
Automating Distributed Tiered Storage Management in
Cluster Computing

Herodotos Herodotou
Cyprus University of Technology

Limassol, Cyprus

herodotos.herodotou@cut.ac.cy

Elena Kakoulli
Cyprus University of Technology

Limassol, Cyprus

elena.kakoulli@cut.ac.cy

ABSTRACT
Data-intensive platforms such as Hadoop and Spark are rou-
tinely used to process massive amounts of data residing on
distributed file systems like HDFS. Increasing memory sizes
and new hardware technologies (e.g., NVRAM, SSDs) have
recently led to the introduction of storage tiering in such
settings. However, users are now burdened with the ad-
ditional complexity of managing the multiple storage tiers
and the data residing on them while trying to optimize their
workloads. In this paper, we develop a general framework
for automatically moving data across the available storage
tiers in distributed file systems. Moreover, we employ ma-
chine learning for tracking and predicting file access pat-
terns, which we use to decide when and which data to move
up or down the storage tiers for increasing system perfor-
mance. Our approach uses incremental learning to dynami-
cally refine the models with new file accesses, allowing them
to naturally adjust and adapt to workload changes over time.
Our extensive evaluation using realistic workloads derived
from Facebook and CMU traces compares our approach with
several other policies and showcases significant benefits in
terms of both workload performance and cluster efficiency.

PVLDB Reference Format:
Herodotos Herodotou and Elena Kakoulli. Automating Distributed
Tiered Storage Management in Cluster Computing. PVLDB,
13(1): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3357377.3357381

1. INTRODUCTION
Data-intensive analytic applications for business intelli-

gence, social network analysis, and scientific data process-
ing are routinely executed on Big Data platforms such as
Hadoop YARN [43] and Spark [48], while processing mas-
sive amounts of data residing in distributed file systems
such as HDFS [40]. Such applications tend to spend signif-
icant fractions of their overall execution in performing I/O
[47]. Larger memory sizes as well as new hardware technolo-
gies such as Non-Volatile RAM (NVRAM) and Solid-State

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 1
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3357377.3357381

Drives (SSDs) are now commonly utilized for increasing I/O
performance. In particular, in-memory distributed file sys-
tems like Alluxio [4] and GridGain [21] are used for storing
or caching HDFS data in memory. HDFS has also added
support for caching input files internally [22]. NVRAM and
SSDs have been used as the storage layer for distributed
systems [13, 25, 31] as well as in shared storage systems
(e.g., ReCA [38], Hermes [28]). Recently, the OctopusFS
distributed file system [27] introduced fine-grained tiering
in compute clusters via storing file replicas on the various
storage media (e.g., memory, SSDs, HDDs) that are locally
attached on the cluster nodes. At the same time, HDFS
generalized its architecture to support storage media other
than HDDs, including memory and SSDs [1].

As multiple storage tiers are added into distributed file
systems (and storage systems in general), the complexity
of data movement across the tiers increases significantly,
making it harder to take advantage of the higher I/O per-
formance offered by the system [28]. Most aforementioned
systems expose APIs for data caching or movement to ap-
plication developers and data analysts. For example, an
HDFS application can issue requests to cache files and di-
rectories. However, when the cache gets full, no additional
caching requests will be served until the application man-
ually uncaches some files [22]. Similarly, OctopusFS offers
a placement policy for determining how to initially store
the data across the storage tiers but lacks any features for
automatically moving data afterwards. Other systems like
Alluxio [4] and GridGain [21] implement basic policies for
removing data from memory when full, such as LRU (Least
Recently Used) [2]. However, such policies are known to
under-perform in the big data setting as they were initially
designed for evicting fixed-size pages from buffer caches [5,
2]. Furthermore, these systems do not offer any cache ad-
mission policies; i.e., they will place all data in the cache
upon access, without any regards for the current state of
the system, the data size, or any workload patterns.

Overall, the lack of automated data movement across stor-
age tiers places a significant burden on users or system ad-
ministrators, who are tasked with optimizing various types
of data analytics workloads [28, 34]. The analysis of pro-
duction workloads from Facebook, Cloudera, and MS Bing
[5, 9] has shown that many jobs (small and large alike) ex-
hibit data re-access patterns both in the short-term (within
hours) and the long-term (daily, weekly, or monthly). Thus,
identifying the reused data and keeping them in higher tiers
can yield significant performance benefits [5]. In addition,
data access patterns can change over time with the addi-

43



tion and removal of users and jobs, leading to an increased
need for adapting to these changes accurately and efficiently
[34]. Hence, it is imperative for tiered storage systems to in-
clude automated data management capabilities for improv-
ing cluster efficiency and application performance.

In this paper, we propose a general framework for auto-
mated tiered storage management in distributed file systems.
Specifically, our framework can be used for orchestrating
data management policies for adaptively deciding (i) when
and which data to retain or move to higher storage tiers for
improved read performance and (ii) when and which data to
move to lower tiers for freeing scarce resources. We show its
generalization by implementing several conventional cache
eviction and admission policies [2], related policies from re-
cent literature [5, 16], as well as our own policies.

Furthermore, we propose the use of machine learning (ML)
for tracking and predicting file access patterns in the system.
In particular, we employ light-weight gradient boosted trees
[8] to learn how files are accessed by the current workload
and use the generated models to drive our automated file
system policies. Our approach uses incremental learning to
dynamically refine the models with new file accesses as they
become available, allowing the models to naturally adjust
and adapt to workload changes over time.

Our work lies at the intersection of distributed storage
systems, hierarchical storage management (HSM) solutions,
and caching, with a humbling amount of related work. Yet,
to the best of our knowledge, we propose and implement a
new, fully automated, and adaptive approach to tiered stor-
age management in distributed file and storage systems. Our
ML-based approach is also different from previous approaches
in HSM and caching (a detailed comparison is provided in
Section 2). Finally, we have implemented our approach in
an existing distributed file system, namely OctopusFS [27],
which is a backwards-compatible extension of HDFS [40].

In summary, the key contributions of this paper are:

1. The design and implementation of a general framework
for automatically managing storage tiers in distributed
file systems.

2. An online, adaptive machine learning-based policy for
predicting file access patterns and dynamically moving
data among storage tiers.

3. An extensive evaluation using realistic workloads derived
from Facebook and CMU traces, showcasing significant
benefits for workload performance and cluster efficiency.

The paper is organized as follows. Section 2 presents an
overview and comparison with existing related work. Sec-
tion 3 discusses the proposed tiered storage management
framework and Section 4 formulates the ML models used
for predicting file access patterns. Sections 5 and 6 outline
several policies for moving files down and up the storage
hierarchy, respectively. The experimental evaluation is pre-
sented in Section 7, while Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief background of storage

tiering and compare previous research with our work.

2.1 Distributed File Systems and Tiering
Distributed file systems like HDFS [40] serve the current

generation of Big Data platforms [43, 48] via storing files

(a)

HDFS

F1B1

F1B2

F2B1

F1B1

F2B1

F2B1

F1B1

F1B2

F2B1

F2B1

F1B2

F2B1

Memory Cache

Local HDDs

F2B1

F1B1(b)

OctopusFS

Memory Tier

SSD Tier

HDD Tier

(c)

Hermes

HSM

HDD Layer

(Parallel FS)

F1

F2

SSD Layer

(Burst Buffers)

F2B1

F1B2

F1B1

F1B1

F1B2

F1B2

F2B1

F1
Memory Cache

(Local)

Node 1 Node 2 Node 3 Node 4

Notation:

F1B1=File1,Block 1

Figure 1: Data placement for three tiered storage systems

on locally-attached hard disk drives (HDDs) on the cluster
nodes. The files are typically broken down into large blocks
(e.g., 128MB), which are then replicated and distributed in
the cluster, as shown in Figure 1(a). HDFS has recently
taken significant steps toward tiered storage via (i) enabling
the HDFS cache [22], and (ii) supporting heterogeneous stor-
age types such as SSDs and memory [1]. In the former, there
is no support for automatically caching or uncaching files,
while in the latter, there is support for a limited number of
static policies for storing files on specific tiers [1].

hatS [29] and OctopusFS [27] extended HDFS to support
fine-grained storage tiering based on which file blocks are
replicated and stored across both the cluster nodes and the
storage tiers (see Figure 1(b)). hatS proposed a simple rule-
based data placement policy, whereas OctopusFS developed
one based on a multi-objective problem formulation for de-
ciding how the file blocks should be distributed in the cluster
in order to maximize performance, fault tolerance, and data
and load balancing. However, neither hatS nor OctopusFS
support any policies for automatically moving file replicas
between the storage tiers. To exploit larger memories, in-
memory file systems such as Alluxio [4] and GridGain [21]
can be used for storing or caching data in clusters. In the
Spark ecosystem, Resilient Distributed Datasets (RDDs) are
a distributed memory abstraction that allows applications to
persist a specified dataset in memory for reuse, and use lin-
eage for fault tolerance [48]. While conventional cache evic-
tion policies such as LRU are used in these systems, they
rely on the user to manually cache the data.

