
duce how to re-construct X such that we can easily derive
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a valid lower bound for |I∗|. Intuitively, we should encour-
age the set with a large size (i.e., covering power) to include
elements with high count values in the re-construction. Al-
gorithm 2 illustrates the details of the structure relaxation
based lower bound computation. Initially, Line 1 orders
{Si} in X in descending order of their sizes. Meanwhile,
the elements are organized by a maximal priority queue Q
where the key of an element ei is its count ci (Line 2). In
Lines 3-11, we will sequentially choose subsets {Si} from X
based on their sizes. For each Si chosen, we will use Si to
cover the first |Si| elements with the largest count values in
Q, denoted by T (Line 5); that is, count ck will be decreased
by one if ek ∈ T (Line 7). We remove an element ek from
Q at Line 8 if it has been covered by ck times, i.e., ck is de-
creased to 0. Then the maximal priority queue is updated
due to the change of count value at Line 9. Algorithm 2
will be terminated if all elements have been fully covered
(Line 11) and l, i.e., {Si} visited so far, will be returned as
the lower bound of |I∗| at Line 12.

Algorithm 2: StructureRelaxationLB(U , C, X)

Input : U : a universe of elements,
C : the counts of the elements,
X : a family of subsets of U

Output : Lsr: the lower bound of |I∗|
l := 0; put all Si ∈ X to F with descending order of |Si|;1

put all ei ∈ U to a maximal priority queue Q with key ci;2

for j = 1 to |X| do3

Si ← the j-th subset in F ; l := l + 1;4

T ← the top |Si| elements in Q;5

for each ek in T do6

ck := ck − 1;7

remove ek from Q If ck = 0 ;8

Update Q due to the change of ck;9

if ck = 0 for every k ∈ [1, |U |] then10

Break;11

return l12

Example 4. Figure 6 illustrates the procedure of a set
multi-cover problem which has U = {e1, e2, e3, e4, e5},
C = {3, 2, 3, 2, 2}, and X = {S1, S2, S3, S4, S5, S6} ini-
tially. To compute Lsr, the first step is to construct F =
{S3, S4, S2, S5, S1, S6} and Q = {e1, e3, e2, e4, e5}. S3 is pro-
cessed first because it has the most elements. The counts of
the top |S3| elements (T = {e1, e3, e2, e4}) in Q decrease by
one: C = {2, 1, 2, 1, 2}. This is followed by the update of
the lower bound l and Q. Iteratively, S4, S2, S5, and S1 are
chosen sequentially until cx = 0 for every x from 1 to |U |.
So, we have Lsr = l = 5, which is better than Lg = 4.
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Figure 6: Structure Relaxation Based Lower Bound

Time complexity. The dominated cost is the update of

Q, which triggers
|U|∑
k=1

ck times. The updating of Q costs

O(log(|Q|). Thus the time complexity of computing Lsr is

O(log(|U |) ∗
|U|∑
k=1

ck).

Correctness. Note that it is not necessary that ek ∈ Si at
Line 5. In this sense, we re-construct Si to cover different
|Si| elements in U , and hence may end up with an invalid
result set I in Algorithm 2 for the set multi-cover problem,
i.e., not every element ek in U will be covered by ck times
by I. Nevertheless, the theorem below suggests that |I|
obtained by Algorithm 2 is indeed a lower bound of |I∗|,
which is sufficient for our problem.

By Theorem 1 we prove that the Lsr is a lower bound of
I∗ for the set multi-cover problem.

Theorem 1. l obtained in Algorithm 2 is a lower bound
of |I∗|.

Proof. We consider the set multi-cover problem with
regard to U = {e1, e2, . . . }, C = {c1, c2, . . . }, and X =
{S1, S2, . . . }. In order to prove the theorem, we define a
relaxed problem Rex(U , C, H) as follows: Given a set of
elements U = {e1, e2, . . . }, C = {c1, c2, . . . }, and size con-
straints H = {h1, h2, . . . } with |H| = |X| and hi = |Si|, we
want to find a set I = {Ik1 , Ik2 , . . . } where 1 ≤ k1 < k2 <
· · · ≤ |H|, Iki ⊆ U , and |Iki | ≤ hki , such that ej is contained
in cj subsets from I and |I| is minimized. Suppose I is the
optimal solution of Rex(U , C, H), and I∗ is the optimal so-
lution for the set multi-cover problem regarding U , C and
X, we have |I| ≤ |I∗|, since Rex(U , C, H) is a relaxation for
the set multi-cover problem (each set in I can contain any
elements in U with only a size constraint). Next, we prove
that our Algorithm 2 obtains the optimal solution I for the
problem Rex(U , C, H).

