
DPTree: Differential Indexing for Persistent Memory

Xinjing Zhou
Zhejiang University

zhouxj1@zju.edu.cn

Lidan Shou
Zhejiang University

should@zju.edu.cn

Ke Chen∗
Zhejiang University

chenk@zju.edu.cn
Wei Hu

Alibaba Group

droopy.hw@alibaba-
inc.com

Gang Chen
Zhejiang University

cg@zju.edu.cn

ABSTRACT
The emergence of persistent memory (PM) spurs on re-
designs of database system components to gain full exploita-
tion of the persistence and speed of the hardware. One cru-
cial component studied by researchers is persistent indices.
However, such studies to date are unsatisfactory in terms
of the number of expensive PM writes required for crash-
consistency. In this paper, we propose a new persistent index
called DPTree (Differential Persistent Tree) to address this.
DPTree’s core idea is to batch multiple writes in DRAM
persistently and later merge them into a PM component
to amortize persistence overhead. DPTree includes several
techniques and algorithms to achieve crash-consistency, re-
duce PM writes significantly, and maintain excellent read
performance. To embrace multi-core processors, we present
the design of concurrent DPTree. Our experiments on In-
tel’s Optane DIMMs show that DPTree reduces PM writes
by a factor of 1.7x-3x compare to state-of-the-art counter-
parts. Besides, DPTree has a competitive or better read
performance and scales well in multi-core environment.

PVLDB Reference Format:
Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, Gang Chen. DP-
Tree: Differential Indexing for Persistent Memory. PVLDB, 13(4):
421-434, 2019.
DOI: https://doi.org/10.14778/3372716.3372717

1. INTRODUCTION
The past decade has witnessed innovative memory tech-

nologies which led to the production and commercializa-
tion of persistent memory (PM) [4], to name a few, Phase
Change Memory [29], Spin-Transfer Torque MRAM [5],
and 3D XPoint [1] etc. Persistent memory features not
only the durability seen in storage devices, but also byte-
addressability, high density, and close-to-DRAM latency,
thus enabling a wide range of new applications.

As PM could be larger than DRAM in capacity, one ex-
citing application is to persist components of an in-memory

∗corresponding author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3372716.3372717

database for capacity expansion, and recovery cost reduc-
tion [3, 2]. In particular, researchers study the problem of
persistent index structures. Such indices provide all oper-
ations supported by main-memory indices, such as insert,
lookup, and scan, on database tuples or key-value payloads.
Also, they can recover from system failures much faster due
to the persistence of the memory. Unfortunately, it is non-
trivial to design an efficient and persistent index. As mod-
ern CPUs usually employ write-back cache for better per-
formance, sudden system failures might cause inconsistency
in the data structure in PM if writes did not reach PM in
the correct order and in time. To guard against such incon-
sistency, existing PM index structures use persist primitive
(e.g., clwb+mfence in x86) to carefully order their writes
and synchronously flush cache lines to PM. However, such
synchronous writes are shown to incur high-cost [9, 18] in
latency and device endurance. Therefore existing studies
strive to minimize the usage of these primitives.

Based on the structural property, existing studies on PM
indices can be roughly classified as B+-Tree based, Trie-
based, and hybrid. Generally, B+-Tree-based structures (e.g.
CDDS-Tree [26], wB+-Tree [9], NVTree [31], FPTree [23]
and FASTFAIR [12]) are sub-optimal in terms of the num-
ber of persist primitives on the critical code path of index
update. Trie-based structures (e.g., WORT [15]) achieve ex-
cellent write performance for certain key distributions at the
expense of sub-optimal range scan efficiency. As for hybrid
structures, the idea is to combine multiple physical index
structures to form a logical index. For example, HiKV[30]
combines hash table with B+-Tree. However, HiKV suffers
from high DRAM consumption and recovery cost.

One observation about the existing PM index structures
is that they often perform many expensive persist primitives
to maintain their structural properties or update metadata.
For example, in FASTFAIR[12], an insert to a leaf requires,
on average half cache lines to be persisted to keep the node
sorted and durable. FPTree [23] needs to persist the finger-
prints and bitmap in the leaf node per update. However,
only the inserted key-value requires a round trip to PM for
durability. We refer to such additional writes to PM as
structural maintenance overhead (SMO).

Motivated by this observation, we set out to design a per-
sistent index structure that reduces SMO. Also, we aim to
reduce store fencing instructions as well since fencing drains
CPU store buffer and stalls pipeline [9]. We notice that
if we could perform index updates in batches, then persis-
tence overhead could be amortized. For example, a batch of

421

Buffer Tree Base Tree

DRAM

PM

...

insert/delete/

update

query query

Write-Optimized Adaptive Log Coarse-versioned Leaf Layer

Crash-consistent
in-place merge

...

append

Figure 1: DPTree Architecture

key-value entries could be inserted into a leaf node in PM
with only one update to the metadata. Based on this idea,
we design a two-level persistent index partly inspired by
the dual-stage index architecture [32]. The first level (called
buffer tree) is in DRAM and the second level (called base
tree) is in PM. Writes are first absorbed by the fast and
small buffer tree backed by a write-optimized PM redo log
for durability. When the buffer tree reaches a size threshold,
we exploit the byte-addressability of PM to merge the buffer
tree into the base tree in-place, and the changes are then
flushed to PM with little fencing overhead. This way, the
SMO is amortized over a batch of updates. Besides, the base
tree is heavily read optimized to reduce the search latency
introduced by the two-level design. Experiments show that
DPTree reduces PM writes by a factor of 1.7x-3x compared
to state-of-the-art counterparts and meanwhile maintains a
comparable or better search latency. We summarize the
contributions as follows:

• We present DPTree, which consists of the following
designs: 1) A write-optimized adaptive PM log for
the buffer tree. 2) A novel coarse-grained version-
ing technique for the base tree that provides crash-
consistency and meanwhile enables concurrent read.
3) An in-place crash-consistent merge algorithm based
on the versioning technique that reduces writes. 4) A
hashing-based in-PM leaf node design that reduces PM
reads while preserving efficient range scan.

• Apart from the single-threaded DPTree, we propose
additional designs to make DPTree concurrent and
scalable in terms of read, write, parallel merge, and
parallel recovery.

• We show that DPTree achieves superior performance
in terms of read and write compared to state-of-the-art
structures in our experiments on realistic workloads.

The rest of the paper is organized as follows: Section 2
details the design of DPTree. Section 3 discusses the con-
current version of DPTree. Section 4 discusses the experi-
mental results. Section 5 presents the related work. Finally
Section 6 concludes the paper.

2. DIFFERENTIAL PERSISTENT TREE
As Figure 1 shows, DPTree consists of two tree structures,

namely buffer tree and base tree. The buffer tree is DRAM-
resident and is optimized for updates. We design an adap-
tive write-optimized logging scheme for the buffer tree for
durability. With this log, writes of key-value payload whose
log entry fits in a cache line to the buffer tree require only
one persist to the PM. The base tree is read-only and em-
ploys selective persistence scheme used in [31, 23] where the

DRAM-resident part is a radix tree while the PM-resident
part is a linked list of leaf nodes. Inserts/updates are im-
plemented as upserts to the buffer tree. If the key is not in
the buffer tree, it is inserted into the tree. Otherwise, its
value is overwritten. Deletions are implemented as upserts
as well using tombstone record : one bit of value is reserved
to indicate whether the corresponding key is deleted. Point
query first searches the buffer tree. If the key is found, the
query returns the latest value. Otherwise, the base tree is
consulted. For range queries, both trees are searched, and
results are merged.

DPTree maintains a merge threshold R ∈ (0, 1) for the size
ratio between the buffer tree and the base tree (e.g., 1:10).
When the size ratio exceeds the threshold, a merge process
starts. We discuss the merge process in detail in section 2.3.
As an optimization, we maintain for the buffer tree a bloom
filter similar to the dual-stage index architecture [32] to filter
out searches for keys that are not in the buffer tree.

2.1 Buffer Tree
The buffer tree is an in-DRAM B+-Tree whose durabil-

ity is guaranteed by a PM write-ahead log. Since buffer
tree is always rebuilt on recovery, the log only stores the
logically upserted key-value entries which usually results in
less storage footprint than traditional redo/undo logging for
page-based storage.

first curp poff

validity bit

1 1 1 1

Log Page

next...0

kv1

1 1

8-byte

kv2

...
free0 free1 Csize

freelist0

freelist1...

Caching Log Page Allocator

Attach to freelist1when freed

PLog

InvalidValid
Modi�ed but not �ushed

...

