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ABSTRACT
Computing the shortest path between two vertices is a fundamen-
tal problem in road networks that is applied in a wide variety of
applications. To support efficient shortest path query processing,
a plethora of index-based methods have been proposed in the lit-
erature, but few of them can support dynamic road networks com-
monly encountered in practice, as their corresponding index struc-
tures cannot be efficiently maintained when the input road network
is dynamically updated. Motivated by this, we study the short-
est path index maintenance problem on dynamic road networks in
this paper. We adopt Contraction Hierarchies (CH) as our under-
lying shortest path computation method because of its outstanding
overall performance in pre-processing time, space cost, and query
processing time and aim to design efficient algorithms to maintain
the index structure, shortcut index, of CH when the input road net-
work is dynamically updated. To achieve this goal, we propose a
shortcut-centric paradigm focusing on exploring a small number of
shortcuts to maintain the shortcut index. Following this paradigm,
we design an auxiliary data structure named SS-Graph and propose
a shortcut weight propagation mechanism based on the SS-Graph.
With them, we devise efficient algorithms to maintain the short-
cut index in the streaming update and batch update scenarios with
non-trivial theoretical guarantees. We experimentally evaluate our
algorithms on real road networks and the results demonstrate that
our approach achieves 2-3 orders of magnitude speedup compared
to the state-of-the-art algorithm for the streaming update.
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Computing the shortest path between two locations is one of the
most fundamental problems in road networks with many applica-
tions such as GPS navigation, route planning services and POI rec-
ommendation [11, 28, 31, 40, 33]. Typically, a road network can be
modelled as a weighted graph G = (V,E, φ), where each vertex
v ∈ V represents a junction, each edge e ∈ E represents a road
segment between two junctions, and the weight of an edge φ(e)
represents the transit time between two junctions. Given a source
vertex s and a destination vertex t, a shortest path query asks for
the path with the shortest network distance from s to t in G.

The classic approach to answering the shortest path queries is Di-
jkstra’s algorithm [18]. However, given Dijkstra’s algorithm may
traverse the entire network when the two query vertices are far
apart, this approach cannot satisfy the real-time requirements for
the shortest path queries on large networks. As a result, indexing-
based approaches are studied to tackle this problem. A plethora of
index-based methods for shortest path queries on road networks
have been proposed in the literature, such as ALT [21], hierar-
chical MulTi (HiTi) [24], highway hierarchy (HH) [35], contrac-
tion hierarchy (CH) [19], customizable route planning (CRP) [17]
and arterial hierarchy (AH) [50]. Of these methods, CH has been
highly successful due to its outstanding overall performance in pre-
processing time, space cost, and query processing time [38, 29].
Index-based methods to compute the shortest distance for a given
query are also studied [12, 7, 8, 9, 32], but they cannot retrieve the
concrete shortest paths efficiently and therefore, are not considered.

Motivation. Although existing index-based methods are efficient
to compute the shortest path, most of them assume that the input
road networks are static. Unfortunately, in real road networks, the
vertex set V and the edge setE are usually static (as road construc-
tion/removal seldom happens in a city), but the edge weights (tran-
sit time) are dynamically updated due to the change of traffic con-
ditions. For example, the commercial live map service providers,
such as TomTom and INRIX, update their road traffic information
every 1 minute currently to reflect the real traffic conditions [6,
36]. Furthermore, this update frequency cannot fully satisfy the
accuracy requirement in practice yet and these service providers
are seeking crowdsourcing-based approach to obtain real-time traf-
fic information [1, 2]. By collecting the travel information of App
users, the crowdsourcing-based approach can obtain real-time traf-
fic information. However, the crowdsourcing-based approach usu-
ally generates a huge volume of new records at high speed. Accord-
ing to [49], in 2010, Beijing has approximately 67,000 licensed
taxis generating over 1.2 million trips records per day. It means
nearly 13.8 new updates are generated per second on average. Ac-
cording to [47], in 2012, the approximately 13,000 taxis in the New
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York City generate more than half a million taxi trip records per
day, which means nearly 5.78 new updates are generated per sec-
ond on average. With the proliferation of ridesharing service, such
as Uber and DiDi, the number of registered drivers rapidly grows
in these years [4, 5]. Accordingly, the number and the generating
speed of update records significantly increase as well. The high
dynamics of edge weight makes existing index-based approaches
inapplicable for real applications, as their index structures do not
allow efficient updates when the edge weight changes.