Suppose w.l.o.g. that h1 ≥ h2 ≥ . . . and c1 ≥ c2 ≥ . . . ,
we show that there exists an optimal solution with k1 = 1
i.e., the size of Ik1 in I is bounded by h1. This is because if
k1 6= 1 we can replace k1 with 1 and the constraint on Ik1 is
increased, thus we do not obtain a worse solution. Next, we
prove that there exists an optimal solution s.t. I1 contains
the first h1 elements in U (i.e., the top-h1 elements with
the largest ci values). Suppose there is an optimal solution
with I ′ = {I ′1, I ′2, . . . } s.t. in I ′1 there exists an x < y with
ei ∈ I ′1 for i < x, ex /∈ I ′1 and ey ∈ I ′1, we prove that we
can construct an optimal solution I with ei ∈ I1 for i ≤ x.
Since C is sorted in non-increasing order, we have cx ≥ cy,
therefore, we can always find an I ′j (j > 1) that contains ex
but does not contain ey. So if we move ex from I ′j to I ′1 and
move ey from I ′1 to I ′j , the constraints on I will not change
and in this way we obtain a solution I that is not worse
than I ′ and has ei ∈ I1 for i ≤ x. As a result, statement
that I1 contains the first h1 elements in U holds. Similarly,
we can prove that I2 contains the first h2 elements in U ′ by
deducing those covered by I1. Since the selection procedure
is the same as that in Algorithm 2, our algorithm obtains the
optimal solution for the problem Rex(U , C, H). Therefore,
the theorem holds.

3.2.3 Inclusion-exclusion Based Lower Bound
The structure relaxation based approach only considers

the size constraint when it re-constructs X, which may end
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Figure 7: Lie Motivating Example

up with a loose lower-bound. In this subsection, we in-
troduce an inclusion-exclusion based lower bound, de-
noted by Lie.

Motivation. Suppose we have U = {e1, e2, e3} and C =
{3, 3, 3}. Let S(e) denote the sets of {Si} in X which contain
element e (i.e., e ∈ Si). Meanwhile, for optimal solution I∗,
we use I∗(e) to denote the set of {Si} in I∗ which contain the
element e. Clearly, for any optimal solution I∗ regarding a
given X, we must have |I∗(ei)| ≥ 3 for elements {e1, e2, e3}
since C = {3, 3, 3}. According to the inclusion-exclusion
principle, we have

|I∗| = |I∗(e1) ∪ I∗(e2) ∪ I∗(e3)|
= |I∗(e1)|+ |I∗(e2)|+ |I∗(e3)|
− |I∗(e1) ∩ I∗(e2)| − |I∗(e1) ∩ I∗(e3)| − |I∗(e2) ∩ I∗(e3)|
+ |I∗(e1) ∩ I∗(e2) ∩ I∗(e3)|

Given the fact that I∗(e) ⊆ S(e) for any element e ∈ U , we
now investigate the possible value of |I∗| if some knowledge
about the overlap size among {S(e)} in X is available. If
there is no constraint regarding the size of |S(ei) ∩ S(ej)|
(1 ≤ i < j ≤ 3) and |S(e1) ∩ S(e2) ∩ S(e3)|, we can easily
come up with a X such that |I∗| = 3+3+3−3−3−3+3 = 3
as shown in Figure 7(a), in which each Si (1 ≤ i ≤ 3)
covers all three elements. While if we know that |S(ei) ∩
S(ej)| = 0 (1 ≤ i < j ≤ 3), Figure 7(b) constructs a X
such that |I∗| = 3 + 3 + 3 − 0 − 0 − 0 + 0 = 9. Note
that we have |I∗(ei) ∩ I∗(ej)| = 0 (1 ≤ i < j ≤ 3) and
|I∗(e1) ∩ I∗(e2) ∩ I∗(e3)| = 0 immediately. Using a similar
argument, we may have |I∗| = 3 + 3 + 3− 1− 1− 1 + 0 = 6
in Figure 7(c) if |S(ei) ∩ S(ej)| = 1 (1 ≤ i < j ≤ 3) and
|S(e1) ∩ S(e2) ∩ S(e3)| = 0. In Figure 7(d), we have |I∗| =
3 + 3 + 3 − 1 − 1 − 1 + 1 = 7 given |S(ei) ∩ S(ej)| = 1
(1 ≤ i < j ≤ 3) and |S(e1) ∩ S(e2) ∩ S(e3)| = 1.

The above example implies that we may come up with a
tighter lower bound of |I∗| if we know the overlap sizes of sets
among {S(e)}. For computing efficiency, we only consider
the intersection size of pairwise sets, i.e., |S(ei) ∩ S(ej)| for
all 1 ≤ i < j ≤ n, in our inclusion-exclusion based lower
bound computation.