Figure 2: Buffer Tree Log Layout

Write-Optimized Adaptive Logging We assume that
the key-value entries are fixed-length. Our goal is to update
the B+-Tree durably using a PM log. One näıve way to im-
plement such a log is to maintain a persistent linked list of
log records. This requires at least two persists for every
append operation: one for the log record and one for the link
pointer. Instead, we use an idea similar to the Mnemosyne
system [27], leveraging the 8-byte failure-atomic write in
modern hardware. First, a log buffer is allocated, and one
bit is reserved for every 64-bit word as the validity bit. We
initially set the validity bit of every word to be 0. We se-
rialize a log record (key-value entry) into multiple 64-bit
words, each holding 63-bit information and a validity bit of
1. These words are then written into the log buffer and per-
sisted. When an entry fits in a cache line after serialization,
this log-append requires only one persist. When reading
the log on recovery, we can detect torn writes by checking
the validity bits of log records. One flaw of this method is
that it requires initialization, doubling the number of PM

422

writes. Mnemosyne proposes to set the buffer fix-sized and
reuse the buffer after it is full by flipping the meaning of the
validity bit(e.g., 1 for invalid and 0 for valid). However, this
would not work in our case as the buffer tree could grow
in capacity. Hence the log buffer needs to grow as well.
To solve this problem, we organize the log as a persistent
list of log pages and employ a caching allocation scheme. As
shown in Figure 2, the linked list includes a persistent header
PLog, which includes a persistent pointer to the first page,
a volatile pointer to the current page and a volatile offset
within the current page. Our log buffer allocator maintains
two freelists of pages, namely freelist0 and freelist1: one with
records whose validity bits are set to 0 and the other set to
1. When a buffer tree is created, its log chooses one of the
two freelists for allocation based on a boolean-valued version
number that is flipped after each merge. When the chosen
freelist runs out of pages upon allocation request, it is filled
with pages from the system allocator. After a merge for
the buffer tree completes, the full pages in the chosen freel-
ist are transferred to the other freelist for the next buffer
tree. Using this allocation scheme, we can reuse most of the
existing pages and pay the persistence overhead only when
the cached free pages are in shortage. To keep freelist size
reasonable when index shrinks due to deletions, we dynam-
ically maintain the cache capacity Csize to be about the size
of the buffer tree before triggering a merge. Since the buffer
tree grows or shrinks at the rate of R at most, the cache
size adapts to this rate as well. To amortize the persistence
overhead introduced by the maintenance of the freelists, we
can increase the page size.

2.2 Base Tree

Meta0 KV1

nextbitmap max_key cnt order

N key indices and one-byte hashes

reconstructible

0
gv(global version), a switch indicating which metadata

is active in every leaf

rc

Meta1 KV2 ... KVN

restart count

crash-consistent

fingerprints

Figure 3: Base Tree Leaf Layout

In DPTree, the base tree is read-only and updated only
by merge. Therefore we optimize it in terms of read and
merge. To take advantage of DRAM-PM architecture, we
employ selective persistence scheme in the base tree where
the internal nodes are in DRAM while the leaves are in PM.
Two consecutive leaves are relatively ordered while the leaf
itself may not, and the leaf list is coarse-grained versioned
for persistence.

Coarse-Grained Versioning Leaves. The CDDS B-
Tree [26] proposes to version key-value entry at every write
operation to achieve crash consistency. However, such fine-
grained versioning incurs large overheads. Inspired by the
versioning technique, we make the following observation:
the before-merge and after-merge image of the base
tree provide a natural versioning boundary. Based on
this observation, we propose the coarse-grained versioning

technique. We maintain in every leaf node two sets of meta-
data and a key-value slot pool, as shown in Figure 3. Each
metadata consists of a bitmap, a next pointer, the max key
in the node, the number of key values in the node, an or-
der array, and an array of fingerprints. The bitmap tracks
the allocation status of the key-value slots. The order array
stores the ordered indices to the key-value slots similar to
wB+-Tree [9] to accelerate range scan. The key-value pool is
organized by hashing, and collisions are resolved using linear
probing. The fingerprints array stores one-byte hashes of the
keys stored at the corresponding positions of the key-value
pool. It serves to filter out unnecessary PM reads. To sup-
port deletion in linear probing hash table, we use two bits in
the bitmap for each slot: 00 for empty slot, 01 for occupied
slot, and 10 for deleted slot. Hash probing continues until ei-
ther a matching key or an empty slot is found. A persistent
global version number gv is maintained to indicate which
metadata is active in every leaf node. gv also denotes the
freelist for the current buffer tree discussed in section 2.1.
Merge handles updates to a key-value entry out-of-place but
mostly within a leaf. That is, we find an empty/deleted slot
within the leaf and update the inactive metadata. When
the merge completes, gv is flipped. Therefore gv combined
with dual metadata distinguishes the before-image from the
after-image of the leaf list with low overhead. Queries first
get a snapshot of gv and traverse from the DRAM radix
tree down to a specific leaf node. In the leaf node, the keys
are examined with the help of the metadata of the snapshot
version.

Partial Persistence. One interesting aspect to note is
that the leaf node is kept partially persistent. That is, the
count, order, and fingerprints arrays are modified on merge
but not persisted. We choose this design based on the ob-
servations that system failures are rare, and these auxiliary
data could be rebuilt from the rest of the crash-consistent
data. We do not rebuild these metadata immediately at
restart as this slows down recovery. Instead, the rebuild-
ing is completed cooperatively by query or merge after the
restart. Specifically, we maintain a persistent global counter
restartCount to indicate the number of restarts. Inside every
leaf node metadata, we keep a local restart count. At restart,
restartCount is incremented persistently. When a query or
merge locates a leaf, the local count is checked against the
global one. If they do not match, the metadata is rebuilt,
and the local restart counter is updated persistently.

2.3 Crash Consistent Merging
Since the base tree is in PM, the merge needs to be crash-

consistent. A straightforward way to implement merge is
similar to LSM [22]: merge buffer tree and base tree into a
new base tree. However, this method has a write amplifica-
tion of 1

R
in the worst case. To maintain fast recovery, typi-

cally, the merge threshold R is chosen to be a small number,
e.g., 0.1, resulting in high write amplification. The source of
write amplification is the out-of-place merge style optimized
for HDD/SSD but not for PM. Therefore, we propose to re-
duce writes by exploiting the byte-addressability of PM and
merging the buffer tree into the base tree in-place.

To maintain crash-consistency during merge, we exploit
the coarse-grained versioning technique and follow a sim-
ple principle – never modify the data of the current version
indicated by the global version number gv. As shown in Al-
gorithm 1, our merge algorithm consists of 7 phases. Given

423

Algorithm 1: BaseTreeMerge(tree, sit, eit)

input : [sit, eit): a pair of iterator ranging the
ordered entries from buffer tree

1 cv ← get version(tree.gv), nv ←
¬get version(tree.gv)

2 set bit and persist(tree.gv, in merge)
3 /* phase-1: upsert merge */
4 prevLeaf ← tree.head[cv]
5 curLeaf ← prevLeaf.meta[cv].next, it ← sit
6 while curLeaf != null do
7 EcurLeaf ← non-tombsone entries in [it, eit)

whose key ≤ curLeaf.meta[cv].max key,
moving it accordingly

8 prevLeaf ← LeafUpsertMerge(prevLeaf,
curLeaf, cv, nv, EcurLeaf)

9 curLeaf ← curLeaf.meta[cv].next

10 end
11 - create leaves after prevLeaf.meta[nv].next if

it! = eit
12 /* phase-2: delete merge */
13 curLeaf ← tree.head[nv].meta[nv].next, it ← sit
14 while curLeaf != null ∧ it != eit do
15 EcurLeaf ← non-upsert entries in [it, eit) whose

key ≤ curLeaf.meta[nv].max key, moving it
accordingly

16 LeafDeleteMerge(curLeaf, nv, EcurLeaf)
17 curLeaf ← curLeaf.meta[nv].next

18 end
19 /* phase-3: consolidation */
20 - For leaves of version nv with occupancy <

T ∈ (0, 0.5], merge them with neighboring leaves
21 /* phase-4: flush to PM */
22 For each leaf of version nv, flush cache lines

containing newly inserted entries and the crash
consistent metadata without using any fences.

23 /* phase-5: rebuild volatile internal nodes */
24 /* phase-6: flip the global version number */
25 set and persist(tree.gv, nv)
26 /* phase-7: garbage collection */
27 - Delete leaves that can be reached through

tree.head[cv] but not through tree.head[nv]

a pair of iterator ranging the ordered key-value entries from
the buffer tree, our merge algorithm starts by getting the
current version cv from the global version number gv and
computes the next version nv(line 1). We then persistently
set the in merge bit of gv to indicate the presence of a merge
(line 2) which is used in recovery. Then the algorithm exe-
cutes the following 7 phases.

Upsert Merge Phase. We enumerate the leaves of ver-
sion cv(line 4-11) to perform the merge. For every leaf
denoted as curLeaf, we get the entries to be merged into
curLeaf by extracting from the input sequence the entries
EcurLeaf whose keys are no greater than the max key of
curLeaf (line 7). Most of the heavy-lifting of the merge
between curLeaf and EcurLeaf is handled by LeafUpsert-
Merge(line 8). As shown in Algorithm 2, it first makes
a copy of meta[cv] into meta[nv]. Then it rebuilds metadata
of version nv if the local restart counter does not match the
global one(line 2-3) and updates the local restart counter. If
there are enough free slots for the incoming entries, they are
merged using the order array and bitmap in meta[nv](line
6-8). An illustration of such a case is shown in Figure 5.