To handle the dynamics of edge weight, DCHvcs [20] is proposed
to incrementally maintain the index structure, shortcut index, of
CH. DCHvcs follows a vertex-centric paradigm and imitates the
procedure of CH to update the shortcut index from vertex perspec-
tives. Although it can reduce the computation compared with re-
constructing the shortcut index from scratch, it has two drawbacks:
(1) Theoretically, DCHvcs shares the trivial worst-case time com-
plexity with reconstructing the index from scratch. (2) Practically,
DCHvcs entails prohibitive time-cost to maintain the shortcut in-
dex for an edge weight update, as shown in our experiment (details
in Section 3). Considering road networks in the physical world
are typically large and edge weights are updated frequently as pre-
sented above, DCHvcs is inefficient for real-world applications.

Motivated by this, we aim to design efficient index maintenance
algorithms to support the shortest path queries on dynamic road
networks. We adopt CH as our underlining shortest path query
processing method for its outstanding overall performance in pre-
processing time, space cost, and query processing time. Our objec-
tive is to overcome the drawbacks of DCHvcs and achieve progress
on both theoretical and practical aspects simultaneously in the
shortcut index maintenance.

In the literature, time-dependent road networks are also stud-
ied. In a time-dependent road network, each edge (u, v) is as-
signed with a function f which specifies the time f(t) needed to
reach v from u via edge (u, v) when starting at time t [16]. Time-
dependent road network assumes that the edge weight updates are
known beforehand and given as a function of time. As a result, it
is unable to handle sudden and unpredictable edge weight update,
such as traffic incident which happens frequently in practice [3].
Moreover, obtaining a function which can precisely reflect the edge
weight change over time is hard [48]. On the other hand, dynamic
graph model does not have the assumption that the edge weight up-
dates are known beforehand and the edge weight updates come and
process in an online fashion, which means the sudden and unpre-
dictable edge weight update can be easily handled. Therefore, we
use dynamic graph model in this paper.

Our Idea. While DCHvcs maintains the shortcut index in a vertex-
centric paradigm, we observe that when the weight of an edge in
the given road network is updated, the topological structure of the
corresponding shortcut index stays the same and only very few
shortcut weights in the shortcut index are changed (For consistency,
edges in the shortcut index are called shortcuts) as shown in Exp-5
of Section 6. This reveals the opportunity to incrementally maintain
the shortcut index from shortcut perspectives, by exploring only a
small number of shortcuts in the shortcut index.

When the weight of an edge is updated, let ∆ be the shortcuts
with weight change in the shortcut index. As discussed above, the
topological structure of the shortcut index stays the same and |∆|
is small in practice. Thus, we aim to explore the shortcuts only re-
lated to ∆ to achieve high efficiency. To reach this goal, we design
an auxiliary data structure named SS-Graph, to track the weight de-
pendence relationships of the shortcuts in the shortcut index. Based
on the SS-Graph, we devise efficient algorithms with tight bounds
related to |∆| to maintain the shortcut index.

Contribution. In this paper, we make the following contributions:

(1) A new paradigm to maintain the shortcut index for dynamic
road networks. In this paper, we adopt CH as our underlying short-
est path query processing method and aim to efficiently maintain
the shortcut index of CH for dynamic road networks. Instead of
using the vertex-centric paradigm employed by the state-of-the-art
approach, we propose a shortcut-centric paradigm to maintain the
shortcut index based on the observation that the weights of very
few shortcuts are changed when the weight of an edge is updated
in the road network.

(2) Efficient algorithms to maintain the shortcut index with
non-trivial theoretical guarantees. Following the shortcut-centric
paradigm, we design the SS-Graph and shortcut weight propaga-
tion mechanism. Based on these, we propose efficient algorithms
to maintain the shortcut index in both streaming update scenarios
and batch update scenarios with non-trivial theoretical guarantees.
To the best of our knowledge, this is the first solution to the short-
cut index maintenance with such tight bounds. We also explore
techniques to maintain the shortcut index without the materialized
SS-Graph to further reduce memory consumption.