PACMan [5] is a memory caching system that explores
memory locality of data-intensive jobs. PACMan imple-
ments two eviction policies: (i) LIFE that minimizes job
completion time by prioritizing small inputs, and (ii) LFU-F
that maximizes cluster efficiency by evicting less frequently
accessed inputs. However, PACMan does not allow appli-
cations to specify hot data in memory for subsequent effi-
cient accesses and does not implement cache admission poli-
cies. Big SQL [16] is an SQL-on-hadoop system that utilizes
HDFS cache for caching table partitions. Big SQL presents
two algorithms, namely SLRU-K and EXD, that explore the
tradeoff of caching objects based on recency and frequency
of data accesses. The two algorithms drive both cache evic-
tion and admission policies but, unlike our approach, do not
learn from file access patterns as the workload changes.

44



2.2 Hierarchical Storage Management
Hierarchical storage management (HSM) solutions store

data across storage layers that typically consists of arrays of
tapes, compressed disks, and high-performance disks, while
more recently memory and NVRAM are also exploited [26,
28] (see Figure 1(c)). HSM supports both tiering (i.e., a file
will only reside on one of the storage layers) and caching
(i.e., a copy of a file will be moved to the cache), but, unlike
distributed file systems, HSM does not offer any locality or
storage-media awareness to higher-level applications.

The process of moving or copying files from one storage
layer to another is typically based on predefined policies and
parameters (e.g., low/high thresholds for disks capacities)
[26, 28]. The ReCA storage system uses the SSD layer as
a dynamic cache [38]. Based on the incoming application
I/Os, ReCA categorizes the workload in one of five types,
and reconfigures the cache when detecting a change in the
workload. The DataSpaces framework [26] exploits memory
and SSDs to support dynamic data staging in HSM, driven
by user-provided hints about expected data read patterns.
Hermes adds memory and NVRAM in the storage hierarchy
and proposes three policies that can be manually configured
by the user. The cost models and tiering mechanisms used
in prior approaches in HSM cannot be directly applied to an-
alytics applications since they are designed to handle block
level I/Os (e.g., 4–32 KB) for POSIX-style workloads (e.g.,
server, database, file systems) [11]. In addition, our main
approach for automatically moving data across the storage
hierarchy is not based on parameter-driven or user-defined
policies but rather on machine learning.

2.3 Caching
Caching is a well-studied problem that appears in various

contexts and discussed extensively in several surveys [36,
2]. We offer a quick overview of the area and highlight the
most closely related work. For CPU caches, virtual mem-
ory systems, and database buffer caches, there is extensive
work on cache eviction policies (e.g., LRU, LFU, ARC, MQ),
which are classified as a) recency-based, b) frequency-based,
c) size-based, d) function-based, and e) randomized [36].
Other policies found in main memory databases attempt to
identify hot and cold data, also based on access frequencies
[30, 17, 14]. Another recent policy augmented the Marker
caching algorithm [15] with a machine learned oracle for
improving its competitive ratio [33]. Unlike our approach,
these policies operate on fixed-size pages and assume that
every accessed page will be inserted into the cache.

Many caching policies have been developed for web caches
that operate on variable size objects, including SIZE, Hyper-
G, Greedy-Dual-Size, and Hybrid [2]. Most of these policies
have been designed for improving the hit ratio in web ac-
cesses but that does not necessarily improve the performance
in storage systems [38]. Machine learning techniques such
as logistic regression, artificial neural networks, genetic al-
gorithms, random forests, and others have also been used
for developing more intelligent web caching policies [2, 44,
7, 3, 41]. However, most of these approaches try to identify
and predict relationships between web objects; for exam-
ple, a visit to web page X is typically followed by a visit to
web page Y . Other approaches try to capture associations
between file attributes (e.g., owner, creation time, and per-
missions) and properties (e.g., access pattern, lifespan, and
size) [34]. Another recent approach used neural networks

to analyze the inter-relationships among web requests for
making caching decisions [24]. However, such relationships
and associations are not expected to be present in big data
analytics workloads and, hence, are not applicable in our
setting. Reinforcement learning has also been attempted by
using multiple experts to select the best cache eviction pol-
icy to use at any given time, but these approaches are known
to outperform only the static policies (e.g., LRU, LFU) and
are computationally and memory expensive [6, 20, 45].

3. TIERED STORAGE MANAGEMENT
The main operations of distributed file systems, such as

HDFS [40] and OctopusFS [27], are to store and retrieve
files, which are broken into large blocks. In HDFS, blocks
are replicated 3 times by default and distributed across clus-
ter nodes. Replication offers three main benefits: (1) it pre-
vents data loss due to disk or node failures; (2) it enables
higher I/O rates since the same block can be read in parallel
(from different replicas); and (3) it increases the chances of
compute-data co-location [40]. With caching, extra block
replicas are created in memory for improving read I/O per-
formance and reducing read latencies [22].

In OctopusFS, the blocks are replicated and distributed
both across nodes and across storage tiers based on the deci-
sion of an automated block placement policy. For example,
a block may have 1 replica in memory, 1 on SSD, and 1 on
HDD on three different nodes (see F1B1 in Figure 1(b)).
Storing data across tiers introduces two additional benefits:
(1) it increases the overall I/O performance and the cluster
resource utilization for both write and read operations; and
(2) it enables higher-level systems to make both locality-
aware and tier-aware scheduling decisions [27].

3.1 Effect of Tiered Storage in DFSs
In order to study the effects of storing and retrieving block

replicas to and from multiple storage tiers, we used the DF-
SIO benchmark [40] to write and read 84GB of data in a 12-
node cluster with 3 storage tiers: memory, SSD, and HDD.
The experimental setup is detailed in Section 7. We repeated
this experiment in four scenarios:

• Original HDFS, storing 3 replicas on HDDs across 3
different nodes;

• HDFS with Cache, storing 1 additional replica in
memory on a node that already contains 1 HDD replica;

• OctopusFS, which uses a policy to determine the best
node and storage tier for storing each of 3 replicas;

• Octopus++, our extension of OctopusFS with smart
ML-based policies that dynamically move existing repli-
cas between storage tiers.

The average write and read throughput per node for the
four scenarios are shown in Figures 2(a) and 2(b), respec-
tively. We focus on the average throughput per node because
the total bandwidth is linear with the number of nodes [40].
Comparing the I/O throughput between Original HDFS and
OctopusFS during the generation of the first 42GB of data,
we observe that OctopusFS achieves a 54% increase on av-
erage write throughput over Original HDFS (from 87 to
135MB/s). Up until that point, OctopusFS places the three
replicas of each block on the three different tiers – memory,
SSD, and HDD. Placing replicas on multiple tiers has a mod-
est effect on write performance since the data are written in

45



0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 W

ri
te

 T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Data Written (GB)

Original HDFS HDFS with Cache OctopusFS Octopus++

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 R

e
a

d
 T

h
ro

u
g

h
p

u
t 

(M
B

/s
)

Data Read (GB)

Original HDFS HDFS with Cache OctopusFS Octopus++

Figure 2: (a) Average write and (b) read throughput per node for HDFS, HDFS with Cache, OctopusFS, and Octopus++

a pipeline and the performance is bottlenecked by storing
1 replica on HDD. However, by placing 1 replica in mem-
ory and 1 on SSD, the average read throughput increases
3.7x over storing all replicas on HDDs. Enabling caching
in HDFS has no effect on the observed write throughput
as caching takes place asynchronously, but the introduction
of 1 cached replica in memory leads to a 2x higher read
throughput compared to Original HDFS.

The trends in Figures 2(a) and 2(b) change after the gen-
eration of 42GB of data because the aggregated memory
available to the file systems is exhausted. After that point,
OctopusFS places either 1 replica on SSD and 2 replicas on
HDD or the other way around, reducing the I/O benefits
to only 28% and 36% of average write and read through-
put over Original HDFS, respectively. Enabling caching in
HDFS has no effect on write or read throughput anymore
as there is no space available to cache any data in memory.

The above results showcase the benefits of tiered storage
in distributed file systems in terms of improved I/O perfor-
mance and better resource utilization. At the same time,
they highlight some important issues from making static
data placement decisions. First, as time goes by, mem-
ory fills up with files that may no longer be needed, which
prevents newer or more important files from getting stored
there. On the other hand, some files may be accessed more
frequently than others and, hence, it would be more ben-
eficial to move or copy them in memory. Finally, several
previous studies [5, 35] have shown that file access patterns
evolve over time so a file system must be able to adjust its
behavior in order to avoid big variations in performance, as
the ones observed in Figure 2. Octopus++, which utilizes
ML-based policies (see Section 4) for automatically moving
file replicas up and down the storage tiers, is able to main-
tain the same performance as OctopusFS for both writes
and reads throughout the entire experiment (see Figure 2).

3.2 Adaptive Tiered Storage Management
Based on the above results and discussion, it is essential

to build mechanisms and algorithms for automatically mov-
ing data across the storage tiers over time in order to avoid
wasting resources and missing various optimization oppor-
tunities. We have separated the data movement into two
categories based on the way the data moves betweens tiers
and formulated the following two definitions:

Definition 1. Replication downgrade is the process of
(i) moving a file replica from a higher storage tier to a lower
one, or (ii) deleting a file replica.

Definition 2. Replication upgrade is the process of (i)
moving a file replica from a lower storage tier to a higher
one, or (ii) creating a new file replica.