Lower bound computation. Algorithm 3 gives details of
the inclusion-exclusion based lower bound computation. Ini-

tially, the elements in U are organized by a maximal priority
queue Q, the key of an element ei is its count ci (Line 1).
We generate a set S(ei) for each element. S(ei) denotes
the sets of S ∈ X which cover the element ei, i.e., ei ∈ S.
In Lines 3-11, we sequentially choose an element ei from Q
based on its count. For each ei chosen, the other elements
in Q, that is, the count ck will be decreased by ∆, where
∆ = min{S(ei)∩S(ek), ci}. We remove ek from Q at Line 8
if ck ≤ 0, i.e., ek has been covered ck times. Then the maxi-
mal priority queue is updated due to the change in the count
value (Line 11). Algorithm 3 will be terminated if all ele-
ments have been fully covered, i.e., Q is empty and l will be
returned as the lower bound of |I∗| at Line 12.

Algorithm 3: Inclusion-Exclusion LB(U , C, X)

Input : U : a universe of elements need to be covered,
C : the count of every element in U ,
X : a family of subsets of U

Output : Lie : Inclusion-exclusion based lower bound
put all ei ∈ U to a maximal priority queue Q with key ci;1

generate S(ei) for each element ei ∈ U ; l := 0;2

while Q 6= ∅ do3

ei ← Q.top(); Q.pop(); l := l + ci; ci := 0;4

for each ej ∈ Q do5

∆ := min{|S(ej) ∩ S(ei)|, ci};6

if ∆ ≥ cj then7

remove ej from Q;8

else9

cj := cj −∆;10

Update Q;11

return l12

0

C: 2 233

U:

X:

2

C: 120

U:

X:

2 0 000 1

0 000 0

Choose 

Choose

Choose

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

Sets  c1

 c3 Sets 

Sets  c5

Figure 8: Inclusion-exclusion Based Lower Bound

Example 5. Consider the set multi-cover problem in
Figure 8, where U = {e1, e2, e3, e4, e5}, C = {3, 2, 3, 2, 2},
and X = {S1, S2, S3, S4, S5, S6}, where Si ⊆ U . Let S(ei)
denote the sets of {Sj} in X that cover the element ei (i.e.,
ei ∈ Sj), shown as S(e1) = {S1, S2, S3} in the figure. We
construct the priority queue Q = {e1, e3, e2, e4, e5}. Here
e1 is processed first and l = 0 + c1 = 3. The set C is up-
dated accordingly: ∆2 = min{|S(e1) ∩ S(e2)|, c1} = 2. Thus
∆2 ≥ c2, e2 is removed from Q. We have C = {0, 0, 2, 1, 2}
and Q = {e3, e5, e4} after completing the first round. Next,
e3 is processed and l is updated to l = 3 + c3 = 5. Similarly,
we have C = {0, 0, 0, 0, 1} and Q = {e5} after finishing this
round. Then e5 is processed in the next step, and l = 6,
followed by c5 = 0 and Q = ∅. As a result, the lower bound
is Lie = l = 6.

Time complexity. The dominant cost of Algorithm 3 is
the computation of S(ei) ∩ S(ej) at Line 6. With the help
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of the data structure HashMap in c++ STL, we can get
|S(ei) ∩ S(ej)| in |X| × O(1) time, where O(1) is the time
complexity of one search in HashMap. As each S(ei) can be
pre-sorted, the cost is O(|U |2|X|).
Space complexity. As each set S(ei) takes O(|X|) space
at most. Each HashMap takes O(|X|) space. The space
complexity is O(|U ||X|) at most.

Correctness. The following theorem shows the correctness
of the inclusion-exclusion based lower bound computation.

Theorem 2. l obtained in Algorithm 3 is a lower bound
of |I∗|.

Proof. Suppose the set multi-cover problem is related
to U = {e1, e2, e3, . . . , eh}, C = {c1, c2, c3, . . . }, and X =
{S1, S2, . . . }, and the optimal solution for this problem is
I∗. We use S(ei) to denote the sets of {Sj} in X which
contain element ei (i.e., ei ∈ Sj).

We prove the theorem by induction. Suppose the theorem
holds for any U with h− 1 elements, we prove the theorem
holds for any U with h elements. We start from an element
e1 ∈ U : Suppose in the optimal solution I∗, we use l∗1 subsets
to cover e1, apparently, we have l∗1 ≥ c1. Let l∗0 be the
number of subsets to cover all other elements in U \ {e1} in
the optimal solution. So we have |I∗| = l∗1 + l∗0 . Suppose
after selecting l∗1 subsets I∗(e1) to cover e1, other elements
in U need to be covered C∗ = {c∗2, c∗3, . . . } times. We have
c∗2 = c2 − |I∗(e1) ∩ S(e2)|, c∗3 = c3 − |I∗(e1) ∩ S(e3)|, . . . .

For Algorithm 3, firstly, we select l1 subsets to cover e1,
i.e., l1 = c1, apparently, l∗1 ≥ l1. Let l0 be the number of
subsets that we get from Algorithm 3 to cover all elements in
U \{e1}. Thus, l = l1+ l0. Suppose after selecting l1 subsets
to cover e1, the elements in U \ {e1} need to be covered by
C′ = {c′2, c′3, . . . } times, and according to the algorithm, we
have c′2 = c2−|S(e1)∩S(e2)|, c′3 = c3−|S(e1)∩S(e3)|, . . . .
Since I∗(e1) ⊆ S(e1), we have c∗2 ≥ c′2, c∗3 ≥ c′3, . . . .

