
Hop­constrained s­t Simple Path Enumeration:
Towards Bridging Theory and Practice

You Peng
The University of New South

Wales

unswpy@gmail.com

Ying Zhang
The University of Technology

Sydney

ying.zhang@uts.edu.au

Xuemin Lin
The University of New South

Wales

lxue@cse.unsw.edu.au

Wenjie Zhang
The University of New South

Wales

zhangw@cse.unsw.edu.au

Lu Qin
The University of Technology

Sydney

lu.qin@uts.edu.au

Jingren Zhou
Alibaba Group

jingren.zhou@alibaba­
inc.com

ABSTRACT

Graph is a ubiquitous structure representing entities and
their relationships applied in many areas such as social net-
works, web graphs, and biological networks. One of the
fundamental tasks in graph analytics is to investigate the
relations between two vertices (e.g., users, items and enti-
ties) such as how a vertex A influences another vertex B, or
to what extent A and B are similar to each other, based on
the graph topology structure. For this purpose, we study
the problem of hop-constrained s-t simple path enumera-
tion in this paper, which aims to list all simple paths from
a source vertex s to a target vertex t with hop-constraint
k. We first propose a polynomial delay algorithm, namely
BC-DFS, based on barrier-based pruning technique. Then a
join-oriented algorithm, namely JOIN, is designed to further
enhance the query response time. On the theoretical side,
BC-DFS is a polynomial delay algorithm with O(km) time
per output where m is the number of edges in the graph.
This time complexity is the same as the best known the-
oretical result for the polynomial delay algorithms of this
problem. On the practical side, our comprehensive experi-
ments on 15 real-life networks demonstrate the superior per-
formance of the BC-DFS algorithm compared to the state-
of-the-art techniques. It is also reported that the JOIN algo-
rithm can further significantly enhance the query response
time.

PVLDB Reference Format:
You Peng, Ying Zhang, Xuemin Lin, Wenjie Zhang, Lu Qin,
and Jingren Zhou. Hop-constrained s-t Simple Path Enumera-
tion:Towards Bridging Theory and Practice. PVLDB, 13(4): 463
-476, 2019.
DOI: https://doi.org/10.14778/3372716.3372720

1. INTRODUCTION
Graph is a ubiquitous structure representing entities and

their relationships applied in many areas such as social net-
works [45, 46, 65, 64, 41, 51], web graphs, and biological

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3372716.3372720

networks. One of the fundamental problems in graph ana-
lytics [28, 7, 18, 16, 11, 14, 15, 17, 12, 13] is to investigate
the relations between two given vertices (e.g., users or en-
tities) in a graph such as how a vertex s influences another
vertex t, or to what extent s and t are similar to each other
according to the network topology. In addition to a few met-
rics such as shortest path distance (e.g., [20, 30, 72]), these
relations can be naturally captured by a set of paths from
s to t In some applications, we may derive a score based on
these paths to capture their relations (e.g., similarity) This
is the problem of s-t path enumeration, which has a long
study history in the literature (e.g., [3, 8, 36, 50, 68, 69]).

In many real-life applications, it is rather natural to im-
pose a hop constraint, say k, to s-t path enumeration be-
cause: (1) it is usually not interesting/meaningful for users
to identify the s-t path with a large number of hops be-
cause the strength of the relation drops dramatically with
the number of hops; and (2) it is well-known that the num-
ber of paths may grow exponentially w.r.t the number of
hops in real-life graphs. A user may be overwhelmed by
a huge number of paths without a proper hop constraint.
Moreover, same as the most existing studies on path enu-
meration, in this paper we consider the simple path since a
path with loop (i.e., with repeated vertices along the path)
is less interesting and may significantly increase the total
number of s-t paths.
Motivated by these, in this paper we study the problem of

hop-constrained s-t simple path (hc-s-t path for short) enu-
meration. More specifically, given an unweighted directed
graph G, a source vertex s, and a target vertex t, we aim to
enumerate all simple paths from s to t with number of hops
not larger than k.

Applications. Below are three representative real-life ap-
plications for the problem of hc-s-t path enumeration.

(1) Biological Networks. Pathway queries are essential in
the biological networks analytics, where vertices represent
the entities such as enzymes and genes while edges repre-
sent some forms of interactions or relations [40, 43]. As
shown in [43], s-t path enumeration is one of the four im-
portant pathway queries in biological networks. Given two
substances s and t, it finds all paths, i.e., chains of interac-
tions, from s to t. In the pathway query language proposed
in [43], a hop constraint can be used in the path expression
such that users can focus on a limited number of important
paths (i.e., interaction chains) between two substances.

463

(2) E-commerce Networks. In a recent industry paper from
Alibaba group [52], the activities of the electronic payment
system and relationships among users are modeled as a di-
rected graph, in which each vertex represents an entity (e.g.,
person or account) and each edge A → B indicates the rela-
tions from A to B such as A issues a payment to B or A is a
friend/family member ofB. A circle in such a graph suggests
an interesting relationship among the involved personnels,
which is a strong indication of a fraudulent activity or even
a finance crime like money laundering [71]. For instance,
when a new edge t → s is inserted (e.g., a new money trans-
fer transaction), the currently finance risk control system in
Alibaba group needs to report the resulting new cycles for
further risk analysis. These new cycles can be detected by
enumerating all simple paths from s to t. In the system,
it is critical to impose a hop constraint (e.g., k is set to 6
in [52]). Otherwise the system will be overwhelmed by a
huge number of false alarms.

(3) Knowledge Graphs. Path ranking (PR) algorithms

(e.g., [42, 19, 49]) have received increasing attentions in re-
cent years, which enumerate paths from one entity to an-
other in a knowledge graph and use those paths as features
to train a model for missing fact prediction [49]. Intuitively,
a long path is not useful to capture the tie between two enti-
ties because the relation strength usually drops dramatically
with the number of hops (i.e., interactions). For instance,
a hop-constraint is imposed in [19] when the paths between
two terms are enumerated.

In addition to the above applications, the problem of hc-
s-t path enumeration can find many other applications. For
instance, one may need to enumerate hc-s-t paths to inves-
tigate the possible connections between two entities such as
two companies for background check in business networks,
two suspects for risk analysis in social networks, two failure
points for failure analysis in the infrastructure dependency
networks, etc.

It is worth to mention that, in addition to hop constraints,
other constraints regarding other features of the s-t path
may be considered for s-t path enumeration in some real-
life applications. For instance, one may apply the label con-
straint in the biological network applications such that only
some specific types of enzymes or reactions are considered.
As shown in [52], one may ignore the transactions with less
amount of money in fraud detection in the e-commerce net-
work. Meanwhile, one may enforce the time order of the
transactions along the s-t path, e.g., disregard a transaction
if it comes earlier than the currently visited edge (transac-
tion) during the search. In Section 5.2, we show that our
proposed solutions for hop-constrained s-t simple path can
be easily extended to support these constraints.

Challenges. The main obstacle in solving the hc-s-t path
enumeration problem is the huge search space involved even
for a small k value because the number of hc-s-t paths may
grow exponentially w.r.t k. Another subtle difficulty lies in
the duplication and loop checks which ensure the output are
simple and unique hc-s-t paths. It is less efficient in terms of
response time and memory usage if we simply enumerate all
s-t paths with duplicates and loops, and then verify them.
Moreover, same as other enumeration problems with possi-
bly large size of output, it is desirable to develop polynomial
delay algorithm [32] such that the delay between the output
of two consecutive hc-s-t paths is bounded by a polynomial
time.

As discussed in Section 2, there are some existing algo-
rithms closely related to the problem of hc-s-t enumeration.

However, their solutions are not suitable to the problem
studied in this paper due to inherently different research
focuses or problem settings. For instance, the s-t simple
path enumeration algorithm simpath is presented by Knuth
in [36]. However, the focus of the algorithm is the succinct
presentation of the huge volume of s-t simple paths.

As an alternative, one may repeatedly apply a top k′

shortest path algorithm (e.g., [21, 6]) by increasing k′ until
the number of paths retrieved exceeds the hop constraint k.
As shown in [21], it takes O(km) time to retrieve one short-
est path in each iteration. Thus, the extended algorithm
is a polynomial delay algorithm for the problem of hop-
constrained s-t simple path enumeration, with time com-
plexity O(kmδ), where δ is the number of valid paths. In
the experiments, two latest algorithms [21, 6] on the top k’
shortest path search are employed, and their performance is
not competitive compared to the proposed solutions.

State-of-the-art. To the best of our knowledge, two poly-
nomial delay algorithms for the problem of hc-s-t path enu-
meration are proposed in two theoretical papers [24, 54],
namely T-DFS and T-DFS2 in this paper. Their theoreti-
cal results are quite attractive, with O(km) time per output
where m is the number of edges. Thus, the time complex-
ity of their algorithms is O(kmδ) where δ is the number of
hc-s-t paths. However, our empirical study shows that their
practical performance is disappointing due to the expensive
checking costs involved.

Recently, Qiu et al. from Alibaba Group study the prob-
lem of hop-constrained simple cycle detection [52], in which
their technique, namely HP-Index, is used to enumerate hc-
s-t paths. However, the time complexity of HP-Index re-
mains O(nk) in the worst case.

Our Approaches. In this paper, we propose two hc-s-t
path enumeration algorithms, namely BC-DFS and JOIN,
with both nice theoretical time complexity and excellent
practical performance.

(1) BC-DFS. A common practice to develop polynomial de-
lay algorithm for enumeration problem is to ensure that each
search branch has at least one output, which is used by
T-DFS and T-DFS2 algorithms in [24, 54]. However, we
observe that this strategy may lead to high overhead in our
problem, which results in the poor practical performance. In
Section 4, we develop a simple and elegant barrier-pruning
based DFS algorithm, namely BC-DFS. The philosophy of
the algorithm is “do not fall in the same trap twice by learn-
ing from mistakes”; that is, we allow the failure (i.e., explore
some search branches without output), but ensure to learn
from it (i.e., avoid exploring non-promising search branch
in the future). We also propose barrier level optimization
techniques to enhance the performance of BC-DFS. On the
theoretical side, we show that BC-DFS is a polynomial delay
algorithm with O(km) time per output.

