
Learning to Sample: Counting with Complex Queries∗

Brett Walenz, Stavros Sintos, Sudeepa Roy, and Jun Yang
Duke University

Durham, NC, USA
{bwalenz, ssintos, sudeepa, junyang}@cs.duke.edu

ABSTRACT
We study the problem of efficiently estimating counts for queries
involving complex filters, such as user-defined functions, or pred-
icates involving self-joins and correlated subqueries. For such
queries, traditional sampling techniques may not be applicable due
to the complexity of the filter preventing sampling over joins, and
sampling after the join may not be feasible due to the cost of com-
puting the full join. The other natural approach of training and
using an inexpensive classifier to estimate the count instead of the
expensive predicate suffers from the difficulties in training a good
classifier and giving meaningful confidence intervals. In this paper
we propose a new method of learning to sample where we com-
bine the best of both worlds by using sampling in two phases. First,
we use samples to learn a probabilistic classifier, and then use the
classifier to design a stratified sampling method to obtain the fi-
nal estimates. We theoretically analyze algorithms for obtaining
an optimal stratification, and compare our approach with a suite of
natural alternatives like quantification learning, weighted and strat-
ified sampling, and other techniques from the literature. We also
provide extensive experiments in diverse use cases using multiple
real and synthetic datasets to evaluate the quality, efficiency, and
robustness of our approach.

PVLDB Reference Format:
Brett Walenz, Stavros Sintos, Sudeepa Roy, Jun Yang. Learning to Sample:
Counting with Complex Queries. PVLDB, 13(3): 389-401, 2019.
DOI: https://doi.org/10.14778/3368289.3368302

1. INTRODUCTION
Counting is a fundamental problem in query processing. Count-

ing queries can be expensive to evaluate, especially if it involves
testing a complex predicate to decide whether an object should be
counted towards the total. Consider the following example.

∗This work was supported by NSF grants CCF-1513816, CCF-1546392,
IIS-1408846, IIS-1552538, IIS-1703431, IIS-1718398, IIS-1814493, NIH
grant 1R01EB025021-01, ARO grant W911NF-15-1-0408, and a Google
Faculty Award. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3368289.3368302

EXAMPLE 1 (COUNTING POINTS WITH FEW NEIGHBORS).
Suppose table D(id, x, y) stores a set of 2d points, and we would
like to count how many points have fewer than k points within dis-
tance d from them. We can write the following SQL query:

SELECT COUNT (*) FROM
(SELECT o1.id FROM D o1, D o2
WHERE SQRT(POWER(o1.x-o2.x,2)+ POWER(o1.y-o2.y,2))<=d
GROUP BY o1.id HAVING COUNT (*) <= k);

Here, the objects to be counted are produced by a self-join with
a complex condition, followed by GROUP BY and HAVING. This
“neighborhood” query has been well studied, with specialized in-
dex structures and processing algorithms. Still, there is a good
chance that a typical database system will perform poorly, either
because it has no specialized support for this query type, or it sim-
ply fails to recognize this query type from the way the query is
written. Thus, making such queries run faster can require a lot of
effort and expertise. There are even more complex cases involv-
ing expensive user-defined functions commonly found in machine
learning workloads. The problem we tackle in this paper is how to
evaluate counting queries efficiently, and in a general way.

Approximate answers are widely accepted for such expensive
counting queries. Sampling is a powerful technique for producing
approximate answers with statistical guarantees, with a long tradi-
tion and active research of its applications in databases. Yet sam-
pling for complex queries remains a difficult problem. In general,
not all query operators “commute” with sampling. For instance, in
Example 1, if we only take a sample of D and evaluate the query
on this sample, it would be difficult to make sense of the result be-
cause even the neighbor counts produced by the inner aggregation
query would be off to begin with. Worse, if the predicate involves
a black-box function with table inputs, we cannot expect sampling
input tables to produce usable results.

Still, a viable approach is to conceptually treat the problem as
counting the number of objects satisfying a predicate, where the
objects can be enumerated or sampled efficiently, but the predicate
is complex and expensive (e.g., involving user-defined functions or
arbitrarily nested subqueries). We would sample some objects for
which we evaluate the predicate “in full,” and then use these results
to derive an estimate. For instance, in Example 1, given a point o1
from D, the predicate would be a query over (full) D parameterized
by the values of o1.x and o2.x. Of course, evaluating the predicate
in full for each sampled object can be expensive, but evaluating the
original query as a whole can be much worse—there may be no
better way for the database systems to process this query than a
nested-loop join. While this sampling-based approach is simple
and general, a question is whether we can make it more efficient.

Machine learning is another natural approach to this problem.
It has the potential of being more “sample-efficient” because of

390

its ability to generalize to unseen objects. One could draw some
samples, pay the cost to “label” them (i.e., evaluate the expensive
predicate), and use the labeled samples to learn a cheap classi-
fier that approximates the result of the expensive predicate. The
learned classifier can then be applied to objects to obtain an esti-
mated count. Beyond this naive approach, we can apply ideas from
quantification learning [6]. However, some difficulties remain: it is
hard to offer meaningful statistical guarantees (such as confidence
intervals provided by sampling), and training a good classifier can
be difficult and tricky itself (e.g., with challenges such as feature
and model selection as well as overfitting).

A natural question is whether we can combine learning and sam-
pling to get the “best of both worlds”: we want the ability to gener-
alize by learning, but at the same time we want the statistical guar-
antees offered by sampling. This paper answers this question in
positive. One idea is to use sampling to assess the errors produced
by the learned classifier and correct its estimated count. We also
provide a novel alternative that “learns to sample.” The key idea
here is not to rely directly on the learned classifier’s predictions,
but instead exploit the classifier’s knowledge in a more controlled
manner by using it to design a sampling scheme. Then, we apply
the sampling scheme to derive our estimates, complete with statis-
tical guarantees. A good classifier leads to an efficient sampling
scheme that uses few samples to get low-variance estimates; on the
other hand, a poor classifier can lead to a less efficient sampling
scheme that needs more samples to achieve the same accuracy, but
we will always have unbiased estimates with confidence intervals.

Specifically, we make use of the scores produced by classifiers
that reflect how confident they are in their predictions. Such scores
are readily available for popular classification methods in standard
libraries. A straightforward method is learned weighted sampling,
which assigns higher sampling probabilities to objects that are more
confidently predicted to contribute to the result count. This method
is still sensitive to the scores produced by the classifiers, and tends
to focus more on confidently positive objects instead of uncertain
objects—but arguably, uncertain objects intuitively provide more
information when labeled.

Hence, we further propose learned stratified sampling, which re-
lies even less on the quality of the classifier. Instead of using the
values of the scores, we use the scores only to induce an order-
ing among the objects. Based on this ordering, and with help from
some additional samples, we find the optimal stratified sampling
design that jointly considers the partitioning of objects into strata
and the allocation of additional samples across strata. The score-
induced ordering is useful because it brings together objects with
similar levels of uncertainty, and in particular encourages putting
the certainly positive objects and certainly negative objects into
separate strata with low within-stratum variances. The sampling
design problem is challenging because of joint consideration of
stratification and allocation; we propose algorithms for this opti-
mization problem with trade-offs between speed and optimality.

Our experiments show that our learn-to-sample approach gener-
ally outperforms approaches that are based on either sampling or
learning alone, or those that apply sampling only to error assess-
ment and correction. We achieve unbiased estimates with lower
variances than other approaches, and in practice, the overhead of
learning and sampling design is negligible compared with the to-
tal cost of evaluating expensive predicates on samples. Moreover,
learned stratified sampling delivers robust performance even with
poor classifiers. Finally, a key practical advantage of our learn-
to-sample approach is that it is easy to implement: its constituent
learning and sampling components are available off-the-shelf, so
we readily benefit from both the classic sampling literature and a

growing toolbox of classification algorithms. For example, for our
experiments, we were able to apply standard classification algo-
rithms out-of-box with very little tuning, thanks to the robustness
of the learn-to-sample approach.

2. PROBLEM DEFINITION
Consider a set of objects O, and a Boolean predicate q : O →
{0, 1}, where 1 denotes true. We say an object o is positive if
q(o) = 1, or negative if q(o) = 0. Our goal is to estimate C(O, q),
the number of positive objects in O; i.e., C(O, q) =

∑
o∈O q(o).

In general, each object o can have a complex structure (with mul-
tiple attributes including set-valued ones), and q(o) can be arbitrar-
ily complex (e.g., accessing related information beyond the con-
tents of o, comparing o with other objects in O, etc.).

We make two assumptions: 1) evaluation of q is costly; 2) mem-
bers of O can be efficiently enumerated. The terms “costly” and
“efficient,” of course, are relative. While the techniques in this pa-
per do not depend on these assumptions for correctness, our pro-
posed approach is intended for situations where these assumptions
hold. For example, a costly q would make it attractive to use sam-
pling to avoid evaluating q for all objects, or to use a learned model
that predicts the outcome of q at a lower cost.

