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ABSTRACT
Persistent memory (PM) is fundamentally changing the way database
index structures are built by enabling persistence, high performance,
and (near) instant recovery all on the memory bus. Prior work has
proposed many techniques to tailor index structure designs for PM,
but they were mostly based on volatile DRAM with simulation due
to the lack of real PM hardware. Until today is it unclear how these
techniques will actually perform on real PM hardware.

With the recent released Intel Optane DC Persistent Memory, for
the first time, this paper provides a comprehensive evaluation of
recent persistent index structures. We focus on B+-Tree-based range
indexes and carefully choose four representative index structures
for evaluation: wBTree, NV-Tree, BzTree and FPTree. These four
tree structures cover a wide, representative range of techniques that
are essential building blocks of PM-based index structures. For fair
comparison, we used an unified programming model for all trees
and developed PiBench, a benchmarking framework which targets
PM-based indexes. Through empirical evaluation using representa-
tive workloads, we identify key, effective techniques, insights and
caveats to guide the making of future PM-based index structures.
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1. INTRODUCTION
Next-generation, scalable persistent memory (PM) promises low

latency (comparable to DRAM’s), byte-addressability, scalability
(large capacity) and non-volatility on the memory bus. These prop-
erties make PM attractive for index structures (e.g., B+-Tree and
its variants) in OLTP systems: the index can be directly accessed
and persisted in PM and be recovered (nearly) instantly, saving
much rebuild/loading time, improving performance (compared to a
disk-based index), and easing the effort to manage a large index.

PM exhibits several properties that are distinct from DRAM and
flash memory. It has a higher endurance than flash, but not unlimited
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like DRAM. Its latency is comparable and higher than DRAM, but
still an order of magnitude lower than flash. It also presents band-
width lower than DRAM, and asymmetric read/write speeds [23].
Blindly moving existing index structures to run on PM would not
reap PM’s real benefits for these structures. This necessitates non-
trivial efforts in redesigning index structures for PM. There have
been numerous proposals [6, 9, 10, 18, 25, 32, 38, 42, 47] that tailor
index structures for PM. However, prior work mostly had to base
on volatile DRAM and emulation due to the lack of real PM hard-
ware when they were developed. Thus, it is unclear how well the
proposed approaches will in fact work on real PM hardware.

In this paper, we provide a comprehensive evaluation of range
indexes on real PM hardware based on the recently released Intel
Optane DC Persistent Memory Modules (DCPMM). DCPMM uses
the 3D XPoint technology [12] which scales to large capacity (up
to 512GB per DIMM) and provides latency in the range of that of
DRAM. It is so far the only scalable PM product that is in mass
production and we expect it to be mainstream in the near future.

The goals of this work are to (1) qualitatively and quantitatively
compare range indexes designed specifically for PM, (2) under-
stand the behavior and impact of different design decisions in the
context of real PM hardware, and more importantly, (3) distill use-
ful insights and design guidelines for tree structures in PM. To
achieve these goals, we have developed PiBench1, a persistent
index benchmarking framework. PiBench defines a set of common
interfaces (lookup, insert, update, delete, scan) supported by
index structures and implements unified, highly customizable bench-
marks for all data structures under evaluation. Using a unified frame-
work allows us to fairly compare multiple index structures and rule
out the impact of different benchmark implementations. Through a
shared library, PiBench can support any index structures—including
hash tables, tries and trees—that support the common operations.

We focus on B+-Tree [7] based index structures that support
range scans, because they are arguably the most widely used index
in OLTP systems, have received the most attention, and have the
most mature techniques among all persistent index types [6, 9, 10,
18, 32, 42, 47]. We identify and evaluate using PiBench four recent
and representative proposals, including BzTree [6], FPTree [32],
NV-Tree [47] and wBTree [10]. Although we are evaluating only
four tree structures, they cover a wide range of techniques in vari-
ous dimensions. For example, in terms of concurrency control, our
selection covers both lock-based (FPTree and NV-Tree), lock-free
(BzTree), and hardware transactional memory (HTM) based (FP-
Tree) approaches. We describe and compare these index structures
and their key techniques in Section 3.

Our evaluation results obtained using representative workloads (cf.
Section 5) revealed several important insights, highlighted below:

1 Available at https://github.com/wangtzh/pibench.
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• Contrary to the estimates found in prior work [40, 49], our results
corroborate with recent work [37] that PM bandwidth is a scarce
resource and has significant impact on performance. Data struc-
tures thus need to be designed to not exhaust the available PM
bandwidth. This is especially true for machines that are not fully
populated, i.e., with only a few PM DIMMs.

• Designing indexes (and data structures in general) for PM re-
quires using a sound programming model provided by some PM
library [19, 31, 42] for correctness and usability. This entails
non-trivial overhead but is largely sidestepped by prior work.
The result is a significant slowdown on real PM compared to the
originally reported numbers using emulations on DRAM. The
interactions between data structures and PM libraries must be
carefully coordinated.

• Despite the different designs, there are several effective key build-
ing blocks and principles that should be followed when designing
indexing structures for PM; they are largely orthogonal and can
be applied individually depending on the need.

In the main sections, we elaborate and present more detailed
findings and insights. To the best of our knowledge, this is the first
and most comprehensive evaluation of OLTP index structures on
real, next-generation PM. PiBench is the first and only framework
targeted at evaluating index structures with support for collecting
metrics on real PM.

Next, we first give background on PM in Section 2, including
its hardware characteristics and implications on software. We then
introduce and compare the indexes under evaluation and our bench-
mark framework in Sections 3 and 4, respectively. Section 5 presents
our empirical evaluation results and analysis. We discuss our find-
ings and insights obtained from this evaluation in Section 6. Sec-
tion 7 discusses related work, and Section 8 concludes this paper.

2. PERSISTENT MEMORY
There are several types of PM based on different materials, such as

memristor [35], STT-RAM [17], phase change memory (PCM) [43],
3D XPoint [12] and DRAM/flash-based NVDIMM [5, 39]. Despite
the different underlying materials, the common features offered
by PM include (1) byte-addressability, (2) non-volatility and (3)
performance in the range of DRAM’s. They can be placed on the
memory bus, thus appear to software as normal memory and can be
accessed directly using load and store instructions.

Optane DC PM and NVDIMM are the only commercially avail-
able PM products, and we expect next-generation, scalable PM (e.g.,
Optane DC) to be mainstream soon. Therefore, we target Optane
DC PM based on the 3D XPoint technology [12]. The rest of this
section provides the necessary background on Optane DC PM’s
properties and discusses PM programming models.

2.1 Optane DC Persistent Memory
Performance. Optane DC PM scales much better than DRAM,

thus it is capable of providing much larger capacity (up to 512 GB
per DCPMM); a single CPU can be equipped with 3 TB of DCPMM.
However, its read/write latency is higher than DRAM’s and it ex-
hibits asymmetric read/write latency (writes being slower). Com-
pared to DDR4 DRAM, Optane DC PM has a 300 ns read latency,
∼4× higher that that of DRAM (75 ns). Optane DC PM exhibits
peak sequential read and write bandwidth of 40 GB/s and 10 GB/s,
respectively. These are respectively ∼3× and ∼11× times lower
than those of DDR4 DRAM. This gap widens even more for ran-
dom read and write bandwidth to respectively ∼8× (7.4 GB/s) and
∼14× (5.3 GB/s) lower bandwidth than DDR4 DRAM.
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Figure 1: DRAM and Optane DCPMM bandwidth when a server
is fully (×6 modules) and partially (×2 modules) populated.