(2) JOIN. In some scenarios, users may be more interested
in the overall response time. Thus, we also develop a join-
oriented algorithm, namely JOIN, which is efficient in prac-
tice, especial for large k values. The philosophy of JOIN is
“share the computation by divide and conquer”. We observe
that DFS-oriented technique enumerates the hc-s-t paths
one by one and hence cannot effectively share the computa-
tion. This motivates us to develop join-oriented technique
which joins (i.e., concatenates) partial paths based on some
cutting vertices. By doing this, the computation of the par-
tial paths can be shared and hence significantly improve the
query response time.

464

Contributions. Our principal contribution in this paper is
summarized as follows.

• We develop a DFS-oriented approach, namely BC-
DFS, based on the barrier-based pruning technique.
We show that BC-DFS is a polynomial delay algorithm
with O(km) time per output (i.e., hc-s-t path) where
m is the number of edges and k is the hop constraint.
The time complexity is O(kmδ) where δ is the number
of hop-constrained s-t simple paths.

• We design a join-oriented approach, namely JOIN,
based on the BC-DFS and middle vertexes based cut
techniques. The time complexity of JOIN is O(kmα)
where α is the number of hop-constrained s-t paths.

• Our comprehensive experiments on 10 real-life graphs
demonstrate the superior performance of our proposed
methods, compared to the baseline solutions. Partic-
ularly, we show that our proposed BC-DFS algorithm
has the same time complexity with two recent polyno-
mial delay algorithms but much better practical per-
formance, with up to 2 orders of magnitude speedup.
It is also reported that JOIN can further significantly
improve the query response time by computation shar-
ing.

Roadmap. The rest of the paper is organized as follows.
Section 2 surveys important related work. Section 3 for-
mally defines the problem, and describes the baseline solu-
tions. Section 4 designs a DFS-oriented approach by ap-
plying barrier-based pruning technique. A join-oriented ap-
proach is proposed in Section 5, followed by the empirical
study in Section 6. Section 7 analyzes the time complex-
ity of two existing polynomial delay algorithms. Section 8
concludes the paper.

2. RELATED WORK
In this section, we review closely related works.

2.1 Simple Path Enumeration and Counting
There are some existing works on the problem of enu-

merating s-t simple paths (e.g., [4, 36, 50, 68]) including
the simpath algorithm introduced by Knuth in [36]. How-
ever, their research focus is the succinct presentation of these
paths; that is, given a huge number of paths between two
vertices s and t, how to construct a succinct presentation
of these simple paths such that we can efficiently enumer-
ate the simple paths without explicitly store each individ-
ual path. Note that their algorithms are not competitive
for the problem of s-t simple path enumeration, and can
only handle small scale graphs with thousands of vertices.
In [3], Birmele et. al studied the problem of s-t simple
path enumeration, but their solution only supports the undi-
rected graphs. Two polynomial delay algorithms are pro-
posed in [24, 54], which take O(km) time per output. The
counting of s-t simple paths is a well-known #P hard prob-
lem, which has been studied with different approaches such
as recursive expressions of the adjacency matrix (e.g., [8,
22, 35]) and immanantal equations [5]. Nevertheless, they
cannot be trivially extended to efficiently enumerate hop-
constrained simple paths without materializing the paths
during the computation, which will easily blow up the main
memory even for a small k.
In addition to HP-index technique introduced in Sec-

tion 3.2, there are also many existing work to enumerate
the simple cycles of the graph (e.g., [2, 31, 37, 38, 59]).
Nevertheless, these technique cannot be trivially extended

to efficiently solve our problem because none of them con-
siders the length constraint.

2.2 Shortest Path Enumeration
In addition to the classical s-t shortest path computation

(see [70] and [60] for a comprehensive survey), there are
several variants in which a set of paths are considered.

The problem of top-k′ shortest path has been intensively
studied in the literature (e.g., [10, 23, 26, 34, 48, 55, 69]).
Yen’s algorithm [69] is the most representative work with
good practical performance and theoretical analysis. An ef-
ficient implementation of Yen’s algorithm is proposed in [9].
It is immediate that we can keep on invoking the top k′

shortest simple path algorithm by increasing k′ until the
shortest path detected exceeds the distance threshold k.
However, our initial experiments show that this method is
not competitive even compared with our slowest method in
this paper because we have to enforce the output order of
the paths according to their distances.

A considerable amount of literature has been published on
constrained shortest path [1, 25, 29, 33, 53, 57, 58, 62, 66,
67]. This problem can be defined as finding the shortest path
between two vertices on a network whenever the traversal of
any arc/vertex consumes certain resources and the resources
consumed along the path chosen must lie within given lim-
its(both lower and upper limits). The problem of diversified
shortest path has been intensively studied in the literature
as well (e.g., [47, 61, 63]) which consider both distance and
diversity of the s-t shortest paths. Nevertheless, these tech-
niques cannot be used to efficiently enumerate hc-s-t paths
due to the inherent difference between those problems.

3. PRELIMINARY
In this section, we first formally introduce the problem

of hc-s-t path enumeration, then present four baseline solu-
tions. In Table 1, we summarize the important mathemati-
cal notations appeared throughout this paper.

Table 1: The summary of notations

Notation Definition

G, Gr a given graph, its reverse graph
p, p(u, v), p(u ❀ v) a path in G, a path from u to v

s, t source and target vertices
hc-s-t path hop-constrained s-t simple path

len(p) length (i.e., number of hops) of path p
sd(u, v) shortest path distance from u to v

i.e., minimal number of hops from u to v
sd(u, v|T) shortest path distance from u to v

not containing any vertex in T
k hop constraint
Pk hc-s-t paths returned
p[x] number of hops the vertex x can reach

the end vertex of p along the path p
S, |S| the stack in DFS and its size
p(S) the path associated with stack S
len(S) the length of the path associated with S

where len(S) = len(p(S)) = |S| − 1
Pm the middle vertex cut

3.1 Problem Definition
Let G = (V,E) denote a directed graph, where V is the set

of n vertices and E ⊆ V ×V is a set of m directed edges. We
assume m ≥ n in this paper. We use e(u, v) ∈ E to denote
a directed edge from the vertex u to the vertex v. When the
context is clear, we use “neighbor” to refer the “out-going
neighbor”. By Gr = (V,Er), we denote the reverse graph of
G, which reverses the direction of all edges in G. A path p
from the vertex v to the vertex v′ is a sequence of vertices

465

v = v0, v1, . . ., vh = v′ such that (vi−1,vi) ∈ E for every
i ∈ [1, h]. In this paper, we use p(u, v) or p(u ❀ v) to denote
a path from u to v. A simple path is a loop-free path where
there are no repetitions of vertices and edges. By len(p), we
denote the length (i.e., the number of hops in this paper)
of the path p. We say a path p is a hop-constrained path if
len(p) ≤ k where k is the pre-defined hop constraint. For
presentation simplicity, we use hc-s-t path to denote hop-
constrained s-t simple path. Given two vertices u and v,
we use sd(u, v) to denote the shortest path distance (i.e.,
minimal number of hops) from u to v in the graph G. We
use sd(u, v|T) to denote the shortest path distance from u
to v, not containing any vertex in T .

Problem Statement. In this paper, we study the prob-
lem of hop-constrained s-t simple path enumeration on a
directed graph. Specifically, given a directed graph G, an in-
teger k, the source vertex s and the target vertex t, we use Pk

to denote the set of hc-s-t paths where Pk = {p | len(p) ≤ k,
p is a simple path, and s and t are start and end vertices of
p }. we aim to develop efficient algorithms to enumerate all
paths in Pk.

3.2 Baseline Solutions
In this subsection, we introduce four baseline solutions.

Algorithm 1: C-DFS (u, S)

Input : u : the vertex to be processed ;
S: the stack

S.push(u);1

if u == t then2

output p(S) where Pk := Pk ∪ p(S);3

else if len(S) < k then4

for each out-going neighbor v of u where v 6∈ S do5

C-DFS(v, S);6

u is unstacked from S;7

(1) Hop-Constrained Depth-First-Search (C-DFS).
As illustrated in Algorithm 1, a straightforward solution is
to conduct a Depth-First-Search (DFS) starting from source
vertex s with search depth at most k. A stack S is deployed
for the search where |S| denotes the number of vertices in S
and p(S) denotes the corresponding path in S with length
len(S) = |S| − 1. Note that we enforce that the search does
not touch the vertices already in the current stack S and
hence the output is loop-free (Line 5). The time complexity
of the Algorithm 1 is O(nk).

(2) DFS with polynomial delay (T-DFS and T-
DFS2). In [54] an extension of C-DFS, namely T-DFS
in this paper, can be used to enumerate hc-s-t paths for
the directed graph. Particularly, T-DFS carefully explores
the out-going neighbors of a vertex and ensures that every
search branch in the DFS comes up with at least one hc-s-t
path (i.e., never fall in the trap). For each out-going neigh-
bor v of u to be visited in C-DFS (Line 5 in Algorithm 1),
T-DFS will compute its shortest path distance to t, without
containing any vertex in the stack S, i.e., sd(v, t|S). The
vertex v will not be explored if |S|+ sd(v, t|S) > k.

Example. We give an example in Figure 1(a). In this
example, the hop constraint k = 5, and search stack S =
{s, u} while v1 and v2 are two out-going neighbors of u. If we
use C-DFS (Algorithm 1), both v1 and v2 will be explored in
the following computation. However, v2 will not be visited
since we have |S| = 2, sd(v2, t|S) = 4 and 2 + 4 > 5 in
T-DFS.

Note that the shortest path distance computation for all
out-going neighbors of u can be completed by one BFS on
the reversed graph, with time O(m). By aggressively check-
ing if each search branch is promising, T-DFS guarantees
that there is at least one hc-s-t for each search branch ex-
plored. As the search depth is at most k for each search
branch, T-DFS is a polynomial delay algorithm [32] with
O(km) time per output. Thus, the time complexity of T-
DFS is O(kmδ) where δ is the number of hc-s-t paths. Re-
cently, Grossi et al. study the problem of listing k disjoint
s-t paths in [24], and a new algorithm, namely T-DFS2 in
this paper, is proposed for hc-s-t path enumeration follow-
ing the same aggressive checking strategy. It can reduce
shortest path distance computation by skipping some ver-
tices associated with only one output in the following search.
In Section 7, we analyze the time complexity of two algo-
rithms and show the performance of T-DFS2 is the same as
T-DFS, i.e., O(km) time per output, on the directed graph.