It should be obvious that the problem formulation above han-
dles single-table selection queries whose conditions potentially in-
volve expensive user-defined functions. The problem formulation
is also general enough to capture more complex queries. The first
example below illustrates the case where q is a complex SQL con-
dition involving an aggregate subquery; the second illustrates the
case where q involves a black-box function.

EXAMPLE 2 (k-SKYBAND SIZE). Consider a set of 2d points
in table D(id, x, y). A point p1 dominates another point p2 if p1’s
x and y values are (resp.) no less than those of p2 (i.e., p1.x ≥
p2.x ∧ p1.y ≥ p2.y), and at least one of them is strictly greater
(i.e., p1.x > p2.x∨ p1.y > p2.y). The so-called k-skyband for the
point set D is the subset of points that are dominated by fewer than
k others. Given o ∈ D, we define q(o) to test its membership in the
k-skyband using the following SQL condition:
(SELECT COUNT (*) FROM D
WHERE x >= o.x AND y >= o.y AND (x>o.x OR y>o.y)) < k

Note that this predicate involves an aggregate subquery parame-
terized by o. The number of points in the k-skyband is then the
number of points satisfying q. Here, object enumeration is efficient
(just scan D), while predicate evaluation is costly in comparison
(without specialized indexes).

Alternatively, we can write the whole k-skyband size query using
a self-join and nested aggregation, without explicitly referring to q:
SELECT COUNT (*) FROM
(SELECT o1.id FROM D o1, D o2
WHERE o2.x >= o1.x AND o2y >= o1.y

AND (o2.x > o1.x OR o2.y > o1.y)
GROUP BY o1.id HAVING COUNT (*) < k);

EXAMPLE 3 (RELEVANT DOCUMENT COUNT). Consider a
set of documents in table D(id, text). Each document, based on
the content of its text, can be associated with zero or more labels
from a predefined set of labels of interest. For example, during elec-
tronic discovery for a legal proceeding, D can be a set of emails and
documents, and one such label may indicate whether a document is
in support of or against a particular action. Let labels(text) de-
note a function that examines a document and returns the subset of
labels that it is associated with. We mark a document as highly rel-
evant if it is associated with at least k labels. The following query
returns the number of highly relevant documents:

391

SELECT COUNT (*) FROM D o
WHERE len(labels(o.text)) >= k;

Here, q is the WHERE predicate, but it involves a complex black-
box function labels whose evaluation can be very expensive. For
example, if labels are highly specialized for a given proceeding,
there may not exist good automated labeling procedures and we
would have to evaluate labels manually. In general, the predicate
that determines whether a document is relevant can be even more
complicated than counting how many labels it is associated with,
but our problem formulation and solutions are designed to work
with arbitrarily complicated q.

Handling More General SQL Queries An observant reader will
notice the similarity between the last query in Example 2 and the
one counting points with few neighbors in Example 1. Despite the
latter query’s lack of an explicit per-object predicate, it is not hard
to see that we can define q(o) for o ∈ D as the following com-
plex SQL condition involving an aggregate subquery (analogous to
Example 2 above):

(SELECT COUNT (*) FROM D
WHERE SQRT(POWER(o.x-x,2)+ POWER(o.y-y,2)) <= d) <= k

More generally, suppose we are interested in counting the num-
ber of results for the following SQL aggregate query:

SELECT E FROM L,R -- (Q1)
WHERE θL AND θLR

GROUP BY GL HAVING φ;

In the above, GL is the list of group by columns, L denotes the list
of tables with columns in GL, and R denotes the list of other tables
in the join with no group-by columns; θL refers to the part of the
WHERE condition that be evaluated over L alone, θLR refers to the
remaining part of the WHERE condition, and φ refers to the HAVING
condition; finally, E is the list of output expressions for each group.
The problem of counting the number of results can be formulated
by defining the set O of objects as:

SELECT DISTINCT GL FROM L WHERE θL; -- (Q2)

and the predicate q(o) as:

EXISTS(SELECT GL FROM L, R -- (Q3)
WHERE θLR AND GL=o.*
GROUP BY GL HAVING φ)

Again, the key takeaway is that our problem formulation is general
enough to support complex queries involving joins and aggregates
(besides the final counting). Our approach works well as long as
the set of objects is cheap to enumerate (i.e., the local selection θL
in (Q2) is easy to evaluate), while the per-object predicate (Q3) is
relatively more expensive (which is usually the case because of join
and aggregation).

3. BASELINE METHODS
We present a number baseline methods for estimating C(O, q).

While these methods are not new, we note that some connections to
our problem (e.g., quantification learning and sampling-based data
cleaning) have never been made explicit or evaluated previously.

3.1 Sampling-Based Methods
Simple Random Sampling (SRS) The problem of estimating
C(O, q) using sampling has been studied extensively in the con-
text of estimating proportions [24]. A straightforward method is
simple random sampling (SRS). Let S ⊆ O denote the set of n
objects drawn randomly without replacement from the set O of all

N objects. For each o ∈ S, we evaluate q(o). Then, an unbi-
ased estimator of C(O, q) is p̂N , where the estimated proportion
p̂ = 1

n

∑
o∈S q(o). There are a number of ways to derive a confi-

dence interval for this estimation. The most popular one is the Wald
interval, which approximates the error distribution using a normal
distribution: the (1− α) confidence interval for p̂ in this case is

p̂± zα/2
√

p̂(1−p̂)
n
· N−n
N−1

.

The usual caveats apply: if q is highly selective or highly non-
selective, the Wald interval is unreliable because normal distribu-
tion approximation fails; one can use the more reliable Wilson in-
terval instead. See standard sampling literature [24] for details.
Stratified Sampling (SSP and SSN) Stratified sampling is a
method that works especially well when the overall population can
be divided into subpopulations (strata) where objects are homoge-
neous within each stratum. For example, if there is a way to divide
O into two strata where one contains mostly positive objects and
the other contains mostly negative objects, we can sample the two
strata independently and use much fewer samples overall than SRS
to achieve the same confidence interval. The problem, of course, is
that we do not know the outcome of each q(o) unless we first eval-
uate it. A practical solution is to choose some attributes of o whose
values are readily available and likely correlated with the outcome
of q(o); we can then stratify O according to these surrogates. In
our case, a natural choice for surrogates would be the attributes of
o used in computing q(o); e.g., for Example 1, we would choose x
and y and grid the 2d space into the desired number of strata.

Suppose we are given a partitioning of O into H strata O1,O2,
. . . ,OH , where Nh = |Oh| denotes the size of each stratum
h, and an allocation of samples n1, n2, . . . , nH , where nh is the
number of samples allotted to stratum h. Stratified sampling ran-
domly draws the allotted number of samples from each stratum;
denote these samples by S = ∪Hh=1Sh, where nh = |Sh|. For
each stratum h, using Sh, we can derive an unbiased estimator
for the proportion p̂h of positive objects therein (as described for
SRS above). Then, an unbiased estimator of C(O, q) is p̂N ,
where p̂ =

∑H
h=1 Whp̂h is the estimated overall proportion and

Wh = Nh/N is the weight of stratum h. The variance in p̂ is

Var(p̂) =
∑H
h=1

W2
hS

2
h

nh
− 1

N

∑H
h=1 WhS

2
h, (1)

where Sh is the standard deviation of stratum h (i.e., of the mul-
tiset {q(o) | o ∈ Oh}). The (1 − α) confidence interval for p̂ is
p̂± tα/2

√
V̂ar(p̂),n where V̂ar(p̂) is an unbiased estimate of Var(p̂)

computed using (1) with S2
h substituted by an unbiased estimate

from Sh. See standard sampling literature [24] for details.
A simple strategy is proportional allocation, where the number

of samples allotted to each stratum is proportional to its size, i.e.,
nh ∝ Nh. We refer to stratified sampling with proportional alloca-
tion as SSP. A more sophisticated alternative, Neyman allocation,
optimally allocates samples according to nh ∝ NhSh, which min-
imizes Var(p̂). We refer to this alternative as SSN. In practice, as
we do not know Sh in advance, SSN proceeds in two stages:

1. Randomly draw a set SI of samples to evaluate q with, and
use them to derive an estimate of Sh for each stratum h. Then
calculate the Neyman allocation using these estimates.1

2. Randomly draw the allotted number of samples from each
stratum.

1Standard caveats apply: given the desired total number of samples, we
ensure that no stratum is allotted more samples than it contains, and that
no stratum is allotted fewer than a prescribed minimum number of sam-
ples (even if its estimated standard deviation is close to 0); we do so by
rebalancing the allocation after meeting these constraints.