According to the induction condition, l0 is the lower
bound of the problem with regard to U ′ = {e′2, e′3, . . . , e′h}
with S(e′i) = S(ei) \ S(e1), and C′ = {c′2, c′3, . . . }. We know
that l∗0 is the optimal solution to the problem with regard
to U ′ = {e′2, e′3, . . . , e′h} with S(e′i) = S(ei) \ S(e1), and
C∗ = {c∗2, c∗3, . . . }. Therefore, l0 is also a lower bound of the
problem with regard to U ′ and C∗, i.e., l0 ≤ l∗0 .

Consequently, we have l = l1 + l0 ≤ l∗1 + l∗0 = |I∗|. The
theorem holds.

3.2.4 Putting the lower bounds together
Intuitively, we can use three lower bounds Lg, Lsr and Lie

together and choose the maximal one as the lower bound
at Line 9 of Algorithm 1, i.e., L = max(Lg, Lsr, Lie). How-
ever, as shown in our empirical study, the greedy-based lower
bound Lg is not useful because of its poor performance in
terms of pruning power and computing cost. Thus, we only
use the structure relaxation based lower bound Lsr and the
inclusion-exclusion based lower bound Lie in our implemen-
tation of PSA, i.e., L = max(Lsr, Lie).

3.3 Upper Bound Computation
Any k-core subgraph containing query q can immediately

serve as an upper bound of the optimal solution. Thus, we
may continuously maintain an upper bound s+ at Line 14 of
Algorithm 1 by keeping the smallest size k-core containing
q obtained so far. In this subsection, we present a heuristic
algorithm to find a k-core starting from a partial solution
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Figure 9: Onion Layer Structure, k = 3

P in Algorithm 1. The key idea is to incrementally expand
the partial solution based on the importance of the vertices.
Particularly, we use the concept of the onion layer proposed
in [52] to prioritize the access order. The onion layer can be
regarded as a refinement of the k-shell.

Given a graph G, we use Ck(G) to denote the maximal
k-core of G. The coreness of a vertex u, denoted by cn(u),
is the largest value of k such that u ∈ Ck(G). The k-shell of
G, denoted by Sk(G), is the set of vertices with core number
k, i.e., Sk(G) = Ck(G) \ Ck+1(G).

Coreness has been used to measure the impor-
tance/influence of the vertices in a variety of applications
(e.g., [11, 52]). Given the k-shell Sk(G) of graph G, where
every vertex in Sk(G) has the same coreness value k, the
onion layer further partitions these vertices into different
layers using an onion-peeling-like algorithm. Given the max-
imal k-core Ck(G), we use the Lk,0 to denote the vertices
in Ck(G) which do not satisfy the k + 1 degree constraint,
i.e., Lk,0 = {u | deg(u,Ck(G)) < k + 1}. Then we use Lk,1
to denote the vertices which do not satisfy the k + 1 degree
constraint after removing the vertices in Lk,0. The above
procedure is repeated until Lk,l+1 is empty, and we have
Sk(G) = ∪0≤j≤lLk,j . Through this procedure, each vertex
u ∈ G will be assigned to a unique onion layer Lk,j . Given
any two vertices u and v in onion layers Lk1,j1 and Lk2,j2 re-
spectively, we say u has higher onion layer than v if k1 > k2
or j1 > j2 given k1 = k2.

Example 6. Consider the graph in Figure 1 with k = 3.
The graph itself is a 3-core. We start to peel the graph:
firstly, L3,0 = {v1, v7, v8, v11, v12, v16, v17, v18}, because these
vertices do not satisfy the k + 1 degree constraint. After re-
moving the vertices in L3,0, v4 and v14 do not satisfy the
k+ 1 degree constraint, so we have L3,1 = {v4, v14}; Repeat-
ing the above procedure, we have L3,2, . . . , L3,6 as shown in
Figure 9 because v13 ∈ L3,4 and v1 ∈ L3,0, v13 have a higher
onion layer than v1.