As demonstrated in our empirical study, the performance
of two theoretical studies is not competitive in practice due
to the expensive checking cost.

k
=
5

s

u

v
2
v
1

t

2
 4
B
F
S

(a) T-DFS

s

t

P
h
a
s
e

(
1
)

h
1
 h
2

h
3
 h
4

P
h
a
s
e

(
2
)

P
h
a
s
e

(
3
)

(b) HP-Index

Figure 1: Key idea of T-DFS and HP-Index

(3) Hot-Point index based algorithm (HP-Index).
In [52], a novel indexing technique called HP-index has been
proposed to continuously maintain the pairwise hc-s-t paths
among a set of hot points (i.e., vertices with high degree). By
applying a bi-directed search and hot point indexing tech-
nique, their search algorithm can avoid expanding the high-
degree vertices and hence may reduce the response time.
For an incoming edge (t, s), they can identify the new hop-
constrained simple cycles by enumerating hc-s-t paths as
follows:

1. Conduct a C-DFS starting from s but does not ex-
plore the hot points encountered, e.g., h1 and h2 as
illustrated in phase (1) of Figure 1(b);

2. Conduct a reversed C-DFS starting from t in the same
way, e.g., h3 and h4 as illustrated in phase (2) of Fig-
ure 1(b);

3. Find hc-s-t paths among the hot points involved in
the above computation based on the HP-Index, as il-
lustrated in phase (3) of Figure 1(b);

4. Concatenate the paths from steps (1), (2) and (3) to
identify hc-s-t paths.

As reported in [52], HP-index demonstrates better per-
formance compared with C-DFS on the Alibaba transaction
network data. However, we observe that HP-Index can only
achieve good performance on the extremely skewed graph

466

data which has relatively small number of hop-constrained
paths (e.g., Amazon network in our empirical study) due
to the nature of HP-Index. Moreover, the time complexity
remains O(nk).

4. BARRIER­BASED CONSTRAINED DFS

(BC­DFS)
In this section, we present a polynomial delay algorithm,

namely BC-DFS.

4.1 Motivation
As discussed in Section 3.2, T-DFS and T-DFS 2 are over-

pessimistic because they enforce that every search branch
has at least one output with high checking overhead. On the
contrary, C-DFS is over-optimistic and never learns from the
mistakes. The general idea of our approach is “do not fall
in the same trap twice by learning from mistakes”, which
can be regarded as a trade-off between C-DFS and T-DFS
in the sense that we allow our algorithm to explore fruitless
branches, but we also learn from the mistakes.

k=6

b

s

t

a
1

h
1
 h
9

c

g

d

f

a
9

d.bar = 5
 f.bar = 4

barrier level of d is 5

budget left is 3

d.bar

Figure 2: Key idea of the barrier-based pruning

Example. As shown in Figure 2 with k = 6, and s, b,
and d into the stack S, i.e., S = {s, b, d}. Then it turns out
that we cannot find any hc-s-t path in the following search
space (shaded area) since we cannot reach t in 6-2=4 hops
when s, b, d are blocked from current search space. If C-
DFS is used, it will make the same mistake multiple times
because the following vertices {a1, a2, . . ., a9} will be vis-
ited and hence fall in the same trap (e.g., the shaded area)
with fruitless search efforts. Inspired by the blocking tech-
nique in [31], we propose a barrier-based pruning technique
to learn from mistakes.

In the above example, if the vertex d is unstacked without
any new output after exhaustively exploring its correspond-
ing search space with depth at most k, we know that d needs
to take at least 5 hops to reach t without touching any node
in S = {s, b}, i.e., sd(d, t|S) ≥ 5. This is because, the vertex
d already consumes 2 hops when it is pushed to S at the first
time, and we cannot find any hop-constrained simple path
from d to t, not containing {s, b}. When a1 is pushed into
stack with S = {s, b, a1}, we can safely stop exploring the
vertex d because: (1) we already consume 3 hops to reach
d and the budget left for the following search is only 3; and
(2) there is no path p, without containing vertices s or d,
from d to t with len(p) ≤ 4. Similarly, we can also avoid
the trap for the vertices {a2, . . ., a9}. By doing this, the
number of fruitless searches can be significantly reduced.

In this paper, we continuously maintain a barrier level
for each vertex u regarding the current stack S, denoted by
u.bar; that is, sd(u, t|S) ≥ u.bar. In the above example, we
have d.bar = 5 after the search branch “s → b → d” fails
and d is unstacked. Similarly, we have f.bar = 4. Thus,
given the search stack S = {u1, . . . , ut} where ut is the top

element and v is a out-going neighbor of ut with v 6∈ S,
we do not need to explore v if len(S) + 1 + v.bar > k.
Regarding the above example as shown in Figure 2, we have
d.bar = 5 and len(S) = 2, i.e., the budget left is k−2−1 = 3
when we arrive d, and hence we do not need to visit d since
2 + 1 + 5 > 6.

When a new path is output in the search, we may need
to decrease the barrier levels of the vertices. For instance,
regarding the stack S = {s, b} after visiting d, a1, . . ., a9, the
vertex c will be explored and a new path p(sbct) is reported.
Thus, when the vertex b is unstacked, the barrier level of the
vertex f should be updated. Now, there is a path p(bct), not
containing the vertex in S = {s}, from b to t with len(p) = 2.
Since there is an edge (f, b), we should set f.bar to 3 after
b is unstacked. With similar argument, the update will be
propagated to d. In this paper, we will carefully maintain
the influence of the vertices such that the barrier levels of
the vertices are correctly updated.

4.2 Algorithm Description

Algorithm 2: BC-DFS (u, S)

Input : u: the vertex to be pushed;
S: the stack used for DFS search

Output : F : the number of hops to t if a new path is
output, otherwise F := k + 1

F := k + 1;1

S.push(u);2

if u == t then3

output p(S) where Pk := Pk ∪ p(S);4

u is unstacked from S;5

return F := 06

else if len(S) < k then7

for each out-going neighbor v of u where v 6∈ S do8

if len(S) + 1 + v.bar ≤ k then9

f := BC-DFS(v, S);10

if f 6= k + 1 then11

F := min{F, f + 1};12

if F == k + 1 then13

u.bar := k − len(S) + 1 ;14

else15

UpdateBarrier(u, F);16

u is unstacked from S ;17

return F18

Algorithm 3: UpdateBarrier(u, l)

Input : u: the vertex to be updated;
l: the number of hops from u to the target vertex

t, not touching any vertex in S
if u.bar > l then1

u.bar := l ;2

for each in-coming neighbor v of u with v 6∈ S do3

UpdateBarrier(v, l + 1);4

Algorithm 2 presents the pseudo-code of the hop-
constrained DFS equipped with the proposed barrier based
pruning technique, namely BC-DFS. Initially, for every
vertex u we set u.bar = 0. The the procedure BC-DFS is
called recursively to output all hc-s-t paths, with initial call
BC-DFS(s, S = ∅). We use a flag F to record the minimal
number of hops from u to the target vertex t, and F is set to
k + 1 if there is no new output in the following search. For
each newly pushed vertex u, we first set its flag F := k + 1
at Line 1. If u == t, a new hc-s-t path is output at Line 4.
If len(S) < k at Line 7, we will continue the search through
the neighbors of u (Lines 8-12). For each neighbor v 6∈ S, we
do not need to consider v if len(S)+ v.bar+1 > k (Line 9).

467

If there is no new output after exploring all of the neigh-
bors of u (i.e., F == k + 1), Line 14 sets u.bar to
k− len(S)+1, which indicates that sd(u, t|S) ≥ u.bar. Oth-
erwise, it implies that u can reach the vertex t within F hops,
without touching the vertices in S (i.e., sd(u, t|S) < u.bar).
Thus, the bar levels of the vertices influenced by u will be
updated at Line 16 in a recursive way as described in Algo-
rithm 3. Note that we use f to record the number of hops
from child vertex v to t at Line 10 of Algorithm 2. Clearly,
u can reach t with at most f + 1 hops, and F is set to the
minimal f + 1 value among all neighbors at Line 12. Note
that we only need to update the v.bar at Line 2 in Algo-
rithm 3 when u.bar > l where l is the number of hops from
u to t without touching any vertex in S.

4.3 Analysis
The key of the analysis is the correctness of the barrier

level of each vertex during the search. For a given vertex
u, we say u.bar is correct if and only if (1) u ∈ S 1; or (2)
given the current stack S, if there is a path p(u ❀ t), not
containing any vertex in S, we have len(p) ≥ u.bar, i.e.,
sd(u, t|S) ≥ u.bar.

In this paper, for a vertex u in the top of the stack S,
the budget of u is k− len(S), which is the number of hops
left for u to continue the search without violating the hop
constraint. Given a path p(u ❀ t), we use p[x] to denote the
position of x in the path p with p[u] = len(p) and p[t] = 0,
i.e., p[x] is the number of hops x can reach t along the path p.
The following lemma shows the condition that a vertex u on
the top of stack can reach the target vertex t in Algorithm 2.

Lemma 1. Suppose u.bar value is correct for every ver-
tex u. Given a stack S with top vertex u and a path p(u ❀ t),
u will reach the target vertex t in Algorithm 2 before it is un-
stacked if k − len(S) ≥ len(p) and every vertex (except u)
in the path is not contained by S.

Proof. The fact k − len(S) ≥ len(p) implies that the
vertex u has enough budget to reach t in the following search.
As all vertices {x} along the path are not contained by S, the
search can only be blocked by their barriers. Since x is not
in the S and x.bar is correct w.r.t S, we have x.bar ≤ p[x]
since x can reach t within p[x] hops. This implies that x will
not block the search by barrier-based pruning. Thus, u can
reach t in Algorithm 2.

Now we prove that the barrier levels are correctly main-
tained in Algorithm 2.

Theorem 1. For any vertex u, u.bar is correctly main-
tained in Algorithm 2.

Proof. Recall that u.bar is always correct if u ∈ S since
it will not be used in the computation. When we set u.bar
at Lines 14 and 16, the value is correct w.r.t S because the
search space constraint by S has been exhaustively explored.
Now we need to show u.bar is correctly maintained regarding
S in the following search. Suppose a new vertex v is pushed
to S, the correctness of u.bar is immediate because S =
S ∪ {v} leads to a strictly smaller search space.