Algorithm 2: LeafUpsertMerge(prevLeaf,
curLeaf, cv, nv, EcurLeaf)

input : EcurLeaf: ordered key-value entries whose key
≤ curLeaf.meta[cv].max key

output: last leaf after merge
1 curLeaf.meta[nv] ← curLeaf.meta[cv]
2 if curLeaf.meta[nv].rc != restartCount then
3 - reconstruct metadata of version nv
4 curLeaf.meta[nv].rc ← restartCount

5 freeslots ← LeafCapacity - curLeaf.meta[nv].count
6 if kvs.length ≤ freeslots then
7 - Upsert entries by hashing and merging using

bitmap and order array of version nv
8 return curLeaf

9 else
10 NL ← create leaves filled with entries from

merging EcurLeaf with curLeaf at filling rate
FR

11 prevLeaf.meta[nv].next ← NL.first
12 NL.last.meta[nv].next ← curLeaf.meta[cv].next
13 return NL.last

14 end

Algorithm 3: LeafDeleteMerge(leaf, nv, kvs)

input: kvs: ordered key-value entries whose key ≤
leaf.meta[nv].max key

1 i ← 0, j ← 0, leafKeyCount ← leaf.meta[nv].count
2 while i <leafKeyCount ∧ j <kvs.length do
3 leafKeyIdx ← leaf.meta[nv].order[i]
4 leafKey ← leaf.kvs[leafKeyIdx].key
5 if leafKey <kvs[j].key then
6 i++
7 else if leafKey = kvs[j].key then
8 leaf.meta[nv].bitmap[leafKeyIdx] ← deleted
9 else

10 j++
11 end

12 end
13 - reconstruct meta[nv].order and meta[nv].count

Otherwise, node split is needed. Figure 4 shows a before
and after image of a node split. We first create as many new
leaves as needed to fill in the merged entries between curLeaf
and EcurLeaf. Then new leaves are linked using metadata of
version nv in prevLeaf. Since we only modify the metadata
of the inactive version nv and the unused key-value slots in
each leaf, even if the system crashes during the split, we are
still able to recover the data structure via the links of ver-
sion cv. In addition, we do not fill the new leaves fully, as
this might result in excessive splits in future merges. This
filling rate is denoted as a parameter FR ∈ (0.5, 1].

Delete Merge Phase. Deletion is similar to upsert. The
difference is that deletion only needs to modify the bitmap.
As shown in line 13-18 of Algorithm 1, EcurLeaf is extracted
from the merge sequence for each leaf node and LeafDelete-
Merge is called. In LeafDeleteMerge(Algorithm 3), deleted
entries are first found similar to merge sort. Then the bits
of deleted entries in the bitmap are marked(line 8). Lastly,
the order array and count of version nv are reconstructed
using the updated bitmap and entry pool.

Consolidation Phase. To maintain a reasonable node

424

nextLeafprevLeaf M0.next curLeaf

K1,K2,K3...EcurLeaf

M1.next

M0.next

(a) Before Split

M0.next
nextLeafprevLeaf

M0.next
curLeaf

K1,K2,K3...EcurLeaf

M1.next

...
M1.next

M1.next

1.New leafs are created and filled

with the merged entries.

2.Connect prevLeaf

to the first new leaf.

3. Connect last new

leaf to nextLeaf.

Old links and data are perserved

(b) After Split

Figure 4: Before and After Image of Leaf Upsert Merge(Split)

4M1 2 9

4, 5, 7
curLeaf

M0.next

next 9 3 2 0 3

max_key count

next

1

rc order
bitmap

EcurLeaf
prev
prev.M0.next

fingerprints

(a) Node Before Merge

M0 4M1 4 2 9 7 5

4, 5, 7curLeaf
1. copy over 2. Merge guided by M1.bitmap

and hashing.

Data of old version is intact.
M1.next

M0.next

next 9 5 2 1 5 4 3

max_key
count

3. M1
is updated accordingly.

bitmap

1

rc order

EcurLeaf

prev
prev.M0.next next

prev.M1.next

fingerprints

(b) Node After Merge

Figure 5: Before and After Image of Leaf Upsert Merge(No Split)

occupancy, leaves of version nv having occupancy below a
consolidation threshold CT ∈ (0, 0.5] are merged with adja-
cent nodes. They are merged into the next leaf if there are
enough free slots. If not, entries are borrowed from the next
leaf until these two leaves have about the same occupancy.

Flushing Phase. As shown in line 22-25 of Algorithm 1,
we use flush instruction on every leaf of version nv to flush
cache lines that contain newly inserted entries. We skip
cache lines that contain only newly deleted entries because
deletion requires only the bitmap to be flushed. Then the
crash-consistent metadata are flushed to PM. Notice we do
not use fences to order these flushes because the one mfence
in Global Version Flip phase will guarantee these writes are
persisted to PM, reducing the need for fences significantly.

Rebuilding Internal Nodes. Then the internal nodes
are rebuilt from the leaves of version nv using the max key
and persistent address of each leaf. As our leaf nodes are up-
dated infrequently, maintaining the max key is very cheap.
Moreover, keeping the max key also speeds up recovery as
the amount of data read from PM is drastically reduced.

Global Version Flip. Once all the above phases fin-
ished, the global version number gv is flipped and persisted
to PM. This officially concludes the merge and in effect, frees
up the space occupied by the old entries for the next merge.

Garbage Collection. During the above phases, garbage
leaves might be generated and, therefore, require reclama-
tion. For example, leaf split renders the old leaf obsolete.
The identification of garbage nodes is simple. We denote
Lcv as the set of leaves obtained through the links of version
cv. Similarly Lnv is obtained through the links of version
nv. Then the garbage leaves are simply Lcv − Lnv. Note
that garbage collection is placed after the version flip. This
is because only when the flipped global version reached PM,
can we safely reclaim space. To handle crashes during recla-
mation, we traverse the leaves of version cv backwards and
delete every node garbageLeaf that is in Lcv−Lnv using the
address stored in the predecessor of garbageLeaf. In this way,
we can re-execute the reclamation during recovery freely.

2.4 PM Management & Recovery
PM Allocation. The non-volatility of PM introduces

Algorithm 4: Recover(tree)

1 in merge ← extract in merge bit(tree.gv)
2 if in merge = 1 then
3 - reclaim new leaves created during the merge.
4 clear bit and persist(tree.gv, in merge)

5 - finish garbage collection
6 - replay PLog sequentially to reconstruct the buffer

tree.
7 inc and persist(restartCount)

challenges for memory allocation. For example, the system
could crash in between a region allocated from PM alloca-
tor, and the address of that region is persistently stored in
the user’s data structure, resulting in PM leaks. To avoid
this, we assume that the system is equipped with PM alloca-
tor with following APIs [24]: reserve, activate, and free.
The allocator first reserves a region of PM per user request
via the reserve API. The user then provides a PM location
to persistently receive the address of the reserved memory
region through the activate API. Only after the activate

returns can we consider the allocation complete. On deallo-
cation, the user provides the same PM location to the free

API. The allocator then failure-atomically frees up the mem-
ory region and sets the PM location to contain a pre-defined
value(e.g., null). This ensures that user programs can avoid
double freeing the memory region by checking the persistent
pointer against the pre-defined value.
Recovery. On system restart, the index needs to recover to
a consistent state. The recovery procedure shown in Algo-
rithm 4 first determines if the crash happened during merge
by examining the in merge bit of the global version num-
ber tree.gv. If the bit is set, leaf nodes created during the
interrupted merge require garbage collection. To be able
to reclaim them, we persistently store the address of every
new leaf in a persistent linked list tree.pendingLeaves before
linking them in the leaf list during merge. Upon successful
merge, the list tree.pendingLeaves itself is destroyed persis-
tently using the free API of the system allocator. When an
interrupted merge is detected, we reclaim those leaves by
traversing tree.pendingLeaves and deleting pending leaves

425

using addresses stored in the list node through free API of
the system allocator. Then the algorithm continues the GC
process if needed. This includes re-run of the garbage recla-
mation and persistently destroying the tree.pendingLeaves
itself. Then the buffer tree is rebuilt from PLog. At the last
step, restartCount is incremented.

2.5 Managing Complexity
It might seem complicated to equip each index structure

with a standalone log, though such approach is used in sev-
eral works [9, 23]. However, the standalone log is essen-
tial for providing durability with low overhead. One might
consider reducing the complexity by keeping a single log
for multiple index instances. However, multiple instances
might interfere with each other and trigger merges unneces-
sarily, and therefore increase the complexity. Instead, one
could hide the complexity via encapsulation since DPTree
provides the same interfaces as other indices, which makes
integration with real systems easier.

3. CONCURRENT DPTREE
Multi-core architectures are the pervasive now. To un-

leash the full potential of multi-core processors, efficient de-
sign of concurrent operations on persistent index structures
is crucial. Therefore, we address the design of concurrent
DPTree.

...