We have identified four important decision points that are
necessary for guiding replication downgrades or upgrades:

1. When to start the downgrade (upgrade) process

2. Which file to downgrade (upgrade)

3. How to downgrade (upgrade) the selected file

4. When to stop the downgrade (upgrade) process

These 4 decision points constitute a generalization of both
conventional cache management as well as tiering and caching
in hierarchical storage management (HSM). For example,
consider a database buffer cache that stores data blocks read
from disk. The “downgrade” (i.e., eviction) process starts
when the buffer cache gets full (decision #1). A data block
is selected based on a cache eviction policy such as LRU (de-
cision #2) and is deleted from the cache (decision #3). The
eviction policy is invoked again until there is enough room
in the buffer cache to fit the new data (decision #4). In an
HSM system, when the access frequency of a file f becomes
higher than a threshold (decision #1), f (decision #2) is
moved from the HDD layer to the SSD layer (decision #3).

In a multi-tier DFS, there are multiple interesting options
for all four decision points and by treating them differently
we get better separation of concerns. For instance, the sys-
tem does not need to wait until a storage tier is full to initi-
ate a downgrade process; rather, it can start it proactively
in order to overlap the downgrade of a file with the creation
of new files. Similarly, the system does not need to wait
until a file is accessed to upgrade it but can start moving it
to a higher tier if it expects the file to be used in the near
future. In addition, when the system decides to downgrade
or upgrade a file, it then needs to decide whether to delete,
move, or copy the file and where. All these decisions will be
handled through pluggable downgrade and upgrade policies,
elaborated in Sections 4-6. The decisions are made at the
granularity of files (rather than blocks) since previous work
[5, 16] has shown that performance improvement is attained
only when entire files are present in a higher tier (called the
“all-or-nothing” property in [5]).

3.3 System Design and Implementation
HDFS, and by extension OctopusFS, uses a multi-master/

worker architecture that consists of Masters, Workers, and
Clients. Each Master contains (i) the FS Directory, which
offers a traditional hierarchical file organization and opera-
tions; (ii) a Block Manager, which maintains the mapping
from file blocks to nodes and storage tiers; and (iii) a Node
Manager, which contains the network topology and main-
tains node statistics. The Workers are responsible for (i)
storing and managing file blocks on the storage media; (ii)

46



serving read and write requests from Clients; and (iii) per-
forming block creation, deletion, and replication upon in-
structions from the Masters. The Client exposes APIs for
all typical file system operations such as creating and delet-
ing directories or writing and reading files.

We have extended OctopusFS by adding a Replication
Manager in the Masters for orchestrating the automatic
data movement across the storage tiers, based on the de-
cisions of pluggable downgrade and upgrade policies. The
policies implement 4 main methods that correspond to the 4
core decision points and callback methods for receiving no-
tifications after a file creation, access, modification, or dele-
tion. Finally, the policies have access to file and node statis-
tics maintained by the system in order to make informed
decisions. In addition, a Replication Monitor is responsible
for handling the data movement requests from the Replica-
tion Manager, as well as monitoring the overall system for
any over- or under-replicated blocks. We also modified the
Workers to enable the transfer of blocks between storage
tiers efficiently. We did not modify the Client and kept it
backward compatible with OctopusFS and HDFS. For ease
of reference, we call our version of the system Octopus++.

Even though we implemented our approach in OctopusFS,
it is not specific to the internal workings of OctopusFS. We
are confident our framework can be easily implemented in
(i) HDFS with caching; (ii) an in-memory distributed file
system (e.g., Alluxio, GridGain); or (iii) an HSM system
(e.g., ReCA, Hermes) for deciding when and what data to
move across the available storage tiers.

4. FILE ACCESS PATTERN MODELING
Previous studies have shown that file access behavior is

not random; it is driven by application programs and ana-
lytical needs, leading to various types of data re-access pat-
terns [5, 9]. For example, some data may be shared by
multiple applications and reused for a few hours before be-
coming cold, while others are reused for longer periods such
as days or weeks. In addition, data access patterns tend to
evolve over time as users and applications are added and
removed from a cluster [34]. The above two observations
have motivated our approach of modeling file access patterns
and creating a feature-based classifier to predict whether a
file will be accessed in the near future (and hence, should
be upgraded) or it has become cold (and hence, should be
downgraded). The overall approach comprises data prepara-
tion, normalization, online incremental training, and binary
classification with gradient boosted trees (discussed next).

4.1 Training Data Preparation
The three most important factors that can influence a re-

placement or prefetching process in a cache are: (i) recency,
i.e., the time of the last file access; (ii) frequency, i.e., the
number of accesses to the file; and (iii) the size of the file [2].
All typical file systems already maintain each file’s size, last
access time, and creation time. Even though it would be
easy to keep track of access frequencies, that would not re-
veal any information regarding potential re-access patterns.
Thus, we maintain the last k access times for each file (over-
heads are discussed in Section 7.6), which, combined with
the file size and creation time, constitute our input data.

The next data preparation step in a classification pipeline
is the generation of the feature vectors ~xi and the class la-
bels yi, shown in Figure 3. Timestamps are not good feature

Access

11:40 

Creation

8:00 

Access

9:20 

Access

9:50 

Access

11:10 11:30 12:00 time

class window
feature 

generation

normalization

class 

labeling
 𝑥𝑓 = 200 𝑀𝐵, 80 𝑚𝑖𝑛, 30 𝑚𝑖𝑛, 80 𝑚𝑖𝑛, 20 𝑚𝑖𝑛, 270 𝑚𝑖𝑛

 𝑥𝑓 = 0.049, 0.028, 0.010, 0.028, 0.007, 0.094 𝑦𝑓 = 1

File 𝒇 (size=𝟐𝟎𝟎𝑴𝑩) Reference Horizon

Figure 3: Pipeline for training data preparation

candidates for machine learning since their value constantly
increases over time. Hence, we use the timestamps to gen-
erate time deltas, that is, the time difference between (i)
two consecutive time accesses, (ii) the oldest time access
and creation time, (iii) a reference time and the most recent
access, and (iv) a reference time and creation time. A ref-
erence time is a particular point in time chosen to separate
the perceived “past” from the perceived “future”. The past
represents when and how frequently a file has been accessed
and, thus, it is used to generate the feature vectors ~xi. On
the other hand, the future shows whether the file will be re-
accessed in a given forward-looking class window, which is
used to generate the class label y: if a file is accessed during
the window, then y=1; otherwise y=0. Note that by sliding
the reference time in the time axis, we can generate multiple
training points (i.e., feature vectors and corresponding class
values) based on the access history of a single file.

The final step in our data preparation involves normaliz-
ing the features by rescaling all the values to lie between 0
and 1. Normalization is performed by diving the time deltas
by a maximum time interval (e.g., 1 month), which is useful
for avoiding outliers from situations where a file was not ac-
cessed for a long time. Figure 3 shows a complete example
of the training data preparation process. As the file is ac-
cessed 3 times before the chosen reference time, the feature
vector will contain 5 normalized time deltas as explain above
and one file size feature. The remaining k − 3 access-based
features are encoded as missing values. The class value is
set to 1 since the file is accessed within the class window.

4.2 Incremental Learning
In supervised learning, data D = ((~x1, y1), (~x2, y2), ...,

(~xn, yn)) consisting of feature vectors ~xi and class values
yi are used to infer a model M ≈ p(y|~x). Unlike traditional
batch (offline) learning, which trains a model from a fixed
training dataset D, incremental learning dynamically refines
a model with new data points as they become available grad-
ually over time [18]. The benefits are that it is unnecessary
to determine a fixed training window and that the model
naturally adjusts and adapts to changes over time.

The key requirement for incremental learning is the ability
to generate training data (i.e., both feature vectors and class
values) efficiently while the system is running. Our data
preparation pipeline (recall Section 4.1) makes this possible
as follows. Suppose our goal is to build a model that pre-
dicts whether some file will be re-accessed in a given class
window of size w (e.g., in the next 30 minutes). The sys-
tem, at the current point in time tc and for some file f , can
generate a training data point via: (1) setting the reference
time tr = tc −w (i.e., setting the reference time 30 minutes

47



before the current time); (2) generating the feature vector
based on the file size, creation time, and access times before
tr as explained in Section 4.1; and (3) determining the class
label based on whether the file was accessed during the time
interval between tr and tc. By repeating the above three
steps periodically for a sample of (or all) the files in the
file system, we can generate continuous data points for (re-)
training the model over time. Note that we can efficiently
compute the feature vectors for each file incrementally since
time deltas between consecutive file accesses do not change
over time. Finally, in order to ensure the generation of pos-
itive training data (i.e., data points with class value y = 1),
we also repeat the above three steps right after a file is ac-
cessed (but only for that file).

4.3 Learning Model Selection
The following requirements for a machine learning model

are desirable, since we plan to use the model in a real system:

• Accurate: The model must be able to accurately predict
whether a file will be accessed soon or not be accessed for
some time.

• Efficient: Both model training and predictions must be
inexpensive in terms of computational and storage re-
quirements.

• Adaptable: The model must support incremental learn-
ing and efficiently adapt to new workloads patterns.