Now we consider the situation a vertex v is unstacked
from S. We use v to denote the first vertex which causes
the incorrectness of u.bar. If the unstack of v does not affect

1Note that we do not need to maintain u.bar after u is
pushed to the stack S, and u.bar is correctly calculated when
u is unstacked.

u.bar, this implies that u.bar is still correct for the new stack
S \ {v}. Otherwise, u.bar may be updated in two ways:

(1) If v == u, the correctness of u.bar still holds according
to the above argument.

(2) Given v 6= u and the unstack of v affects the u.bar, this
implies that there is a path p(u ❀ v ❀ t), not containing
any vertex in S, such that len(p) < u.bar; that is, u can
reach t with less number of hops due to the release of v
from S. We assume that the barrier levels of the vertices
are correctly maintained before v is unstacked. We need to
consider two cases:

t
0
 t
x
 t
v

s
 s
 s

x
...

u
.....

...........

x

x can reach t

...........

v

 case (i):
v can reach t

S
0
 S
x
 S
v

v

x

u

path p

t

x

t

v

t

 case (ii):
v cannot reach t

Figure 3: Proof outline for cases (i) and (ii)

Case (i): Suppose v can reach the target t through this path
p in Algorithm 2 before v is unstacked, we have v.bar ≤ p[v].
Now we show the update of v can be correctly propagated
to u. Here, we only need to prove that y.bar > p[y] for
every vertex y along the path p according to our barrier
level update strategy in Algorithm 3.

Construction of S0, Sx and Sv. Let t0 denote that last

timestamp that u.bar is increased with u.bar > len(p). The
corresponding stack is denoted by S0 where u is the top
vertex. Note that the barrier level of a vertex can only
be increased when it is unstacked. We use tv to denote
the timestamp when v will be unstacked with stack Sv and
u.bar > len(p). According to our assumption, the barrier
level of every vertex is correct at every timestamp ti with
ti < tv. Let M denote the set of vertices appearing in both
S0 and the path p, which block the path p at timestamp t0,
i.e., path p is not available for u because they are in the
stack. By x, we denote the vertex in M which is the clos-
est one to the bottom of S0 as shown at time t0 in Figure 3.
Since all vertices on p are already unstacked at time tv, there
must exist a timestamp tx with t0 < tx ≤ tv such that x is
the first time unstacked after t0, as illustrated in Figure 3.
Note that, we have tx = tv if x corresponds to v in M .

Barrier value propagation. Since x is the vertex in M which
is closest to the bottom of S0, all vertices in the path p
except x are unstacked before time tx. Now we show the
update of x can be prorogated to u along the reverse of the
path p(u ❀ x). Let N denote the set of vertices from u to
x along the path p(u ❀ x ❀ t) (exclusive). If the algorithm
cannot find a new output for all these vertices in N , every
vertex y ∈ N must meet the condition that y.bar > p[y],
since the budge of the vertex y is not less than that of u and
they will be unstacked no later than tv (x could be v, but
the proof is similar). Here, we discuss the case that there is
a path which updates the bar value of a vertex n in N . If the
updated bar value is still larger than p[u], it will not affect
the result. Otherwise, according to our algorithm, all the
barrier values of the vertices from u to n along the path p
will be updated to p[u] with u.bar ≤ p[u], which contradicts
our initial assumption that u.bar > p[u]. This implies that
the update of v will eventually be propagated to u along

468

the reverse direction of the path (u ❀ v) according to our
update propagation strategy in Algorithm 3.

Case (ii): Now we assume that v cannot reach t in Algo-
rithm 2 but u.bar > len(p) = p(u) regarding the current
stack S. That is, although v.bar is correctly calculated, but
there is no propagation to update u.bar and u.bar > p(u).
Similar to case(i), we have stacks S0, Sx and Sv. Note that
we have S0(u) > S0(x) and |Sx| = S0(x) where S0(y) de-
notes the stack size when the vertex y is pushed to the stack
S0. Given that u.bar = k − len(S0) + 1 and u.bar > p(u),
we have len(S0) + len(p) − 1 < k. Given the fact that
len(S0) + 1 = S0(u) ≥ |Sx|+ 1 and p[u] ≥ p[x] + 1, we have
k − len(Sx) > p[x]. According to Lemma 1, the vertex x
can reach the target t. Following the similar rationale in
case (i), this update should be correctly propagated to the
vertex u. Since t0 is the last timestamp that the barrier
value of u is increased before time tv and tx u.bar ≤ len(p),
this contradicts the assumption that u.bar > len(p) at time
tv.

Correctness. According to Theorem 1, the barrier levels
of the vertices are correct. The Algorithm 2 (BC-DFS) is a
hop-constrained DFS equipped with barrier-based pruning
techniques. Given the correctness of the hop-constrained
DFS and the barrier-based pruning, the correctness of the al-
gorithm immediately follows. Note that BC-DFS naturally
ensures that there are no duplicate results and all outputs
are simple paths.

Time complexity. Following theorem shows that BC-DFS
is a polynomial delay algorithm.

Theorem 2. BC-DFS is a polynomial delay algorithm
with O(km) time per output. The time complexity of BC-
DFS is O(kmδ), where δ is the number of hc-s-t paths.

Proof. Suppose a vertex u is unstacked twice and there
is no new output in Algorithm 2. Let S1 and S2 denote the
stack size after u is pushed into the stack at the first and the
second time, respectively. We have u.bar = k− S1 + 2 after
u is unstacked at the first time. As there is no new output,
the propagation of barrier values will not be invoked. Thus,
u.bar remains the same when u is pushed to stack at the
second time. As u passes the barrier-based pruning in the
second visit, we have S2+u.bar ≤ k, and hence S2 < S1. So
u.bar will be increased by at least one after u is unstacked
without any new output. This implies that a vertex cannot
be pushed to stack more than k times unless there is a new
output. An edge (u, v) will be visited when u is pushed into
the stack. Together with the propagation cost, an edge will
be visited at most k+1 times before a new output or the end
of the call. Thus, BC-DFS is a polynomial delay algorithm
with O(km) time per output. And its time complexity is
O(kmδ).

Space Complexity of Algorithm 2 is O(m + k) since the
stack size is always bounded by k.

4.4 Barrier Level Optimization Techniques
For a vertex u, we use ∆s(u) and ∆t(u) to denote sd(s, u)

and sd(u, t) respectively. A hop-constrained BFS from
source vertex s is conducted to compute ∆s(u) and ∆s(u) is
set to k+ 1 if u is not visited. Similarly, we compute ∆t(u)
by conducting a hop-constrained BFS on the reverse graph
starting from t.

As ∆t(u) and ∆s(u) are pre-computed, we can ensure that
u.bar ≥ ∆t(u) because we have sd(u, v|S) ≥ sd(u, v) for any

stack S. Meanwhile, we have u.bar ≤ k−∆s(u) because the
maximal possible budget left is k − ∆s(u) when we arrive
the vertex u, and there is no any output path through u if
u.bar > k −∆s(u).

Time and space complexity. The following theorem indi-
cates that barrier level optimization techniques can improve
the time complexity of BC-DFS.

Theorem 3. The time complexity of BC-DFS with bar-
rier level optimization techniques is O(k′mδ) where k′ =
k − sd(s, t).

Proof. The cost of the graph reduction is O(m) since
two BFS are applied. It is immediate that the graph reduc-
tion will strictly narrow down the search space of BC-DFS,
and the time complexity is still O(kmδ) if graph reduction is
directly applied to BC-DFS. With barrier level optimization
techniques, we ensure that ∆t(u) ≤ u.bar ≤ k−∆s(u) holds
for every vertex u 6∈ S. Therefore, the maximal gap of u.bar
is bounded by k− (∆s(u)+∆t(u)) ≤ k− sd(s, t). Note that
the maximal gap is k in BC-DFS. Thus, the time complex-
ity of BC-DFS with barrier level optimization techniques is
O(k′mδ) where k′ = k − sd(s, t).

Same as BC-DFS, the space used by barrier level opti-
mization techniques is O(k +m).

5. JOIN ORIENTED APPROACH
In this section, we present a join-oriented approach for

hc-s-t path enumeration.

5.1 Motivation
DFS based approaches enjoy advantages such as memory

efficiency, duplication-free and loop-free. However, it is dif-
ficult for DFS-oriented approaches to share computation by
divide and conquer computing paradigm because the paths
are output one by one. As shown in Figure 4, there are 9
paths from s to c1 through vertices a1 to a9, denoted by
Pl. Similarly, we use Pr to denote the 9 paths from c1 to t
through vertices d1 to d9. In this example, any pair of paths
p1 ∈ Pl and p2 ∈ Pr can come up with a simple 4-path
by the concatenation (i.e., join) of p1 and p2. Thus, there
are totally 9 ∗ 9 = 81 hc-s-t paths from s to t for k = 4,
containing the vertex c1. If the DFS is applied, we notice
that the computation of these paths in Pr will be repeated
9 times (i.e., c1 will be pushed to the stack 9 times and each
following computation is exactly the same), and hence each
edge in Pr will be visited 9 times. Thus, to enumerate hc-
s-t paths containing c1, the total number of edges visited in
DFS is 18+18∗9 = 180. As an alternative, we can compute
the paths in Pl and Pr separately, say through BC-DFS,
then apply a simple join on Pl and Pr. In this way, the total
number of edges visited is only 18 + 18 = 36.

k=4

a
1

a
9

hc-s-t path cut

f

d
1

t

s

c
1

c
2

d
9

b

Figure 4: Key idea of join-oriented approach

Motivated by the above example, we develop join-oriented
approach for efficient hc-s-t path enumeration. Intuitively,

469

we can find a cut for vertices s and t such that any hc-s-t
path must contain at least one of the cut vertices, which is
called hc-s-t path cut, denoted by Ck. For a cut vertex
c ∈ Ck, we use Pl(c) and Pr(c) to denote the paths on its left
side {p(s ❀ c)} and right side {p(c ❀ t)}. By Pl, we denote
the left-side paths where Pl =

⋃
u∈Ck

Pl(u), while Pr denotes

the right-side paths with Pr =
⋃

u∈Ck
Pr(u). Once Pl(c)

and Pr(c) are available for every cut vertex c in Ck, we may
simply join (i.e., concatenate) paths from Pl(c) and Pr(c),
and remove the paths with loops or len(p) > k, denoted by
P (c). Let P =

⋃
c∈Ck

P (c), the result can be output after

removing the duplication.
Given the above computing paradigm, an immediate so-

lution is to apply a state-of-the-art s-t cut technique to find
the cut vertices, and then apply the DFS technique to com-
pute Pl(c) and Pr(c) for each cut vertex c. In addition to
the expensive cost of traditional s-t cut algorithms (e.g.,
O(mn log n) in the classical s-t cut work [27]), we may come
up with numerous duplicate k-paths during the computa-
tion, and lead to expensive duplicate detection cost. More-
over, we need to use k − 1 as search depth in the DFS for
the computation of Pl(c) (resp. Pr(c)) because there may
exist path with length 1 in Pr(c) (resp. Pl(c)). This makes
this solution less attractive because the BC-DFS algorithm
proposed in Section 4 uses search depth k.