392

3.2 Learning-Based Methods
Since q is expensive to evaluate, it is natural to consider learning

a binary classifier f : O → {0, 1} to approximate the behavior of
q. We can draw a random sample S from O, evaluate q on them to
obtain the ground truth, and then use the results to train the classi-
fier. The classic classification problem strives to classify each input
object correctly, but for our problem, we are concerned only with
the number of objects whose ground-truth labels are 1. The result-
ing problem is an instance of quantification learning [6], whose
goal is to estimate the class distribution as opposed to individual
labels. While specialized algorithms are possible, it is appealing to
adapt classic classification algorithms for quantification learning,
thereby leveraging a rich palette of mature techniques. In this sec-
tion, we first explore how, given a classifier f that approximates q,
we can use quantification learning to estimate C(O, q).

We will not delve into specific classification algorithms here, be-
cause they are not this paper’s focus; our methods can work with
any of them. For feature selection, we use a simple heuristic that
selects the attributes of o referenced in q, e.g., columns of L refer-
enced by θLR in (Q1) (Section 2). We also note that training can be
improved by active learning [6]; for additional discussion, please
see the full version of this paper [25].

Classify-and-Count (QLCC) A straightforward and natural ap-
proach is Classify-and-Count [6], which we refer to as QLCC.
Suppose we randomly select S ⊆ O as training data and let
CS = C(S, q) denote the count of positive objects therein. Af-
ter learning f from S, we evaluate f(o) for each “test object”
o ∈ O\S. Let Cobs =

∑
o∈O\S f(o) denote the “observed count”

of f over the test data. We simply return Cobs + CS as the esti-
mate for C(O, q). Should the classifier be accurate over the test
data, this estimate will be accurate as well. However, it should be
clear that QLCC is susceptible to classification errors and can pro-
duce wildly skewed estimates when false positive/negative counts
are imbalanced.

Adjusted Count (QLAC) To mitigate this problem, a recom-
mended approach is Adjusted Count [6], which we refer to as
QLAC. The basic idea is to further adjustCobs using the rates of true
and false positives estimated empirically from the training data. In
more detail, we use k-fold cross validation on the samples S to
compute t̂pr and f̂pr , the estimated true and false positive rates,
respectively. Then, we obtain an “adjusted count” Cadj of f over
the test data by adjusting the observed count Cobs as follows2:

Cadj =
Cobs − f̂pr · |O\S|

t̂pr − f̂pr
. (2)

Finally, we return Cadj + CS as the estimate for C(O, q).

3.3 Learning with Sample-based Correction
One idea for combining learning and sampling is to follow

QLCC (Classify-and-Count) with another phase, where we ran-
domly sample additional objects, evaluate q on them, assess the
errors in the learned classifier f , and correct the result of Classify-
and-Count accordingly. We call this method QLSC, for “quantifi-
cation learning with SampleClean,” as it is inspired by the work

2To see why, note that the proportion p̂ of “observed positive” objects in the
test data can be computed by p̂ = p·tpr+(1−p)·fpr , where p denotes the
actual positive proportion, and tpr and fpr are the true and false positive
rates. We can solve for p, and note that multiplying p̂ and p by the size of
the test data yields the observed and actual counts. Replacing tpr and fpr
with their estimates then gives us (2).

of [26] on using sampling for data cleaning.3 More precisely, recall
that QLCC samples S ⊂ O, learns f , and estimates the positive
count over remaining objects as Cobs =

∑
o∈O\S f(o). QLSC

then proceeds with drawing (uniformly at random) another set S ′
of objects from O \ S, and for each o ∈ S ′ computes the error
f(o) − q(o). The average error ε̂ over S ′ gives an unbiased esti-
mator for the average error overO \S, so we can correct the count
over O \ S as Cobs − ε̂|O \ S|. Adding CS (positive count in S)
yields the overall estimate. Confidence intervals can be derived as
in Section 3.1 because the second phase of QLSC is basically SRS.

QLSC is similar to QLAC (Section 3.2) in that both seek to cor-
rect the result of QLCC by assessing its errors on labeled samples.
However, QLAC produces only a point estimate while QLSC can
provide confidence intervals.

4. LEARNING-TO-SAMPLE METHODS
In the previous section, we have seen how sampling and learning

can be applied to problem of estimating C(O, q). Learning is at-
tractive for its ability to “generalize” knowledge of q to unsampled
objects, but it does not offer the guarantees provided by sampling
(e.g., confidence intervals), and its accuracy depends heavily on
the quality of the classifier it learns. A natural question is whether
we can combine learning and sampling to get the “best of both
worlds.” QLSC (Section 3.3) represents a baseline approach to-
wards this goal: it uses sampling to correct the count predicted by
the classifier, but its sampling scheme does not take advantage of
the learned model in any way, and a poor classifier would result in
a poor starting point.

This section proposes two methods that combine learning and
sampling more effectively. Both methods proceed in two phases.
The first phase is learning, and is identical for the two methods:
we randomly sample objects, evaluate q on them, and train a binary
classifier, as we did in Section 3.2. However, we are not going to
use this classifier to get a count (as a starting point or otherwise).
Instead, we assume that the classifier provides a scoring function
g : O → [0, 1]: if g(o) = 1 (or 0), the classifier is totally confident
in predicting q(o) to be 1 (or 0, resp.); a value strictly between 0 and
1, on the other hand, indicates uncertainty (e.g., 0.5 means a toss-
up). For some classifiers (e.g., random forest), one can intuitively
interpret g(o) as the probability that q(o) = 1, but in general, g(o)
may not have a probabilistic interpretation. Regardless, the scoring
function g gives us a way to gauge the certainty in the predicted
labels. We assume that, compared with q, g is cheap to evaluate (in
practice it is often a byproduct of classification).

The second phase is sampling, but differs between the two meth-
ods. The first method, Learned Weighted Sampling (LWS), is the
more straightforward one of the two. Treating g(o) has a guess of
how much each object o contributes to C(O, q), LWS samples ob-
jects with higher g(o) with higher probability. The second method,
Learned Stratified Sampling (LSS), uses g to guide the partition-
ing of objects into strata, with the goal of reducing the variance of
estimates using stratified sampling.

3While SampleClean [26] deals with the different problem of evaluating
aggregates over dirty data, its techniques can be adapted to our quantifi-
cation learning setting by conceptually regarding the labels produced by
the learned classifier as dirty data; “cleaning” a dirty label involves sam-
pling the object and paying the cost of evaluating q. Specifically, QLSC
corresponds to their NormalizedSC technique, which corrects the aggregate
result computed over dirty data using the errors observed on data randomly
selected for cleaning. Their RawSC technique, which randomly cleans data
and estimates the result from only the cleaned labels, basically corresponds
to the sampling-based baseline methods in our Section 3.1.

393

The novelty of these two methods lies in their use of learning to
inform sampling. Thanks to sampling, we still get accuracy guar-
antees in the form of confidence intervals. At the same time, we get
the benefit of learning without relying on it for correctness. A good
classifier leads to more efficient sampling designs; on the other
hand, a poor classifier leads to a less efficient sampling design, but
we still have unbiased estimates with confidence intervals. As we
will see, between the two methods, LSS is even more robust and
less dependent on the quality of the learned classifier than LWS.

The remainder of this section describes the second phase for
these two methods in detail. Let SL denote the samples used in
the first phase for learning a classifier with scoring function g. We
now focus on estimating C(O \ SL, q) in the second phase. In the
following, we will abuse notation for simplicity: we shall refer to
O \ SL simply as O instead, and let N = |O|.

4.1 Learned Weighted Sampling
The second phase of LWS can be seen as a form of probability-

proportional-to-size (PPS). In general, PPS relies on a “size mea-
sure” that is believed to be correlated to the variable of interest.
Objects with large size measures are deemed more important in es-
timation; hence, objects are drawn with probabilities proportional
to their size measures. In our case, the variable of interest is the
result of q(o), so the learned g(o) can serve as the size measure.
However, to guard against an overconfident (and potentially inaccu-
rate) classifier, we adjust the sampling probabilities so every o has
some chance of being sampled (even if g(o) = 0). Specifically, we
assign each o an initial sampling probability π(o) ∝ max(g(o), ε),
where ε > 0 is a (small) prescribed threshold. We then sample
objects from O according to π without replacement, evaluate q on
the sampled objects, and estimate C(O, q).

There are a number of estimators available from the litera-
ture [14], including the popular Horvitz-Thompson estimator. We
use the Des Raj estimator, whose calculation is simpler and can
provide “ordered” estimates, i.e., running estimates of mean and
variance as samples are being drawn. Let o1, o2, o3 . . . denote the
sequence of objects drawn according to π without replacement.
We compute the following quantity after drawing each oi (with the
summations below yielding 0 in case of i = 1):

pi = 1
N

(∑i−1
j=1 q(oj) + q(oi)

π(oi)

(
1−

∑i−1
j=1 π(oj)

))
. (3)

The estimate for C(O, q) after drawing the n-th sampled object
would be p̂(n)N , where the estimated proportion p̂(n) of positive
objects is simply the average of all pi’s so far:

p̂(n) = 1
n

∑n
i=1 pi.