Front CPBT
Base Tree

（read-only）

DRAM

PM

insert/delete/

update

query query

Concurrent Partitioned Persistent Log
Coarse-versioned Leaf Layer

Parallel Merge

Middle CPBT

（read-only）

query

...

...

...

...

...

Figure 6: Concurrnet DPTree Architecture

The concurrency scheme for DPTree can be described in
three parts: the concurrent persistent buffer tree(CPBT),
parallel merge, and the synchronization between tree com-
ponents. Figure 6 shows the architecture of concurrent DP-
Tree. Concurrent writes are handled by the Front CPBT.
When the Front CPBT is full, it becomes read-only and
named as Middle CPBT. A new CPBT is created to be the
Front CPBT to serve new writes. The base tree then merges
with the Middle CPBT in parallel in the background. Reads
consult in sequence of Front CPBT, Middle CPBT (if any),
and finally base tree. Reads finish when a matching key is
found in any of the three components.

3.1 Concurrent Persistent Buffer Tree
The concurrent persistent buffer tree consists of an in-

DRAM concurrent B+-Tree and a PM log. Since there
are many studies on concurrent DRAM indices, such as
Masstree [19], BwTree [17] and ART [16], we employ OLC
(Optimistic Lock Coupling) [16] in our B+-Tree as the syn-
chronization mechanism for its simplicity and efficiency. The
main challenge, however, is to make the log persistent, con-
current, and scalable for recovery.

Concurrent Logging We solve this by hash partitioning
the log on key into N smaller partitions. Each partition
is implemented as a concurrent persistent linked list of log
pages. And each partition is equipped with a caching page

...

validity bit

1 1 1 1

Log Page

off...0

kv1

1 1

8-byte

kv2

Log Header Table

...N

p
a

rt
it
io

n
s

Invalid

Valid

prev

Modi�ed but

not �ushed

headtail

...

Figure 7: Concurrent Buffer Tree Log Layout

Algorithm 5: ConcurrentLogAppend(tree, r)

1 p ← hash(r.key) % N
2 restart: tailp ← tree.log headers[p]
3 goto new page if tail is null
4 off ← FetchAndAdd(tailp.off, sizeof(r))
5 if off + sizeof(r) ≤ StorageAreaCap then
6 - write and persist r into tailp.storage at offset

off
7 else
8 new page: lock partition p
9 newp ← callocator.reserve(tree.gv)

10 newp.off ← 0, set and persist(&newp.prev,
tailp)

11 callocator.activate(&tree.log headers[p], newp)
12 - unlock partition p
13 - atomically increment the size of buffer tree by

the number of log records per page
14 goto restart

allocator as well. As can be seen from Figure 7, the log has
a header table of size N with each slot storing the address of
the tail page of each list. The next log record will be written
into the tail page. Each log page is fixed-size consisting of
metadata and a storage area. The off in metadata is the
writing position of the next log record within the storage
area. The prev pointer points to the previous log page. A
page with null value in prev field indicates the head of the
linked list. Therefore, the recovery procedure starts from
this head page and walks back to the tail page. To reduce
PM writes, off is only modified but not persisted. This
is tolerable because, upon recovery, valid records could be
found by examining the validity bits in each log record.

The append algorithm for the log is shown in Algorithm 5.
To append records concurrently, writers find the tail page
of a partition through the header table and use an atomic
FAA(fetch-and-add) instruction on the off field to claim the
writing position and space for its record. If the claimed offset
is within the capacity of the log page, the record is written
and persisted(line 6). Otherwise, a new log page is allo-
cated to be the new tail page for a partition. A partition
lock protects this allocation. The caching allocator is mod-
ified to support the two-step (i.e., reservation + activation)
allocation scheme. Though we use locks here, it turns out
not to be a bottleneck in our experiments. This is because
the hot code path is the log record writing, which is already
lock-free. Finally, we update the size of the buffer tree at
the end of a page allocation (line 13). This, in effect, makes
the buffer tree size approximate and prevents the shared size
counter from becoming a bottleneck.

426

Concurrent Modification. We now describe the algo-
rithm of CPBT upsert (insert, delete, and update are all
implemented as upsert). To upsert key X, a log record is
written first before the B+-Tree is modified. However, the
order of records of X in the log must match the order of
modifications of X applied to the B+-Tree. This implies
that the log appending and tree modification for an upsert
operation should be an atomic operation. Consider the case
where one thread is inserting key X, and another is deleting
X. If these two steps were not an atomic operation, it would
be possible that in the log, the deletion of X is ordered be-
fore the insertion of X while in the B+-Tree the insertion is
ordered before the deletion. On crash recovery, the recon-
structed B+-Tree will be different from the one before the
crash. To prevent this, we utilize the write lock in the leaf
node of the Optimistic Lock Coupling B+-Tree. On every
upsert, we first acquire the lock in the B+-Tree leaf, then
concurrent logging is performed, followed by modification of
the leaf, and finally, bloom filter is updated. This correctly
serializes conflicting upsertions of the same key .

3.2 Synchronizing Tree Components

Algorithm 6: ConcurentSearch(key)

1 - seq-cstly set WFR.active
2 WFR.ptr ← GPF

3 - search in WFR.ptr
4 WFR ← 0
5 - return value if found
6 - seq-cstly set WMR.active
7 WMR.ptr ← GPM

8 - search in WMR.ptr if not null
9 WMR ← 0

10 - return value if found
11 - seq-cstly set WBR.active
12 WBR.ptr ← GPB

13 - search in WBR.ptr
14 WBR ← 0
15 - return value if found

Concurrent DPTree has multiple components that need to
be synchronized. For eaxmple, after tree merge, GC should
be performed only when there are no readers that have refer-
ences to the Middle CPBT. This essentially requires tracking
the number of active reader/writer. One näıve way is to use
globally shared counters [11]. However, previous studies [8,
19] have shown that frequent writes to shared cache lines kill
scalability due to high cache invalidation traffic. Instead,
we choose to track the reader/writer in a decentralized way
similar to RCU [20]. We maintain four thread-local synchro-
nization words: WFW, WFR, WMR, and WBR. WFR/WFW

stores the address of the Front CPBT current reader/writer
thread is accessing. WMR stores the address of the Middle
CPBT current reader thread is accessing. WBR stores the
root of the radix tree in base tree current reader thread is
accessing.

One bit of each word is reserved as active bit indicating
the presence of a reader/writer. The rest of the bits store a
pointer value, acting as a reference. All threads register the
addresses of the words to a synchronization manager(SM)
at startup or first access. We also maintain three global
pointers: GPF, GPM, and GPB pointing to current Front
CPBT, Middle CPBT and the root of the radix tree in base

Algorithm 7: ConcurrentUpsert(key, value)

1 - seq-cstly set WFW.active
2 WFW.ptr ← GPF

3 - upsert (key, value) into WFW.ptr
4 FrontCPBTSize ←WFW.ptr.size
5 WFR ← 0
6 if FrontCPBTSize ≥ MergeThresh then
7 - spin while MergeState = premerge
8 if CAS(MergeState, nomerge, premerge) then
9 F ′ ← create a new CPBT

10 F ← GPF

11 - seq-cstly set GPM with F
12 - seq-cstly set GPF with F ′

13 SpinUntilNoRef(TYPE WFW, F)
14 MergeThresh ← GPB.size * R
15 - seq-cstly set MergeState with merging

state
16 - spanw a new thread to run following code:
17 - ParallelTreeMerge(GPM, GPB)
18 - MP ← GPM

19 - GPM ← 0
20 - SpinUntilNoRef(TYPE WFR, MP)
21 - SpinUntilNoRef(TYPE WMR, MP)
22 - delete MP
23 - seq-cstly set MergeState with nomerge

state

Algorithm 8: SpinUntilNoRef(WType, ptr)

1 while True do
2 Wait ← false
3 for each thread t registered in SM do
4 W ← load sync word of t of type WType
5 if W.active ∧ (W.ptr = 0 ∨ W.ptr = ptr)

then
6 Wait ← true

7 end
8 - break if Wait = false

9 end

tree respectively. We assume accesses to shared word-sized
values are atomic with acquire/release semantics(e.g., x86).

Tracking Readers. The steps for concurrent search is
shown in Algorithm 6. It starts by sequential consistently
(abbreviated as seq-cstly) (e.g., using mfence in x86) setting
the active bit of WFR, declaring the entrance of a reader.
Then, the GPF is loaded into other bits of WFR, acting as
a reference to the data structure. Then the search is per-
formed on Front CPBT. Finally the WFR is cleared, declar-
ing the exit of the reader. The access to Middle CPBT and
base tree is guarded similarly.

Synchronization for Metadata Rebuild. The con-
current search in base tree is similar to the single threaded
search because we never modify the data of previous version
during merge. However, after restart, the metadata in a leaf
might require a rebuild which needs synchronization. This is
achieved by using one bit in the local restart counter of each
leaf as lock bit. During search or merge, the local restart
counter is checked against the global one. If they do not
match, the lock is obtained and the metadata is rebuilt. To
prevent persistent deadlocks, we clear lock bits on recovery.