Given the performance gap between DRAM and PM, it becomes
more important to leverage more memory channels (i.e., equip more
DCPMMs) to reach the peak bandwidth. Figure 1 compares the
bandwidth under two and six DCPMMs with a varying number of
threads. The CPU supports six channels, each of which has two
slots, one for DRAM and one for PM. Therefore, the number of
DCPMMs also indicates the number of memory channels. Similar
to DRAM, adding more DCPMMs significantly increases read per-
formance for PM, while the impact for write bandwidth is relatively
smaller. It is worth noting that in most cases using two threads is
enough to saturate PM write bandwidth. In our experiments, unless
otherwise noted, we use six DCPMMs. As we will see in Section 5,
PM bandwidth is a scarce resource, and higher bandwidth (more
DCPMMs) is critical in obtaining high index performance. Never-
theless, having as many DCPMMs as possible is not always better,
as the optimal setup highly depends on the use case. As an example,
one might benefit from less DCPMMs in favor of more DRAM
modules since the amount of available memory slots is limited per
CPU. In such case, this would imply trading the lower costs and
increase in bandwidth of PM for a more expensive setup and larger
DRAM capacity, benefiting from its lower latency access.

It is difficult to accurately measure write latency for DCPMM,
as writes “succeed” once they reach the memory controller buffers
from CPU caches [33]. Measuring the latency of cache-flushing
instructions does not give real latency to the actual PM device.
A comprehensive evaluation on DCPMM raw performance can
be found elsewhere [23]; we focus on understanding how more
complex, range indexes perform on DCPMM.

Operating modes. Optane DCPMM can be configured to run in
two modes: Memory and App Direct [20]. Both allow direct access
to PM by normal load and store instructions and can leverage
CPU caches for higher performance. Under the Memory mode,
DCPMM acts as large memory without persistence; DRAM is used
as a cache to hide the longer latency. The App Direct mode pro-
vides persistence. There is no DRAM cache in front to hide the
high latency; the application should judiciously use PM and handle
persistence, recovery, concurrency and optimize for performance.
More details can be found in Intel manuals [3].

The crux of persistent indexes is leveraging non-volatility and
guaranteeing failure atomicity, so the Memory mode is not useful for
them, as data will be wiped across reboots. Therefore we configure
DCPMM to run in the App Direct mode. The system can also feature
a certain amount of volatile DRAM, and it is up to the software
(indexes in our case) to determine the roles of DRAM. As Section 3
describes, some indexes are entirely in PM, while some leverage
both DRAM and PM. Note, however, that this is not to be confused
with the aforementioned “Memory” mode where DRAM is used as
a cache for PM and is transparent to persistent data structures.
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2.2 Programming Persistent Memory
The use of PM introduces new challenges in data persistence,

memory management and concurrency. Solving these challenges
requires the use of a sound programming model [32] that consists
of the use of cacheline flush instructions and PM-aware pointers,
allocators and concurrency control mechanisms. This constitutes a
key part in designing persistent data structures and is usually done
using PM programming libraries [19, 31, 42]. This section gives an
overview of these issues; we elaborate in detail in Sections 3 and 5.

Persistence. Since CPU caches are volatile and there is no way
in software to prevent cachelines from being evicted, data must
be properly flushed from the cache to PM eagerly for safe persis-
tence. This can be done using the CLFLUSH, CLFLUSHOPT or CLWB
instructions, which will flush the specified cacheline contents to the
memory controller (write buffers) that cover PM. Through asyn-
chronous DRAM refresh [33] the write buffers are guaranteed to be
persisted in PM upon power failure. CLFLUSHOPT and CLFLUSH will
evict the cachelines being flushed, so they can significantly impact
performance; CLWB is a new instruction for PM that flushes a cache-
line without evicting it. Also, applications that rely on a specific
ordering of writes to guarantee consistency must issue SFENCE to
avoid stores from being re-ordered by the CPU. Moreover, modern
CPUs only guarantee 8-byte atomic writes2 in a single cycle. As a
result, data chunks larger than 8 bytes might be written back to PM
in separate cycles, leading to partial writes upon power failure.

Memory management. PM can be mapped to the application’s
address space using a PM-aware file system [2,4,14,45] that provides
direct access without file system caching, using the mmap interface.
The application then uses virtual memory pointers to access data in
PM. However, mmap does not guarantee the application will obtain
the same address space across reboots, invalidating all the stored
pointer values. So the system needs to be able to correctly store
and transform pointers to use the new address space upon recovery.
This is typically handled by some PM programming library, e.g., by
recording only offsets in PM and generating pointers on-the-fly by
adding the offset to a base address. We use the Ext4 file system with
Direct Access (DAX) [1] to manage PM.

PM applications also require the memory allocator to properly
handle transfer of memory ownership to prevent permanent PM
leaks. The allocator must guarantee that an allocated PM block is
atomically “given” to the application and never leaves it in a state
where the memory is tracked by neither the application nor the
allocator. Most persistent allocators [8, 19, 31] follow an allocate-
activate approach using a posix memalign-like interface. A pro-
tocol needs to be in place for the allocator to determine the right
memory ownership upon recovery.

Concurrency and recovery. After a reboot, DRAM-only struc-
tures can be re-created or recovered from storage without inconsis-
tencies, and start with a clean slate. But PM applications need to
recover both data and program states (e.g., critical sections) back to
a consistent state upon reboot, because they are all persistent in PM.
For instance, in a B+-Tree that uses lock-based concurrency control,
a split operation that manipulates multiple pointers may be done
in a critical section. Since the lock is typically also PM-resident,
a crash may cause the tree to hold the lock forever and be in an
inconsistent state. One solution is to devise a recovery mechanism
that releases the lock and rolls back the changes upon recovery.
Similarly, a lock-free B+-Tree may expose intermediate states (e.g.,
half-finished split [27]). As a result, the synchronization mechanism
needs to be tailored for PM to ensure correctness.

2 Not to be confused with atomic visibility, which can be achieved
at larger sizes with instructions such as CMPXCHG16B.
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array. Using unsorted node reduces writes but requires linear search
for lookup, which can be avoided by using an indirection slot array.

3. PERSISTENT B+-TREE STRUCTURES
In this section, we survey representative PM-based B+-Tree [7]

indexes, including wBTree [10], NV-Tree [47], BzTree [6] and FP-
Tree [32]. For completeness we discuss other indexes in Section 7.

3.1 Write-Atomic B+-Tree (wBTree)
wBTree [10] is a persistent, single-threaded B+-Tree that achieves

high performance by reducing cacheline flushes and writes to PM.
Traditional B+-Tree nodes are sorted for faster binary search. How-
ever, as Figure 2(a) shows, keeping a node sorted requires a shift of
data to make place for the new key, which might leave the node in
an inconsistent state upon crashes, and incurs more (expensive) PM
writes. wBTree solves this problem with unsorted nodes proposed
in prior work [9]. Figure 2(b) illustrates the idea. A bitmap is used
to indicate if each slot contains valid (green box in the figure) record
or not (red box). The new record is inserted into a free slot (out-of-
place), and the bitmap is atomically modified using 8-byte writes to
set the validity of the inserted record. Using unsorted nodes reduces
the number of (expensive) PM writes and eases implementation, but
requires linear search for lookups, which might be more expensive
than a binary search. Nevertheless, as we will see later, the use of
unsorted nodes is a common and effective design in PM trees.

To enable binary search (thus reducing PM accesses), wBTree
uses an indirection slot array in each node, as shown in Figure 2(c).
Each entry of the array records the index position of the correspond-
ing key in sorted order, i.e., the n-th array element will “point” to
the n-th smallest key by recording the key’s index into the key-value
slots. In the example, after inserting key 5, in step 3 the bitmap
needs to be modified so that the third element records the position
of key 7, which is stored as the second element (index 1) in the
key-value storage area. One bit (left-most box in the figure) in the
bitmap is reserved to indicate the validity of the array. wBTree
relies on the atomic update of the bitmap to achieve consistency,
and on logging for more complex operations such as node splits.
After inserting the record out-of-place in a free slot, the indirection
slot array is flagged as invalid and updated, as shown in step 3 of
Figure 2(c). In case of a failure, the indirection slot array will be
detected as invalid and reconstructed upon recovery. Finally, the
bitmap is atomically updated to set both the indirection slot array
and the new record as valid. This last step imposes that the bitmap
be no larger than 8 bytes. When the indirection slot array is smaller
than 8 bytes, the bitmap could be removed as the indirection slot
array can be atomically updated and serve as the validity flag.