And the variance in p̂(n) can be estimated as follows:

V̂ar(p̂(n)) = 1
n(n−1)

∑n
i=1(pi − p̂(n))2.

LWS is very efficient when the learned classifier is accurate and
confident. To see why, suppose the true proportion of positive ob-
jects in O is p. For an accurate and confident classifier, assum-
ing an arbitrarily small ε, π(o) would be arbitrarily close to 0 if
q(o) = 0, or 1

pN
otherwise. Therefore, each sampled object oi will

have q(oi) = 1 and π(oi) = 1
pN

. Plugging these into (3) and sim-
plifying the equation yields pi = p for all i, so the estimate p̂(i) at
every step will be perfectly accurate.

On the other hand, LWS’s efficiency can suffer with a poor clas-
sifier. Even though it still produces unbiased estimates (regardless
of the choices of π(o)’s), it may require many more samples to
achieve a tight confidence interval if it gets the priorities wrong.

Another indication that LWS may not be best for our setting is
its preference for objects with high g(o). Intuitively, focusing in-
stead on objects with g(o) in the toss-up range reveals more infor-
mation. Note that traditionally, PPS applies to the more general
setting where the variable of interest can be of any value; hence, it
is natural to focus on objects with potentially higher contribution
to the result. In our setting, however, the value of interest, q(o), is
either 0 or 1. This limited range makes our problem easier, as we
do not need to worry about cases where inclusion or exclusion of
objects with extremely high values can seriously impact the esti-
mates. At the same time, this more constrained setting also enables
the possibility for better sampling designs, which we explore next.

4.2 Learned Stratified Sampling
As discussed in Section 4.1, the quality of the learned classifier

can adversely impact the efficiency of LWS, because the values of
scoring function g directly control the sampling probabilities. We
now present LSS, which uses g more conservatively, and in a way
that naturally encourages exploration of uncertain outcomes (as op-
posed to certain positives).

Following the learning phase, LSS conceptually sorts the objects
in O by g (say, in increasing score order). At a high level, LSS
applies stratified sampling to O, where stratification is done ac-
cording to this ordering; i.e., each stratum covers objects whose g
scores fall into a consecutive range. More specifically, the second
phase of LSS proceeds in two stages:

1. Randomly draw SI ⊆ O to evaluate q, and use the results
to design a sampling scheme for the second stage—namely,
the partitioning of O into strata as well as an allocation of
second-stage samples among these strata.

2. Randomly draw SII ⊆ O \ SI to evaluate q, according to
the sampling scheme designed by the first stage, and use the
results to estimate C(O, q).

Several points are worth noting:
(Versus LWS) While LWS uses the actual g values in its sampling

design, LSS uses only the ordering of g values among ob-
jects. Hence, LSS relies less on the learned classifier. We
will validate this observation with experiments in Section 5.
On the other hand, the ordering induced by g is useful to
LSS because it intuitively brings together objects with simi-
lar levels of uncertainty, and in particular encourages putting
the confidently positive objects and confidently negative ob-
jects into separate strata with low within-stratum variances.

(Versus Basic Stratified Sampling) While the second phase of LSS
uses stratified sampling, this phase differs from the baseline
methods in Section 3.1 in important ways: (i) stratification
in LSS is based on the learned g instead of surrogate object
attributes; (ii) LSS uses SI to jointly design stratification and
allocation; in contrast, SSN only uses SI to design allocation
(given stratification), while SSP does not have a first stage.

(Samples in Learning and Sampling Phases) The samples we
draw in the sampling phase of LSS (SI ∪ SII above) are
separate from those drawn in the learning phase. Since the
samples from the learning phase already affect (through the
learned g) the ordering of O for stratification, we choose to
use new, independent samples (SI) for sampling design in
order to minimize reliance on the classifier quality.4

The remainder of this section discusses how we design the sam-
pling scheme for the second stage in detail. Formally, we de-
fine the design problem as follows. Consider an ordered set O
of objects o1, o2, . . . , oN ordered by g with ties broken arbitrarily,
4As future work, it would be interesting to investigate safe reuse of samples
from the learning phase in less conservative ways.

394

which can be efficiently computed as we assume that the classifier
is easy to execute. A stratification of O into H strata, specified
by (N1, N2, . . . , NH) where

∑H
h=1 Nh = N , defines the parti-

tioning of O into subsets O1,O2, . . . ,OH . Here O1 includes ob-
jects with indices ≤ N1, and Oh, h ≥ 2 denotes the subset of ob-
jects whose indices fall within the interval (

∑h−1
j=1 Nj ,

∑h
j=1 Nj].

Recall from Section 3.1 that (1) gives the variance in the esti-
mator of C(O, q)/N for stratified sampling, given the stratifica-
tion (N1, N2, . . . , NH) and a sample allocation (n1, n2, . . . , nH)
where we draw nh objects fromOh. However, we do not know the
Sh terms in (1) in advance, since they denote the standard deviation
of the actual q(oi) values of the objects oi ∈ Oh that are expen-
sive to compute, so LSS instead seeks to minimize the variance of
C(O, q) given by (1) estimated using the first-stage samples SI.

More precisely, suppose the first-stage sample SI consists of m
objects oı1 , oı2 , . . . , oım where 1 ≤ ı1 < ı2 < · · · < ım ≤
N . We aim to find a stratification (N1, N2, . . . , NH) to minimize
the objective given in (5) below that estimates the variance in the
estimator of C(O, q) using n samples in total in the second stage.
Here we assume SI

h = Oh ∩ SI, mh = |SI
h|, nh is number of

second-stage samples in Oh,
∑H
h=1 nh = n, and the variances S2

h

using the first-stage samples SI are estimated as

s2
h = 1

mh−1

∑
o∈SI

h
(q(o)− C(SI

h, q)/mh)2. (4)

Then the variance of the estimated C(O, q) obtained by simplify-
ing (1) is given by:

V (N1, N2, . . . , NH) =
∑H
h=1

N2
hs

2
h

nh
−
∑H
h=1 Nhs

2
h. (5)

The remainder of this section describes our algorithms for com-
puting the optimal stratification given SI. Note that the optimality
of stratification depends on the allocation strategy used. We first
present the case of using Neyman allocation, which minimizes the
variance for a given stratification. In this case, LSS gives the over-
all optimal sampling design that jointly considers stratification and
allocation. Then, we briefly discuss the case of proportional alloca-
tion, which is simpler but not optimal for a given stratification. In
this case, we would find the stratification that makes proportional
allocation most effective; the optimization problem is much easier
than the case of Neyman allocation.

Optimizing the Stratification
Recall from Section 3.1 that under Neyman allocation using SI,
nh = n(Nhsh)/(

∑H
h=1 Nhsh). Hence, we can further sim-

plify (5), the minimization objective, as follows:

V (N1, N2, . . . , NH) = 1
n

(∑H
h=1 Nhsh

)2

−
∑H
h=1 Nhs

2
h. (6)

A naive algorithm would compute V for all possible stratifications
(N1, N2, . . . , NH) and pick the best, but the number of possibili-
ties is Ω(NH), and computing V involves going over SI, which is
expensive even for small number of partitions (e.g., when H = 3).

Before presenting our algorithms, we describe some ideas useful
to combat these challenges. First, note that in the expression for V
in (6), from (4), the sh terms depend only on the subset of objects
SI
h sampled in SI in each stratum h, and the precise locations of

stratum boundaries between these sampled points only affect the
Nh terms. This observation suggests that we may be able to first
consider the partitioning of SI among strata, and then decide where
precisely the stratum boundaries lie amongO. Later in this section,
we will start with an algorithm that uses this strategy, where given
the partitioning of SI, the optimal Nh’s can be solved directly and
(almost) exactly in the case of H = 3. Building on the insights re-
vealed in this simple case, we then present two general algorithms

for any H providing different trade-offs between speed and accu-
racy. Both of these algorithms tame complexity by restricting the
potential locations of the stratum boundaries.