As a learning model we selected XGBoost [8], a state-of-the-
art gradient boosting tree algorithm that satisfies all three
requirements. The XGBoost model has the form of an en-
semble of weak models (single trees), which is trained follow-
ing a stage-wise procedure under the same (differentiable)
loss function [8]. XGBoost is very effective in practice and
has been used in multiple winning solutions for regression,
classification, and ranking in recent ML competitions [19].
As an ensemble model, XGBoost is more complex and less
understandable than simple regression or rule-based models.
In response, various methods have been proposed recently
to help admins compute feature importance measures and
understand the reasons of individual predictions [32, 37].

We also considered other well-known classifiers such as
Naive Bayes, Bayesian Belief Networks (BBN), Support Vec-
tor Machines (SVM), and Artificial Neural Networks (ANN),
but each failed to satisfy some of our needs. Naive Bayes as-
sumes that attributes are conditionally independent of one
another, and thus cannot be used effectively to learn a se-
quence of access patterns. BBNs model attribute depen-
dence in networks, but require a priori knowledge about the
structure of the network, which is exactly what we are try-
ing to determine [34]. Finally, we empirically found SVM
and ANN to have a much higher cost in terms of training
time (up to two orders of magnitude slower compared to
XGBoost) and lower accuracy than XGBoost. On the con-
trary, XGBoost requires minimal storage, is fast to train and
make predictions, and can learn incrementally over time.

Hyperparameter tuning: In pre-analysis, we found that
only two configuration parameters had a noticeable effect
on the XGBoost performance: the maximum depth d of the
trees and the number of rounds r for boosting [46]. Hence,
we used grid search to optimize them offline using training
data from our two workload traces (see Section 7) and found
the same values for both workloads: d = 20 and r = 10. We
used default values for other configuration parameters.

Algorithm 1 Downgrade process outline

1: procedure Downgrade(StorageTier fromTier)
2: if policy.startDowngrade(fromTier) then
3: repeat
4: file = policy.selectFileToDowngrade(fromTier)
5: toTier = policy.selectDowngradeTier(file, fromTier)
6: downgradeFile(file, fromTier , toTier)
7: until policy.stopDowngrade(fromTier)

4.4 File Access Predictions
Section 4.2 described how a model M is trained incre-

mentally over time. Before the system can start using M to
make predictions, it needs to ensure that M has been trained
enough. To achieve this, the system will occasionally use
some training data points for evaluating the performance of
M (before using them for training M). When the classifica-
tion error rate drops below a certain threshold (e.g., 0.01),
then the system can start using M for predicting whether a
file will be accessed in the forward-looking class window of
size w (e.g., in the next 30 minutes). At the current point
in time tc and for some file f , the system can get the predic-
tion via: (1) setting the reference time tr = tc (2) generating
the feature vector based on the file size, creation time, and
access times before tr as explained in Section 4.1; and (3)
using the model to predict the class label of f . Specifically,
an XGBoost model will return a probability score indicating
how likely is f to be accessed in the next w minutes.

The probability score is then used by the policies to de-
cide which file(s) to upgrade or downgrade. We generate
two separate models for this purpose — one for the upgrade
policy and one for the downgrade policy — whose only dif-
ference lies in the class window size w. The upgrade policy
wants to determine which files will be accessed in the imme-
diate future and, hence, we want to set a small w (e.g., 30
minutes). On the other hand, the downgrade policy wants
to determine which files have become cold, that is, will not
be accessed for some time; hence, we want to set a large w
(e.g., 6 hours). The two policies are further elaborated in
Sections 5 and 6.

5. DOWNGRADE POLICIES
Algorithm 1 shows the outline of the downgrade process

responsible for moving a file replica from a higher storage
tier to a lower one. The procedure utilizes the four main
methods implemented by a downgrade policy, which corre-
spond to the four decision points discussed in Section 3.2.
The downgrade procedure is invoked every time some data
is added to a storage tier (e.g., after a file creation or repli-
cation) but the actual process starts based on the policy’s
decision (line #2). At that point, the policy is responsible
for selecting a file to downgrade (line #4) and the target
storage tier (line #5). The system will then schedule the
downgrade request (line #6), which will take place asyn-
chronously. Finally, the process will repeat until the policy
decides to stop it (line #7).

5.1 When to Start the Downgrade Process
In a traditional cache, an object is discarded when the

cache is full and a new object needs to enter the cache. This
approach ensures that the cache is fully utilized and works
well for fixed-size disk pages or small web objects. However,
typical file sizes in analytics clusters are in the order of tens

48



Table 1: Downgrade policies

Acronym Policy Name Description

LRU Least Recently Used Downgrade the file that was accessed less recently than any other
LFU Least Frequently Used Downgrade the file that was used least often than any other
LRFU Least Recently & Frequently Used Downgrade the file with the lowest weight based on recency and frequency
LIFE LIFE (PACMan [5]) Downgrade either the old LFU file or the largest file
LFU-F LFU-F (PACMan [5]) Downgrade the LFU file among files older than a time window
EXD Exponential Decay (Big SQL [16]) Downgrade the file with the lowest weight based on recency and frequency
XGB XGBoost-based Modeling Downgrade the file with the lowest access probability in the distant future

to hundreds of MBs [5, 9], so having a file write wait for other
files to be downgraded would introduce significant latency
delays. Hence, it is crucial for the system to be proactive
and for the downgrade process from a tier T to start before
T is full. All of our policies will start the downgrade process
from a tier when its used capacity becomes greater than
a threshold value (e.g., 90%), allowing for a more efficient
overlapping between file writes and file downgrades.

5.2 Which file to downgrade
Once the downgrade process is activated for a particu-

lar storage tier T , the policy must select a file to remove
from T in order to make room for new data. This particu-
lar decision is known as the replacement or eviction policy
in the literature with a long history of related work [2, 36].
For comparison purposes, we have implemented three con-
ventional eviction policies, three related policies from recent
literature, and one new policy, listed in Table 1.

LRU (Least Recently Used) selects the file used least re-
cently. LRU is widely used and is designed to take advantage
of the temporal locality often exhibited in data accesses.

LFU (Least Frequently Used) selects the file with the
least number of accesses. LFU is a typical web caching pol-
icy that keeps more popular files and evicts rarely used ones.

LRFU (Least Recently & Frequently Used) selects the
file with the lowest weight, which is computed for each file
based on both the recency and frequency of accesses. The
weight W for a file f is initialized to 1 when f is created
and updated each time f is accessed based on Formula 1:

W = 1 +
H ∗W

(timeNow − timeLastAccess) +H
(1)

Parameter H represents the “half life” of W , i.e., after how
much time the weight is halved. For e.g., if H = 6 hours
and a file is accessed 6 hours after its last access, then its
new weight will equal 1 plus half the old weight. Hence, files
that are recently accessed multiple times will have a large
weight, as opposed to files accessed a few times in the past.

LIFE aims at minimizing the average completion time of
jobs in PACMan [5] by prioritizing small and recent files.
Specifically, LIFE divides the files into two partitions: Pold
containing the files that have not been accessed for at least
some time window (e.g., 9 hours) and Pnew with the rest.
If Pold is not empty, then the LFU file is selected from it.
Otherwise, LIFE selects the largest file from Pnew.

LFU-F aims at maximizing cluster efficiency in PACMan
[5] by evicting less frequently accessed files. LFU-F divides
the files in the same two partitions as LIFE, namely, Pold
and Pnew. If Pold is not empty, then the LFU file is selected
from it. Otherwise, LFU-F selects the LFU file from Pnew.

EXD (Exponential Decay) explores the tradeoff between
recency and frequency in data accesses in Big SQL [16]. In

particular, it selects the file with the lowest weight W com-
puted using the following formula:

W = 1 +W ∗ e−α ∗ (timeNow − timeLastAccess) (2)

The parameter α determines the weight of frequency vs.
recency and it is set to 1.16 ∗ 10−8 based on [16].

XGB (XGBoost-based Modeling) incrementally trains
and utilizes an XGBoost model (recall Section 4) for de-
ciding which file will not be accessed in the distant future.
Specifically, XGB will compute the access probability for the
k least recently used files and select the file with the lowest
access probability to downgrade. We compute probabilities
for LRU files in order to avoid cache pollution with files that
are never evicted, while we limit the computations to k files
in order to bound the (low) overhead of building the features
and using the model. In practice, we set k to be large (e.g.,
k = 200), and it has had limited impact on our workloads.

5.3 How to downgrade the selected file
When an object is selected for cache eviction, it is typ-

ically simply deleted. In our case, however, when a file is
selected for downgrade from a higher tier, we typically want
to move that file replica to a lower tier in order to retain
the same number of replicas, and hence, maintain the file
system’s properties of high fault tolerance and availability.
This decision entails selecting one lower storage tier for mov-
ing the file replica. For this purpose, we adapted the data
placement policy used by OctopusFS, which makes decisions
by solving a multi-objective optimization problem. In partic-
ular, the policy aims at finding a Pareto optimal solution
that optimizes 4 objectives simultaneously: (1) fault toler-
ance for avoiding data loss due to failures; (2) load balancing
for distributing I/O requests across storage tiers; (3) data
balancing for distributing data blocks across storage tiers;
and (4) throughput maximization for optimizing the overall
I/O throughput of the cluster. For details, see [27].