576



Consistency of
inner nodes relaxed

Selective consistency

Append-only leaves

N0

N3 N4N2 N5N1

N6 N7 N8

L L L L LL…

N28 N29 N30

Contiguous
inner nodes

Insertion to append-only leaf node:
Record  [flag(-/+), key] 

2. Atomically increment counter

Size: 3 (+,5) (+,22) (-,5) Free

3 (+,5) (+,22) (-,5) 4 (+,5) (+,22) (-,5)

Insert 5

(+,5) (+,5)

1. Append new record with + flag

Figure 3: NV-Tree architecture (top) and insertion process (bottom).

3.2 NV-Tree
NV-Tree [47] proposes the concept of selective consistency, which

as shown in Figure 3, enforces the consistency of leaf nodes and
relaxes that of inner nodes. This design simplifies implementation
and reduces consistency costs by avoiding many cacheline flushes.
Inner nodes, however, have to be rebuilt upon recovery because
the copy in PM might be inconsistent and unable to guide lookups
correctly. We note that inner nodes could also be placed in DRAM
since their consistency is not enforced. Similar to the wBTree, NV-
Tree also uses unsorted leaf nodes with an append-only strategy to
achieve fail-atomicity. Figure 3(bottom) shows an example of an
insertion in an NV-Tree leaf node. The record is directly appended
with a positive flag (or a negative flag in case of a deletion) regardless
of whether the key exists or not. Then, the leaf counter is atomically
incremented to reflect the insertion. To lookup a key, the leaf node
is scanned backwards to find the latest version of the key: if its flag
is positive, then the key exists and is visible; otherwise, the key has
been deleted. The inner nodes are stored contiguously to abstract
away pointers and improve cache efficiency. However, this implies
the need for costly rebuilds when a parent-to-leaf node needs to be
split. To avoid frequent rebuilds, inner nodes are rebuilt in a sparse
way, which may lead to high memory footprint. As inner nodes are
immutable (except parent-to-leaf nodes) once they are built, threads
can access them without locking and only need to take locks at the
leaf and their parents level when traversing the tree.

3.3 BzTree
BzTree [6] is a lock-free B+-Tree for PM that uses persistent

multi-word compare-and-swap (PMwCAS) [42] to handle concur-
rency and ease implementation. PMwCAS is a general-purpose
primitive that allows atomically changing multiple arbitrary 8-byte
PM words in a lock-free manner with crash consistency. To achieve
this, PMwCAS uses a two-phase approach. In Phase 1, it uses a
descriptor d to collect the “expected” and “new” values for each
target word, persist the descriptor, and atomically installs (using
single-word CAS) a pointer to the descriptor on each word. If Phase
1 succeeded, Phase 2 will install the new values; otherwise the
operation is aborted with all changes rolled back.

BzTree uses PMwCAS for insert, delete, search, scan, and struc-
tural modification operations which may need to change multiple
PM words. Because of the use of PMwCAS, while being lock-free,
BzTree implementation is easier to understand than typical lock-free
code. PMwCAS ensures that any multi-word changes are done
atomically and recovery is transparent to BzTree, removing the need
for customized logic for logging and recovery.

As Figure 4 shows, BzTree stores both inner and leaf nodes in
PM. Inner nodes are immutable (copy-on-write) except for updates
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Figure 4: Overview of the architecture of the BzTree.
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Figure 5: FPTree’s hybrid PM-DRAM design.

to existing child pointers; leaf nodes can accommodate inserts and
updates. Inserting to a parent node causes it to be replaced with a
new one that contains the new key. Then, an update in the grand-
parent node is conducted to point to the new parent node. Splits
can propagate up to the root and grow the tree. Records in inner
nodes are always sorted, while records in leaf nodes are not. Initially,
records are inserted to the free space serially. Periodically leaf nodes
get consolidated (sorted) and subsequent inserts may continue to
insert into the free space serially. After searching the sorted area
(using binary search), the tree must linearly search the unsorted area
to get correct result. The design rationale is that inner nodes are not
updated as often as leaf nodes and should be search-optimized; leaf
nodes, however, need to be write-optimized.

3.4 Fingerprinting Persistent Tree (FPTree)
Unlike the other trees being evaluated, FPTree [32] uses both

DRAM and PM to achieve near-DRAM performance. As Figure 5
shows, it stores inner nodes in DRAM, and leaf nodes in PM. This
way, FPTree accelerates lookup performance while maintaining
persistence of primary data (leaf nodes), as only leaf accesses are
more expensive during a tree traversal compared to a fully transient
counterpart. The rationale behind is that while losing leaf nodes
leads to an irreversible loss of data, inner nodes can always be rebuilt
from leaf nodes. Since the inner nodes must be rebuilt upon recovery,
FPTree trades recovery time for higher runtime performance.

FPTree uses fingerprints to accelerate search. They are one-byte
hashes of in-leaf keys, placed contiguously in the first cacheline-
sized piece of the leaf node. FPTree also uses unsorted leaf nodes
with in-leaf bitmaps [9], such that a search iterates linearly over all
valid keys in a leaf. A search will scan the fingerprints first, limiting
the number of in-leaf key probe to one on average, which signifi-
cantly improves performance. FPTree applies different concurrency
control methods for the tree’s transient and persistent parts. It uses
hardware transactional memory (HTM) and fine-grained locks for
inner and leaf nodes, respectively. Such selective concurrency de-
sign solves the apparent incompatibility of HTM and persistence
primitives required by PM such as cacheline flushing instructions
which always cause HTM transactions to abort directly.
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Table 1: Comparison of key design choices of the tree structures being evaluated.

Architecture Node structure Concurrency

wBTree PM-only Unsorted Single-threaded
NV-Tree PM-only (optionally hybrid PM-DRAM) Unsorted leaf nodes; inconsistent inner nodes Locking
BzTree PM-only Partially unsorted leaf; sorted inner nodes Lock-free (PMwCAS [42])
FPTree DRAM (inner nodes) + PM (leaf nodes) Unsorted leaf nodes Selective (HTM + locking)

3.5 Discussion
We summarize the design trade-offs in Table 1. The design space

includes (1) deciding the roles of PM and DRAM, (2) achieving safe
persistence while reducing consistency cost and PM accesses, and
(3) handling concurrency. The techniques are mostly orthogonal and
can be used as building blocks to design novel PM data structures.
Here we compare the four trees in terms of each design decision.

Architecture. FPTree and NV-Tree can leverage both DRAM
and PM to store inner and leaf nodes in DRAM and PM, respectively.
This removes the need to access PM until the end of the traversal at
the leaf level. This approach can achieve near DRAM performance,
but trades off recovery time as inner nodes must be rebuilt upon
recovery. The other two indexes, wBTree and BzTree, store the
entire tree in PM, thus may suffer longer lookup time.

Node structure. All the evaluated trees use unsorted nodes to
reduce consistency costs and accesses to PM, at the expense of
potentially more expensive lookup. FPTree solves this problem with
bitmaps and fingerprints; NV-Tree and BzTree have to scan unsorted
nodes linearly. NV-Tree allows inner nodes to be inconsistent to
reduce cacheline flushes. BzTree periodically consolidates leaf
nodes in sorted order; inner nodes are always kept sorted using
copy-on-write (CoW) to accelerate traversal using binary search.