Second, we can speed up the computation of V significantly us-
ing precomputation. By sorting the m objects in SI by g, we can
compute a prefix-sum index Γ, such that Γ(k) =

∑k
=1 q(oı) (for

1 ≤ k ≤ m) returns the number of positive objects among the first
k objects in SI. To obtain the indices of sampled objects within the
ordered O (i.e., ı1, . . . , ım), there is no need to sort all objects in
O by g. Instead, note that the m objects in SI divide the range of
g values into m+ 1 buckets; we can simply make one pass overO
and maintain the count of objects whose g values fall within each
bucket. After the pass overO completes, we scan the bucket counts
to determine ı1, . . . , ım.
• DirSol (an almost optimal stratification forH = 3H = 3H = 3): Here we

try all pairs of SI as possible rough boundaries. In particular,
for each pair of consecutive samples as per g, we assume that the
first element is the last sampled object in the first strata, while the
second element is the first sampled object in the third strata. In
order to find the exact boundaries in O, we formulate and solve
an optimization problem.
• LogBdr (an approximate stratification for anyHHH , generaliz-

ing DirSol): It considers all possible ways of partitioning the m
sampled objects in SI among H strata generalizing the ideas in
DirSol. Unlike DirSol, however, for each such partitioning, we
do not attempt to solve directly for the actual stratum boundaries
within O; instead, we consider only a set of candidate boundary
indices, chosen judiciously to ensure that we can still find a rea-
sonably good solution. In particular, between two consecutive
objects oık and oık+1 in SI (with respect to g), we consider the
objects in O that are 2i apart from oık as boundary indices.
• DynPgm (a dynamic-programming-based algorithm for any
HHH , faster than LogBdr but with worse approximation guar-
antees): A straightforward application of dynamic programming
does not work since the objective in (6) is non-separable. To
overcome this difficulty, we isolate the non-separable term in
the objective function and solve a suite of dynamic programs
where each of them operates under a different upper bound on
the non-separable term. In order to improve the running time,
we only consider as possible boundaries the set SI and the addi-
tional boundary indices similar to DirSol. In the end, we return
the best result over the dynamic programs (details in [25]).
• DynPgmP (222-approximation for proportional allocation):

Recall from Section 3.1 that under proportional allocation,
nh = nNh/N . Hence, we can further simplify (5) to
V (N1, . . . , NH) = N−n

n

∑H
h=1 Nhs

2
h. The objective is much

simpler than the objective for Neyman allocation and the result-
ing optimization problem is indeed separable, so it can be solved
readily by dynamic programming. To improve the efficiency, we
use the same idea as in LogBdr and DynPgm with additional
boundary indices (details in [25]).

In addition to optimizing the objective in (6), we impose the fol-
lowing constraints for each stratum h: For two chosen thresholds
Nt and mt, (i) Nh ≥ Nt, i.e., each stratum is large enough, and
(ii) mh ≥ mt, i.e., the stratum contains enough first-stage samples
such that sh is a reasonable variance estimate. In practice, we have
set mt to be around 5 and Nt larger.

DirSol: We now give more details on DirSol. For H = 3, we
need to pick two boundaries separating strata O1, O2, O3. To this
end, suppose the last sampled object (with the largest g value) in
O1 is the i-th object in SI, and the first sampled object (with the
smallest g value) in O3 is the j-th object in SI. The algorithm

395

considers every possible (i, j) pair where mt ≤ i < i+mt < j ≤
m−mt + 1.

Given oıi as the last sampled object in O1 and oıj as
the first sampled object in O3, we can readily compute
s1, s2, s3 in (6) using the precomputed index Γ: s2

1 =
Γ(i)
i−1

(
1− Γ(i)

i

)
, s2

2 = Γ(j−1)−Γ(i)
j−i−2

(
1−Γ(j−1)−Γ(i)

j−i−1

)
, and s2

3 =

Γ(m)−Γ(j−1)
m−j

(
1−Γ(m)−Γ(j−1)

m−j+1

)
.

Then, noting that N2 = N − N1 − N3, we can write
V (N1, N2, N3) as bivariate quadratic function f(N1, N3) of the
form a1N

2
1 +a2N

2
3 +a3N1N3 +a4N1 +a5N3 +a6, where coeffi-

cients a1, . . . , a6 are computed from s1, s2, s3, n, and N (see [25]
for detailed derivation). Our goal is to minimize f(N1, N3) subject
to the following constraints:
• max{Nt, ıi} ≤ N1 ≤ ıi+1 − 1; i.e., the last sampled object

in O1 is indeed the i-th one in SI, and |O1| ≥ Nt.
• max{Nt, N − ıj + 1} ≤ N3 ≤ N − ıj−1; i.e., the first

sampled object in O3 is the j-th in SI, and |O3| ≥ Nt.
• N1 +N3 ≤ N −Nt; i.e., |O2| ≥ Nt.

These constrains define a 2-dimensional polygon R with at most
5 sides. We optimize the function f over R using a standard al-
gebraic method by considering (i) the critical points of f , and (ii)
the boundary of R. We repeat the above procedure for each pair
of sampled objects, and in the end return the stratification with the
overall minimum variance (see [25] for additional details and the
pseudocode). We call this algorithm DirSol (for direct solve). The
following theorem summarizes its time complexity and accuracy.

THEOREM 1. Given an ordered set O of N objects and a sam-
pled subset SI of m objects, let v∗ denote the minimum value of
estimated variance defined in (6) achievable using n samples un-
der stratified sampling with H = 3 strata where each stratum
contains at least Nt objects. Assuming Nt > n, DirSol runs in
O(N logm + m2) time and finds a stratification resulting in esti-
mated variance v ≤ (1 + 2

Nt
+ 2

Nt−n + 4
Nt(Nt−n)

)v∗.

Note the assumption of Nt > n above; without it, the approxi-
mation factor would be arbitrarily bad. In practice, however, this
assumption is weak and often holds in practice: e.g., if we take a
5% sample of O in the second stage, this assumption means that
each stratum in O contains at least 5% of O.
LogBdr: Given a partitioning of the sampled objects, consider
two consecutive sampled objects oık and oık+1 that are put into
different strata (there are H − 1 such pairs of objects). When de-
ciding where exactly to draw the boundary between oık and oık+1 ,
the algorithm only considers the set Bk of candidate boundary in-
dices ık, ık + 20, ık + 21, ık + 22, . . . up to (but not including)
ık+1; we also add ık+1 − 1 if it is not already in Bk. Choosing a
particular index i from Bk means the stratum containing oık ends
with oi. Then we simply check all candidate stratifications formed
by choosing one index from each of the H − 1 sets of candidate
boundary indices. We call this algorithm LogBdr (for logarithmic
number of candidate boundary indices). Theorem 2 summarizes its
time complexity and accuracy (proof is in [25], the approximation
factor can be improved if we increase the running time).

THEOREM 2. Given an ordered set O of N objects and a sam-
pled subset SI of m objects, let v∗ denote the minimum value of
estimated variance defined in (6) achievable using n samples un-
der stratified sampling with H strata where each stratum contains
at least Nt objects. Let N∗h denote the size of stratum h in this op-
timum solution. Assuming Nt > n, LogBdr runs in O(N logm +
HmH−1 logH−1 N) time and finds a stratification resulting in es-
timated variance v ≤ max{4, 2 + 2 max1≤h≤H

N∗h
N∗

h
−n}v

∗.

5. EXPERIMENTS
Most of our experiments are based on three scenarios, each with

its own real-world dataset and counting query template:
(Sports) The data contains yearly performance statistics for play-

ers in the Major League Baseball. We focus on pitching
statistics, which exclude a portion of the players. We con-
sider the k-skyband size query in Example 2, where each
point is a player-year combination (there are about 47,000 of
them), and x and y refer to runs and home runs.

(Neighbors) The data comes from KDD Cup 1999, where the goal
was to learn a predictive model that could distinguish legiti-
mate and illegitimate (intrusion attacks) connections to a ma-
chine. The original dataset contains 4.9 million records with
41 features and a binary label. We removed many sparse
rows, resulting in 73,000 points. We consider the query in
Example 1 that counts points with few neighbors.

(Text) We consider the relevant document count query in Ex-
ample 3. Since we do not want to manually evaluate
the predicate ourselves in experiments, we use the LSHTC
dataset [23], which provides ground-truth labels (Wikipedia
categorization) for 2.4M documents from Wikipedia. The
same dataset was used in [18]. In our experiments, each al-
gorithm is charged a cost for revealing the true label, which
in practice would be expensive.

To experiment with different selectivities of the predicate q, we ad-
just query parameter settings (k for Sports; k and d for Neighbors;
k for Text). We also create synthetic datasets based on Sports to
study how data distributions affect learned models and the perfor-
mance of various algorithms; for details see Section 5.2.