Tracking Writers & Merge Initiation. The steps for

427

concurrent upsert is shown in Algorithm 7. It employs sim-
ilar guarding mechanism during the write to Front CPBT.
After the write, if the size of Front CPBT is full, a merge
task is scheduled by only one writer. This is achieved by
atomically manipulating the MergeState integer which has
three states that transitions in a cyclic order: nomerge, pre-
merge, and merging. To ensure there is at most one on-going
merge, threads spin until the MergeState is not premerge
before CAS’ing it to premerge. The winner gets to initiate
a merge task. It first sets GPM to the full Front CPBT
F , allowing new readers to perform reads on the temporary
buffer tree. Then GPF is set to a new CPBT F ′. Notice
there might a short period of time where GPF = GPM (af-
ter line 11 before line 12). In such a case, duplicate reads
are possible. However, it is still correct.

After the GPF(line 12) is updated, there still might be
writers left accessing the CPBT indicated by GPM. We
must wait for these writers to finish before the GPM is used
for merge(line 13). This is done by scanning the WFW in
each threads and spins as long as there are possible writers
left: there exists a WFW where the active bit is on and the
pointer value stored in the word equals to null or GPM. The
test of active bit excludes non-writer threads. The test of
null handles the race condition where writer threads have
loaded the value of GPF but have not stored the value
into WFW.ptr. Notice the sequential-consistent stores to
the thread-local words are crucial as they prevent the loads
of global pointers being reordered before the stores to the
active bits, which might result in missing references during
checks. The last condition catches the writers currently ac-
cessing GPM. Since this synchronization mechanism is used
in multiple places, we abstract it into an general procedure
SpinUntilNoRef shown in Algorithm 8 which takes as in-
put a enum (possibly valued WFW, WFR, WMR, or WBR)
and a pointer value. Then we computes the next merge
threshold (line 14), and MergeState is changed to merging
state(line 15). Finally a background thread is spawned to
execute the merge task.

In the merge worker, ParallelT reeMerge is called to per-
form the real merge (see next section). When the merge
completes, the Middle CPBT should be destroyed to acceler-
ate reads. Similarly, there are possible readers left accessing
GPM. As shown in line(17-23) of Algorithm 7, after the
merge, we first set GPM to null atomically, ensuring new
readers go directly to the base tree. Then we use the proce-
dure SpinUntilNoRef onWFR and WMR of each thread to
wait for the readers to exit before the CPBT, indicated by
GPM, is destroyed. Notice we scan WFR as well because,
though unlikely, a reader might already be reading the Front
CPBT before the Front CPBT becomes the Middle CPBT
and finish its read after the merge has completed. Lastly, the
old Middle CPBT is destroyed and MergeState is updated.

3.3 Parallel Tree Merging
To reduce the blocking time introduced by base tree

merge, parallel merging is essential. Luckily, the merge in
our case is easy to parallelize. As shown in Algorithm 9,
we divide the leaves of base tree into partitions, denoted
as P 1...PM. To be more specific, each partition P i con-
tains a constant PSize number of consecutive leaves of
base tree denoted by two endpoint leaves: P i.BLS and
P i.BLE. We also denote minkey(L) and maxkey(L) as the
smallest and greatest key in leaf L. For each partition

Algorithm 9: ParallelTreeMerge(MT, BT)

1 P 1..PM ← partition BT and MT into N
independent merge partitions

2 /* pull-based task allocation */
3 for each merge worker thread in the system do
4 p ← get next to-be-merged partition in P 1..PN

5 - perform UpsertMerge, DeleteMerge and
Consolidation Phases on p

6 end
7 - wait for all partitions to be processed
8 - reconnect consecutive partitions in P
9 for each merge worker thread in the system do

10 p ← get next to-be-flushed partition in P 1..PN

11 - perform Flush Phase on p

12 end
13 - rebuild the radix tree and update GPB atomically
14 - wait for all partitions to finish flushing and any

readers accessing old radix tree to exit using
SpinUntilNoRef

15 - perform global version flip
16 - perform garbage collection with one thread

P i(1 ≤ i ≤ M), we find in Middle CPBT the first key
P i.MKS≥minkey(P i.BLS). Similarly, we find in Middle
CPBT the first key P i.MKE > maxkey(P i.BLE). The key
range denoted by [P i.MKS,P i.MKE) in Middle CPBT is
to be merged into leaves denoted by [P i.BLS, P i.BLE] in
base tree. Since these partitions are non-overlapping, they
could be merged in parallel without any synchronization.

These merge partitions are then scheduled to a pool of
worker threads via a queue to balance the load on each
worker. Moreover, the PSize is set to be large enough to
amortize the scheduling overhead but also small enough to
prevent each merge task to become a bottleneck of the entire
merge. The specifics of the merge is similar to Algorithm
1 with small modifications. The three phases UpsertMerge,
DeleteMerge, and Consolidation are performed in parallel
for all merge partitions (line 3-6). After these phases are
done and synchronized, there might be leaves newly created
or deleted in some partitions. Therefore, we connect the con-
secutive partitions through the next pointers(line 8). Then
the Flushing Phase is also executed in parallel (line 9-12)
along with a rebuilding of the internal nodes. Similarly, we
perform the version flip and GC at the last step.

3.4 Optimizations for Word-Sized Value
When the value of the key-value entry is word-sized, and

there is currently no merge (i.e., MergeState = nomerge),
we exploit the 8B failure-atomic write to implement up-
date/delete for keys not in the base tree without writing
PM log. Assuming the key being updated/deleted is X,
we first lock the leaf of the buffer tree where X will re-
side. Then we perform a search on the base tree for X.
If X is found, its value is updated failure-atomically. For
deletion, the tombstone bit is set, and X will be removed
on the next merge. Otherwise, the update/delete opera-
tion reports that X does not exist. The update/delete op-
eration follows the same guarding mechanism used previ-
ously. Specifically, it first obtains the reference to the Front
CPBT in WFW before checking MergeState. In this way,
if MergeState = nomerge, we are sure that the merge be-
tween the Front CPBT to the base tree will not be initiated
(because we held a reference) before the update/delete is

428

25M 50M 100M
0

1

2

Data Size

L
a
te

n
c
y
[u

s]

(a) Insert

25M 50M 100M
0

0.5

1

Data Size

(b) Lookup

0.001% 0.01% 0.1%

0

10

20

30

Selectivity

T
h
ro

u
g
h
p
u
t[

M
O

p
s]

(c) Scan

16 32 48 64

5

10

Entry Size(B)

#
F

lu
sh

e
s

p
e
r

E
n
tr

y

in-place

out-of-place

(d) Merge Policy

Figure 8: Single-Threaded Micro-benchmark

DPTree FASTFAIR FPTree WORT

complete, avoiding lost updates.

4. EVALUATION
In this section, we evaluate the DPTree against other

state-of-the-art persistent index structures including FAST-
FAIR [12], FPTree [23], and WORT [15] on Intel Optane
DC Persistent Memory Modules.

4.1 Implementation & Setup
We implemented the DPTree and its concurrent version

in C++11. We utilize an open-source OLC B+Tree 1 in the
buffer tree. For FASTFAIR and WORT, we use their public
implementations 2. Since FPTree is not open-sourced, we
implemented it as faithfully as possible in C++11. For PM
allocation, we use nvm malloc 3 that supports the reserve-
activate scheme. All source codes are compiled with g++6.4
with -O3. We ran the experiments on a Linux system (kernel
4.9) with two Intel(R) Xeon(R) Platinum 8263C CPU @
2.50GHz (26 physical cores) CPUs with 35MB Last Level
Cache, 376GB DRAM, and 512GB PM. The Optane DIMMs
are configured in App Direct mode and exposed through
ext4-DAX file system. To avoid NUMA effects, we bind all
threads to one socket.

4.2 Micro-benchmark
In this experiment, we evaluate the performance of differ-

ent index structures using a micro-benchmark. The keys are
64-bit random integers. For DPTree, we set the capacity of
leaf to 256 entries, the merge consolidation threshold CT to
0.34, the merge threshold R to 0.1, the filling rate FR of
base tree leaf to 0.7, log page size to 64KB. For FASTFAIR
and FPTree, we use the default settings from their papers.

Insertion. We first insert key-value pairs of 16 bytes
varying the data size from 25M to 100M and measure the av-
erage latency. The result is shown in Figure 8a. In general,
DPTree has 1.27-1.43x lower latency than FASTFAIR and
1.76-1.78x than FPTree as the data size increases. We show
the PM write statistics in Table 4.2. It can be seen that DP-
Tree spends its flushes mostly in logging and node update.
It also has the lowest number of total flushes/fences, which
is translated into improved latency and endurance. Interest-
ingly, WORT needs the most flushes and fences and incurs
1.25x higher latency than DPTree. This is because WORT
requires key-value pair to be persistently allocated out-of-
place, thus causing around 4 additional flushes. Whereas

1https://github.com/wangziqi2016/index-microbench
2https://github.com/DICL/FAST FAIR,
https://github.com/SeKwonLee/WORT
3https://github.com/IMCG/nvm-malloc

DPTree/FPTree/FASTFAIR show very low allocation over-
head in Table 4.2 due to the page-based allocation.