Concurrency. Except wBTree which is single-threaded, the other
trees employ different approaches. NV-Tree uses locking. FPTree
uses locking for leaf nodes and HTM for inner nodes (selective
concurrency). BzTree is lock-free using PMwCAS. It is important
to note that HTM is not compatible with PM as a cacheline flush
will directly abort the transaction, as shown by the design of FPTree.

4. EVALUATION FRAMEWORK
We designed PiBench to allow unified and fair comparison of

different indexes, and easy adoption by future work. As Figure 6
shows, the index being tested must be compiled into a shared library
and linked to PiBench following a defined API, or through a wrapper
that translates requests from PiBench’s API. The API consists of
a pure abstract class that encapsulates common operations (insert,
lookup, delete, scan, update) and a create index function for
instantiating the benchmarked data structure. To use PiBench, the
user only needs to derive a class that implements the API. PiBench
then issues requests against the instantiated index object.

PiBench executes a load phase and a run phase, like YCSB [11].
It provides various options for customization, such as key/value
sizes, the number of records to be loaded, the numbers and types of
operations to be executed, and ratio of each type of operation. Keys
and values are generated randomly following a chosen distribution
and seed to allow reproducible executions. PiBench supports three
random distributions as defined by Gray et al. [16]: uniform, self
similar, and zipfian. Since the random distributions generate in-
tegers in a contiguous range, with the skewed distributions favoring
smaller values, we apply a multiplicative hashing function [24] to
each generated integer to scatter the keys across the complete inte-
ger domain, thus avoiding frequently accessed keys to be clustered
together. A prefix can be prepended to keys to analyze the impact of
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Figure 6: Overview of PiBench architecture.

key compression.PiBench uses multiple threads to issue requests and
relies on the index under evaluation to handle concurrent accesses.

PiBench dedicates a thread to periodically collect statistics. This
allows a better understanding of performance over time by enabling
standard deviation to be easily calculated in addition to the average
throughput. Finally, we use the Processor Counter Monitor (PCM)
library [21] and ipmwatch3 to collect hardware counter metrics
(such as memory accesses and cache misses). PCM measures mem-
ory traffic between CPU caches and both DRAM and DCPMMs at
64-byte granularity. The DCPMMs rely on a buffer layer to hold hot
data [3, 46]. We use ipmwatch to measure the traffic between the
buffer and the media itself, which happens at 256-byte granularity.

5. EXPERIMENTAL EVALUATION
This section presents our evaluation results. We first introduce the

experimental setup and our implementation of the index structures.
Then we present and discuss the results in detail.

5.1 Environment and Setup
Hardware. We run experiments on a Linux (5.3) server equipped

with an Intel Xeon Platinum 8260L CPU, 1.5 TB of Optane DC PM
(6× 256GB DCPMMs) configured in the App Direct mode, and
96 GB of DRAM (6×16GB DIMMs). The CPU has 24 cores (48
hyperthreads), 36 MB of L3 cache, and is clocked at 2.40 GHz.

Software. To reduce the impact of different implementations, we
implemented all indexes using the Persistent Memory Development
Kit (PMDK) 1.7 [19]. PMDK provides primitives for managing PM,
including a PM allocator. wBTree, FPTree and NV-Tree interact
directly with PMDK; BzTree interacts only with PMwCAS [42],
which is extended to use PMDK.4 For DRAM allocations, we use
jemalloc [15]. Threads are pinned to cores to avoid migration.
PiBench collects the number of operations completed every 100 ms,
which allows us to observe throughput over time.

We tested with different node sizes and fixed the sizes with the
best performance for each tree. For FPTree and NV-Tree we use
128-record inner nodes and 64-record leaf nodes. For wBTree each
inner node has 32 records and each leaf node has 64 records. We set
BzTree’s node size to 1 KB, same as the original paper’s setup [6].

3 Available as part of Intel VTune Amplifier 2019 since Update 5.
4 Available at https://github.com/Microsoft/pmwcas.
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Figure 7: Single-thread throughput under uniform distribution. Placing inner nodes
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5.2 Index Implementations
We highlight important details for implementing the evaluated

trees, especially changes we made either to make them compatible
with PMDK’s programming model such that they can perform on
real PM, or due to necessary details not covered in original papers.5

FPTree. The original paper [32] proposed two versions: a single-
thread version and a concurrent version. We focus on the concurrent
version since we are most interested in multi-thread experiments.
However, we note that optimizations in the single-thread version,
such as allocating leaf nodes in groups, could be applied to all trees.

wBTree. wBTree originally uses undo-redo logs for failure atom-
icity [10]. We improved it with more efficient micro-logs used by
FPTree [32] and implemented it using the same code template as
FPTree’s to reduce the impact of different implementations. We also
changed wBTree to use PMDK persistent pointers.

NV-Tree. The original paper [47] did not cover concurrency, so
we implement lock coupling. We changed NV-Tree to use PMDK
persistent pointers and align records in leaf nodes to 8-byte bound-
aries; for 8-byte keys and values, the size of a record is 24 bytes
with the validity flag. This is 7 bytes more than necessary, but gives
better performance. Since the consistency of inner nodes is not
enforced, we place them on DRAM to improve performance.

BzTree. Splits in BzTree may propagate to upper levels, replacing
all the nodes along the path (CoW inner nodes). We prepare all the
nodes on the split path and issue a final PMwCAS at the highest level
to atomically swap in the new nodes. For this to work, we increased
the size of PMwCAS descriptor size from 4 to 12 to accommodate
enough memory word changes and new allocations.6

5.3 Workloads
We evaluate the indexes with individual operations (lookup, insert,

update, delete, scan) and mixed workloads that combine reads and
writes. All experiments are run under a uniform key distribution and
a skewed (self similar) key distribution with a factor of 0.2 (i.e.,

5 Two authors of this paper were respectively the lead author of
FPTree and PMwCAS. All trees were implemented in our best
effort to get the best performance. We also improved PMwCAS
for BzTree; the changes were accepted by Microsoft.

6 These strategies were not presented in the original paper [6] but
were confirmed by one of the original authors.

80% accesses focus on 20% of the keys) [16]. We then extend our
experiment to cover different skew factors. Scans are performed by
selecting a random initial key according to the distribution and then
reading the following 100 records in ascending sorted order. We
detail the mixed workload when discussing the specific tests later.

Unless otherwise specified, each run starts with a new tree pre-
filled with 100 million records with 8-byte keys and 8-byte values.
We then measure and report tree performance during the run phase,
in which 100 million operations are executed by a specified number
of threads. The numbers reported here refer only to the run phase,
excluding the load phase. We use the list of operations completed in
every time window (100 ms) of a single run to calculate the average
throughput (depicted as the bars and points) as well as the standard
deviation (depicted as the error bars) in Figures 7, 8, 11, 12, 14. We
also report average and tail latency numbers collected for single-
thread and multi-thread runs.

5.4 Single-threaded Performance
We first examine the performance of each tree under a single

thread when running individual operations (i.e., 100% lookup, in-
sert, update, delete or scan). We show throughput (in millions of
operations per second) under the uniform distribution and skewed
distribution with varying skew factors. We begin our discussions
with each individual request type under the uniform distribution.

Lookup. As shown in Figures 7(a) and 8(a), trees that place inner
nodes in DRAM (FPTree and NV-Tree) achieve higher throughput
than trees that are fully PM based (BzTree and wBTree). FPTree’s
fingerprints further reduce cacheline accesses in leaf nodes to two
in most cases: one for the fingerprints and bitmap, the other for the
potentially matched record. This contrasts with NV-Tree which uses
append-only leaves and requires scanning on average half of the leaf
entries to determine if a record exists and is valid. BzTree employs a
hybrid of sorted and unsorted leaf node format, so it needs to search
the unsorted area linearly if the key is not found in the sorted area.