We compare the following algorithms:
• Sampling-based (Section 3.1): simple random sampling

(SRS) and stratified sampling (SSP, with proportional allo-
cation, and SSN, with Neyman allocation in two stages). For
stratified sampling (which applies to Neighbors and Sports
but not to Text), we use attributes x and y as surrogates; each
stratum is a rectangle in the 2d x-y space. Unless otherwise
specified, we stratify using a uniform

√
H ×

√
H grid over

the ranges of x and y values in the dataset. By defaultH = 4.
• Learning-based (Section 3.2): quantification learning

(QLCC, without adjustment, and QLAC, with adjustment).
• Learning with sampling-based correction (Section 3.3):

QLSC.
• Learning-to-sample (Section 4): learned weighted sampling

(LWS) and learned stratified sampling (LSS). Unless other-
wise specified, for LSS we implement a simplified version of
LogBdr, which considers candidate boundaries that map to
equally spaced ticks over [0, 1] (the range of g scores). By
default, H = 4 and the spacing between candidate bound-
aries is 0.05; for the distributions of g scores that arise in
practice, these boundaries already provide fine enough res-
olution for H = 4, so more sophisticated choices of candi-
dates in LogBdr are not needed.

For learning-based and learn-to-sample algorithms, we use stan-
dard implementations of classifiers from scikit-learn. For
Neighbors and Sports, we experiment with kNN (k-nearest neigh-
bors, where k is not to be confused with our query parameter), RF
(random forests), and NN (a simple two-layer neural network); by
default, we use RF with 100 estimators. For Text, we use a naive
Bayes classifier with standard full-text features. For QLSC, LWS,
and LSS, by default we devote 25% of their allotted samples to
training (and including design, if applicable).

Since the estimates of result counts are uncertain, for each exper-
imental setting, we run each algorithm 100 times, and record the

396

distribution of estimates it produces. Recall that unlike sampling-
based and learn-to-sample algorithms, those based on learning
alone provide no accuracy guarantees by themselves. Nonetheless,
the distributions of estimates they produce allow us to evaluate their
accuracy empirically. When appropriate, we show distributions us-
ing violin plots5. We would like our estimates to be unbiased, so
ideally the violin plots would be centered around the actual result
count. Furthermore, we would like the estimates to have low vari-
ance, which means narrower interquartile ranges as well as shorter
and wider plots. In some figures, we use MAE (mean absolute
error) as a single numeric measure to quantify and summarize an
error distribution, so we can report more results than violin plots.

For Neighbors and Sports, while our queries can be executed di-
rectly over a database system, they run slowly even if we construct
all appropriate standard indices and enable the maximum level of
optimization (on PostgreSQL and another commercial system). To
enable faster experiments, we implemented the evaluation of q in
Python in main memory. Since our experiments specify sampling
budgets in terms of numbers (or percentages) of samples, our re-
sults are platform-neutral and easy to translate into time savings on
different underlying platforms. The overhead of learning, as we
will show later with experiments, is small compared to the cost of
labeling samples (evaluating q), even for the in-memory Python im-
plementation; the overhead will be even smaller in the SQL setting.

5.1 Overall Comparison with Real Datasets
We begin with experiments that compare various algorithms us-

ing the three scenarios with real datasets, Neighbors, Sports. and
Text. Both LSS and LWS used a random forest classifier with esti-
mators and a 25%:75% training:sampling split. Figure 1 compares
the MAE of various algorithms when we vary the result size (via
query parameters) while keeping the sample size fixed. Figure 2
compares the MAE of various algorithms when we vary the sample
size while keeping the result size fixed.

As it turns out, the learned classifier performs pretty well for
Neighbors and Sports, but pretty poorly for Text, leading to very
different results. We shall focus on Neighbors and Sports first. F1
scores for the learned classifiers average higher than 0.8 in these
scenarios (with small result sizes being more difficult). We make
several observations. First, learning-based methods are very com-
petitive here thanks to high classifier quality. In fact, QLCC some-
times even delivers the smallest errors even without any adjustment
or correction. But to keep things in perspective, QLCC and QLAC
do not provide any guarantees; once QLSC uses sampling to pro-
vide correction and guarantees, MAE actually takes a small hit be-
cause of the extra overhead. Second, algorithms without any learn-
ing component, namely SRS and SSP are clearly not as competi-
tive here, with much higher MAE than others. Third, LSS (high-
lighted) has consistently low MAE; it is nearly always the leader
or not far from the leader, and bear in mind that it offers statisti-
cal guarantees, which QLCC does not. LSS also consistently leads
QLSC by a good margin. Fourth, the comparison between LWS
and LSS is difficult, as in some cases LWS leads LSS. The quality
of the learned classifier for Neighbors and Sports is the main factor
here. To better understand the situation, we take a closer look at
some data points with violin plots showing distributions.

In Figure 3, we get a more detailed sense of the variability in
estimates. LSS and LWS are consistently no worse and often better
than SRS and SSP. Between LSS and LWS, we make two observa-
tions. First, when selectivity is low, we expect all sampling-based

5A violin plot shows the probability density at different values; additionally,
a white dot marks the median of all data, a thick black line spans the lower
and upper quartiles.

methods to have some trouble as the particular number of posi-
tives that come up by chance in each run will have a large impact
on relative error. For Sports, LWS dodged this issue with a very
good classifier that allows it to draw in a very targeted fashion.
In contrast, LSS, as it places much less trust in the learned model
compared with LWS, misses the opportunity. Second, LWS is not
without its own problems. In Neighbors, where prediction becomes
slightly more challenging, we see LWS underestimating with XS
result size; as it turns out, the classifier at those points happens to
generate more false negatives. In other words, LWS depends far
more on model quality than LSS does—it can benefit more, but
also can get hurt more. This effect will be magnified for the Text
scenario, which we focus on next.

The Text tells a completely different story. In this case, classifica-
tion is hard. Therefore, QLCC, QLAC, and QLSC fare very poorly
here, because their performance is too dependent on starting point
produced by QLCC. Correction is also difficult. From one repre-
sentative run (with 857k resize size), true TPR and FPR are .53
and .85, while the estimated TPR and FPR are .35 and .95. Even
with sampling-based correction, QLSC still underperforms other
algorithms. In contrast, SRS, which does not use learning, actually
shines here. Finally, LSS tracks SRS closely. It actually underper-
forms SRS a bit, which is understandable because learning phase is
essentially not that useful, wasting 25% of the samples. However,
the impact on the sampling design is limited. Closer examination
reveals that it basically degenerates to SRS for the remaining 75%
of the samples. This experiment highlights the sensitivity of QLCC,
QLAC, and QLSC toward poor models, as well as the resiliency of
LSS against poor models.

5.2 Comparison with Synthetic Datasets
Results in Section 5.1 show just three data points along the spec-

trum of classifier quality: Neighbors and Sports have good classi-
fiers but Text has a bad one. What happens in between? To under-
stand how different algorithms are affected by varying degrees of
difficulty in using a learned model to approximate a predicate, we
design our next set of experiments by injecting additional “noise”
into the Sports scenario to adjust the difficulty of classification. Re-
call from Example 2 that for each object o, we compute a count
subquery with o.x and o.y, and compare the resulting count, say
c, with k. Now, we create an additional “noise” table keyed on
distinct (x, y) values, where each (x, y) is associated with a noise
count drawn randomly from another distribution. Instead of com-
paring cwith k, we use another subquery to look up the noise count
c′ for (o.x, o.y), and have the predicate combine the original and
noise counts into (1− α)c+ αc′ to compare with k. By adjusting
α ∈ [0, 1], we control how much noise contributes to the outcome
of the predicate: α = 0 corresponds to the original Sports scenario,
where we know we can learn a good model; α = 1 means the
predicate is simply comparing independent random noise, which is
mostly challenging to predict.

We experiment with two noise distributions. One is a Gaussian
with standard deviation of 1 truncated and discretized. The other
is derived from a Zipf distribution with parameter s, where each
draw is used to index into a randomly permuted array of possible
noise counts derived from the real count values; large smeans some
(random) noise count will be far more popular than others.

We compare SRS, QLSC, and LSS, representing sampling-
based, learning-based (but with sampling-based correction), and
learn-to-sample algorithms, respectively. Figure 4 shows how they
compare in terms of MAE when we vary α for synthetic datasets
generated using Gaussian noise. Note that when α increases, the
result size tends to decrease (but it is random depending on the

397

(a) Neighbors (b) Sports (c) Text

Figure 1: Mean absolute error comparison when varying result size; sample size fixed at 2%.

(a) Neighbors (b) Sports (c) Text

Figure 2: Mean absolute error comparison when varying sample size.

particular dataset being generated), so MAE for SRS tends to de-
crease accordingly, although its relative error actually increases.
The main observation from this figure is that when α is small, good
model qualities make LSS and QLSC outperform SRS. However,
as α increases, model quality starts to take a toll on LSS and QLSC.
Nonetheless, LSS consistently outperforms QLSC, and it is not too
far behind SRS even when the predicate outcome is almost com-
pletely dictated by noise. Upon closer examination, we see that
when α = 1, LSS basically degenerates to random sampling in the
sampling phase, and it is not surprising that it is slightly worse than
SRS because it has wasted 25% of its samples on learning.