Our Approach. Following the above computing paradigm,
we propose a new approach which can quickly find a hc-s-t
path cut. The key idea is to use the “middle vertex” of a
hc-s-t path to be its unique representative, which enables
us to: (1) apply the BC-DFS method to compute Pl(c) and
Pr(c) with search depth at most ⌈ k

2
⌉; (2) develop efficient hc-

s-t path cut computing algorithm; and (3) avoid duplicate
detection because a path only has one unique middle vertex.

5.2 Join Method
In this subsection, we will introduce the algorithm to find

middle vertices, followed by the join-oriented hc-s-t path
enumeration algorithm.

Middle vertices cut (Pm). Given a path p = (v1, . . . , vh),
its middle vertex is the ⌈h

2
⌉-th vertex along the path, de-

noted by m(p). In this paper, we will find all middle vertices
for hc-s-t paths, denoted by Pm. As every hc-s-t path has
a unique middle vertex, Pm is naturally a hc-s-t path cut,
namely middle vertices cut.

Find middle vertices cut. A naive way to find Pm is to
report middle vertex for each available hc-s-t path, which is
infeasible because our problem itself is to enumerate them.
Thus, we develop an efficient algorithm for this purpose
without materializing these paths, and the pseudo-code is
presented in Algorithm 4. For each vertex u, we use Lm(u)
to record the positions that u appears among the paths
starting from source vertex s; that is, i ∈ Lm(u) implies that
u is located at the i-th position of a path starting from source
vertex s. Similarly, By Rm(u), we indicate its possible re-
verse positions for the paths from the target vertex t (i.e.,
the number of hops from t in the reverse graph Gr). Par-
ticularly, we only consider the positions not larger than ⌈ k

2
⌉

(resp. ⌊ k
2
⌋) in Lm(u) (resp. Rm(u)). For instance, in Fig-

ure 4 we have Lm(c1) = {2}, Rm(c1) = {2}, Lm(c2) = {2},
Rm(c2) = {2}, Lm(a1) = {1}, Rm(a1) = ∅, Lm(b) = {2},
Rm(b) = ∅, Lm(d1) = ∅, Rm(d1) = {1}.

In this paper, we say (i, j) is a matched pair for a vertex u
if i ∈ Lm(u), j ∈ Rm(u), and i == j (or i == j+1). Such a
matched pair suggests that u is the middle vertex of a path

with length i + j. A vertex u can be chosen as a middle
vertex if there is such a matched pair. In the example of
Figure 4, we have Pm = {c1, c2} because c1 and c2 can find
matched pairs.

As a straightforward solution to find Pm, we can compute
Lm(u) by applying DFS with depth ⌈ k

2
⌉ from source vertex

s and compute Rm(u) by applying reversed DFS with depth
⌊ k
2
⌋ from target vertex t. Then we can remove a vertex u

from Lm(u) and Rm(u) if we cannot find a matched pair.
This cost is expensive since DFS is involved.

In Algorithm 4, we present an efficient implementation to
find Pm based on a synchronized bidirectional search. The
key idea is to avoid explicitly enumerating the paths, and
only keep the positions each middle vertex contributes. Par-
ticularly, by Pm(i) we denote the middle vertices of s-t paths
with length i. At Line 3, We use Li to keep the vertices in
the i-th expansion (i.e., go through out-going edges) starting
from source vertex s with L0 = {s}. Similarly, Line 7 uses
Ri to keep the vertices in the i-th expansion (i.e., go through
in-going edges) starting from target vertex t with R0 = {t}.
The hc-s-t path cut Pm can be calculated for paths with
lengths 2i−1 and 2i at Lines 4 and 8, respectively. The time
complexity of the algorithm is O(km)) because (1) each edge
will be visited at most twice at each iteration and the num-
ber of iterations is ⌈ k

2
⌉; and (2) it takes O(n) (we assume

n ≤ m) time at each iteration to identify the intersection of
Li and Ri (or Ri−1) if the hashing approach is employed.

Algorithm 4: Find Middle Vertices(s,t, G)

Input : s, t: the source and target vertices;
G: the graph

Output : Pm: the middle vertices
L0 = {s}; R0 := {t};1

for i = 1 to ⌈ k
2
⌉ do2

Li ← the out-going neighbors of the vertices in Li−1;3

Pm(2i− 1) := Li ∩Ri−1 ;4

if i == ⌊ k
2
⌋+ 1 then5

break;6

Ri ← the in-going neighbors of the vertices in Ri−1;7

Pm(2i) := Li ∩Ri ;8

return Pm9

Join Algorithm. Now we introduce the join-oriented algo-
rithm, namely JOIN, based on the middle vertices cut Pm

with the following steps:

Step (1). Apply Algorithm 4 to compute the middle ver-
tices cut Pm.

Step (2). Add a virtual target vertex t′, and put an edge
(u, t′) from every middle vertex u in Pm. Apply the BC-DFS
search proposed in Section 4, with search depth ⌈ k

2
⌉+1 and

target vertex t = t′. During the BC-DFS search, when a
vertex u is pushed to the stack S with S = {s, . . . , u}, we
will put the path p = S to Pl(u) if u ∈ Pm(2 × len(p)) ∪
Pm(2× len(p)− 1); that is, u might be the middle vertex of
a path p(s ❀ u ❀ t).

Step (3). Compute Pr(u) for every middle vertex u ∈ Pm

in a similar way with Step (2) with a virtual vertex s’, where
the search depth is ⌊ k

2
⌋+ 1.

Step (4). Enumerate each pair (p1, p2) where p1 ∈ Pl(u)
and p2 ∈ Pr(u) for each middle vertex u. Let p denote the
concatenation of p1 and p2, we output p if u is the middle
vertex of p (i.e., len(p1) = len(p2) or len(p1) = len(p2) + 1)
and there is no repeated vertex in p.

470

Correctness. For any s-t simple k-path p, Algorithm 4
will include its middle point vertex u in Pm(u) at Step
(1); that is, we have p = (s ❀ u ❀ t) which can be
decomposed to p1 = (s ❀ u) and p2 = (u ❀ t) where
len(p1) ≤ ⌈ k

2
⌉, len(p2) ≤ ⌊ k

2
⌋, and len(p1) = len(p2) (or

len(p1) = len(p2) + 1). Recall that we have len(p) ≤ k if p
is a hc-s-t path. For each u, our modified BC-DFS can find
all paths {pl = (s, . . . , u)} with len(pl) ≤ ⌈ k

2
⌉, and hence p1

will be founded. Similarly, path p2 will be retrieved as well.
After the loop check at Step (4), p will be output if it is a
simple path. Note that we will not generate any duplicate
path in Steps (2) and (3) due to the use of BC-DFS. There is
no duplicate path in Step (4) as well because each path will
be output by its middle point only. Thus, the correctness of
JOIN algorithm follows.

Time Complexity. Step (1) takes O(km) time according
to the above analysis. The time complexity of Steps (2) and
(3) are bounded by O(mkc1) and O(mkc2), respectively, ac-
cording to the analysis in Section 4, where c1 and c2 denote
the number of left-side simple paths (Pl) and right-side sim-
ple paths (Pr), respectively. Note that each left-side path
pl ∈ Pl(u) can match at least one right-side path from Pr(u)
to form a hop-constrained s-t path. The time complexity
of the Step (4) is bounded by O(α) where α is the num-
ber of hop-constrained s-t paths. Since there is at least one
matched pair for each path in Pl and Pr, we have c1+c2 ≤ 2α
and hence the time complexity of join-oriented algorithm is
O(kmα).

Space Complexity. The space complexity of JOIN is dom-
inated by c1 and c2, where c1 and c2 denote the number of
left-side paths in Pl and right-side paths in Pr. As shown in
the time complexity analysis, we have c1 + c2 ≤ 2α. Thus,
the space is bounded by O(α) where α is the number of hop-
constrained s-t paths. In practice, c1 + c2 is much smaller
than 2α because a middle vertex u can cover multiple left-
side and right-side paths.

5.3 More Constraints
As shown in Section 1, in addition to hop constraint k,

one may need to consider other constraints based on the
attributes of the vertices and edges along the s-t path.
Since our proposed two approaches are online searching algo-
rithms, it is immediate that these attribute constraints (e.g.,
label and value constraints) can be naturally integrated into
current algorithms by pruning the vertices and edges vio-
lating the constraints. We can expect better performance
of two proposed algorithms after imposing other attribute
constraints due to the reduced search space.

6. EVALUATION
In this section, we evaluate the efficiency of proposed tech-

niques on comprehensive experiments.

6.1 Experimental Setting

Algorithms. In this section, we compare proposed algo-
rithms with state-of-the-art solutions for hc-s-t path enu-
meration. We also evaluate proposed algorithms with the-
state-of-the-art algorithm for dynamic hop-constrained cycle
detection problem. Below are algorithms evaluated in the
experiments.

• C-DFS. The hop-constrained DFS algorithm pre-
sented in Section 3.2.