Impact of Flush and Fence. To measure the perfor-
mance impact of flush and fence, we first performed 50M in-
sertions without flushes and fences. Then we gradually add
back these instructions. We notice a 1.59/1.34/1.83/1.45x
latency increase for DPTree/FASTFAIR/FPTree/WORT,
respectively, when using only flush instructions. When both
flush and fence instructions are added, we see an additional
1.10/1.12/1.10/1.13x increase. These results indicate that
the impact of flushes is more significant than fences, and
they both should be minimized.

Table 1: PM Flush Stats per op of 50M Insert Workload
Index Sum Log Alloc Node Swap Fence
DPTree 2.26 1.1 0.06 1.1 0 1.06
WORT 6.8 0 3.9 2.9 0 6.5

FASTFAIR 4.35 0 0.15 4.2 0 4
FPTree 3.64 0.05 0.07 3.51 0 3.6

2-Tier-BM 8.5 4 0.004 0 4.5 2

Point Lookup. We then perform random key searches
varying data size from 25M to 100M. As shown in Figure 8b,
DPTree is up to 1.82x/1.85x/2.19x faster than FASTFAIR,
FPTree, and WORT. This is attributed to the efficient
lookup inside base tree leaf and the bloom filter, eliminat-
ing most of the searches(95%) for keys not in the buffer tree.
For PM-only indices, such as FASTFAIR and WORT, the
cache misses to PM take up more overhead as the data size
grows. Thanks to the buffer tree and inner nodes of the base
tree being in DRAM, DPTree is able to complete the search
mostly with 2 accesses to PM.

16 32 64
0

0.5

1

Entry Size(B)

L
a
te

n
c
y
[u

s]

(a) Successful Lookup

16 32 64
0

1

2

Entry Size(B)

(b) Unsuccessful Lookup

lp fp lp+fp

Figure 10: Comparision of Leaf Probing Schemes:
lp(Linear Probing), fp(Fingerprints), lp+fp(Linear
Probing with Fingerprints)

Range Scan. Next, we evaluate the performance of range
scan of different indices. We measure the throughput of
range scan on 50M data size while varying the scan selec-
tivity from 0.001% to 0.1%. As shown in Figure 8c, DPTree

429

is up to 3.0/10.98x faster than FPTree/WORT. This is be-
cause FPTree requires sorting, whereas DPTree avoids this
cost using order array during scan. WORT performs the
worst because it stores payloads randomly in PM, causing
low cache utilization. In contrast, DPTree stores payloads
inside a page for better locality. Compared to FASTFAIR,
which is inherently good at scan, DPTree is only up to 1.1x
slower due to the indirection through order array.

Space Consumption We then measure the mem-
ory utilization for all indices. After 50M inser-
tions, the results are 1.7/1.26/1.28/6.02 GB for DP-
Tree/FASTFAIR/FPTree/WORT respectively. DPTree
uses about 34% more space than FASTFAIR and FPTree be-
cause it maintains two sets of metadata. However, the space
consumption mainly comes from the fingerprints and order
array, which are for accelerating search operations. More-
over, crash-consistency is still maintained without them. Af-
ter removing these metadata, DPTree requires only about
5% more space than FPTree. On the other hand, WORT
takes much more space than other indices due to its small
radix and external allocation of payloads.

In-place Merge vs. Out-of-place Merge. To show
that coarse-grained versioning indeed reduces PM writes, we
compare the in-place merge algorithm, which is enabled by
coarse-grained versioning, with the out-of-place merge. We
replace the leaf list in the original base tree with a continuous
PM region where the entries are stored compactly in sorted
order. We insert 5M random key-value entries and vary the
entry size from 16B to 64B. The number of flushes to PM
per entry is shown in Figure 8d. We notice the out-of-place
merge incurs up to 5.8x more PM flushes as the entry size
increases. When the entry size decreases, the out-of-place
merge incurs fewer flushes as a cache line contains more
entries. However, it still requires 2.1x more flushes at least.
Therefore, coarse-grained versioning is effective in reducing
PM writes compare to traditional out-of-place merging.

Different Leaf Search Schemes. In this experiment,
we compare our hybrid linear probing with fingerprints with
two other search schemes: linear-probing-only, fingerprints-
only(FPTree style). We first populate DPTree with 50M
entries varying from 16B to 64B and perform 50M suc-
cessful/unsuccessful point lookups. The average latency of
lookups is shown in Figure 10. For successful lookups, lin-
ear probing with fingerprints causes the lowest latency as the
entry size increases. The fingerprints-only probing scheme
performs the worst in this case as it needs to check half of
the fingerprints on average. The linear-probing-only scheme
performs better than the fingerprint-only scheme. This is
because the correct entry is near the start of the probing
position most of the time. However, the latency degrades as
the entry size increases because of the increased number of
cache lines probed. For unsuccessful lookups, the schemes
with fingerprints stand out. This is because they mostly
only check fingerprints. Therefore they show only a slight
increase in latency as the entry size grows. The linear prob-
ing with fingerprints scheme reduces latency even further as
it requires much fewer fingerprint checks.

4.3 PM-Optimized Buffer Managers
Traditional buffer managers utilize DRAM as a faster cache

in front of the slower block-oriented storage device to im-
prove performance. There have been works [25, 7, 14] on
optimizing buffer manager for persistent memory. The 3-

1 .8 .6 .4 .2
0

2

4

Buffer Space Ratio

L
a
te

n
c
y
[u

s]

(a) Insert

1 .8 .6 .4 .2
0

1

2

Buffer Space Ratio

(b) Lookup

DPTree 2TierBM

Figure 11: DPTree vs. 2-Tier-BM: 50M 16B key value
pairs with uniformly distributed 8B keys

Tier buffer management approach proposed by Renen et
al. [25] incorporates PM as an additional persistent layer be-
tween DRAM and SSD/HDD. It also introduces several key
optimizations enabled by persistent memory. As DPTree
contains DRAM components too, we are interested in com-
paring DPTree with this approach for indexing purposes.

For a fair comparison, we implemented a BTree using 2-
Tier (DRAM and PM) buffer manager design with key op-
timizations including cache-line grained pages, mini pages
and pointer swizzling. To guarantee the crash consistency
of the BTree, we implement text-book style physiologi-
cal redo/undo logging on PM. We configure the 2-Tier-
BM(Buffer Manager) to use 16KB pages and employ a
hashing-based leaf. We perform 50M insertions followed by
50M lookups of random 8B keys (the worst case for both
indices). The results are shown in Figure 11. The x-axis is
the percentage of leaves in DRAM. We fix DPTree’s merge
threshold of R at 0.1. Therefore DPTree buffers at most 10%
of the data. To keep recovery fast, we set the log capacity
of 2-Tier-BM to be 30% of the entire key-value set.

We see that DPTree consistently outperforms 2-Tier-BM
in insertion workload. On average, our implementation of
2-Tier-BM requires 8.5 flushes and 2 fences per insertion
at 100% buffer ratio compares to the constant 2.2 flushes
of DPTree. This is because, in physiological logging, every
update requires logging the PM address, before and after
image of the value in that address. This results in more
data to be logged compare to DPTree, and incurs 4 flushes
per update shown in Table 4.2. On the other hand, logging
more data results in more frequent checkpoints (because log
is full) which swaps out dirty pages. This results in around
4.5 flushes per op on average. As the buffer ratio decreases,
latency degrades because of the increased number of expen-
sive page swaps which results in flushes. For sorted leaf,
the flush overhead is much more pronounced (up to 35X
more flushes). This is because maintaining sorted order re-
quires half of the key-value pairs to be moved and logged.
For lookups, 2-Tier-BM outperforms DPTree by 50% only
when it is entirely in DRAM. However, its latency degrades
rapidly due to more page swaps as the buffer ratio decreases.

4.4 YCSB Workload
We then evaluate the concurrent indices using YCSB[10].

We vary the portions of index operations and generate the
following workload mixtures: 1) InsertOnly: 100% inserts
of 50M keys in total. 2) ReadOnly: 100% lookups. 3)
ReadUpdate: 50% reads and 50% updates. 4) ScanIn-
sert: 95% scans and 5% inserts. 5) Mixed: 50% lookups,
20% updates, 10% scans and 20% inserts.

The average scan selectivity is 0.001% with a standard

430

0 10 20 30
0

2

4

6

8

Threads

T
h
ro

u
g
h
p
u
t

[M
O

p
s]

(a) InsertOnly

0 10 20 30
0

20

40

Threads

(b) ReadOnly

0 10 20 30
0

10

20

Threads

(c) ReadUpdate

0 10 20 30
0

0.5

1

1.5

Threads

(d) ScanInsert

0 10 20 30
0

5

10

Threads

(e) Mixed

DPTree FASTFAIR FPTree

Figure 12: Throughput of YCSB Workloads with Random Key

223 224 225 226 227

0

2

4

Data Size

T
im

e
[s

]

DPTree-1thd

DPTree-32thd

FPTree-1thd

FPTree-32thd

Figure 13: Recovery Performance

deviation of 0.0006%. For each workload, we first populate
the index with 50M random 64-bit integer keys and then run
the corresponding workload. The result of each workload
reported is the average of 3 runs.