The memory access plots on Figures 9(a) and 10(a) confirm this
behavior by showing more PM reads and more L3 cache misses on
NV-Tree than on FPTree. For PM we differentiate between real me-
dia accesses (Device Reads/Writes, measured with ipmwatch),
and accesses issued by the memory controller (PM Reads/Writes,
measured with PCM). Note that the bars are overlaid (not stacked).
In the best case, the application fully exploits the DCPMM buffer in
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Table 2: Number of cacheline flushes per operation.

Tree/Operation Insert Update Delete

FPTree 3 3 1
NV-Tree 2 2 2
wbTree 4 3 1
BzTree 15 10 7

which case Device Reads/Writes is the same as PM Reads/Writes.
In the worst case, Device Reads/Writes is four times higher,
since only 64 bytes (one cacheline) is used from the 256-byte PM
block that is fetched from the media into the buffer.

In Figure 10(a), BzTree incurs very few cache misses during
traversal. We attribute the reason to its small node structure and
search method: it uses small, 1KB pages and for 8-byte keys, our
implementation uses linear search, which yields much better per-
formance and cache behavior than binary search. wBTree performs
binary search in each node using the slot arrays. Although this
results in less cache misses than NV-Tree, all the cache misses pay
the higher latency price of PM, resulting in lower throughput.

NV-Tree and FPTree keep inner nodes in DRAM, but NV-Tree
presents more DRAM reads than FPTree (Figure 9(a)), because it
keeps parent-to-leaf nodes in contiguous memory without a guar-
anteed fill ratio. The tree can be higher than necessary, requiring
more accesses to inner nodes in DRAM. NV-Tree also incurs PM
writes for reads, as it needs to acquire locks in leaf nodes stored in
PM. wBTree and BzTree are purely in PM, but still present DRAM
accesses. This is expected as PCM also collects DRAM accesses for
managing auxiliary data while executing the operation. Finally, we
note that lookup performance strongly impacts the performance of
other operations as they perform a lookup prior to additional work.

Insert. All trees under evaluation enforce the consistency and
durability of single operations using out-of-place writes (possibly
within a node) and a validity bit being atomically flipped to “commit”
the operation (for BzTree, this is delegated to PMwCAS). Therefore,
insert, update and delete operations must always force the changes
to PM using CLWB, making it hard for CPU caches to hide PM’s
high write latency. As discussed in Section 2, PM’s write latency
cannot be measured precisely and varies based on how far data
is propagated (i.e., to the memory controller or DCPMM). This
explains the lower throughput and the increased standard deviation
of these operations when compared with their lookup counterparts.

Figure 7(b) shows the insert throughput. We observe insert per-
formance is directly affected by (1) the amount of flushes per insert,
(2) the needed maintenance work per insert, and (3) the overhead of
node splits. Table 2 summarizes the amount of flushes needed by
each operation. For all trees, each insert entails at least one flush
for the record being inserted. FPTree and wBTree keep an 8-byte
bitmap per node to indicate which records are valid and enable the
slot of invalid records to be reused. FPTree also requires flushing the
fingerprints, leading to a total of three flushes per insert. In addition
to the bitmap, wBTree keeps a slotted array per node to keep the
order of records and a single validity bit to indicate the validity of
this slotted array. Therefore, three additional flushes are required
by the wBTree (slotted array, validity bit, validity bitmap), to a total
of four flushes per insert. NV-Tree requires one additional flush to
update the size of the node, to a total of two flushes. BzTree uses
two double-word PMwCAS operations per insert to reserve space in
the leaf node and make the new insertion visible to other threads, re-
spectively. Each PMwCAS incurs at least three flushes [42]. In total,

BzTree incurs 15 flushes per insert. If the current PMwCAS con-
flicts with another on-going PMwCAS, it might incur more flushes
as it helps finish the other operation first. We attribute BzTree’s low
insert performance mainly to the high number of flushes.

In BzTree, FPTree and wBTree a node split might propagate all
the way up to the root level. However, for NV-Tree the inner nodes
must always be completely rebuilt whenever a split happens in the
parent-to-leaf level. When splitting a leaf node, two new nodes are
allocated to split the records of the node that became full, causing
the higher amount of PM writes seen in Figure 9(b). This operation
becomes expensive in comparison to other trees, which has also an
impact in the throughput standard deviation seen in Figure 7(b).

Update. Compared to inserts, an update only operates on an
existing key. As Figure 7(c) shows, overall, the standard deviation
for updates is lower than that of insert operations, due to the absence
of allocations and splits. NV-Tree performs updates slower than
inserts, as it handles updates as a deletion followed by an insertion.
This corresponds to the higher amount of PM writes in Figure 9(c).
wBTree updates are faster than inserts since each update requires
one fewer flush (3 vs. 4 in Table 2), as record order in the node
does not change (the key is not updated). Thus, the slotted array can
be updated atomically without flushing its validity bit, as only the
offset of the updated record changes, while the others remain the
same. This results in lower PM writes in Figure 9. BzTree’s update
is faster than its insert operation, due to the absence of allocation and
splits. But it still needs many flushes, leading to lower throughput.

Delete. As Figure 7(d) shows, delete throughputs follow a similar
trend to those of lookups in Figure 7(a). The reason is that deletion
for FPTree and wBTree is basically a lookup followed by flushing
the validity bitmap to invalidate the record deleted. There is no
deallocation or merging of nodes implemented, as data structures
are more likely to grow rather than shrink. This is also the approach
taken by implementations of C++ STL. In contrast to FPTree and
wBTree, NV-Tree requires two flushes per deletion, one for a tomb-
stone and one for the node size. Therefore, it has about double the
amount of PM writes, as seen in Figure 9(d). For BzTree the process
is similar, but it uses a PMwCAS to mark records invisible which
requires multiple flushes, leading to lower performance.

Scan. Range scans start at a random initial key and read the
following 100 records. wBTree is the only one that directly returns
records in sorted order using its indirection slotted arrays. All the
other trees must perform an additional sorting and filtering step
to return the requested records. According to the amount of PM
reads in Figure 9(e), reading less from PM (e.g., FPTree) does not
compensate the overhead of sorting and filtering.

Skewed Accesses. Figure 8 shows the behavior for the same
set of experiments but with a skewed key distribution with a skew
factor of 0.2 where 80% of the accesses are concentrated on 20% of
the keys. Note that PiBench guarantees inserts and deletes always
succeed by only generating requests to non-existing and existing
keys, respectively. As a result, skew factor does not influence the
generated keys. Since a skewed workload accesses a small subset
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Figure 11: Throughput under uniform distribution. FPTree and NV-Tree leverage DRAM and perform generally better than pure PM trees
(BzTree and wBTree). All the trees maintain their throughput with hyperthreading (beyond 23 threads). wBTree’s single-thread throughput is
shown for reference as it does not support concurrency.

of keys multiple times, only the first insert/delete for a given key
would succeed and all the subsequent insert/delete operations for
the same key would simply be a lookup. Therefore we omit these
operations under skewed workloads. As Figure 8 shows, the skewed
distribution does enable a better use of CPU caches, which translates
directly to higher throughput, and less DRAM and PM reads, while
DRAM and PM writes remain very similar. We further vary the
skewness of the workload from 0.1 (10% of keys accessed by 90%
of requests) to 0.5 in Figures 13(a) and 13(b). As contention level
decreases from skew factor 0.1 to 0.5, single-thread throughput
drops as a result of more accesses to PM and more cache misses.

5.5 Multi-threaded Performance
Now we evaluate the multi-threaded performance of FPTree, NV-

Tree, and BzTree. We include wBTree’s single-thread performance
for reference as it does not support concurrency. In all experiments
we first load the trees with 100 million key-values pairs (8-byte
keys, 8-byte values), and then measure the run phase consisting of
executing 100 million operations split between the worker threads.
Since PiBench dedicates one thread to collecting statistics, we scale
the number of worker threads until 23, and test with 32 and 47
threads to show the behavior of the trees under hyperthreading.