Table 2: Statistics of Datasets

Dataset |V | |E| davg D D90

Reactome 6.3K 147K 46.64 24 5.39
econ-psmigr3 3K 540K 343 - -
bio-mouse-gene 43K 14M 670 - -
soc-Epinions1 75K 508K 13.42 14 5
Slashdot0902 82K 948K 23.08 12 4.7

Amazon 334K 925K 6.76 44 15
twitter-social 465K 834K 3.86 8 4.96

Baidu 425K 3M 15.8 32 8.54
BerkStan 685K 7M 22.18 208 9.79
web-google 875K 5M 11.6 24 7.95
Skitter 1.6M 11M 13.08 31 5.85

WikiTalk 2M 5M 4.2 9 4
LiveJournal 4M 68M 28.4 16 6.5
DBpedia 18M 172M 18.85 12 4.98

Twitter(WWW) 42M 1.46B 70.51 23 3.97

• T-DFS. The polynomial delay DFS algorithm [54] in-
troduced in Section 3.2.

• T-DFS2. The polynomial delay DFS algorithm [24]
introduced in Section 3.2.

• HPI. The HP-Index based algorithm [52] introduced
in Section 3.2.

• BC-DFS. The C-DFS algorithm equipped with
barrier-based pruning technique and barrier level op-
timization techniques (Section 4.2).

• JOIN. The join-oriented algorithm presented in Sec-
tion 5.2.

Datasets. We deploy 10 real-life graphs to evaluate the effi-
ciency of the algorithms. Table 2 shows important statistics
of these graphs. D90 means the 90-percentile effective diam-
eter and D denotes the diameter.

Settings. We randomly generate 1, 000 random query pairs
{s,t} on the graph where source vertex s could reach target
vertex t in k hops. In the experiments, all programs are im-
plemented in standard C++ and compiled with g++ 4.8.5.
The source code of HPI in C++ is obtained from the authors
in [52]. We tune the number of hot-points chosen for HPI on
each individual graph to achieve a good performance, and
no parameter tuning is required for other algorithms. All
experiments are performed on a machine with 20 Intel Xeon
2.3GHz and 768 GB main memory running Linux (Red Hat
Linux 7.3, 64 bit).

6.2 Datasets Details
All the datasets are downloaded from two public websites:

Konect2 [39] , NetworkRepository3 [56] and SNAP4 [44].
The following are detailed data descriptions obtained from
the above two websites.

6.3 Efficiency of hc­s­t Path Enumeration
We randomly generate 1, 000 random query pairs {s,t}

where source vertex s could reach target vertex t in k hops.
In this subsection, we report the average query response
time of the algorithms to evaluate their time efficiency.

Efficiency on different datasets. First we compare the
average runtime of 6 algorithms (C-DFS, T-DFS, T-DFS2,
HPI, BC-DFS and JOIN) on all 15 graphs. We set k = 8 for
Amazon and twitter-social to achieve similar performance

2http://konect.uni-koblenz.de/networks/
3http://networkrepository.com/networks.php
4http://snap.stanford.edu/data/

471

10
-2

10
-1

10
0

10
1

10
2

10
3

INF

soc-Epini Amazon Slashdot twitter-soc Baidu BerkStanweb-google Skitter WikiTalk LiveJour Reactome econ-psm bio-mouse DBpedia Twitter3W

ti
m

e
(s

)
JOIN BC-DFS T-DFS2 C-DFS HPI T-DFS

Figure 5: Average Runtime Comparison
T-DFS C-DFS HPI T-DFS2 BC-DFS JOIN

10
-2

10
-1

10
0

10
1

10
2

INF

 5 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k

(a) Amazon

10
0

10
1

10
2

INF

 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k

(b) Twitter-social

10
-1

10
0

10
1

10
2

10
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(c) Slashdot0902

10
-1

10
0

10
1

10
2

10
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(d) soc-Epinions1

10
-1

10
0

10
1

10
2

10
3

INF

 3 4 5 6 7

ti
m

e
(s

)

value of k

(e) LiveJournal

10
1

10
2

10
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(f) WikiTalk

10
0

10
1

10
2

10
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(g) skitter

10
-2

10
-1

10
0

10
1

10
2

10
3

INF

 3 4 5 6 7

ti
m

e
(s

)

value of k

(h) baidu

10
-310
-210
-110
010
110
210
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(i) BerkStan

10
-2

10
-1

10
0

10
1

10
2

10
3

INF

 3 4 5 6 7

ti
m

e
(s

)

value of k

(j) webGoogle

10
1

10
2

10
3

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(k) DBpedia

10
0

10
1

10
2

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(l) econ-psmigr3

10
1

10
2

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(m) Bio-mouse

10
-2

10
-1

10
0

10
1

10
2

INF

 3 4 5 6 7 8

ti
m

e
(s

)
value of k

(n) Reactome

10
2

10
3

10
4

INF

 3 4 5 6

ti
m

e
(s

)

value of k

(o) Twitter-WWW

Figure 6: Tuning k

with other graphs while k = 5 for remaining graphs. We
set the runtime of an algorithm to Inf if it cannot finish in
10, 000 seconds. It is reported in Figure 5 that JOIN has
the best overall performance in the experiments and BC-
DFS ranks second. Note that JOIN can be regarded as an
advanced version of BC-DFS for better path computation
sharing by using the join strategy, with some overhead costs
such as finding cut vertices and duplicate detection in the
join process. We notice that these overhead costs are well
paid-off on most of the graphs. One exception is the Liv-
erjournal graph, in which the overhead costs dominate the
benefits brought by the join strategy and hence BC-DFS
outperforms JOIN. Not surprisingly, T-DFS demonstrates
the worst performance on most of the graphs although it is a
polynomial delay algorithm with nice theoretical guarantee.
This is because of the expensive shortest path distance com-
putation cost cannot be paid-off. It is shown that T-DFS2
outperforms T-DFS because T-DFS2 reduces the shortest
path distance computation. Nevertheless, T-DFS2 has sim-
ilar overall performance with C-DFS, which is not attrac-
tive in practice. For instance, T-DFS2 is outperformed by
C-DFS on soc-Epinions and web-google and they have simi-
lar performance on Slashdot0902, Berkstan and Skitter. We
notice that HPI only outperforms C-DFS on Amazon and
twitter-social datasets, which have much less number of re-
sult paths compared to other datasets (see Figures 10 and 11
in Section 6.7). This is because the performance of HPI is
quite sensitive to the number of hop-constrained s-t paths.
Note that we even cannot build a HP-Index with around 100
hot points within one day on most of the datasets, except
Amazon and twitter-social. Although BC-DFS, T-DFS and
T-DFS2 are all O(kmδ), T-DFS and T-DFS2 show much

worse performance than BC-DFS. The reason is that both T-
DFS and T-DFS2 use a positive check strategy which leads
to heavy overheads, while BC-DFS adaptively learns from
failure and in most cases it will terminate earlier than T-
DFS and T-DFS2.
Effect of hop-constraint k. In Figure 6, we evaluate the
running time of the algorithms on 15 graphs by varying the
hop-constraint k. Similar results are observed, compared
with that of Figure 5. Particularly, it is shown that JOIN
algorithm demonstrates the best scalability regarding the
growth of the size constraint k among all evaluated algo-
rithms. As reported in Section 6.7 (Figure 11), the number
of s-t simple paths grows exponentially w.r.t k. The over-
head costs of JOIN algorithm such as finding the middle
vertex cut and duplicate detection in join process are bet-
ter paid-off with larger k values. Thus, although JOIN may
rank after BC-DFS when k is small because of the extra over-
head costs involved, it eventually overtakes BC-DFS when k
grows. As reported in Figure 6 (o), JOIN can still answer hc-
s-t queries on billion-scale graph tweet-WWW within 20786
seconds on average for k= 6 and BC-DFS can support k=3
with around 947 seconds on average while the average re-
sponse time all other algorithms exceed 100,000 seconds for
k ≥ 3. We also notice that the margin increases rapidly with
k on most of the graphs except for skitter (Figure 6(g))
and webGoogle (Figure 6(j)). As shown in Figure 11(b),
the number of paths in skitter and webGoogle grows much
slower compared to other graphs.

6.4 Comparison With Top­k′ Shortest Path Al­
gorithm

472

C-DFS DFS+ KPJ KRE BC-DFS JOIN

10
-1

10
0

10
1

10
2

INF

 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k
(a) Amazon

10
0

10
1

10
2

INF

 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k
(b) Twitter-social

Figure 7: Average Runtime

To investigate if we can simply apply the existing top
k′ shortest path algorithm to the problem of hc-s-t path
enumeration, we consider two latest algorithms, namely
KRE [21] and KPJ [6] respectively. The source codes are
kindly provided by the authors. We also evaluate a variant
of DFS, namely DFS+, by combining the C-DFS with the re-
verse shortest path tree technique used in [6]; that is, we can
find a set of candidate vertices with lower bound distance to
the target vertex t, and some vertices can be pruned based
on current search depth and the lower bound distance. In
Figure 7, we report the performance of KRE, KPJ, DFS+,
C-DFS and our proposed two approaches BC-DFS and JOIN
on two graphs Azamon and Twitter-social, with the growth
of the hop constraint k. It is shown that top k′ shortest path
algorithms have been significantly outperformed by BC-DFS
and JOIN, and the margin quickly grows with k. The key
reason is that, although KRE, KPJ and DFS+ can also take
advantage of the distance lower bound to t for pruning pur-
pose with some overhead, the reversed shortest path tree
calculated is static while our BC-DFS uses a dynamic one
which is tighter because we carefully consider the currently
visited vertices during the search. The other key reason is
that our BC-DFS can learn from failure while KRC, KPJ,
DFS+ cannot. The JOIN algorithm can further improve the
performance for large k by computing sharing.

6.5 Efficiency of Dynamic Cycle Detection
HPI [52] is the state-of-the-art algorithm for hop-

constrained simple cycle detection on dynamic graph. Since
there is no index structure involved, C-DFS, T-DFS, BC-
DFS, T-DFS2 and JOIN algorithms can be immediately de-
ployed for the hop-constrained cycle detection on dynamic
graph. That is, for each incoming edge (t, s), we invoke a
hc-s-t path enumeration query with k = k′ − 1 where k′

is the hop constraint of the cycle. Same as [52], we use
99.9% latency to measure performance of these algorithms.
Six algorithms are evaluated on Amazon and twitter-social
with the growth of k value. Similar to the claim in [52],
Figure 8 shows that HPI outperforms C-DFS because it can
avoid some pitfalls caused by hot points. Nevertheless, its
performance is not competitive compared with BC-DFS and
JOIN.