5.4 When to stop the downgrade process
In conventional caches, eviction stops when there is enough

room in the cache to fit the newly inserted object. Since
we start the downgrade process proactively (i.e., before the
cache is full), we need a different approach for stopping it.
Specifically, all policies will stop the downgrade process from
a storage tier T when its used capacity becomes lower than
a threshold value (e.g., 85%), allowing for a small percent of
T ’s capacity to be freed together.

6. UPGRADE POLICIES
Algorithm 2 outlines the upgrade process guided by the 4

decision points presented earlier in Section 3.2. The upgrade
procedure is invoked (i) every time a file is accessed (but be-
fore it is actually read) and (ii) periodically in case the policy

49



Table 2: Upgrade policies

Acronym Policy Name Description

OSA On Single Access Upgrade a file into memory upon access (if not there already)
LRFU Least Recently & Frequently Used Upgrade a file if its weight is higher than a threshold
EXD Exponential Decay (Big SQL [16]) Upgrade a file if its weight is higher than the weight of to-be-evicted files
XGB XGBoost-based Modeling Upgrade files with high access probability in the near future

Algorithm 2 Upgrade process outline

1: procedureUpgrade(StorageTier fromTier ,File accessedFile)
2: if policy.startUpgrade(fromTier, accessedF ile) then
3: repeat
4: file = policy.selectFileToUpgrade(fromTier)
5: toTier = policy.selectUpgradeTier(file, fromTier)
6: upgradeFile(file, fromTier , toTier)
7: until policy.stopUpgrade(fromTier)

wants to make a proactive decision (an accessed file is not
available in this case). Given a storage tier and the file that
was just accessed (optional), the upgrade policy is respon-
sible for deciding when the process starts (line #2), which
file to upgrade (line #4), and the target storage tier (line
#5). The system will then schedule the upgrade request
(line #6), which will be piggybacked during the subsequent
read or take place asynchronously. Finally, the process will
repeat until the policy decides to stop it (line #7).

6.1 When to Start the Upgrade Process
Typically, all data accesses in a system that uses a cache

must go through the cache first. If the accessed object O
is located in the cache, it will be served from there; other-
wise, O will be inserted into the cache. Unlike cache eviction
policies, cache admission policies are not very common as
they complicate the read process without major benefits in
a traditional cache [16]. In our case, moving a file into a
higher storage tier is costlier as it may be executed asyn-
chronously and it may involve a large amount of data (10s
to 100s of MBs). Hence, the decisions of when and what to
upgrade are as important as when and what to downgrade.
For comparison purposes, we have implemented two con-
ventional admission policies, one related policy from recent
literature, and one new policy, listed in Table 2.

OSA (On Single Access) implements the common ap-
proach of upgrading each file when it is accessed and not
already present in the memory tier. With OSA, we do not
allow upgrades from the HDD to the SSD tier to avoid (i)
the overhead associated with moving large amounts of data
between disks, and (ii) under-utilizing the HDDs available
in the cluster.

LRFU (Least Recently & Frequently Used) starts the
upgrade process for an accessed file f when the computed
weight for f is greater than a threshold value. The weight
takes into account both the recency and the frequency of
accesses and is computed using Formula 1. The threshold
value is empirically set to 3 in order to favor files that are
accessed recently multiple times.

EXD (Exponential Decay) is used in Big SQL [16] for
selecting which files to insert into the cache. If there is
enough space in a higher storage tier to fit the accessed file
f , then f will get upgraded. Otherwise, EXD will upgrade
f only if its weight (computed using Formula 2) is higher
than the sum of weights of the files that will need to be
downgraded to make room for f .

XGB (XGBoost-based Modeling) incrementally trains
and utilizes an XGBoost model (recall Section 4) for predict-
ing if a file will get accessed in the near future. Specifically,
XGB will compute the access probability for the k (e.g.,
k = 200) most recently used files and start the upgrade
process if the access probability of a file is higher than the
discrimination threshold. In binary classification, the dis-
crimination threshold determines the boundary between the
two classes, and it is empirically set to 0.5 (see Section 7.5).

6.2 Which file to upgrade
The decisions of when to start upgrading and which file to

upgrade are tightly coupled in the upgrade process. Hence,
all policies will select the file that triggered the process (de-
scribed in Section 6.1 above) as the file to upgrade.

6.3 How to upgrade the selected file
We use the same multi-objective optimization problem

formulation with the downgrade policies (recall Section 5.3)
for selecting a higher storage tier for performing the upgrade,
while considering the tradeoffs between fault tolerance, data
and load balancing, and throughput maximization.

6.4 When to stop the upgrade process
With the exception of XGB, all other policies base their

decision to start the upgrade process on the currently ac-
cessed file f . If they decide to start, f will be upgraded and
the loop terminates. XGB, on the other hand, will continue
the upgrade process until either there are no more files that
are likely to be accessed in the near future, or until the to-
tal size of the scheduled upgrades exceeds a threshold (e.g.,
1GB) to avoid upgrading a large amount of data at once.

7. EXPERIMENTAL EVALUATION
The evaluation is conducted on a 12-node cluster running

CentOS Linux 7.2 with 1 Master and 11 Workers. The Mas-
ter node has a 64-bit, 8-core, 3.2GHz CPU, 64GB RAM, and
a 2.1TB RAID 5 storage configuration. Each Worker node
has a 64-bit, 8-core, 2.4GHz CPU, 24GB RAM, one 120GB
SATA SSD, and three 500GB SAS HDDs. The file systems
are configured to use three storage tiers consisting of 4GB
of memory, 64GB of SSD, and 400GB of HDD space each
for storing file blocks on each Worker node. The default
replication factor is 3 and the block size is 128MB.

7.1 Workload Properties
Our evaluation is based on two workloads derived from

real-world production traces from Facebook and Carnegie
Mellon University clusters. The FB trace was collected over
a period of 6 months from a 600-node Hadoop cluster at
Facebook and contains arrival times, durations, file sizes,
and other data about executed MapReduce jobs [10]. The
CMU trace contains similar data from scientific MapReduce
workloads executed over a period of 31 months at Open-
Cloud, a 64-node Hadoop cluster [12]. From the traces, we

50



Table 3: Job size distributions. The jobs are binned by their data sizes in our FB and CMU workloads

Bin Data size % of Jobs % of Resources % of I/O Task Time (mins)
FB CMU FB CMU FB CMU FB CMU

A 0-128MB 74.4% 63.4% 25.0% 32.3% 3.2% 10.9% 76.7 119.5
B 128-512MB 16.2% 29.1% 12.2% 27.9% 16.1% 30.5% 37.6 103.2
C 0.5-1GB 4.0% 0.9% 7.3% 1.3% 12.0% 2.4% 22.3 5.0
D 1-2GB 3.0% 4.9% 13.4% 21.0% 19.3% 23.3% 41.0 77.6
E 2-5GB 1.6% 1.5% 20.8% 15.1% 21.9% 27.8% 63.9 55.7
F 5-10GB 0.8% 0.3% 21.4% 2.5% 27.5% 5.2% 65.6 9.2

used SWIM [42], a statistical workload injector for MapRe-
duce, to generate two realistic and representative workloads
that preserve the original workload characteristics such as
the distribution of input sizes and the skewed popularity
of data [5]. Using SWIM, we replay each workload with
the same inter-arrival times and input/output files as in the
original workload, allowing us to mimic the access patterns
of the files. In order to reflect the smaller size of our cluster
and to simulate the load experienced by the original clusters,
we scale down the file sizes proportionately [5].

The derived FB and CMU workloads consist of 1000 and
800 jobs, respectively, scheduled for execution over a 6-hour
period. To separate the effect of storage tiering on different
jobs, we split them based on their input data size into 6
bins. Table 3 shows the distribution of jobs by count, cluster
resources they consume, amount of I/O they generate, and
aggregate task execution time. The jobs in both workloads
exhibit a heavy-tailed distribution of input sizes, also noted
in previous studies [5, 9]. In particular, the FB workload is
dominated by small jobs; 74.4% of them process <128MB
of data. However, these jobs only account for 25% of the
cluster resources consumed and perform only 3.2% of the
overall I/O. On the contrary, FB jobs processing >1GB of
data, account for 54% of resources and 68% of I/O. The
distribution of input sizes is less skewed for CMU with 63.4%
of the jobs processing <128MB of data. Similarly, CMU
jobs processing >1GB of data, account for 38% of resources
and 56% of I/O. In both workloads, even though larger jobs
(Bins D-F) constitute only a small fraction of the workload,
they account for about half the total task execution time.

In terms of files, the FB and CMU workloads process 1380
and 1305 files with a total size of 92GB and 85GB, respec-
tively. The popularity of files is also skewed in data-intensive
workloads, with a small fraction of the files accessed very
frequently, while the rest are accessed less frequently [5, 9].
Specifically, 5.7% of FB files and 2.8% of CMU files are
accessed more than 5 times. Such repeatability must be ex-
ploited to improve job performance by ensuring their inputs
have replicas residing in the highest storage tier (i.e., mem-
ory). In addition, a sizable fraction of the files (23% for FB
and 18% for CMU) are created but not accessed afterwards.
Hence, it is important for a downgrade policy to identify
such cases and remove their replicas from memory early on.
CDFs for the workload statistics are presented in [23].