Onion Layer Based Upper Bound. Algorithm 4 illus-
trates details of the onion-layer based upper bound compu-
tation. In Lines 1-6, we sequentially assess the vertices {v}
in partial solution P which still do not satisfy the degree
constraint, i.e., deg(v, P ) < k. For each vertex v, we add
r = k − deg(v, P ) neighbors of v that are not in P with the
highest onion-layer values, denoted by X (Line 4). The par-
tial solution P will be updated accordingly with P := P ∪X
(Line 5). At Line 6, we ensure the resulting subgraph is a
small k-core subgraph by removing the redundant vertices
in P . Note that we say a vertex u 6= q is redundant if every
neighbor v of u in P has deg(v, P ) ≥ k + 1. Algorithm 4
will be terminated if P grows to a k-core subgraph (Line 1),
and P is a minimal k-core since we remove the redundant
vertices. Then P is returned at Line 7, which can serve as
the upper bound of the minimum k-core containing q. Note
that the construction of onion layer is independent to the
query vertex q, which can be pre-computed in O(m + n)
time as shown in [52].
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Algorithm 4: L-Greedy(P )

Input : P : the partial solution
Output : a k-core subgraph containing P
while P is not a k-core subgraph do1

v ← the vertex in P with deg(v, P ) < k ;2

r := k − deg(v, P );3

X ← r neighbors of v not in P with highest4

onion-layer values;
P := P ∪X ;5

remove redundant vertices from P ;6

return P7

Time complexity. For each vertex v accessed at Lines 1-6,
it takes O(dmax log(dmax)) time to find the set X at Line 4,
where dmax is the highest degree in graph G. Meanwhile,
we only need to consider the redundancy for its neighbor
vertices, with cost O(d2max). Therefore, the time complexity
of Algorithm 4 is O(|U | × d2max).

Correctness. The correctness of the algorithm is immedi-
ate because the set P returned is a k-core subgraph.

3.4 Processing Multiple Query Vertices
In addition to one simple query vertex q, it is interesting

to consider to find a minimum k-core subgraph containing a
set of query vertices Q = {q1, q2, ...}, which is also NP-hard.
The PSA algorithm proposed in this paper can be easily
extended to tackle this problem by enforcing every partial
solution to contain all query vertices. The computation of
the lower and upper bounds are the same. Algorithm 1 can
be adjusted as follows.
(i) Replace the input with “PSA(G, k,Q, c)”;
(ii) Replace Line 1 with “if ∃q ∈ Q and q /∈ the maximal
k-core of G then”;
(iii) Replace the initialization (Lines 2-4) part with “(1)
u ← the vertex in Q with the largest id; t ← the (root)
node of search tree T ; t.v = u; (2) Vt ← Q with increasing
order of id(x); s−(t) := GetLower(Vt);Q.push(t); and (3)
R := GetUpper(Vt); s

+ := |R|”.

Time complexity. The time cost of Algorithm 1 is
O(l×(tl+tu)), where l is the number of iterations. The main
difference between the multiple query vertices and one query
vertex is the number of iterations involved and the comput-
ing cost of lower (resp. upper) bounds is the same at each
iteration. Thus, the time cost of updated Algorithm 1 for
multiple query vertices is also O(l × (tl + tu)).

4. EXPERIMENTAL EVALUATION
Algorithms. We mainly evaluate the following algorithms:

• S-Greedy: The state-of-the-art technique [9] for the prob-
lem of minimum k-core search, which is outlined in Sec-
tion 2.2. Authors in [9] kindly provided the source code
implemented by Java and we rewrite it in C++ for fair
comparison of search time.
• L-Greedy: A greedy algorithm which only uses the upper

bound technique proposed in Section 3.3; that is, Algo-
rithm 4 is invoked with partial solution P = {q} and the
resulting k-core subgraph will be returned.
• PSA: The progressive search framework (Algorithm 1) pro-

posed in Section 3.1, equipped with two lower bound tech-
niques Lsr (Section 3.2.2) and Lie (Section 3.2.3) and the
upper bound technique L-Greedy. Note that PSA does

Table 2: Statistics of Datasets
Dataset Nodes Edges davg dmax kmax
Email 36,692 183,831 5.01 1383 43
Epinion 75,879 405,740 5.3 3044 67
Gowalla 99,563 456,830 21.9 9967 43
DBLP 510,297 1,186,302 2.3 340 25
Yelp 249,440 1,781,885 7.1 3812 105
Yeast 12,782 2,007,134 157.1 3322 277
YouTube 1,134,890 2,987,624 2.6 28754 51
Google 875,713 4,322,051 4.9 6332 44
Wiki 2,394,385 4,659,565 1.9 100029 131
Flickr 1,715,255 15,555,041 9.1 27236 568
UK2002 18,483,186 292,243,663 15.8 194955 943
Webbase 118,142,155 1,019,903,190 8.6 816127 1506

Table 3: Comparison for CS solutions on Gowalla

Metrics diameterdegreedensityCCavg. sizeEngage

k-Core 8.12 24.45 0.001 0.32 23196.29 35%
k-Truss 4.61 6.92 0.63 0.33 13020.85 43%
k-Ecc 7.62 25.18 0.02 0.33 22561.75 36%

k-Clique 5.18 15.49 0.38 0.63 15775.21 42%
Graph Clustering 13.87 8.59 0.11 0.32 81232.53 30%

Min k-Core 3.39 10.09 0.37 0.57 52.02 49%

not use the greedy-based lower bound Lg (Section 3.2.1)
due to its poor performance.
• PSA-S: The progressive search framework equipped with

S-Greedy as the upper bound and Lg (Section 3.2.1) as
the lower bound.
• PSA-L: The progressive search framework equipped with

L-Greedy as the upper bound and Lg as the lower bound.