T-DFS C-DFS HPI T-DFS2 BC-DFS JOIN

10
-1

10
0

10
1

10
2

10
3

INF

 5 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k
(a) Amazon 99.9% Runtime

10
0

10
1

10
2

10
3

INF

 5 6 7 8 9 10 11 12 13

ti
m

e
(s

)

value of k
(b) Twitter 99.9% Runtime

Figure 8: Evaluate Dynamic Cycle Detection

6.6 Main Memory Usage

In this section, we evaluate the main memory usage of
two algorithms HPI and JOIN. Note that C-DFS, T-DFS,
T-DFS2 and BC-DFS are DFS-oriented algorithms, which
are naturally space efficient. To better show the tendency of
the two algorithms, we exclude memory usage of the graph
storage. Figure 9 shows that memory usage of JOIN and
HPI on Amazon and Twitter. MAX-JOIN and AVG-JOIN
shows the maximum and the average main memory usage
of JOIN over 1, 000 queries. Note that the dominance main
memory consumption of HPI is the HP-Index, and its size
is reported as the memory usage. It is shown that JOIN
always use less main memory compared with that of HPI.

HPI MAX-JOIN AVG-JOIN

10
-2

10
0

10
2

10
4

 6 7 8 9 10 11 12 13

M
e
m

o
ry

(M
B

)

value of k
(a) Amazon

10
0

10
1

10
2

10
3

10
4

10
5

 6 7 8 9 10 11 12 13

M
e
m

o
ry

(M
B

)

value of k
(b) Twitter-Social

Figure 9: Average Memory Usage

6.7 Number of hc­s­t Paths

In this subsection, we report the average and maximum
number of hc-s-t paths on all datasets with different hop-
constraint (k) values in Figures 10 and 11. As expected, the
average and maximal number of hc-s-t paths grows expo-
nentially with k.

10
010
110
210
310
410
510
610
7

 4 6 8 10 12 14

#
 o

f
p
a
th

s

value of k

Amazon
Twitter

(a) Average # of Paths

10
110
210
310
410
510
610
710
810
9

 4 6 8 10 12 14

#
 o

f
p
a
th

s

value of k

Amazon
Twitter

(b) Maximum # of Paths

Figure 10: Path Number of Large k
Slashdot
soc-Epinions

BerkStan
DBpedia

Twitter-WWW
Baidu

10
2

10
4

10
6

10
8

3 4 5 6

#
 o

f
p
a
th

s

value of k
(a) Average # of Paths

10
4

10
6

10
8

3 4 5 6

#
 o

f
p
a
th

s

value of k
(b) Maximum # of Paths

skitter
web-G

LiveJ
Reactome

econ
bio

WikiTalk

10
2

10
4

10
6

10
8

3 4 5 6 7 8

#
 o

f
p
a
th

s

value of k
(c) Average # of Paths

10
2

10
4

10
6

10
8

3 4 5 6 7 8

#
 o

f
p
a
th

s

value of k
(d) Maximum # of Paths

Figure 11: Path Number of Small K

7. ANALYSIS OF TWO EXISTING POLY­

NOMIAL DELAY ALGORITHMS

473

In this section, we show that both T-DFS and T-DFS2
take O(km) time per output on directed graph.

In [54], Rizzi et al. show that they can achieve O(m)
time per output on undirected graph by carefully building
the recursion tree where each leaf-node represent an unique
output and there are at least two branches for every internal
node. As shown in Figure 12(a), if there are some single-
child internal nodes which corresponds to only one leaf node
(output), the delay time is O(km) since each inter-node in-
curs O(m) cost for a reverse BFS. In the undirected graph,
they can identify and “merge” all the consecutive single-
child nodes in the recursion tree (e.g., Figure 12(b)). This
guarantees that the remaining inter-nodes have at least two
child nodes (i.e., corresponds to two valid paths), resulting
in O(m) time delay for undirected graph. Nevertheless, au-
thors stress that it is difficult to apply the above technique
to directed graph, thus T-DFS takes O(km) time per output
on directed graph as shown in Section 3.2.

s

g

d

a

c

j

t
 t

e

t

b

h

f

(a) Recursion Tree

s

a

t
 t
 t

(b) Merged Re-
cursion Tree

Figure 12: Example of merging recursion tree

Recently, Grossi et al. study the problem of listing k dis-
joint s-t paths in [24]. As the enumeration of hc-s-t paths is
a special case of k disjoint s-t path listing problem, they pro-
pose a polynomial delay technique following the aggressive
checking strategy. The key idea is to merge the recursion
tree on the directed graph as follows. Let u be the cur-
rently processed vertex (i.e., the top vertex of the stack) of
the DFS as shown in Figure 13(a), and the path p(s ❀ u)
records the vertices visited (i.e., vertices in the stack). We
say a neighbor v of u is a good neighbor, if v can reach t
in k − len(p) − 1 hops without touching any vertex on p,
i.e., sd(v, t|p) ≤ k − len(p) − 1. Same as BC-DFS, we can
conduct a reverse BFS with O(m) time to find all vertices
T = {x} with sd(x, t|p) ≤ k − len(p) − 1. Then we can
say the neighbor vertex v is a good neighbor of u if v ∈ T .
If there is no good neighbor or there are at least two good
neighbors, T-DFS2 is the same as T-DFS; that is, we will
terminate the search if there is no good neighbor, or all good
neighbors will be explored (i.e., regard u as an internal node
in the recursion tree) if there are at least two good neigh-
bors. The key difference is that T-DFS2 will skip the vertex
(i.e., merge the node in the recursion tree) if there is only
one good neighbor. For instance, we will skip the vertex v1
and continue to process the vertex b if v1 is the only good
neighbor of u. This procedure will continue if b has only
good neighbor as well, i.e., merging consecutive single-child
nodes in the recursion tree. Note that there is no shortest
path distance computation involved if a vertex is skipped.

If we can ensure that every internal node has at least
two good neighbors, T-DFS2 algorithm will have O(m) time
delay per hc-s-t path, as claimed in [24]. Unfortunately, we
show that there may exist false good neighbor in T-DFS2;
that is, a good neighbor identified in [24] may not be able to

generate a valid output. A counter-example is constructed in
Figure 13(b) with 6 vertices and k = 8, and there is only one
hop-constraint s-t simple path p = (s, w, d, j, t). Starting
from source vertex s, we know that every other vertex can
reach target vertex t within 7 hops without touching s by
one reverse BFS from t. Then the vertex w will be skipped
as it has only one good neighbor. When d is processed, as
shown in Figure 13(c), we need to regarded it as an internal
node since it has two good neighbors b and j with shortest
distance 4 and 1 to t, respectively. Therefore, two more
shortest path computations will be invoked when b and j
are processed. However, there is only one hc-s-t path in
this example. This is because the branch from b leads to a
path p(s, w, d, b, w, j, t) with a loop. We can easily ensure
the correctness of T-DFS2 by conducting a loop check, but
the claim of O(m) time per output does not hold. The
key reason is that the shortest path distance from b to t
not containing visited vertices has been updated from 4 to
∞, but we cannot update this information with time O(1)
when we skip the single-child nodes on the directed graph.
Consequently, the time complexity of T-DFS2 is the same
as T-DFS, i.e., O(km) time per output on directed graphs.

u

t

v
1
 v
2

s

v
b

b

(a) Check good
neighbors

s

w

d

b

j

t

(b) Counter-
example

d

j

t

b

w

d

j

t

(c) Recursion Tree

Figure 13: T-DFS2 and counter-example

8. CONCLUSION
In this paper, we investigated the problem of hop-

constrained s-t simple path (hc-s-t path) enumeration,
which is fundamental in the graph analytics. Although there
were some existing solutions, they either do not have at-
tractive theoretical time complexity result or demonstrate
poor time efficiency on real-life graphs. By designing novel
barrier-based techniques and join framework, we developed
two efficient algorithms, namely BC-DFS and JOIN. On the-
oretical side, we showed that BC-DFS algorithm is a polyno-
mial delay algorithm with O(km) time per output, which is
the same as the current state-of-the-art theoretical studies.
On the practical side, extensive empirical study on 10 real-
life graphs showed that BC-DFS significantly outperformed
the state-of-the-art techniques. By applying the join com-
puting paradigm, our proposed JOIN algorithm can further
significantly enhance the query response time.

9. ACKNOWLEDGMENTS
Ying Zhang is supported by ARC DP180103096 and

FT170100128. Lu Qin is supported by ARC DP160101513.
Wenjie Zhang is supported by ARC DP180103096. Xuemin
Lin is supported by 2018YFB1003504, NSFC61232006, ARC
DP180103096 and DP170101628.

474

10. REFERENCES
[1] J. E. Beasley and N. Christofides. An algorithm for the

resource constrained shortest path problem. Networks,
19(4):379–394, 1989.

[2] A. Bernstein and S. Chechik. Incremental topological sort
and cycle detection in expected total time. In SODA, pages
21–34, 2018.

[3] E. Birmelé, R. A. Ferreira, R. Grossi, A. Marino,
N. Pisanti, R. Rizzi, and G. Sacomoto. Optimal listing of
cycles and st-paths in undirected graphs. In SODA, pages
1884–1896, 2013.

[4] K. Böhmová, L. Häfliger, M. Mihalák, T. Pröger,
G. Sacomoto, and M.-F. Sagot. Computing and listing
st-paths in public transportation networks. Theory of
Computing Systems, 62(3):600–621, 2018.

[5] G. G. Cash. The number of n-cycles in a graph. Applied
Mathematics and Computation, 184(2):1080–1083, 2007.

[6] L. Chang, X. Lin, L. Qin, J. X. Yu, and J. Pei. Efficiently
computing top-k shortest path join. In EDBT 2015-18th
International Conference on Extending Database
Technology, Proceedings, 2015.

[7] Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and J. Zhang.
Exploring communities in large profiled graphs. IEEE
Transactions on Knowledge and Data Engineering, 2018.

[8] G. L. D. and K. N. P. Identifying certain types of parts of a
graph and computing their number. Ukrainian
Mathematical Journal, 24(3):313–321, 1972.

[9] E. de Queirós Vieira Martins and M. M. B. Pascoal. A new
implementation of yen’s ranking loopless paths algorithm.
4OR, 1(2):121–133, 2003.

[10] D. Eppstein. Finding the k shortest paths. SIAM Journal
on computing, 28(2):652–673, 1998.