We use the default settings for FPTree and FASTFAIR
described in the original papers[23, 12]. We notice that
FASTFAIR[12] did not address concurrent update. Thus,
we add our implementation: to perform a search first and
then lock the leaf node and update the pointer in the leaf
using 64-bit failure-atomic write. For concurrent DPTree,
we set the number of log partition to 64, the merge thresh-
old R to 0.07, the bloom filter error rate to 0.03, the base
tree leaf node size to 8KB, the log page size to 64KB. The
results are shown in Figure 12.

InsertOnly. For this workload, DPTree consistently out-
performs others in terms of throughput. DPTree shows
similar scalability to FASTFAIR with up to 1.36x higher
throughput at 32 threads. FPTree starts with similar scala-
bility but degrades after 20 threads due to frequent transac-
tion aborts. Since the Optane DIMM has a write bandwidth
1/6 that of DRAM [13], all indices plateau at high thread
count. However, DPTree allows more concurrency to satu-
rate the bandwidth due to reduced PM writes per operation.

ReadOnly. For ReadOnly workload results shown in Fig-
ure 12b, DPTree stands out with 1.32-1.58x and 1.37-1.7x
better lookup throughput than FASTFAIR and FPTree as
thread count increases. With 32 threads, DPTree scales to
27.3x whereas FASTFAIR and FPTree scale to 23.9x and
21.6x, respectively. From the CPU statistics collected using
Linux Perf tool in Table 2, DPTree has the slightest increase
in CPU metrics when the number of threads increases to 32,
showing the scalability of our synchronization method. The
other reason that DPTree has the highest scalability is that
the hash lookup inside leaf requires less PM bandwidth than
the leaf scan in FPTree and FASTFAIR.

ReadUpdate. For this workload, DPTree, FASTFAIR
and FPTree scale to 21.9x, 18.1x, and 7.5x with 32 threads,
respectively. Figure 12c shows that DPTree has the high-
est throughput for all thread configurations, outperforming
other indices by up to 1.7-5.07x. As shown in Table 2, DP-
Tree has the smallest overhead across all metrics and has the

smallest increase in metrics with 32 threads thanks to the
efficient lookup and update (one PM write). FPTree per-
forms the worst in this case as its update procedure requires
at least three PM writes. The unsatisfactory scalability of
FPTree is also reflected in the table where cycles and instruc-
tion count rises significantly when the number of threads is
at 32. This is also partly attributed to the increased abort
rate of TSX at high thread count.

ScanInsert and Mixed. For this workload, FASTFAIR
maintains the highest scan throughput across all thread count
because of the sorted leaf design. DPTree shows similar
throughput to FASTFAIR and is superior throughput over
FPTree by 2-3x when thread count is less than 20 thanks to
the order array. However, DPTree plateaus after 20 threads
because the random access inside large leaf requires more
PM bandwidth. For Mixed workload, DPTree, FASTFAIR,
and FPTree scale to 14x, 15.92x, and 8.2x, respectively.
DPTree maintains the highest throughput among all thread
count, showing the ability to scale under various access pat-
terns.

Table 2: CPU Stats of Workloads with Random 8B Keys
Index Cycles Insts L3Miss BrMiss

ReadUpdate 1 thread/32 threads per op
DPTree 1768/2947 456/474 3.05/3.25 2.34/2.50

FASTFAIR 2523/4436 696/703 9.07/9.16 7.77/8.29
FPTree 3581/15062 730/1624 5.25/7.93 16.22/24.13

ReadOnly 1 thread/32 threads per op
DPTree 1461/1662 444/447 2.68/2.82 1.76/1.80

FASTFAIR 1931/2552 634/651 7.55/7.69 6.95/7.01
FPTree 1876/2615 662/781 3.59/4.26 14.96/15.56

4.5 Recovery
In this section, we evaluate the recovery performance and

scalability of DPTree against other index structures. To
measure the impact of data size in recovery, we vary the
number of key-value pairs from 223 to 227. The setting for
DPTree and FPTree are the same as in section 4.4. We
also measure the parallel recovery performance of DPTree
and FPTree. For DPTree, the parallel recovery is simple:
log partitions are read and replayed to the concurrent buffer
tree in parallel. Since the FPTree paper did not mention
parallel recovery algorithm, we implement our own version
for FPTree in three phases: Phase 1, Traverse the leaf layer
of FPTree to collect leaves; Phase 2, Spawn multiple threads
to read the greatest keys out of these leaves in parallel; Phase
3, Reconstruct the internal nodes with one thread.

The result is depicted in Figure 13. We omitted FAST-
FAIR since it has instantaneous recovery. For recovery with
one thread, DPTree has a much better curve than FPTree
(about 1.8-5.5x less recovery time). This is because, during
rebuilding, FPTree spends most of the time retrieving from

431

PM, the maximum key in each leaf. Whereas DPTree re-
builds the buffer tree from the PLog, which is only a small
fraction of the complete key-value set. As for rebuilding
internal nodes of the base tree, it takes up negligible 0.2%
in the total recovery time. This is because leaf nodes in
the base tree are large, and the maximum key is already
computed in leaf nodes, reducing PM reads significantly.
For recovery with 32 threads, DPTree can achieve up to 8x
speedup over one thread, saturating the memory bandwidth
of our system. FPTree, however, has only 2.6x speedup and
up to 5.46x slower than DPTree. We find that with one
thread, in phase (1) and (3), FPTree spends 28% of the
time (each taking 26% and 2%). Phase (2) is able to scale
to 11x, which saturates the PM read bandwidth of the sys-
tem. However, the other two phases are hard to parallelize
and turn out to be the bottlenecks.

5. RELATED WORK
DPTree is inspired by previous works on persistent in-

dices, merge trees and concurrent KV stores.
PM-Only Persistent Indices. For PM-Only struc-

tures, data is completely in PM, enabling the possibility
of near-instant recovery. Venkataraman et al [26] proposed
CDDS B-Tree that uses sorted leaf and fine-grained version-
ing for each entry to ensure consistency and enable concur-
rency. Such design requires extensive persists and garbage
collection. To reduce persists, Chen et al. [9] proposed
wB+-Tree that keeps leaf unsorted and relies on 8B atomic
write for bitmap and logging to achieve consistency. It also
employs slot-array to accelerate searches. Similar to wB+-
Tree, NV-Tree [31], a persistent B+-Tree proposed by Yang
et al., employs unsorted leaf with bitmap and reduced persis-
tence guarantee of internal nodes. Internal nodes are rebuilt
from the persistent leaves on recovery. This design requires
sorting for range queries. FASTFAIR [12], a persistent and
concurrent B+-Tree by Hwang et al., propose FAST(Failure-
Atomic ShifT) and FAIR techniques to keep node sorted by
exploiting properties of modern CPUs. The BzTree [6] by
Arulraj et al. employs PMwCAS (Persistent Multi-word
CAS) [28] to achieve persistence and concurrency in B+-
Tree. However, BzTree requires at least 9 persists per
insert (8 from PMwCAS). The failure-atomic 8B update
technique is also used to develop a persistent radix tree
called WORT [15] proposed by Lee et al. However, radix
tree suffers from poor range scan performance. This is even
more pronounced in WORT since key-value payloads are
not stored in-line. DPTree differs from these works in that
it amortizes the persistence overhead of metadata, such as
bitmap and slot-array, over a batch of updates.

DRAM-PM Persistent Indices. For this kind of data
structures, DRAM is used for auxiliary data that is rebuilt
on recovery. Since DRAM has lower latency than PM, this
scheme usually results in improved performance at the cost
of longer recovery time. FPTree [23], a persistent and con-
current B+-Tree proposed by Oukid et al., employs such
design. The internal nodes are placed in DRAM and leaves
in PM. Bitmap, logging, and fingerprints are used for crash-
consistency and reducing PM reads. Similar to NV-Tree,
FPTree has to perform sorting for range queries. DPTree,
on the other hand, uses order-array to avoid sorting. An-
other related work is HiKV[30] proposed by Xia et al. HiKV
combines persistent hashtable and volatile B+-Tree. Such

design suffers from inefficient range scan and high recovery
cost due to the rebuilding of the entire B+-Tree.

Merge Trees. The well-known LSM-Tree[22] uses mul-
tiple tree structures to form a logical index. DPTree adopts
the ideas of logging and leveling but differs from LSM-Tree
in many ways. One one hand, DPTree employs only two
levels to reduce read latency. The two-level design also sig-
nificantly reduces the worst case write amplification in LSM-
Trees. On the other hand, DPTree employs in-place merging
optimized for PM instead of out-of-place merging optimized
for block-based storage. Another relevant work is the dual-
stage index architecture proposed by Zhang et al. [32]. DP-
Tree builds on top of this work but differs in several ways.
First, their work targets indexing in DRAM without consid-
ering durability. Second, their work focuses on saving space
whereas DPTree focuses on optimizing index latency in such
DRAM-PM hybrid systems. Lastly, their work lacks designs
for concurrency which our work complements.