7.2 End-to-End Evaluation
For this evaluation, we executed the two workloads over

HDFS v2.7.7, the default OctopusFS (i.e., without any down-
grade or upgrade policies), Octopus++ using the LRU down-
grade policy and the OSA upgrade policy (as a baseline for
Octopus++), and Octopus++ using all common downgrade
and upgrade policies (i.e., LRFU, EXD, and XGB; recall
Tables 1 and 2). We compare them using two complemen-

tary performance metrics: (i) the average completion time
of jobs, and (ii) the cluster efficiency (defined as finishing
the jobs by using the least amount of resources [5]).

Figure 4 shows the reduction percentage in job comple-
tion time compared to the HDFS setting for both workloads
for each bin. Small jobs (Bins A, B) experience only a small
improvement in completion time for all policies, with less
than 5% and 10% gain in FB and CMU, respectively. This
result is not surprising since the time spent in I/O is only a
small fraction compared to CPU processing and scheduling
overheads. As the job input sizes increase, so do the gains
in job completion time, while we start observing different
behavior across the policies and between the two workloads.
Specifically, the LRU-OSA and LRFU policies are perform-
ing quite well for the FB workload — as it exhibits good
temporal locality of reference — resulting in up to 17% re-
duction in completion time for large jobs (Bin F). The CMU
workload, on the other hand, has different access patterns
that make the LRU-OSA and LRFU policies perform poorly,
limiting gains down to 4-10%. In fact, LRU-OSA performs
even worse than OctopusFS in some cases, which lacks any
policy for automatically moving data across the storage tiers
after the initial placement.

EXD performs well only for jobs in Bin D with 10% gains
in completion time, while it performs poorly for larger jobs
in FB. Recall that EXD explores the tradeoff between re-
cency and frequency without taking file size into account.
In several cases, EXD downgrades large files before they are
accessed, causing their data to be (re-)read from SSDs or
HDDs. Interestingly, EXD performs well for CMU, resulting
in 13–16% gains for Bins D and E. Finally, our XGB policy
is able to provide the highest reduction in average comple-
tion time across all job bins and for both workloads. For FB,
there is a clear increasing gain as the job size gets larger with
18–27% benefits, almost double compared to the second-best
policy. For CMU, the gains are higher for medium jobs (Bins
D, E) with benefits over 21%, while the benefits for large
jobs (Bin F) are still high at 15%. Overall, XGB is able
to effectively learn the different access patterns and detect
data reuse across jobs for both workloads.

Every time data is accessed from memory or even SSDs,
the efficiency of the cluster improves. Figure 5 shows how
this improvement in efficiency is derived from the different
job bins. Larger jobs have a higher contribution in efficiency
improvement compared to small jobs since they are respon-
sible for performing a larger amount of I/O (recall Table
3). Across the different policies, the trends for the efficiency
improvement are similar to the trends for the completion
time reduction discussed above: LRU-OSA and LRFU gen-
erally offer good benefits for FB; EXD offers good benefits
for CMU; and XGB offers the best gains in both workloads.
Hence, improvements in cluster efficiency are often accompa-
nied by lower job completion times, doubling the benefits. In

51



0%

5%

10%

15%

20%

25%

30%

A B C D E F

R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

OctopusFS LRU-OSA LRFU EXD XGB

FB Workload

0%

5%

10%

15%

20%

25%

30%

A B C D E F

R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

OctopusFS LRU-OSA LRFU EXD XGB

CMU Workload

Figure 4: Percent reduction in completion time over HDFS for the (a) FB and (b) CMU workloads

0%

10%

20%

30%

40%

A B C D E F

Im
p

ro
v

e
m

e
n

t 
in

 E
ff

ic
ie

n
c

y

Bin

OctopusFS LRU-OSA LRFU EXD XGB

FB Workload

0%

10%

20%

30%

40%

A B C D E F
Im

p
ro

v
e

m
e

n
t 

in
 E

ff
ic

ie
n

c
y

Bin

OctopusFS LRU-OSA LRFU EXD XGB

CMU Workload

Figure 5: Percent improvement in cluster efficiency over HDFS for the (a) FB and (b) CMU workloads

FB, for example, XGB is able to reduce the completion time
of large jobs by 27% while consuming 41% less resources.

One interesting observation is that the magnitude of the
gain in efficiency is higher than the magnitude of the re-
duction in completion times. This is explained in two ways.
First, the jobs are executed as a set of parallel tasks. Even if
a large fraction of the tasks consume less resources via avoid-
ing disk I/O, the remaining tasks may delay the completion
of a job (even though the benefits do propagate to all tasks
due to lower I/O congestion). Second, the job completion
time also accounts for CPU processing as well as the output
data generation, both of which are independent of the input
I/O. Nonetheless, improving cluster efficiency leaves signif-
icantly more room for executing more jobs and for better
overlapping the background I/O generated by our policies.

Additional drill down results (not shown due to space con-
straints) reveal that XGB: (1) results in the highest percent-
age of memory accesses; (2) is the most selective in terms of
upgrade I/O; and (3) offers the highest byte hit ratio.

Scalability results: We repeated our experiments on Ama-
zon EC2 using the m4.2xlarge instance type (8 cores, 32GiB
RAM) with SSD and HDD attached EBS volumes to resem-
ble our local cluster setup. We scaled up the EC2 cluster
from 11 to 88 worker nodes (plus 1 master node) while pro-
portionally increasing the workload data sizes and we were
able to fully replicate our results. The key insights when
using our XGB policies are: (1) the improvement in cluster
efficiency increases with the cluster size, especially for small-
medium jobs, revealing the increasing benefits of avoiding
disk I/O and better utilizing the cluster resources; and (2)
the gains in completion time are similar for small-medium
jobs but decrease for large jobs (from 24% to 15% gains)
as the cluster size increases because of the increasing cost
of the output data generation with a replication factor of 3.
These results are detailed in our extended tech report [23].

0%

5%

10%

15%

20%

25%

30%

A B C D E F

R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

OctopusFS LRU LFU LRFU LIFE LFU-F EXD XGB

Figure 6: Percent reduction in completion time for down-
grade policies over HDFS for the FB workload

7.3 Comparison of Downgrade Policies
For this experiment, we executed the two workloads over

Octopus++ using all downgrade policies listed in Table 1,
while disabling upgrades. Our goals are (i) to isolate the ef-
fects of downgrading from upgrading, and (ii) to gain addi-
tional insights from the downgrade policies. Figure 6 shows
the percent reduction in average completion time for all jobs
in FB broken down into bins. The trends for the policies we
already studied in Section 7.2 are similar in general. How-
ever, a careful comparison between Figures 4(a) and 6 yields
some interesting observations. First, the LRU and LRFU
downgrade policies cause the same amount of gains in com-
pletion time as when upgrade policies are present. The EXD
upgrade policy has a strong negative effect on the comple-
tion time benefits compared to only enabling the downgrade
policy (5–14% lower gains for large jobs). The extra amount
of data upgraded is causing the downgrade of other useful
files, negatively affecting performance. The pairing of the
XGB downgrade and upgrade policies has a small positive
affect of 1.5-3.6% additional reduction in completion times

52



0%

20%

40%

60%

80%

100%

Hit Ratio Byte Hit Ratio

[B
y
te

] 
H

it
 R

a
ti

o

OctopusFS LRU LFU LRFU LIFE LFU-F EXD XGB

Figure 7: Hit Ratio and Byte Hit Ratio for downgrade
policies for FB based on memory accesses

0%

2%

4%

6%

8%

10%

A B C D E F

R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

OSA LRFU EXD XGB

Figure 8: Percent reduction in completion time for upgrade
policies over HDFS for the FB workload

compared to using the XGB downgrade policy alone. This
highlights the effectiveness of both XGB policies in making
the right decisions when moving files across the storage tiers.

The LIFE policy [5], which is designed to improve job
completion time, performs fairly well in this metric, espe-
cially for larger jobs (13–21% gains for Bins E, F). However,
it falls short compared to the 18–25% benefits provided by
XGB for Bins E and F. LRF-U [5], which targets at improv-
ing cluster efficiency, ranks second in this metric for small
to medium jobs (Bins B-D) but performs poorly for larger
jobs. Recall that LRF-U does not take file size into account.
XGB, on the other hand, provides the highest gains in clus-
ter efficiency for all bins. The CMU results do not provide
any additional insights and are not presented due to space
constraints.

To further analyze the performance of the downgrade poli-
cies we computed two additional metrics: (i) Hit Ratio (HR),
i.e., the percentage of requests that can be satisfied by the
memory tier; and (ii) Byte Hit Ratio (BHR), i.e., the per-
centage of bytes satisfied by the memory tier [2]. We focus
on the memory tier as it provides the highest benefits. Fig-
ure 7 shows the HR and BHR of all downgrade policies based
on memory accesses. OctopusFS achieves less than 50% for
both ratios as less than half of the files have replicas in mem-
ory. With the exception of XGB, all other policies achieve
a similar HR of ∼67%. BHR reveals a different picture with
LRFU and EXD offering ∼69% BHR (which explains their
lower gains in cluster efficiency), while the rest offer ∼85%.
XGB is able to achieve a 98% BHR, highlighting the policy’s
ability to maintain the most relevant files in memory.