Individual operations. Figure 11 depicts the throughput under
uniform distribution. It shows a similar trend to the single-threaded
experiments. All the evaluated trees scale as expected for lookup,
insert, update, delete and scan operations using 1–23 threads (no
hyperthreading). With hyperthreading (shaded areas in Figure 11),
all trees maintain or slightly improve compared to using 23 threads.
In particular, FPTree is able to leverage hyperthreading significantly
better than other trees in lookup operation.

Figure 12 shows the throughput of individual operations under the
skewed distribution (skew factor 0.2, we discuss results under other
skew factors later). As mentioned previously, we omit insert and
delete operations for skewed workloads. The results here showed
similar pattern to the ones with the uniform workload: all trees ex-
hibit higher throughput and largely scale under all operations, except
BzTree and FPTree’s update operation, which respectively scales
up to 8 and 16 threads and performs worse as we add more threads.
There are two mains reasons for BzTree’s behavior. First, because of
the use of PMwCAS, a memory word may store a pointer or actual
value. Each PM read is instrumented to check the type of the word
value, adding additional overhead. Second (and more importantly),
the update operation employs an optimistic approach that retries a
PMwCAS until success; it is well known that optimistic approaches
are vulnerable to high contention. FPTree does not scale beyond 16
threads for a similar reason: it uses HTM (Intel TSX which is an
optimistic approach) for traversing the inner nodes and acquiring
leaf-level locks. A skewed workload will incur more conflicts at the
leaf level, hence more HTM aborts and lower throughput.

For lookup operations, as we vary the skew factor from 0.1 to
0.5 in Figure 13(c), we see the similar overall trend of dropping
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Figure 12: Throughput under the skewed distribution (skew factor
0.2). FPTree and BzTree do not scale for updates due to their use of
optimistic concurrency control.
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Figure 13: Throughput under varying skew factors with one (a–b)
and 23 (c–d) threads. Higher skew factor means lower contention.

throughput as the single-thread case for FPTree and BzTree, as lower
contention (e.g., skew factor 0.5) leads to accesses to more keys
and therefore more cache misses and PM accesses. NV-Tree does
not show obvious change when we ease contention. We attribute
this behavior to the fact that it needs to acquire node locks even
for read-only workloads, causing extra inter-core communications
and traffic on the memory bus which is often unscalable for read-
only workloads on multicores [36, 41]. Update operations exhibit a
different trend in Figure 13(d), as we ease the contention throughput
increases, although lower contention leads to larger PM footprint
in general, as Figure 13(b) shows. These results highlight two
factors that affect performance under skewed workloads: (1) the
amount of PM accesses and (2) contention level. Both factors impact
performance, and as we add more concurrent threads, contention
takes over to become the major factor, contrasting with the single-
thread case where PM footprint is the dominating factor.

Mixed workloads. Now we examine the trees using three more
realistic, mixed workloads under uniform and skewed distributions:

• Read-heavy: 90% lookups and 10% updates;
• Balanced: 50% lookups and 50% updates;
• Write-heavy: 10% lookups and 90% updates.

As shown by Figure 14(a–c), FPTree, NV-Tree and BzTree all
scale under the uniform distribution, with FPTree performing more
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Figure 14: Throughput under a varying number of threads and mixed workloads with uniform and skewed (factor 0.2) distributions.
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Figure 15: Latency at different percentiles for each tree and operation under uniform distribution with a single thread.
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Figure 16: Latency at different percentiles for each tree and operation under uniform distribution with 23 threads.

than 2× better than BzTree, due to its various optimizations (leverag-
ing DRAM, fingerprinting). Under the skewed distribution, however,
none of the trees are perfect: they either do not scale across the en-
tire horizontal axis or do not obtain high performance in all the
workloads. BzTree exhibits more performance drop as we add the
percentage of updates to the workload, shown by Figure 14(d–f).
Our profiling results show that under the skewed workload, most
CPU cycles were spent on retrying the PMwCAS operation needed
in each update operation which fails more often as we add more
threads and more update percentage in the workload. FPTree per-
forms well under the read-heavy and balanced workloads, but fails
to scale for the write-heavy workload, due to high HTM transaction
abort rate under high contention. Although NV-Tree “scales” in all
cases, it did not achieve the best performance, with up to 3× slower
than the best performer, FPTree, which again does not always scale
in all workloads.

5.6 Tail Latency
Tail latency is another important metric that impacts end-to-end

performance. Measuring tail latency is not as straightforward as
measuring throughput as it adds significant overhead to the tested op-
erations to accurately store the latency of each operation. Moreover,
tail latency should be considered in the context of the throughput the
index achieves, since many designs trade tail latency for throughput.
As an example, tree A might have 2× higher tail latencies than tree B
but achieve 10× higher throughput. Therefore, we take a sampling
approach that samples 10% of the requests uniform randomly; we
have experimented with different sampling rates up to 100%, and
found 10% to be representative of the behavior while introducing
less overhead. We run experiments under uniform distribution to
rule out caching effects and achieve more stable access patterns.
We also experimented with more skewed distributions, but did not
obtain more additional insights and therefore omit them here. We
consider two scenarios: single-thread and 23 threads. The former al-

lows a better evaluation of tail latency in isolation, since at this point
the throughput of all trees is the most similar. The latter shows the
latency behavior under concurrent accesses without hyper-threading,
which would introduce additional disturbance.

Figure 15 shows single-thread tail latencies under uniform distri-
bution. For lookups, the minimum latencies for FPTree, NV-Tree
and wBTree are all below 0.3µs, while the number for BzTree is
0.46µs. As we analyze different latencies percentiles, all trees’
latency increases significantly at 99.999 percentile. With modifica-
tions to the tree structure, in insert, update and delete operations we
observe BzTree and NV-Tree having higher latency than the other
two trees. As Figure 15(b) shows, BzTree exhibits over ∼50µs
latency starting from 99 percentile, due to its CoW policy for inner
nodes. NV-Tree needs to rebuild inner nodes when split happens
in its parent-to-leaf level. However, its use of DRAM for inner
nodes helped reduce latency, whereas BzTree is pure PM, putting
much pressure on the PM allocator to conduct copy-on-write during
splits. Update and delete operations exhibit similar trends in Fig-
ures 15(c) and 15(d), with NV-Tree showing the highest tail latency
starting from 99 percentile. NV-Tree’s behavior for update and
delete operations follows its insert operation’s behavior, because it
handles updates as inserts followed by deletions, as we mentioned
in Section 5.4. Scan latency in Figure 15(e) in general shows higher
latency than lookup because scan operations themselves are more
expensive than point lookups.

Figure 16 repeats the experiment with 23 threads. As wBTree
does not support concurrency, we show its single-thread latency
numbers for reference. All the other trees exhibit similar but more
steep trend compared to the single threaded cases. NV-Tree’s latency
significantly increased at 99.9 percentile for lookup, since with
more concurrent threads its locking mechanism starts to show more
overhead. BzTree also had earlier increases at 99 percentile as using
more threads presents more physical level contention at the device
and memory controller levels [23].
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Figure 17: Throughput under a single-thread (top) and multiple threads (bottom) with 20-byte keys and 100-byte values.

5.7 Long Keys and Values
We run experiments to verify the impact of longer keys and values

which are often the case in real-world scenarios. We show the results
with 20-byte keys and 100-byte values. The original experiments of
BzTree assumed 8-byte values/pointers and storing longer payloads
inline was only discussed in the paper [6]. A simple solution would
be to delegate the space management and allocate values using
PMDK and use pointers to these values. However, in such case,
PMDK dominates the performance and hides the behavior of BzTree.
Since other trees support native space management, we omit BzTree
for fairness. Figure 17 shows the throughput for single thread (top)
and multi-thread (bottom) scenarios. As expected, most operations
run slower than their counterparts with 8-byte keys and values.
The surprise is that FPTree does not scale for insert/update/delete.
Through profiling, we found that larger records prevent the use of
HTM by triggering a lot of cache evictions and thus transaction
aborts. The fallback behavior is to acquire a exclusive global mutex
in these cases, which prevents it from properly scaling.