Datasets. Twelve real-life networks are deployed in our
experiments. Yeast is a protein interaction network [39].
Flickr is the network for sharing content [32]. UK2002

and Webbase are downloaded from WebGraph [12]. Yelp

is downloaded from Yelp [48]. The remaining datasets are
downloaded from SNAP [26]. Gowalla is a location-based
social network. Vertices without check-ins are removed.
We transfer directed edges to undirected edges. DBLP is a
co-author network, where each vertex represents an author
and there is an edge between two authors iff they have co-
authored at least 3 papers. Table 2 shows the statistics of
all the datasets.

Parameters and query generation. The default values
for k and c are 10 and 1.8 respectively. In the experiments,
k varies from 5 to 25 and c varies from 4.0 to 1.6. Each
query vertex is randomly selected from the k-core. In each
test, 100 queries are randomly generated and their average
result size or search time is reported. Each computation is
terminated if it cannot finish within half an hour.

All programs are implemented in C++ and compiled with
g++. All experiments are conducted on a machine with
Intel Xeon 2.3GHz CPU running Redhat Linux.

4.1 Effectiveness

4.1.1 Comparison with community search methods
We compare several representative algorithms introduced

in the survey of community search (CS) [21] (i.e., k-Core,
k-Truss, k-Ecc, k-Clique) and the structural graph cluster-
ing [42] with our PSA on Gowalla dataset. For each query
vertex v, the setting of the input k is same to the evalua-
tion in the survey [21], e.g., k is the coreness of v for k-core
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Figure 10: Case Studies on Yeast, k = 5
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(a) Single Query, |Q| = 1
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Figure 11: Average Result Size, k = 10, c = 1.8

and k is the trussness of v for k-Truss. For the clustering
algorithm, the similarity threshold for two nodes is set as
ε = 0.6 (the default value in [42]) and the threshold for
the cardinality of ε-neighborhood is set as µ = cn(v). To
evaluate the result, we use all the quality metrics used in
the survey [21] and two additional important metrics: di-
ameter, average degree, density, clustering coefficient (CC)
and average size of the communities, as well as the user
engagement (Engage). Engage is the proportion of active
users in a community where a user is active if the user has
at least 1 check-in during 2018-08-04T00:00:01 and 2018-08-
10T23:59:59. Note that the chosen query vertices are also
active during this period.

Table 3 shows the scores of the communities returned by
each evaluated method. For PSA, the average size of our
communities is much smaller than the others where the size
is reasonable in real-life. Besides, our k-cores have the best
diameter and Engage scores, benefiting from the k-core con-
straint and the small community size.

4.1.2 Case studies
We compare S-Greedy and PSA (k = 5, c = 1.8) on Yeast

to show different results from two approaches. As shown
in Figure 10(a), S-Greedy returns a large k-core subgraph
where some vertices are not closely connected. Besides, only
32 of the 254 proteins detected by S-Greedy have at least
one common function with the query protein YPR110C. In
Figure 10(b), PSA identifies 7 nearby proteins of YPR110C
where each of these proteins has at least one common func-
tion with the query protein.

To further evaluate the homophily property of vertices in
a minimal k-core subgraph, we compare it with the commu-
nity search methods introduced in Section 4.1.1, in terms of
the common protein functions in the communities. Specif-
ically, we say a community C is homogeneous iff the query
protein has the function f which is the most common func-
tion among all the proteins in C. It can be verified by the
enrichment analysis in David [24]. Table 4 reports the per-

Table 4: Percentage of Homogeneous Communities

Alg.k-Corek-Trussk-Ecck-CliqueGraph ClusteringMin k-Core

% 61% 70% 61% 86% 52% 95%

c=4 c=3 c=2 c=1.8 c=1.6
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Figure 12: Effect of c, k = 10

centage of homogeneous protein communities over all de-
tected communities for each method.

4.1.3 Evaluation on result size
Evaluation on different graphs. Figure 11 reports the
average size ratios of k-core subgraphs returned by S-Greedy ,
L-Greedy and PSA on all the datasets, where k = 10 and
c = 1.8. The average size of the k-cores returned by PSA is
regarded as the base value, i.e., 1. The sizes of the k-core
subgraphs found by S-Greedy and L-Greedy are much larger
than PSA. Regarding result size, L-Greedy outperforms S-
Greedy due to better heuristics. In Figure 11, we also mark
the running time of each setting. Given the benefit of con-
sistently retrieving small size k-cores, it is cost-effective to
apply the PSA algorithm. Given a larger dataset, we ob-
serve that the time cost of PSA is not necessarily higher.
This is because, although the increase of graph size leads
to larger search space, PSA may have a larger possibility to
fast complete the query on a (k− 1)-clique in the search, in
which we only need to explore 1-hop neighbors.