(3) Extensive performance studies on real road networks. We con-
duct extensive performance studies on eight real road networks.
The experimental results demonstrate that our proposed approach
can achieve 2-3 orders of magnitude speedup compared with the
state-of-the-art algorithm for the streaming update.

2. PRELIMINARIES

2.1 Shortest Path Queries
Let G = (V,E, φ) be a road network (i.e., a degree-bounded

connected and weighted graph) where V (G) is the set of vertices,
E(G) is the set of edges, and φ : E(G) → R+ is a function
that assigns each edge a positive number as its weight. We use
n = |V (G)| and m = |E(G)| to denote the number of ver-
tices and edges in the road network, respectively. For each ver-
tex v ∈ V (G), the neighbors of v, denoted as nbr(v,G), is de-
fined as nbr(v,G) = {u|(u, v) ∈ E(G)}. The degree of a vertex
v ∈ V (G), denoted by deg(v,G), is the number of neighbors of v,
i.e., deg(v,G) = |nbr(v,G)|. For each edge e = (u, v) ∈ E(G),
we use φ((u, v), G) to denote its associated weight. A path is a se-
quence of vertices p = (v1, v2, · · · , vk) where (vi, vi+1) ∈ E(G)
for each 1 ≤ i < k. The weight of a path p, denoted as φ(p,G),
is defined as φ(p,G) = Σk−1

i=1 φ((vi, vi+1), G). Given two vertices
s, t ∈ V (G), the shortest path p between s and t is a path starting
from s and ending at t with the minimum φ(p,G) and the shortest
distance of s and t in G, denoted by distG(s, t), is the weight of
any shortest path between s and t. Given a road networkG, a short-
est path query q = (s, t) returns the shortest path between s and t
in G, where s, t ∈ V (G). For simplicity, we omit G in the nota-
tions if the context is self-evident. For the ease of explanation, we
considerG as an undirected graph in this paper, and our techniques
can be easily extended to handle directed graphs.

2.2 Contraction Hierarchies
Given a road network G, CH is defined in two phases. Next, we

explain these two phases in detail.

Phase 1: Shortcut Index Construction. In the first phase, CH fo-
cuses on constructing the shortcut index G′, which is based on the
vertex contraction operator 	.

Definition 2.1: (Vertex contraction operator 	) Given a road
network G, a total vertex order γ and a vertex v, the vertex con-
traction operator applied on v in G, denoted by G	 v, transforms
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Figure 1: A road network G, its shortcut index G′ and DCHvcs for (v8, v9) with edge weight decrease

Algorithm 1 ShortcutIndexConstruction

Input: A road network G(V,E) and a total vertex order γ
Output: The shortcut index G′ of G
1: G′ ← G;
2: for each vertex v ∈ V (G′) in the predefining total order γ do
3: G′ ← G′ 	 v;
4: return G′;
5: procedure operator 	(G, γ, v)
6: G ← G;
7: for all pair of vertices u,w ∈ nbr(v,G) with γ(u) > γ(v) and
γ(w) > γ(v) do

8: if (u,w) /∈ E(G) then
9: insert edge (u,w) with φ(u,w)← φ(u, v) + φ(v, w) in G;

10: else if φ(u,w) > φ(u, v) + φ(v, w) then
11: update φ(u,w)← φ(u, v) + φ(v, w) in G;
12: return G;

G into G as follows: For every pair of neighbors u and w of v with
γ(u) > γ(v) and γ(w) > γ(v), if (u,w) /∈ E(G), a new edge
(u,w) with weight φ((u,w)) = φ((u, v)) +φ((v, w)) is inserted.
Otherwise, if φ((u, v)) + φ((v, w)) < φ((u,w)), the weight of
(u,w) is updated with φ((u, v)) + φ((v, w)). 2

CH first assigns a total order γ of vertices by assigning each
vertex v a rank γ(v) based on their importance. Then, CH exam-
ines each vertex following γ. For each vertex v, CH applies the
vertex contraction operator on v. The shortcut index construction
phase terminates after all the vertices are examined. The edges in
G whose weight are not decreased along with all the edges gener-
ated by 	 form the index structure of CH. The index structure is
called shortcut index and we denote it asG′. For the ease of distinc-
tion, we refer the edges in the shortcut index as shortcuts and the
edges in the given road network as edges. The detailed algorithm
of shortcut index construction is shown in Algorithm 1.