7.4 Comparison of Upgrade Policies
In this section, we evaluate all upgrade policies listed in

Table 2 in isolation. We instructed the data placement pol-
icy of Octopus++ to initially place all file replicas on the

Table 4: Statistics for upgrade policies for FB

Policies GB Read from GB Upgraded to Byte Byte
Memory Tier Memory Tier Accuracy Coverage

OSA 9.41 34.52 0.27 0.21
LRFU 9.03 22.82 0.40 0.21
EXD 6.45 22.59 0.29 0.15
XGB 13.77 27.66 0.50 0.31

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Downgrade - FB

ROC Curve (AUC=0.9760)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Upgrade - FB

ROC Curve (AUC=0.9742)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Dowgrade - CMU

ROC Curve (AUC=0.9971)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Upgrade - CMU

ROC Curve (AUC=0.9967)

Figure 9: ROC curves for XGB downgrade/upgrade

HDD tier and let the upgrade policies decide when to move
replicas to higher tiers. Figure 8 shows the gains in job
completion time for each upgrade policy for each job bin.
Overall, the gains are limited to less than 9% since gains
are only possible when an input file is accessed repeatedly,
provided that a policy was able to upgrade the file early on.
OSA, the simple policy that upgrades a file into memory
upon access, performs relatively well for most bins (with 2–
7% gains), while the other policies offer similar benefits in
most cases. The only policy that stands apart is the XGB
one, which offers the highest benefits, showcasing the pre-
dictive powers of our ML model.

Table 4 lists two insightful statistics — amount of data
upgraded to and read from memory — as well as two im-
portant web prefetching metrics: (1) Byte Accuracy (BAc),
defined as the ratio of data read from memory to the total
amount of data upgraded; and (2) Byte Coverage (BCo),
defined as the ratio of data read from memory to the total
amount of data read [2]. As the least selective policy, OSA
upgraded the largest amount of data (34.5GB) leading to the
2nd highest amount of data read from memory (9.4GB) but
with a fairly low BAc. LRFU and EXD upgraded about the
same amount of data (∼22.7GB) but only LRFU was able to
score a relatively high BAc of 40%. Even though XGB up-
graded slightly more data (27.6GB), it was able to achieve a
higher BAc at 50% and the highest BCo at 31%, explaining
the high performance benefits attained by XGB.

7.5 XGBoost Model Evaluation
We evaluate the performance of our XGBoost models us-

ing a receiver operating characteristic (ROC) curve and the
area under the curve (AUC) [39]. The ROC curve takes
as input the file access probabilities predicted by the model
and the true class labels. It then plots the true positive rate
(i.e., the probability of detection) against the false positive

53



0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

With 12 Accesses (Def)

W/out Filesize

W/out Creation

With 6 Accesses

With 18 Accesses

Figure 10: ROC curves for FB down-
grade XGBoost models with selected fea-
tures

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Time (hour)

Incremental, Downgrade Incremental, Upgrade

Retrain Hourly, Downgrade Retrain Hourly, Upgrade

One-shot, Downgrade One-shot, Upgrade

Figure 11: Prediction accuracies of the
incremental learning, retrain hourly, and
one-shot approaches for FB

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y
 (

%
)

Time (hour)

FB CMU

80

85

90

95

100

80

85

90

95

100

Figure 12: Prediction accuracies of
downgrade XGBoost models when alter-
nating FB and CMU workloads

rate (i.e., the probability of false alarm) at various threshold
settings. To train our models and perform a proper out-of-
sample analysis, we split our 6-hour data set into training
(first 4 hours), validation (5th hour), and test (6th hour)
sets. All results presented in this Section are based on test
data. The FB and CMU data sets consist of 17968 and
13920 data points, respectively, evenly distributed (approx-
imately) in each hour. Figure 9 shows the 4 ROC curves for
the downgrade and upgrade models trained and evaluated
over the FB and CMU workloads (note the logarithmic scale
of the x-axis). In all cases, the curves are near point (0, 1)
with AUC values higher than 0.97 (1 is the max), which
indicate the very high prediction performance of our mod-
els. The prediction accuracy at the chosen discrimination
threshold (0.5) is between 97-99% in all four cases.

The features used by our XGBoost model formulation are
the file size, the creation time, and the last k (default=12)
access times. To assess the impact of the selected features,
we evaluated the performance of the XGBoost model while
varying the features used. In particular, Figure 10 shows
the ROC curves for the FB downgrade case (other cases are
similar) when the features (i) do not include the file size; (ii)
do not include the creation time; (iii) use only the last 6 ac-
cess times; (iv) use the default 12 access times; and (v) use
18 access times. Note that (iii)-(v) do use the file size and
creation time. The results reveal that both the file size and
creation time are individually important predictors of file
accesses and improve the overall performance of the model.
Using only 6 time accesses still leads to good model per-
formance, albeit slightly lower than our default case, while
using 18 time accesses has a marginal impact. Overall, these
results verify the selection of the aforementioned features to
be used for predicting file access patterns.

Next, we evaluate our incremental learning approach that
cumulatively trains a model over time against (i) retraining
the model every one hour and (ii) a one-shot learner that
trains on data once from the first hour. Figure 11 shows how
the prediction accuracy (i.e., the ratio of true predictions
over all of them) for the three approaches varies over time
for the downgrade and upgrade policies over FB. Although
a one-shot learner may start with a high initial accuracy
near 90%, over time it leads to a significant degradation
of accuracy below 40% as the workload evolves. The re-
training approach exhibits an oscillating patter of accuracy
that increases right after each training but stays within 80%
and 90%. On the contrary, the incremental learner becomes
better over time, efficiently adapting to new workloads, and
continues to produce accurate predictions (∼98%) over the
entire duration of our experiments.

Finally, we investigate the impact of sudden access pattern
changes to the XGBoost incremental model performance.
Figure 12 shows the prediction accuracy of the XGB down-
grade policy over time as we switch between the FB and
CMU workloads. In the first experimental variation, we
execute FB for 6 hours and then switch to CMU, which
exhibits different access patterns. At that point, accuracy
drops 9.8% down to 86% but then quickly increases to over
95% as the model starts learning the new access patterns.
In the next 2 variations, we alternate the FB and CMU exe-
cution every 3 and 1.5 hours, respectively, and observe that
(i) as time goes by, the drops in accuracy decrease in mag-
nitude, (ii) the more we interleave the workloads, the lower
the drop as the model learns both workloads, and (iii) the
model is always able to learn and increase accuracy quickly.

7.6 System Overheads
Adding one training sample in an XGBoost model takes

on average 0.16ms, while making a prediction takes 1.8ns.
Overall, during a 6-hour-long experiment, model training
accounted for 5.3 CPU seconds in total, while selecting a
file to downgrade or upgrade amounted to 0.49 CPU sec-
onds; showcasing the negligible CPU overhead caused by
XGBoost. In terms of memory, an XGBoost model con-
sumes ∼200KB. In addition, we maintain a max of 956 bytes
per file (at most 12 access times plus some auxiliary data)
for generating the feature vectors, which in our experiments
added just a few MB of memory. Even in large clusters
with millions of files, the extra memory overhead is <1GB,
which is a fraction of the total memory needed by an HDFS
NameNode at that scale and justifiable given the attainable
performance benefits.

8. CONCLUSIONS
This paper describes a framework for automatically man-

aging data across storage tiers in distributed file systems
(DFSs) using a set of pluggable policies. The generality of
the framework is evident by the 11 downgrade and upgrade
policies implemented based on both old and new techniques.
Our proposed policies employ light-weight gradient boosted
trees for learning how files are accessed by a workload and
use that information to make decisions on which files to
move up or down the tiers. The models are incrementally
updated based on how the file access patterns change and
so are able to maintain high prediction accuracy over time.
The framework and all policies have been implemented in a
real distributed file system and successfully evaluated over
two realistic workloads.

54



9. REFERENCES
[1] A. Agarwal. Enable Support for Heterogeneous

Storages in HDFS, 2016.
https://issues.apache.org/jira/browse/HDFS-2832.

[2] W. Ali, S. M. Shamsuddin, and A. S. Ismail. A Survey
of Web Caching and Prefetching. Intl. Journal of
Advances in Soft Computing & Its Applications,
3(1):18–44, 2011.

[3] W. Ali, S. Sulaiman, and N. Ahmad. Performance
Improvement of Least-Recently-Used Policy in Web
Proxy Cache Replacement using Supervised Machine
Learning. Intl. Journal of Advances in Soft Computing
& Its Applications, 6(1), 2014.

[4] Alluxio: In Memory Distributed Storage, 2019.
http://www.alluxio.org/.

[5] G. Ananthanarayanan, A. Ghodsi, A. Warfield,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
PACMan: Coordinated Memory Caching for Parallel
Jobs. In Proc. of the 9th USENIX Symp. on
Networked Systems Design and Implementation
(NSDI), pages 267–280. USENIX, 2012.

[6] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A.
Brandt, and D. D. Long. ACME: Adaptive Caching
Using Multiple Experts. In Proc. of the Workshop on
Distributed Data and Structure (WDAS), pages
143–158, 2002.