5.8 Impact of PM Programming Model
PM indexes face extra challenges in handling persistence, recov-

ery and concurrency, which can be resolved using a sound program-
ming model enforced by some PM programming library (PMDK
in our work). Specifically, this boils down to the use of persistent
pointers, alignment and a PM-aware allocator, which as we show
next, incur space amplification and performance overheads.

Space amplification. Similar to in-DRAM OLTP indexes [48],
PM indexes may occupy a significant amount of memory (PM and/or
DRAM), due to various design decisions to optimize performance
(e.g., alignment) and conform to the required PM programming
paradigm, in particular the use of 16-byte persistent pointers [19].
We quantify this effect in Figure 18 by plotting the amount of mem-
ory consumed by each tree. We insert 100 million records of 8-byte
keys and 8-byte values; this corresponds to ∼1.5 GB of raw data.
Any consumption beyond this amount would be the metadata, extra
alignment or other allocations (e.g., during a split) needed by the tree.
We use statistics from jemalloc for DRAM (stats.allocated),
and the pmempool tool for PM. The PM consumption is precise, and
DRAM consumption is an upper bound of the real consumption, as
jemalloc also records other allocations made by PiBench itself.

As shown by Figure 18, all the trees in fact use more than 50%
of the space needed for raw data; NV-Tree/BzTree use respectively
∼2×/10× the raw data size. This is partially due to the relatively
small key/value sizes used (8-byte) and the alignment requirement
(typically 8-byte) in all the trees. Although both FPTree and NV-
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Tree place inner nodes in DRAM, NV-Tree requires more DRAM
because inner nodes are rebuilt sparsely to amortize rebuild cost.
This means that it will have a different PM–DRAM ratio depending
on the fill ratio of its inner nodes. BzTree and wBTree consume
negligible amount of DRAM as they are pure PM-based. Among
all the trees, BzTree’s memory consumption is cumulative (of all
nodes ever created) and the highest, due to its use of CoW for inner
nodes. We note, however, that this is the worst case for BzTree,
and in realistic workloads with fewer inserts, inner nodes will not
change as often, which should result in lower PM consumption.

PM allocation overhead. Compared to their DRAM counter-
parts, persistent allocators need to issue cacheline flush instructions,
handle recovery and run on slower PM. To understand their behav-
ior, we run an experiment using jemalloc on DRAM and PMDK
allocator (which is based on jemalloc) on DRAM and PM. Each
thread issues 1024 allocation requests, each of which allocates 1KB
of memory from the allocator. Figure 19 shows the time needed
to finish the test. As we increase the number of threads, no alloca-
tor scales, and due to the extra complexity associated with PMDK
allocator (e.g., the use of cacheline flush instructions and fences),
PMDK allocator is 2.9–4.4× slower than jemalloc on DRAM. On
Optane DCPMM, the PMDK allocator can be up to ∼8× slower
than itself running on DRAM. These results signify the high cost of
PM allocators and indicate that PM data structures should carefully
handle their interactions with PM allocators.

In tree structures, the insert operation interacts with allocators
the most, and we observed non-trivial allocation overhead in all the
evaluated trees. In particular, we found that BzTree spends more
than ∼41% of CPU cycles on PM allocation in insert operations.
Compared to other trees, its use of CoW adds more burden on the
PM allocator because an inner node cannot be updated in-place
when a new key is added to it. We observed similar trends in other
trees; we omit the details here due to space limitation.
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5.9 Recovery
An important aspect of persistent data structures is their ability

to recover consistently and (near) instantly after a failure or clean
shutdown. We test recovery time by loading in each tree a fixed
number of records and then kill the process. Table 3 illustrates the
time in seconds for each tree to recover from a crash after loading
50 million and 100 million records. wBTree, FPTree and NV-Tree
enforce consistency of each single operation, so recovery consists
basically of rebuilding transient data. Both FPTree and NV-Tree
place inner nodes on DRAM and thus these must be rebuilt upon
recovery. As expected, the time for rebuilding inner nodes after
inserting 100 million records is about 2× the time with 50 million
records (recovery time scales linearly as all leaf nodes must be read).

wBTree and BzTree reside fully in PM. Therefore, upon recovery
they simply need to open an existing PM pool and retrieve the root
object. From the root object all the remaining objects allocated in
the pool can be discovered and reached. BzTree relies on PMwCAS
to always transform the tree from one consistent state to another,
without needing a customized recovery procedure. After opening the
existing pool, BzTree delegates its recovery process to PMwCAS,
which completes its own recovery phase by rolling forward or back-
ward PMwCAS operations that were in-progress when the crash
happened. This translates into scanning the PMwCAS descriptor
pool [42] which is fixed-sized (100k in our experiments). Moreover,
the amount of in-progress PMwCAS operations at any point in time
is bounded by the number of concurrent threads. Therefore, we see
a very small difference in recovery time under different initial sizes.

These result show that only PM-only trees are able to recovery
near instantly (sub-second recovery time), at the price of lower
runtime performance; placing more components in DRAM may
improve runtime performance at the cost of longer recovery time.
Nevertheless, we note that the recovery time of hybrid trees could
be improved, in case of clean shutdowns, by spilling inner nodes to
PM, then copying them back to DRAM upon recovery.

5.10 Impact of PM Bandwidth
As mentioned in Section 5.1, our test machine is fully populated

with six DCPMMs, which gives us enough bandwidth for all the
trees to conduct multi-threaded experiments. We also observe that,
under multiple threads, operating these trees consume a significant
portion of the available PM bandwidth. We conducted additional
experiments using only two DCPMMs (i.e., utilizing two out of the
six channels). Figure 20 shows the throughput of each individual op-
eration obtained under 23 threads and the uniform distribution. The
hatched bars represent the throughput achieved with two channels,
while solid bars represent the throughput achieved with six channels.
Note that the bars are overlaid (not stacked). With two channels, the
trees were only able to obtain ∼30–70% of the performance that
could be obtained with six DCPMMs that utilize all the available
memory channels. In fact, we found that with two channels, all trees
stop scaling at 16 threads, hitting the PM bandwidth limit, whereas

Table 3: Recovery time after 50M and 100M inserts.

Initial Size FPTree NV-Tree wBTree BzTree

50M 1.77s 4.15s 0.036s 0.153s
100M 3.56s 8.45s 0.037s 0.186s

with six channels bandwidth is no longer the key factor affecting
scalability, as discussed in Section 5.5. This result underlines the
importance of PM bandwidth for PM data structures: DCPMMs
usually come with large capacity and system builder may be tempted
to use fewer DCPMMs for the same capacity to simplify system
design and leave more slots for DRAM which does not scale as well
as PM. This will put more pressure on data structures in PM, which
must be designed carefully to use the limited bandwidth in case the
system is not fully populated, in addition to the fact that PM already
offers lower bandwidth and higher latency at the device level.

6. DISCUSSION
Now we summarize the observations and distill insights from our

evaluation. We hope they can serve as guidelines in devising indexes
on PM. Most of them apply beyond indexes to other data structures.
Motivated by our findings, we give a wish list of hardware features
that could ease the making of PM-based indexes and data structures.