Varying the approximate ratio c. Figures 12 shows the
average sizes of k-core subgraphs returned by PSA on all
the datasets when c varies from 4.0 to 1.6. Note that the
size of a k-core returned by S-Greedy or L-Greedy does not
have a approximation guarantee, and is irrelevant with the
value of c. As expected, the average size decreases when c
became smaller. It implies a reasonable ratio can be applied
to trade-off the efficiency and the quality.

Varying the degree constraint k. Figure 13 reports the
average size of a k-core returned by S-Greedy , L-Greedy and
PSA, by varying k from 5 to 25 on Epinion and Wiki. The
margin of PSA and S-Greedy becomes smaller when the in-
put of k grows, because the size of a k-core from S-Greedy is
related to the size of maximal k-core which decreases with
a larger k, and our PSA performs well on different k. The
margin of PSA and L-Greedy becomes larger when the input
of k grows, because it is harder for L-Greedy to constraint
the size of returned k-core given a larger k.
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Figure 15: Effect of Lower Bounds, c = 1.8

Varying the size of query set |Q|. Figure 14 shows the
results of three algorithms by varying the size of query set
from 2 to 32 on Epinion and Wiki. The average size of
a k-core returned by L-Greedy or S-Greedy is much larger
than PSA. As expected, the minimal k-core found by PSA
becomes larger given more query vertices. Since the mini-
mal k-core returned by S-Greedy is more related to the size
of maximal k-core, the margin between PSA and S-Greedy
becomes smaller with a larger query set.

4.2 Efficiency
Evaluating lower bounds. Figure 15 shows the size of
different lower bounds derived from the lower bound tech-
nique Lg, Lsr and Lie. Note that a large value is preferred
in the evaluation of the lower bound. The performance of
the single Lg is beaten by all the other methods for all the
evaluated settings. This is not surprising because it is dif-
ficult for a greedy algorithm to get a good approximation
due to the factor ln(δ), where δ is the largest size of the
subsets in X (Section 3.2). The bound max{Lg, Lsr} is to
choose the larger one from Lg and Lsr, which outperforms
Lg. As analyzed in Section 3.2, sometimes the lower bound
derived by Lsr is not tight enough, while it can improve
the result from Lg. We further evaluate max{Lg, Lsr, Lie}
which adds Lie to max{Lg, Lsr}. Figure 15 shows that
max{Lg, Lsr, Lie} achieves the best results. It implies
that Lie produces a tighter lower bound, compared with
Lsr. The reason is that Lie considers more information
of the subsets in X. To further validate the effectiveness
of different bounds, we evaluate max{Lg, Lie}. Compared
with max{Lg, Lsr}, max{Lg, Lie} produces a tighter bound.
Considering the computing cost of Lg is expensive, we also
investigate the performance of max{Lsr, Lie}, which shows
similar performance with max{Lg, Lsr, Lie}. Because the
time cost of max{Lsr, Lie} is dominated by Lie, we deploy
max{Lsr, Lie} in our PSA algorithm.

Evaluating Memory Cost. Figure 16 shows the memory
cost of S-Greedy , L-Greedy , and PSA, respectively. The
memory cost gradually grows with a larger graph, because
the graph data dominates the memory cost. For instance,
when the edge number of a graph is larger than 3M , the
memory cost of three methods is almost the same.

Evaluation on different graphs. Figure 17 shows the
time cost of PSA-S, PSA-L and PSA, respectively, when k =
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Figure 17: Performance of PSA, k = 10, c = 1.8

10 and c = 1.8. PSA-L always outperforms PSA-S because
the upper bound technique L-Greedy can better reduce the
size of the resulting k-core subgraphs, compared with S-
Greedy . As shown in Figure 15, the combination of Lsr

and Lie performs better than Lg. Thus, in Figure 17, PSA
outperforms PSA-L in all the settings, benefiting from the
superior upper bound technique (L-Greedy) and two lower
bound techniques Lsr and Lie.

Varying degree constraint k. Figure 18 shows the aver-
age running time of the three algorithms when k varies from
5 to 25. Similar to Figure 17, PSA-L always outperforms
PSA-S . The increase of degree threshold k may affect the
time cost in two ways: (1) more vertices need to be explored
s.t. the runtime increases; and (2) the number of candidate
vertices decreases because the size of maximal k-core be-
comes smaller s.t. the runtime decreases. In Figure 18(a),
(1) dominates the effect on different k. In Figure 18(b),
when k > 10, (2) becomes the major effect for different k
values. Thus, the trend of a larger input of k is different on
different settings.