Figure 5 shows how the three algorithms compare when we
vary the Zipf parameter for synthetic datasets generated using Zipf
noise. The results can be difficult to interpret because of the
variability in each particular instance of the randomly generated
dataset, and the fact that skewness does not necessarily make clas-
sification harder. However, once we overlay the quality (F1 score)
of learned classifier for QLSC and LSS, a clear pattern emerges:
model quality clearly influences the performance of methods that
use learning, but LSS is far more resilient than QLSC (consider
s = 7, for example). Again, LSS is the most consistent performer
among all three—it is not far from SRS when the model is very
poor, and it is not far from QLSC when the model is very good.

5.3 Running Time and Overhead
Before making a closer examination of LSS, we take a brief look

at the running times of our approaches. Both LWS and QL meth-
ods (QLAC, QLCC, QLSC) are simpler than LSS, which has more
overhead in stratification. Thus, we focus on LSS. In Figure 6, we
plot the overhead added by using LSS when compared with SRS.
There are three distinct sources of overhead in LSS: Learning rep-
resents the time to train the classifier; Design includes the time to
compute the optimal stratified sampling scheme; Application ac-
counts for the overhead in applying the chosen scheme, which in-
volves picking objects from their associated strata. (Note that we
already charge the samples used by LSS for learning and sampling
design towards the total number of samples, which is set to be the
same when comparing with other approaches.) In Figure 6, we also
list the fraction of overall running time consumed by overhead at
the top of each bar. Note these are miniscule (below 0.2%) com-
pared with the overall cost, dominated by the predicate evaluation

over samples. Such a low overhead implies that if we give simpler
approaches such as SRS additional samples to account for the over-
head of LSS, the number of additional samples would be too low to
make any difference.

5.4 Closer Looks at LSS
Next, we test a variety of facets involved in LSS: how strata are

laid out, the number of strata, allocation of samples for learning/de-
sign vs. estimation, and how the underlying classifier affects final
estimation quality.

Strata Layout Strategy First, we study the impact of stratification
strategy on LSS. Instead of using more sophisticated algorithms to
look for optimal bucket boundaries (optimal-width), what if we use
simpler strategies? In particular, fixed-width simply make all strata
equal in width; fixed-height simply ensures that all strata contain
the same number of objects. Figure 7 shows the results, using 4
strata. It is no surprise that fixed-height produces poor results for
stratified sampling, as each strata may be force to contain a mixture
of labels; in particular, for skewed datasets where one label occurs
more often (XS and XXL), fixed-height has much higher variance
in its estimates. Fixed-width fares better, but our optimal-width
(which LSS uses by default) makes further gains—its interquartile
range (IQR) is generally lower than the two simpler approaches.

Number of Strata In this experiment, we investigate the effect
of the number of strata on estimation quality when using LSS and
SSP, both of which use stratified sampling. We vary the number
of strata with 4, 9, 25, 49, and 100 strata available. The results
are summarized in Figure 8. Overall, as expected, increasing the
number of strata tends to improve estimation quality, but not sub-
stantially so. Here, with XS result size and a large number of strata,
SSP becomes competitive against LSS. The reason is that with su-
perfine uniform gridding of the x-y space, the few positive objects
eventually concentrate into a few strata, making SSP effective; in
comparison, LSS may occasionally produce an outlier estimate,
even though its overall variance is still competitive. Aside from
these few extreme settings, however, LSS generally outperforms
SSP, and often by significant margins as shown in Figure 8.

Sample Split Next, we test the effect of sample allocation on the
quality of estimates produced by LSS. We vary the percentage of
samples allocated to classifier training and sampling design from

398

(a) Neighbors (XS/S/L = 2/10/40%) (b) Sports (XS/S/L = 1/10/50%)

Figure 3: Distributions of estimates. Each row has a different sample size (1%, 2%), and each column has a different result size.

Figure 4: Varying α; synthetic datasets with
Gaussian noise; k = 15000. Grey dashed
line shows the result size (scale on right).

Figure 5: Varying Zipf parameter s; syn-
thetic datasets with Zipf noise; α = 0.6;
k = 15000. Grey dashed line/band show the
F1 scores of the classifier (scale on right).

Figure 6: Execution time overhead (in sec-
onds) vs. sample size (in thousands) for LSS,
broken down by sources of overhead.

10%, 25%, 50%, to 75%. A 10% split means 10% of the total sam-
ples are devoted to learning and design, while the rest (90%) of the
samples are used to produce the result estimate. We fix the num-
ber of strata at 4. Figure 9 summarizes the results. We see that at
75%, too few samples are devoted to estimation, so the result qual-
ity tends to suffer. Conversely, at 10%, too few samples are devoted
to learning and design, and the result quality may also suffer. Both
middle proportions (25% and 50%) consistently produce the most
reliable estimates with lowest IQR’s and fewer outliers.

Choice of Classifier As LSS is driven by the scores produced by a
classifier, it is naturally dependent on the classifier itself. We tested
LSS with four classifiers: k-Nearest Neighbors (KNN, with k = 3),
simple two-layer neural network (NN, with 5 nodes per layer), ran-
dom forest (RF, with 100 estimators), and a dummy classifier (Ran-
dom) that assigns arbitrary random scores to objects. Random can
be viewed as a worst case scenario for LSS as the desired effect
of stratification (producing homogeneous strata) is completely lost.
Across classifiers, we use 25% of the samples for learning and sam-
pling design, and there are 4 strata. As we can see from the results
in Figure 10, consistent with intuition, a classifier that performs
better than Random produces better estimates. On the other hand,
even if a classifier performs poorly (such as Random), LSS still
produces reasonable estimates.

6. RELATED WORK
Sampling for Approximate Query Processing (AQP) Sampling
is a fundamental problem in databases and has been studied over
more than three decades [21, 20, 4]. Random samples are one
of the key types of synopses [5] frequently used for AQP. Sam-
pling for complex queries has been a long-standing challenge. In

particular, sampling over joins is non-trivial, because simply join-
ing independent samples of participating tables is ineffective [20,
4]. This problem has received much attention over the years, with
representative works such as ripple join [7], wander-join [17], and
more recently, sampling multi-way acyclic and cyclic joins [27].
The focus of our work is on counting queries with complex pred-
icates. Even though our predicates can include joins as discussed
in Section 2, our techniques differ because of different problem as-
sumptions. First, some work on sampling over joins, e.g., [4], aims
at producing a random sample of the result tuples, while we aim at
estimating the result count. Second, to make our approach general,
we adopt a rather simple evaluation model, where sampling a can-
didate object o to be counted involves evaluating q(o) exactly, with-
out additional sampling or approximation. In contrast, much of the
work on sampling over joins assumes specific forms of join predi-
cates or availability of indexes to avoid enumerating all join results
for o. On the other hand, all queries in our experiments are too
complex for these approaches to handle, because these queries use
constructs such as self-joins, complex non-equality join predicates,
subqueries containing GROUP BY and HAVING, as well as UDFs.

BlinkDB [1] and VerdictDB [22] are examples of recent AQP sys-
tems aimed at supporting approximate processing of general, ad
hoc queries. While these systems deliver very fast response time
thanks to optimizations such as precomputation and parallelization,
handling the full complexity of SQL remains challenging. For in-
stance, VerdictDB does not support self-joins out of the box; our
best attempt at adapting the query in Example 2 to run on it re-
sulted in poor estimates compared with other approaches we exper-
imented with in Section 5.

A number of papers are related to ours in the use of sampling.
[19] considers stratified sampling design for both streaming and

399

(a) Neighbors (XS/S/L = 2/10/40%) (b) Sports (XS/S/L = 1/10/50%)

Figure 7: Effect of stratification strategy on LSS estimation quality. Each row represents a different sample size (1%, 2%), and each column
represents a change of parameters resulting in a different result set size (XS, S, L).

(a) Neighbors (XS/S/L = 2/10/40%) (b) Sports (XS/S/L = 1/10/50%)

Figure 8: Comparison of LSS and SSP across varying number of strata. Each row represents a different sample size (1%, 2%), and each
column represents a change of parameters resulting in a different result set size (XS, S, L).

stored data, and improves upon the Neyman allocation. [8] esti-
mates the size of a query result by partitioning the query result and
estimating the sum of the partition sizes. In our setting, each parti-
tion would be associated with one object, which contributes either
0 or 1 to the sum. [8] focuses on deriving a sequential sampling
procedure, and considers both uniform random sampling and strat-
ified sampling. However, unlike our work, it does not consider how
to design stratification in a way to maximize sampling efficiency.
Many other sampling papers are concerned with aggregates such as
SUM, which are more susceptible to sample biases than just counting
queries. [12] studies robust stratified sampling for low-selectivity
aggregate queries, and uses a pilot sampling phase to estimate vari-
ance as we do for SSN and LSS. A combination of outlier-indexing
with weighted sampling has been used in [3] to approximate aggre-
gate results, and in [2], where differently biased subsamples can be
dynamically selected to answer a query. [13] estimates the results
of aggregates over SQL queries with subqueries involving (NOT)
IN/EXISTS; notably, it proposes a low-variance estimator by learn-
ing a model from data using Bayesian statistical techniques. Com-
pared with [13], our approach is simpler, uses off-the-shelf meth-
ods, and relies much less on the quality of the learned models. With
the exception of [13], none of the work above applies any machine
learning to help with estimation or to inform the sampling design.