6.1 Observations, Insights and Caveats
1. The evaluated indexes run factors slower on real PM than
originally reported. The first reason is the lack of a sound PM
programming model. Most evaluated trees were prototyped using
virtual pointers and a transient memory allocator. FPTree was origi-
nally prototyped following a programming model similar to that of
PMDK, but using a closed-source PM allocator. By implementing
these trees using PMDK’s programming model, we discovered that
some advocated design decisions, such as copy-on-write, are not
ideal (see below). The other reason is imprecise PM emulation:
although the original papers had to use emulation based on DRAM
before real PM hardware became available, a major aspect that they
failed to capture was the scarcity of PM bandwidth.
2. PM Bandwidth is a scarce resource. In the best case of a fully
populated system, PM’s bandwidth for sequential read, sequential
write and random write are ∼3×, ∼11× and ∼14× lower than that
of DRAM, respectively. These factors are even larger when fewer
DCPMMs are used. Bandwidth was never an issue for DRAM trees,
but as we have highlighted, it might well become one with PM.
3. PM allocations are very expensive. PM allocations are orders
of magnitude slower than DRAM allocations as Section 5.8 shows,
making them a noticeable performance differentiator that was not
accounted for. This holds not only for the PMDK allocator, but
for all proposed PM allocators, as they all have to persist metadata
to ensure proper transfer of ownership [31]. To reduce allocation
overheads, in-place updates and bulk allocation should be favored.
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4. Leveraging DRAM is desirable for high performance but
may trade off recovery time and cost of ownership. Given PM’s
limited bandwidth, this is especially important for concurrent data
structures [23, 46], but recovery time can become longer if much
needs to be rebuilt on DRAM upon recovery. Cost of ownership
will also become higher as DRAM is more expensive.
5. Fingerprinting is effective in speeding up point queries. Our
results showed that fingerprinting significantly reduces PM accesses
for point operations (lookup, insert, update, and delete), thereby
achieving higher performance and levels of concurrency.
6. Indirection slot arrays significantly speed up range queries.
Our results clearly show that indirection slot arrays is the go-to
technique when range scans are required. It implicitly stores the
order of the records such that, despite the necessary unsorted leaf
structure to achieve fast failure atomicity, range scans require neither
scanning the whole leaf nor reconstructing the order of the records.
7. Copy-on-Write is a bad fit for PM. The reasons are (1) CoW
amplifies the number of required expensive PM allocations as shown
in Section 5.8, and (2) it consumes additional PM bandwidth, a
limited resource as demonstrated in this work.
8. Applicability to NVDIMM. Although we focused on Optane
DCPMM, techniques for reducing writes and flushes, e.g., unsorted
nodes and fingerprinting, also apply to NVDIMM. On NVDIMM,
PM allocations will also be expensive due to the need of flushes and
fences, making CoW a bad fit. Bandwidth will be less of a problem,
unless the system does not leverage enough memory channels.

6.2 Persistent Memory Wish List
PM is still at an early stage and yet to become mainstream – we

believe it will. This work enabled us to identify two areas where
improvements of the current PM could have a major impact.

Persistent CPU caches. Modern CPUs rely on sophisticated,
fast volatile caches for good performance. This introduces the main
challenge of carefully flushing cachelines to PM while trying to
reduce the amount of flushes and PM accesses. We consider that
enabling CPU caches to become persistent (e.g., by protecting them
against power failures with a capacitor) is the natural next step to
simplify software development and increase performance [22, 40].
Then, applications can completely relinquish the use of instructions
such as CLFLUSHOPT and CLWB. However, guaranteeing the ordering
of writes using SFENCE may still be required.

DRAM-like PM devices. A second advancement would be ap-
proaching the performance characteristics of DRAM. NVDIMMs
(DRAM backed by flash and supercapacitor [5, 39]) already offer
DRAM performance, but its high cost and DRAM’s scalability
issues make it prohibitive in large scale. Devices based on new
materials are much cheaper but still lag behind DRAM in terms
of performance. This gap might be closed by reducing the cost of
flash-based PM or enhancing the cheaper alternatives (e.g., via inno-
vations in materials or more sophisticated caching mechanisms).

Figure 21 shows the potential impact of these advancements. We
emulate persistent CPU caches (+Persistent Cache) by remov-
ing all cacheline flushes from the code path, and emulate fast PM
(+DRAM-like) by placing the PM pool in a DRAM-backed file sys-
tem (tmpfs). While persistent CPU caches improve throughput
by 1.32/1.27/1.17/1.94× for FPTree/NV-Tree/wBTree/BzTree re-
spectively, the main benefit is probably in terms of simplifying the
programming model which will also lead to fewer bugs and savings
in development and code maintenance costs. The biggest absolute
gains are achieved by increasing the raw device performance, which
further improves the throughput by a factor of 2.05/1.72/2.17/2.00
for FPTree/NV-Tree/wBTree/BzTree respectively. This shows that
indexes are highly sensitive to device latency and bandwidth.

7. RELATED WORK
Tree structures. CDDS B+-Tree [38] was one of the early per-

sistent and concurrent B+-Tree structures. It relies on versioning
for failure atomicity and visibility. Its scalability may suffer from
using a global version number. RNTree [28] leverages HTM and
a new slot array approach to reduce persistence and sorting over-
heads. Hwang et al. [18] proposed a B-link-tree for PM using
failure-atomic in-place shift and rebalance. The former shifts sorted
entries in nodes in a data-dependent way to prevent inconsistencies.
The latter leverages B-link-tree sibling pointers to perform node
splits without logging.

While our focus is on B+-trees, for completeness we cover radix
trees here. Lee et al. [25] proposed three variants of PM-aware radix
trees based on path-compressed radix tree [29] and ART [26]. The
authors use a combination of bitmaps, indirection slot arrays, and
8-byte pointers, all of which can be updated in a failure atomic way.

Hash tables and hybrid structures. NVC-Hashmap [34] was
one of the early persistent and concurrent hash maps. Level hash-
ing [50] bases on Cuckoo hashing and minimizes PM writes and
efficiently handles hash collisions (without providing data dura-
bility). Nam et al. [30] proposed a PM-based extendible hashing
scheme, which uses a level of indirection to limit the number of
cache misses during hash probing. HiKV [44] is a hybrid key-value
store that uses a partitioned persistent hash index for primary data,
and a transient global B+-Tree for range queries. PMDK [19] also
includes several examples: a linked list, hash table, binary search
tree, and pmemkv, a key-value store partially based on FPTree.

PM primitives. Building persistent indexes requires the use of
PM programming libraries. PMDK [19] has been the most pop-
ular one and provides a set of primitives for handling durability,
PM space management, persistent pointers, allocation and logging.
PMwCAS [42] fills the gap of lock-free concurrency with an easy-
to-use multi-word interface, and is used by the BzTree. Instead of
logging, PMwCAS employs a “dirty bit” design where each written
memory word is marked as “dirty” before it is flushed to PM; threads
that see the dirty bit set will flush the word and atomically unset
the dirty bit before reading the actual word. This ensures threads
only read “committed” data. Log-free data structures [13] use a
similar technique to avoid logging. They use single-word atomics
and techniques such as buffered writes, while PMwCAS provides a
multi-word abstraction to ease lock-free programming on PM.

8. CONCLUSION
In this paper, we revisited PM-based range indexes on the newly

released Intel Optane DC Persistent Memory. Focusing on B+-Tree-
like structures, we carefully selected four representative indexes that
cover a wide range of solutions to the challenges raised by PM. To
fairly benchmark the trees and enable reproducibility, we devised
PiBench, a framework for benchmarking indexes on PM. PiBench
can work with any index that supports the common operations.

Using PiBench, we unveiled important, non-trivial insights, such
as the impacts of programming model and limited bandwidth, and
how copy-on-write can be ill-suited due to PM’s limited bandwidth
and allocator overheads. We also pinpointed designs that allowed
the evaluated data structures to excel for specific workloads. These
techniques are mostly orthogonal to each other, and together with
our insights, we hope they can serve as building blocks for designing
future PM data structures. Finally, we quantified the performance
gains that would stem from persistent CPU caches and DRAM-like
PM performance. We found performance is mainly dictated by PM’s
latency and bandwidth characteristics, and the slowdown incurred
by cacheline flushes is relatively limited in comparison.
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