[11] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu. Effective
and efficient attributed community search. The VLDB
JournalThe International Journal on Very Large Data
Bases, 26(6):803–828, 2017.

[12] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
community search over large spatial graphs. Proceedings of
the VLDB Endowment, 10(6):709–720, 2017.

[13] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community
search for large attributed graphs. Proceedings of the
VLDB Endowment, 9(12):1233–1244, 2016.

[14] Y. Fang, R. Cheng, S. Luo, J. Hu, and K. Huang.
C-explorer: browsing communities in large graphs.
Proceedings of the VLDB Endowment, 10(12):1885–1888,
2017.

[15] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang,
R. Cheng, and X. Lin. A survey of community search over
big graphs. The VLDB Journal, Jul 2019.

[16] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and
X. Chen. On spatial-aware community search. IEEE
Transactions on Knowledge and Data Engineering,
31(4):783–798, 2018.

[17] Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu.
Effective and efficient community search over large directed
graphs. IEEE Transactions on Knowledge and Data
Engineering, 2018.

[18] Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and
X. Lin. Efficient algorithms for densest subgraph discovery.
Proc. VLDB Endow., 12(11):1719–1732, July 2019.

[19] A. Freitas, J. C. P. da Silva, E. Curry, and P. Buitelaar. A
distributional semantics approach for selective reasoning on
commonsense graph knowledge bases. In International
Conference on Applications of Natural Language to Data
Bases/Information Systems, pages 21–32. Springer, 2014.

[20] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang.
Relational approach for shortest path discovery over large
graphs. Proceedings of the VLDB Endowment,
5(4):358–369, 2011.

[21] J. Gao, H. Qiu, X. Jiang, T. Wang, and D. Yang. Fast top-k
simple shortest paths discovery in graphs. In Proceedings of
the 19th ACM international conference on Information
and knowledge management, pages 509–518. ACM, 2010.

[22] P. Giscard, N. Kriege, and R. C. Wilson. A general purpose

algorithm for counting simple cycles and simple paths of
any length. CoRR, abs/1612.05531, 2016.

[23] Z. Gotthilf and M. Lewenstein. Improved algorithms for the
k simple shortest paths and the replacement paths
problems. Information Processing Letters, 109(7):352–355,
2009.

[24] R. Grossi, A. Marino, and L. Versari. Efficient algorithms
for listing k disjoint st-paths in graphs. In Latin American
Symposium on Theoretical Informatics, pages 544–557.
Springer, 2018.

[25] G. Y. Handler and I. Zang. A dual algorithm for the
constrained shortest path problem. Networks,
10(4):293–309, 1980.

[26] J. Hershberger, M. Maxel, and S. Suri. Finding the k
shortest simple paths: A new algorithm and its
implementation. ACM Transactions on Algorithms
(TALG), 3(4):45, 2007.

[27] D. S. Hochbaum. The pseudoflow algorithm: A new
algorithm for the maximum-flow problem. Operations
Research, 56(4):992–1009, 2008.

[28] J. Hu, R. Cheng, K. C.-C. Chang, A. Sankar, Y. Fang, and
B. Y. Lam. Discovering maximal motif cliques in large
heterogeneous information networks. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE),
pages 746–757. IEEE, 2019.

[29] S. Irnich and G. Desaulniers. Shortest path problems with
resource constraints. In Column generation, pages 33–65.
Springer, 2005.

[30] R. Jin and N. Ruan. Shortest path computation in large
networks, Dec. 19 2013. US Patent App. 13/899,124.

[31] D. B. Johnson. Finding all the elementary circuits of a
directed graph. SIAM J. Comput., 4(1):77–84, 1975.

[32] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis.
On generating all maximal independent sets. Inf. Process.
Lett., 27(3):119–123, 1988.

[33] C. V. Karsten, D. Pisinger, S. Ropke, and B. D. Brouer.
The time constrained multi-commodity network flow
problem and its application to liner shipping network
design. Transportation Research Part E: Logistics and
Transportation Review, 76:122–138, 2015.

[34] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm
for k shortest simple paths. Networks, 12(4):411–427, 1982.

[35] A. A. Khan and H. Singh. Petri net approach to enumerate
all simple paths in a graph. Electronics Letters,
16(8):291–292, 1980.

[36] D. E. Knuth. The Art of Computer Programming, Volume
4A: Combinatorial Algorithms. Addison-Wesley
Professional, 2011.

[37] S. R. Kosaraju and G. F. Sullivan. Detecting cycles in
dynamic graphs in polynomial time (preliminary version).
In STOC, pages 398–406, 1988.

[38] R. Kumar and T. Calders. 2scent: An efficient algorithm to
enumerate all simple temporal cycles. PVLDB,
11(11):1441–1453, 2018.

[39] J. Kunegis. Konect: the koblenz network collection. In
Proceedings of the 22nd International Conference on World
Wide Web, pages 1343–1350. ACM, 2013.

[40] K. L, J. Nadeau, G. Ozsoyoglu, Z. Ozsoyoglu, G. Schaeffer,
M. Tasan, and W. Xu. Pathways database system: An
integrated system for biological pathways. Bioinformatics,
19:930–7, 06 2003.

[41] L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao,
X. Lin, L. Qin, W. Zhang, et al. Distributed subgraph
matching on timely dataflow. Proceedings of the VLDB
Endowment, 12(10):1099–1112, 2019.

[42] N. Lao and W. W. Cohen. Relational retrieval using a
combination of path-constrained random walks. Machine
Learning, 81(1):53–67, 2010.

[43] U. Leser. A query language for biological networks.
Bioinformatics, 21:ii33–9, 10 2005.

[44] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection.
http://snap.stanford.edu/data, June 2014.

[45] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou.

475

Efficient (a, β)-core computation: an index-based approach.
In The World Wide Web Conference, pages 1130–1141.
ACM, 2019.

[46] B. Liu, F. Zhang, C. Zhang, W. Zhang, and X. Lin.
Corecube: Core decomposition in multilayer graphs. In
International Conference on Web Information Systems
Engineering, pages 694–710. Springer, 2019.

[47] H. Liu, C. Jin, B. Yang, and A. Zhou. Finding top-k
shortest paths with diversity. IEEE Transactions on
Knowledge and Data Engineering, 30(3):488–502, 2017.

[48] E. Q. Martins and M. M. Pascoal. A new implementation
of yens ranking loopless paths algorithm. Quarterly Journal
of the Belgian, French and Italian Operations Research
Societies, 1(2):121–133, 2003.

[49] S. Mazumder and B. Liu. Context-aware path ranking for
knowledge base completion. In IJCAI, pages 1195–1201,
2017.

[50] M. Nishino, N. Yasuda, S. Minato, and M. Nagata.
Compiling graph substructures into sentential decision
diagrams. In AAAI, pages 1213–1221, 2017.

[51] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. Efficient
probabilistic k-core computation on uncertain graphs. In
2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 1192–1203. IEEE, 2018.

[52] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and
J. Zhou. Real-time constrained cycle detection in large
dynamic graphs. PVLDB, 11(12):1876–1888, 2018.

[53] J. C. Rivera, H. M. Afsar, and C. Prins. Mathematical
formulations and exact algorithm for the multitrip
cumulative capacitated single-vehicle routing problem.
European Journal of Operational Research, 249(1):93–104,
2016.

[54] R. Rizzi, G. Sacomoto, and M. Sagot. Efficiently listing
bounded length st-paths. In IWOCA, pages 318–329, 2014.

[55] L. Roditty and U. Zwick. Replacement paths and k simple
shortest paths in unweighted directed graphs. In
International Colloquium on Automata, Languages, and
Programming, pages 249–260. Springer, 2005.

[56] R. A. Rossi and N. K. Ahmed. The network data repository
with interactive graph analytics and visualization. In
AAAI, 2015.

[57] J.-J. Salazar-González. Approaches to solve the
fleet-assignment, aircraft-routing, crew-pairing and
crew-rostering problems of a regional carrier. Omega,
43:71–82, 2014.

[58] N. Shi, S. Zhou, F. Wang, Y. Tao, and L. Liu. The
multi-criteria constrained shortest path problem.
Transportation Research Part E: Logistics and
Transportation Review, 101:13–29, 2017.

[59] O. Shmueli. Dynamic cycle detection. Inf. Process. Lett.,
17(4):185–188, 1983.

[60] C. Sommer. Shortest-path queries in static networks. ACM
Comput. Surv., 46(4):45:1–45:31, 2014.

[61] L. Talarico, K. Sörensen, and J. Springael. The k-dissimilar
vehicle routing problem. European Journal of Operational
Research, 244(1):129–140, 2015.

[62] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 421–432. ACM,
2011.

[63] C. Voss, M. Moll, and L. E. Kavraki. A heuristic approach
to finding diverse short paths. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages
4173–4179. IEEE, 2015.

[64] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient
computing of radius-bounded k-cores. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE),
pages 233–244. IEEE, 2018.

[65] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang. Vertex
priority based butterfly counting for large-scale bipartite
networks. Proceedings of the VLDB Endowment,
12(10):1139–1152, 2019.

[66] L. Wang, L. Yang, and Z. Gao. The constrained shortest
path problem with stochastic correlated link travel times.

European Journal of Operational Research, 255(1):43–57,
2016.

[67] S. Wang, X. Xiao, Y. Yang, and W. Lin. Effective indexing
for approximate constrained shortest path queries on large
road networks. Proceedings of the VLDB Endowment,
10(2):61–72, 2016.

[68] N. Yasuda, T. Sugaya, and S. Minato. Fast compilation of
s-t paths on a graph for counting and enumeration. In
Proceedings of the 3rd Workshop on Advanced
Methodologies for Bayesian Networks, AMBN, pages
129–140, 2017.

[69] J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17(11):712–716, 1971.

[70] J. X. Yu and J. Cheng. Graph reachability queries: A
survey. In Managing and Mining Graph Data, pages
181–215. 2010.

[71] D. Yue, X. Wu, Y. Wang, Y. Li, and C. Chu. A review of
data mining-based financial fraud detection research. In
International Conference on Wireless Communications,
Networking and Mobile Computing, pages 5519 – 5522, 10
2007.

[72] A. D. Zhu, X. Xiao, S. Wang, and W. Lin. Efficient
single-source shortest path and distance queries on large
graphs. In ACM SIGKDD, pages 998–1006, 2013.

476