[7] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi.
Learn to Cache: Machine Learning for Network Edge
Caching in the Big Data Era. IEEE Wireless
Communications, 25(3):28–35, 2018.

[8] T. Chen and C. Guestrin. XGBoost: A Scalable Tree
Boosting System. In Proc. of the 22nd ACM Intl.
Conf. on Knowledge Discovery and Data Mining
(SIGKDD), pages 785–794. ACM, 2016.

[9] Y. Chen, S. Alspaugh, and R. Katz. Interactive
Analytical Processing in Big Data Systems: A
Cross-industry Study of MapReduce Workloads.
PVLDB, 5(12):1802–1813, 2012.

[10] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The
Case for Evaluating MapReduce Performance using
Workload Suites. In Proc. of the 2011 IEEE Intl.
Symp. on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems
(MASCOTS), pages 390–399. IEEE, 2011.

[11] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt.
CAST: Tiering Storage for Data Analytics in the
Cloud. In Proc. of the 24th Intl. Symp. on High
Performance Distributed Computing (HPDC), pages
45–56. ACM, 2015.

[12] CMU OpenCloud Hadoop Cluster Trace, 2016. http:
//ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html.

[13] B. Debnath, S. Sengupta, and J. Li. SkimpyStash:
RAM Space Skimpy Key-Value Store on Flash-based
Storage. In Proc. of the 2011 ACM Intl. Conf. on
Management of Data (SIGMOD), pages 25–36. ACM,
2011.

[14] A. Eldawy, J. Levandoski, and P.-Å. Larson. Trekking
through Siberia: Managing Cold Data in a
Memory-optimized Database. PVLDB, 7(11):931–942,
2014.

[15] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.
Sleator, and N. E. Young. Competitive Paging

Algorithms. Journal of Algorithms, 12(4):685–699,
1991.

[16] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale,
and J. Schmitz-Hermes. Adaptive Caching in Big SQL
using the HDFS Cache. In Proc. of the 7th ACM
Symp. on Cloud Computing (SoCC), pages 321–333.
ACM, 2016.

[17] F. Funke, A. Kemper, and T. Neumann. Compacting
Transactional Data in Hybrid OLTP&OLAP
Databases. PVLDB, 5(11):1424–1435, 2012.

[18] A. Gepperth and B. Hammer. Incremental Learning
Algorithms and Applications. In Proc. of the 24th
European Symp. on Artificial Neural Networks,
Computational Intelligence and Machine Learning
(ESANN). H.A.L. Publishing, 2016.

[19] B. Gorman. A Kaggle Master Explains Gradient
Boosting, 2017. http://blog.kaggle.com/2017/01/23/
a-kaggle-master-explains-gradient-boosting/.

[20] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and
I. Ari. Adaptive Caching by Refetching. In Proc. of
the 15th Intl. Conf. on Neural Information Processing
Systems (NIPS), pages 1489–1496. MIT Press, 2002.

[21] GridGain In-Memory Computing Platform, 2019.
http://www.gridgain.com/.

[22] HDFS Centralized Cache, 2016. https://hadoop.
apache.org/docs/r2.4.1/hadoop-project-dist/
hadoop-hdfs/CentralizedCacheManagement.html.

[23] H. Herodotou and E. Kakoulli. Automating
Distributed Tiered Storage Management in Cluster
Computing. arXiv preprint arXiv:1907.02394, 2019.
https://arxiv.org/abs/1907.02394.

[24] Y. Im, P. Prahladan, T. H. Kim, Y. G. Hong, and
S. Ha. SNN-Cache: A Practical Machine
Learning-based Caching System Utilizing the
Inter-Relationships of Requests. In Proc. of the 52nd
Conf. on Information Sciences and Systems (CISS),
pages 1–6. IEEE, 2018.

[25] H. Jeon, K. El Maghraoui, and G. B. Kandiraju.
Investigating Hybrid SSD FTL Schemes for Hadoop
Workloads. In Proc. of the 2013 ACM Intl. Conf. on
Computing Frontiers (CF), pages 20:1–20:10. ACM,
2013.

[26] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus,
N. Podhorszki, et al. Exploring Data Staging Across
Deep Memory Hierarchies for Coupled Data Intensive
Simulation Workflows. In Proc. of the 2015 IEEE Intl.
Parallel and Distributed Processing Symp. (IPDPS),
pages 1033–1042. IEEE, 2015.

[27] E. Kakoulli and H. Herodotou. OctopusFS: A
Distributed File System with Tiered Storage
Management. In Proc. of the 2017 ACM Intl. Conf. on
Management of Data (SIGMOD), pages 65–78. ACM,
2017.

[28] A. Kougkas, H. Devarajan, and X.-H. Sun. Hermes: A
Heterogeneous-aware Multi-tiered Distributed I/O
Buffering System. In Proc. of the 27th Intl. Symp. on
High Performance Distributed Computing (HPDC),
pages 219–230. ACM, 2018.

[29] K. Krish, A. Anwar, and A. R. Butt. hatS: A
Heterogeneity-aware Tiered Storage for Hadoop. In
Proc. of the 14th IEEE/ACM Intl. Symp. on Cluster,

55



Cloud and Grid Computing (CCGrid), pages 502–511.
IEEE, 2014.

[30] J. J. Levandoski, P.-Å. Larson, and R. Stoica.
Identifying Hot and Cold Data in Main-memory
Databases. In Proc. of the 29th IEEE Intl. Conf. on
Data Engineering (ICDE), pages 26–37. IEEE, 2013.

[31] B. Li, E. Mazur, Y. Diao, A. McGregor, and
P. Shenoy. A Platform for Scalable One-pass Analytics
Using MapReduce. In Proc. of the 2011 ACM Intl.
Conf. on Management of Data (SIGMOD), pages
985–996. ACM, 2011.

[32] S. M. Lundberg and S.-I. Lee. A Unified Approach to
Interpreting Model Predictions. In Proc. of the 31st
Intl. Conf. on Neural Information Processing Systems
(NIPS), pages 4768–4777. Curran Associates Inc.,
2017.

[33] T. Lykouris and S. Vassilvtiskii. Competitive Caching
with Machine Learned Advice. In Proc. of the 35th
Intl. Conf. on Machine Learning (ICML), pages
3296–3305. PMLR, 2018.

[34] M. Mesnier, E. Thereska, G. R. Ganger, and
D. Ellard. File Classification in Self-* Storage Systems.
In Proc. of the 2004 IEEE Intl. Conf. on Autonomic
Computing (ICAC), pages 44–51. IEEE, 2004.

[35] M. Mihailescu, G. Soundararajan, and C. Amza.
MixApart: Decoupled Analytics for Shared Storage
Systems. In Proc. of the 11th USENIX Conf. on File
and Storage Technologies (FAST), pages 133–146.
USENIX, 2013.

[36] S. Podlipnig and L. Böszörmenyi. A Survey of Web
Cache Replacement Strategies. ACM Computing
Surveys (CSUR), 35(4):374–398, 2003.

[37] M. T. Ribeiro, S. Singh, and C. Guestrin. Why Should
I Trust You?: Explaining the Predictions of any
Classifier. In Proc. of the 22nd ACM Intl. Conf. on
Knowledge Discovery and Data Mining (SIGKDD),
pages 1135–1144. ACM, 2016.

[38] R. Salkhordeh, S. Ebrahimi, and H. Asadi. ReCA: An
Efficient Reconfigurable Cache Architecture for
Storage Systems with Online Workload
Characterization. IEEE Trans. on Parallel and
Distributed Systems (TPDS), 29(7):1605 – 1620, 2018.

[39] H. Schütze, C. D. Manning, and P. Raghavan.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[40] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proc. of the
26th Intl. Conf. on Massive Storage Systems and
Technology (MSST), pages 1–10. IEEE, 2010.

[41] S. Sulaiman, S. M. Shamsuddin, A. Abraham, and
S. Sulaiman. Intelligent Web Caching using Machine
Learning Methods. Neural Network World, 21(5):429,
2011.

[42] SWIM: Statistical Workload Injector for MapReduce,
2016.
https://github.com/SWIMProjectUCB/SWIM/wiki.

[43] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, et al. Apache
Hadoop YARN: Yet Another Resource Negotiator. In
Proc. of the 4th ACM Symp. on Cloud Computing
(SoCC), page 5. ACM, 2013.

[44] P. Venketesh and R. Venkatesan. A Survey on
Applications of Neural Networks and Evolutionary
Techniques in Web Caching. IETE Technical Review,
26(3):171–180, 2009.

[45] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons,
J. Liu, R. Rangaswami, M. Zhao, and G. Narasimhan.
Driving Cache Replacement with ML-based LeCaR.
In Proc. of the 10th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage). USENIX,
2018.

[46] XGBoost Documentation, 2019.
https://xgboost.readthedocs.io/.

[47] B. Xie, Y. Huang, J. S. Chase, et al. Predicting
Output Performance of a Petascale Supercomputer. In
Proc. of the 26th Intl. Symp. on High Performance
Distributed Computing (HPDC), pages 181–192.
ACM, 2017.

[48] M. Zaharia, M. Chowdhury, T. Das, et al. Resilient
Distributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proc. of the 9th
USENIX Symp. on Networked Systems Design and
Implementation (NSDI), pages 15–28. USENIX, 2012.

56