Sampling has also been used for answering queries from dirty
data with data cleaning [26]. In Section 3.3 we have discussed this

connection and introduced the method QLSC inspired by Sample-
Clean [26]. Experiments in Section 5 show that our learn-to-sample
approach is more effective and less dependent on classifier quality.

Use of Machine Learning There has been a flurry of recent re-
search on the use of machine learning in database systems. One
related line of work is the use of machine learning for selectivity
estimation, e.g., [15, 9], which can be seen as approximate count-
ing queries. This line of work typically precomputes and main-
tains data summaries to support query optimization, or more am-
bitious optimizations across all components of a database system,
e.g., SageDB [16]. Since their goal is to use estimates for optimiza-
tion instead of answering counting queries per se, their estimates
typically do not come with any guarantees. In contrast, we strive to
provide statistical guarantees on our approximate answers.

Finally, two recent papers are very similar to our approach in
spirit. To reduce the cost of evaluating expensive UDFs that arise
frequently in machine learning pipelines, Probabilistic Predicates
(PP) [18] use learned classifiers to pre-filter data before process-
ing them further. Given a set of such classifiers and an accuracy
requirement (minimum fraction of positives to retain), a query op-
timizer devises a plan that uses appropriate classifiers with optimal
score cutoffs to pre-filter the data: any object scored lower than
the cutoff by the classifier is dropped. A key difference between
this work and ours is the problem definition: they target reporting

400

(a) Neighbors (XS/S/L = 2/10/40%) (b) Sports (XS/S/L = 1/10/50%)

Figure 9: LSS as the percentage of samples used for learning/design (instead of producing the result estimate) varies. Each row represents a
different sample size (1%, 2%), and each column represents a change of parameters resulting in a different result set size (XS, S, L).

(a) Neighbors (XS/S/L = 2/10/40%) (b) Sports (XS/S/L = 1/10/50%)

Figure 10: LSS under different classifiers. Each row represents a different sample size (1%, 2%), and each column represents a change of
parameters resulting in a different result set size (XS, S, L).

queries while we target counting queries. This difference leads to
our different use of the classifier scores; applying PP to our setting
would result in poor estimates. Furthermore, PP gives no statisti-
cal guarantees on the actual recall, and its performance is far more
susceptible to bad classifiers because of its heavy reliance on clas-
sifier scores. Earlier work by Joglekar et al. [11] similarly tackles
queries involving selections with expensive UDFs. By identifying
attributes whose values are correlated with UDF results, and group-
ing objects by the values of such attributes, they judiciously choose
the appropriate actions to take for each group of objects (e.g., ac-
cept all, return all, or sample some). Like our approach, the use of
sampling enables probabilistic guarantees, but the key difference
remains that they target reporting instead of counting queries.

7. CONCLUSION AND FUTURE WORK
In this paper, we have developed new techniques to estimate the

results of counting queries with complex filters. Our techniques
are based on a simple yet powerful idea: replace an expensive fil-
ter with a cheap classifier that approximates the filter. This cheap
classifier can then be used in a number of different ways with dif-
ferent trade-offs. A key challenge is that too much reliance on the
classifier makes result quality highly susceptible to bad classifiers.
However, one novel technique we proposed, learned stratified sam-
pling, delivers consistently good estimates compared with other al-

ternatives. It is very resilient against bad classifiers, thanks to how
it combines machine learning and sampling—the learned classifier
is used in a limited but helpful way to design a stratified sampling
scheme which in turn produces the estimate. This resiliency makes
the technique easy to apply in practice, because we are much less
concerned with training a perfect model: a good model will make
sampling more efficient, but even if the model is poor and/or the
filter is fundamentally hard to approximate, the technique still de-
livers unbiased estimates with statistical guarantees comparable to
random sampling. There is an abundance of future work. In partic-
ular, learned stratified sampling is quite conservative by design—to
ensure independence, it avoids using the samples it acquired in the
learning phase when computing the final estimate. However, there
may be ways in which such samples can be safely used. Second,
some of the queries we considered in this paper (such as skyband
sizes and neighbor counts) have highly specialized solutions. Al-
though our goal is to develop general solutions that can work for
far more complex queries, it will still be interesting to carry out a
direct comparison with the specialized solutions for these specific
queries. Finally, a promising direction is to extend and fully evalu-
ate our approach in an online aggregation [10] setting.

401

8. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. Blinkdb: Queries with bounded errors and
bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 29–42, New York, NY, USA, 2013.
ACM.

[2] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In Proceedings
of the 2003 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’03, pages 539–550, New
York, NY, USA, 2003. ACM.

[3] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. R.
Narasayya. Overcoming limitations of sampling for
aggregation queries. In Proceedings of the 17th International
Conference on Data Engineering, April 2-6, 2001,
Heidelberg, Germany, pages 534–542, 2001.

[4] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random
Sampling over Joins. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’99, pages 263–274, New York, NY, USA, 1999.
ACM.

[5] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends R© in Databases,
4(1–3):1–294, 2011.

[6] P. Gonzlez, A. Castao, N. V. Chawla, and J. J. D. Coz. A
Review on Quantification Learning. ACM Comput. Surv.,
50(5):74:1–74:40, Sept. 2017.

[7] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online
Aggregation. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’99, pages 287–298, New York, NY, USA, 1999. ACM.

[8] P. J. Haas and A. N. Swami. Sequential sampling procedures
for query size estimation. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’92, pages 341–350, New York, NY, USA, 1992.
ACM.

[9] M. Halford, P. Saint-Pierre, and F. Morvan. An approach
based on bayesian networks for query selectivity estimation.
In DASFAA (2), volume 11447 of Lecture Notes in Computer
Science, pages 3–19. Springer, 2019.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’97, pages 171–182, New York, NY, USA, 1997. ACM.

[11] M. Joglekar, H. Garcia-Molina, A. Parameswaran, and
C. Re. Exploiting Correlations for Expensive Predicate
Evaluation. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’15, pages 1183–1198, New York, NY, USA, 2015. ACM.

[12] S. Joshi and C. M. Jermaine. Robust stratified sampling plans
for low selectivity queries. In Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008,
April 7-12, 2008, Cancún, Mexico, pages 199–208, 2008.

[13] S. Joshi and C. M. Jermaine. Sampling-based estimators for
subset-based queries. PVLDB, 18(1):181–202, 2009.

[14] G. Kalton, K. Graham, et al. Introduction to survey sampling,
volume 35. Sage, 1983.

[15] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and
A. Kemper. Learned cardinalities: Estimating correlated
joins with deep learning. In CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[16] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo,
G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A
learned database system. In CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[17] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander Join: Online
Aggregation via Random Walks. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
’16, pages 615–629, New York, NY, USA, 2016. ACM.

[18] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri.
Accelerating Machine Learning Inference with Probabilistic
Predicates. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages
1493–1508, New York, NY, USA, 2018. ACM.

[19] T. D. Nguyen, M. Shih, D. Srivastava, S. Tirthapura, and
B. Xu. Stratified random sampling over streaming and stored
data. In Advances in Database Technology - 22nd
International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29,
2019, pages 25–36, 2019.

[20] F. Olken and F. Olken. Random sampling from databases.
Ph.D. thesis, U.C. Berkeley, 1993.

[21] F. Olken and D. Rotem. Simple Random Sampling from
Relational Databases. In Proceedings of the 12th
International Conference on Very Large Data Bases, VLDB,
pages 160–169, San Francisco, CA, USA, 1986. Morgan
Kaufmann Publishers Inc.

[22] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb:
Universalizing approximate query processing. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 1461–1476, 2018.

[23] I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artieres,
G. Paliouras, E. Gaussier, I. Androutsopoulos, M.-R. Amini,
and P. Galinari. Lshtc: A benchmark for large-scale text
classification, 2015.

[24] Y. Tillé. Sampling algorithms. In International Encyclopedia
of Statistical Science, pages 1273–1274. Springer, 2011.

[25] B. Walenz, S. Sintos, S. Roy, and J. Yang. Learning to
sample: Counting with complex queries.
https://arxiv.org/abs/1906.09335.

[26] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska,
and T. Milo. A sample-and-clean framework for fast and
accurate query processing on dirty data. In International
Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 469–480, 2014.

[27] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random
sampling over joins revisited. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD
’18, pages 1525–1539, New York, NY, USA, 2018. ACM.

402