Varying the approximate ratio c. Figure 19 shows that
PSA is the most efficient among the three algorithms, and
PSA-L consistently outperforms the PSA-S , given different
values of c. With a relatively large c, PSA can find a proper
result in a reasonable time. For example, when c = 4.0,
the time cost of PSA-L or PSA on Epinion is less than 100
seconds. The size of the resulting k-core can be smaller if
we allow more time cost for the algorithm, which leads to a
trade-off between result quality and efficiency.
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Figure 19: Varying c, k = 10
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Varying the query size |Q|. Figure 20 shows that PSA
outperforms PSA-L and PSA-S when |Q| varies from 2 to
32 on Wiki. PSA-S performs the worst due to the limited
performance of its upper/lower bound techniques. Given
a larger query set, both the upper bound and the lower
bound values may increase while usually the lower bound
has a larger increase ratio due to its smaller value. Thus,
the runtime of PSA decreases with a larger query set Q.

Scalability evaluation on Webbase. We randomly sample
vertices from 20% to 100% in the original graph. For each
sampled vertex set, we obtain the induced subgraph of the
vertex set as the input data. Figure 21 shows the running
time of PSA-S , PSA-L and PSA under different percentages,
respectively. It shows that the growth of running time of
the algorithms are not very significant with respect to the
growth of the graph size. Although the increase of graph size
leads to larger search space, we may have a higher chance to
quickly end up the query with a (k−1)-clique in the search,
in which we only need to explore 1-hop neighbors.

Evaluating different kinds of queries. We compare the
efficiency of our PSA algorithm for three kinds of query ver-
tices: Hubs, Nonhubs, and Random. Hubs contains the hub
vertices which are the top 10% vertices of the k-core w.r.t
the vertex degree in k-core. Nonhubs contains the other 90%
vertices in the graph. Random is to randomly choose query
vertices from the k-core. We randomly select 100 vertices
from each category. Figure 22 shows that the running time
for queries on Hubs is much faster, because the query on hub
vertices is more likely to quickly end up with a clique, in
which only direct neighbors need to be accessed. Queries on
Random are faster than queries on Nonhubs because there
are both hub and non-hub vertices in Random.

5. RELATED WORK
k-Core. The model of k-core [35] is widely used in many
applications, such as social contagion [40], community dis-
covery [50, 51], user engagement [52, 54], hierarchical struc-
ture analysis [4], influence studies [25], dense subgraph prob-
lems [6, 15], graph visualization [3, 56], event detection [31],
anomaly detection [36], and protein function prediction [2,
46]. Batagelj and Zaversnik [10] design a linear in-memory
algorithm to derive core numbers of vertices in a graph. Wen
et al. [43] and Cheng et al. [17] present I/O efficient al-
gorithms for core decomposition. Locally estimating core
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Figure 22: Different Query Types, k = 10, c = 1.8

numbers is studied in [33]. Several papers study the dy-
namic of k-core against edge addition or deletion [1, 27, 55,
57].

Cohesive subgraph search. The aim of the cohesive sub-
graph search is to find subgraphs that contain a set of query
nodes, in which the nodes are intensively connected to the
others with respect to a particular goodness metric. k-core
is one of the popular model to capture the structural cohe-
siveness of a subgraph. Some existing works [37, 18, 9] have
been proposed to find the small size k-core subgraphs with
different search heuristics. However, they cannot guarantee
the size of the returned k-core subgraph. Thus, the k-core
subgraph identified may be very large in practice.

Recently, Ma et al. [29] studied the size constrained k-
core search problem, which is to find a k-core with exact
size h and the smallest closeness among all size h subgraphs
containing a query vertex on a weighted graph. This model
is suitable to applications when the cohesive subgroup size is
pre-fixed. Note that it is infeasible to apply this technique to
minimum k-core search since the problem itself is also NP-
hard and it is difficult to find a proper size to start with.

In addition to k-core, other cohesive models such as k-
truss, k-clique and k-ecc are investigated in the context of
local community search [23, 49, 14]. Please refer to [21] for
a recent survey.

6. CONCLUSION AND DISCUSSION
In this paper, we investigated the problem of the mini-

mum k-core search which aims to find the smallest k-core
subgraph containing the query vertex set. Some existing
studies on this problem are based on greedy heuristic fol-
lowing a variety of scoring functions, while they cannot pro-
vide any theoretical guarantee on the quality of the results.
Motivated by these issues, we propose a progressive search
algorithm PSA, based on novel lower and upper bound tech-
niques. The proposed algorithm achieves a good trade-off
between the quality of the result and the search time. Our
extensive experiments on 12 real-life graphs demonstrate the
effectiveness and efficiency of our proposed techniques.

In addition to minimal k-core, our progressive framework
and lower/upper bound techniques may shed light on the
search of other minimal cohesive subgraphs. For instance,
the computing framework can be adopted to find the min-
imal k-truss or k-ecc. The size bounds of k-core proposed
in this paper may inspire the bounds for other models to
reduce the search space as well.
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