Concurrent Log-Structured Stores. To unleash the
power of multi-core processors, researchers study concur-
rent and scalable log-structured KV stores. cLSM [11] in-
creases concurrency of its memtable with reader/writer lock
and concurrent skip list. However, it’s scalability is limited
due to the use of shared counters. Nibble [21] improves the
scalability of in-memory KV store using techniques includ-
ing partitioning, optimistic concurrent lookups, and multi-
head logs. However, it comes at the expense of range scan
ability and durability. Different from these works, DPTree
addresses the scalability problem by carefully avoiding con-
tention on shared states and introducing concurrent parti-
tioned PM logs without sacrificing range scan and durability.

6. CONCLUSION
In this paper, we proposed DPTree, a novel index struc-

ture designed for DRAM-PM hybrid systems. DPTree em-
ployed novel techniques such as flush-optimized persistent
logging, coarse-grained versioning, hash-based node design,
and a crash-consistent in-place merge algorithm tailored for
PM. As a result, DPTree reduced flush overhead consider-
ably for cache-line-sized key-value payloads. The combina-
tion of Optimistic Lock Coupling B+-Tree, coarse version-
ing, and in-place merging enabled DPTree to be concurrent
and scalable in multi-core environment.

We conducted a comprehensive experimental evaluation
of DPTree against state-of-the-art PM indices. We found
that the single-threaded DPTree has the lowest flush over-
head and highest search throughput among those evaluated.
For concurrent workloads, DPTree exhibits good scalability
for basic operations. In terms of recovery, DPTree achieves
both better and more scalable performance than FPTree for
single-threaded and parallel recovery.

As future work, we consider querying the log directly with-
out DRAM buffer, e.g., structuring the PM log as a persis-
tent hash table for both buffering and durability, to reduce
the complexity of the design.

Acknowledgement
We would like to thank our anonymous shepherd and review-
ers for their guidance and insightful comments on this work.
We would also like to thank Dr. Bin Cui, Jinming Hu, and
Dr. Xinyuan Luo for their useful suggestions. We would like
to give special thanks to Alibaba Group for providing the

432

PM hardware and help for the work. This research is sup-
ported by National Basic Research Program of China(Grant
No. 2015CB352402), National Natural Science Foundation
of China(Grant No. 61672455), and Natural Science Foun-
dation of Zhejiang Province(Grant No. LY18F020005).

7. REFERENCES
[1] 3d xpointTM: A breakthrough in non-volatile memory

technology. https://www.intel.com/content/www/us/
en/architecture-and-technology/intel-micron-

3d-xpoint-webcast.html.

[2] Aerospike performance on intel optane persistent
memory. http:
//pages.aerospike.com/rs/229-XUE-318/images/
Aerospike Solution Brief Intel-Optane.pdf.

[3] Intel R© optaneTM dc persistent memory: A major
advance in memory and storage architecture.
https://software.intel.com/en-us/blogs/2018/10/
30/intel-optane-dc-persistent-memory-a-major-

advance-in-memory-and-storage-architecture.

[4] Intel R© optaneTM dc persistent memory intel virtual
event. https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-

persistent-memory.html.

[5] r. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin,
X. Tang, D. Lottis, K. Moon, X. Luo, E. Chen,
A. Ong, A. Driskill-Smith, and M. Krounbi.
Spin-transfer torque magnetic random access memory
(stt-mram). J. Emerg. Technol. Comput. Syst.,
9(2):13:1–13:35, May 2013.

[6] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A.
Larson. Bztree: A high-performance latch-free range
index for non-volatile memory. Proceedings of the
VLDB Endowment, 11(5):553–565, 2018.

[7] J. Arulraj, A. Pavlo, and K. T. Malladi. Multi-tier
buffer management and storage system design for
non-volatile memory, 2019.

[8] S. K. Cha, S. Hwang, K. Kim, and K. Kwon.
Cache-conscious concurrency control of main-memory
indexes on shared-memory multiprocessor systems. In
VLDB, 2001.

[9] S. Chen and Q. Jin. Persistent b+-trees in non-volatile
main memory. Proc. VLDB Endow., 8(7):786–797,
Feb. 2015.

[10] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[11] G. Golan-Gueta, E. Bortnikov, E. Hillel, and
I. Keidar. Scaling concurrent log-structured data
stores. In Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, pages
32:1–32:14, New York, NY, USA, 2015. ACM.

[12] D. Hwang, W.-H. Kim, Y. Won, and B. Nam.
Endurable transient inconsistency in byte-addressable
persistent b+-tree. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies,
FAST’18, pages 187–200, Berkeley, CA, USA, 2018.
USENIX Association.

[13] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu,
A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.

Dulloor, J. Zhao, and S. Swanson. Basic performance
measurements of the intel optane dc persistent
memory module, 2019.

[14] H. Kimura. Foedus: Oltp engine for a thousand cores
and nvram. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 691–706, New York, NY, USA,
2015. ACM.

[15] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H.
Noh. Wort: Write optimal radix tree for persistent
memory storage systems. In Proceedings of the 15th
Usenix Conference on File and Storage Technologies,
FAST’17, pages 257–270, Berkeley, CA, USA, 2017.
USENIX Association.

[16] V. Leis, F. Scheibner, A. Kemper, and T. Neumann.
The art of practical synchronization. In Proceedings of
the 12th International Workshop on Data
Management on New Hardware, DaMoN ’16, pages
3:1–3:8, New York, NY, USA, 2016. ACM.

[17] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
bw-tree: A b-tree for new hardware platforms. In
Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 302–313, Washington, DC, USA, 2013.
IEEE Computer Society.

[18] J. Liu and S. Chen. Initial experience with 3d xpoint
main memory. In 2019 IEEE 35th International
Conference on Data Engineering Workshops
(ICDEW), pages 300–305. IEEE, 2019.

[19] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings of
the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 183–196, New York, NY,
USA, 2012. ACM.

[20] P. E. McKenney and J. D. Slingwine. Read-copy
update: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing and
Systems, pages 509–518, 1998.

[21] A. Merritt, A. Gavrilovska, Y. Chen, and D. Milojicic.
Concurrent log-structured memory for many-core
key-value stores. Proc. VLDB Endow., 11(4):458–471,
Dec. 2017.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, June 1996.

[23] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and
W. Lehner. Fptree: A hybrid scm-dram persistent and
concurrent b-tree for storage class memory. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 371–386,
New York, NY, USA, 2016. ACM.

[24] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and
H. Plattner. nvm malloc: Memory allocation for
nvram. ADMS@ VLDB, 15:61–72, 2015.

[25] A. van Renen, V. Leis, A. Kemper, T. Neumann,
T. Hashida, K. Oe, Y. Doi, L. Harada, and M. Sato.
Managing non-volatile memory in database systems.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages
1541–1555, New York, NY, USA, 2018. ACM.

[26] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. H. Campbell. Consistent and durable data

433

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Solution_Brief__Intel-Optane.pdf
http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Solution_Brief__Intel-Optane.pdf
http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Solution_Brief__Intel-Optane.pdf
https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture
https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture
https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

structures for non-volatile byte-addressable memory.
In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, pages 5–5,
Berkeley, CA, USA, 2011. USENIX Association.

[27] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the
Sixteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[28] T. Wang, J. Levandoski, and P.-A. Larson. Easy
lock-free indexing in non-volatile memory. In 2018
IEEE 34th International Conference on Data
Engineering (ICDE), pages 461–472. IEEE, 2018.

[29] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.
Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson. Phase change memory. Proceedings of the
IEEE, 98(12):2201–2227, 2010.

[30] F. Xia, D. Jiang, J. Xiong, and N. Sun. Hikv: A
hybrid index key-value store for dram-pm memory
systems. In Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, pages 349–362, Berkeley, CA,
USA, 2017. USENIX Association.

[31] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and
B. He. Nv-tree: Reducing consistency cost for
nvm-based single level systems. In Proceedings of the
13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 167–181, Berkeley, CA,
USA, 2015. USENIX Association.

[32] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky,
L. Ma, and R. Shen. Reducing the storage overhead of
main-memory oltp databases with hybrid indexes. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1567–1581,
New York, NY, USA, 2016. ACM.

434

	Introduction
	Differential Persistent Tree
	Buffer Tree
	Base Tree
	Crash Consistent Merging
	PM Management & Recovery
	Managing Complexity

	Concurrent DPTree
	Concurrent Persistent Buffer Tree
	Synchronizing Tree Components
	Parallel Tree Merging
	Optimizations for Word-Sized Value

	Evaluation
	Implementation & Setup
	Micro-benchmark
	PM-Optimized Buffer Managers
	YCSB Workload
	Recovery

	Related Work
	Conclusion
	References