Phase 2: Query Processing. For a shortest path query q = (s, t),
CH answers the query using the bidirectional Dijkstra’s algorithm
on G′ [34] with some minor modifications. Specifically, it starts
two instances of Dijkstra’s algorithm simultaneously from s and
t in G′, respectively. During the search, it only considers short-
cuts connecting a visited vertex v to an unvisited vertex v′ with a
higher rank than v, i.e., γ(v) < γ(v′). The search terminates when
all keys in the respective priority queue of Dijkstra’s algorithm in-
stance are larger than the tentative shortest distance and the shortest
path p on G′ is obtained. After obtaining p on G′, CH outputs the
shortest path on G by unpacking the shortcuts in p.

Example 2.1: Figure 1 (a) shows a road network G with 11 ver-
tices and 18 edges. The weight of the edge φ(e) is indicated be-
side each edge. Assume the vertices are ranked as v8 < v10 <
v9 < v6 < v7 < v3 < v1 < v2 < v4 < v5 < v0. We mark
the rank of each vertex in a box beside each vertex in Figure 1
(b). The shortcut index G′ of G is shown in Figure 1 (b). To an-
swer the shortest path query q = (v2, v6), CH starts two instances

of Dijkstra’s algorithm from v2 and v6 on G′, respectively, which
are shown in arrow-headed line (start from v2) and double-arrow-
headed line (start from v6) in Figure 1 (b). These two traversals
finally meet at v0, and we have the shortest path p = {v2, v0, v6}
onG′ with weight 5. Then, we replace the shortcut (v2, v0) in p by
(v2, v10) and (v10, v0) and the shortest path from v2 to v6 on G is
{v2, v10, v0, v6}. 2

2.3 Problem Statement
Now, we provide a formal definition of the problem studied in

this paper: Given a road network G, compute the shortcut index
G′ of G when the edge weights of G are dynamically updated. We
distinguish two different edge weight update scenarios for different
real application requirements [15]: (1) Streaming update, in which
edge weight updates are continuously arriving and the processing
occurs on each edge weight update. (2) Batch update, in which a
batch of edge weight updates arrives each time and the processing
is conducted based on the arrived batch of edges.

For a given road network, we assume that the total order of ver-
tices γ is fixed. This assumption is reasonable and practical since
the total vertex order is generally determined by the importance
of the vertices and the edge weight updates preserve the topology
of the road network, which have little influence on the importance
of the vertices. This assumption is also adopted in the-state-of-the
approach [20].

3. STATE-OF-THE-ART ALGORITHM
The state-of-the-art algorithm to maintain the shortcut index is

DCHvcs [20], which focuses on the streaming update.

A vertex-centric algorithm. DCHvcs (vcs denotes vertex-centric
for streaming update) adopts a vertex-centric paradigm and main-
tains G′ by leveraging 	. Specifically, it contains two steps:

Step 1. Affected Vertex Identification. When the weight of an edge
e = (u, v) in G changes, without loss of generality, let w be an-
other neighbor of u and assume that γ(u) < γ(v) and γ(u) <
γ(w). Based on Phase 1 of CH, the weight of shortcut (v, w) may
change due to the vertex contraction operation on u. Recursively,
the weight change of (v, w) may further affect the weight of short-
cuts incident to v for the same reason. Therefore, starting from the
shortcut e with weight change, DCHvcs explores the shortcuts gen-
erated upon e in a depth-first search manner onG′. For an explored
shortcut (u′, v′), the incident vertex with min{γ(u′), γ(v′)} is
recorded as an affected vertex.

Step 2. Vertex Recontraction. After all the affected vertices are ob-
tained, DCHvcs updates the weight of e and applies the vertex con-
traction operator	 on all the vertices identified in Step 1 following
the total vertex order γ. The new generated shortcut index is the
shortcut index of the updated road network.
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Example 3.1: Consider the road network G and its shortcut index
G′ shown in Figure 1 (a) and (b), respectively. When the weight of
(v8, v9) changes from 2 to 1, Figure 1 (c) illustrates the procedure
of DCHvcs to maintain G′. In Step 1, it first identifies affected ver-
tices. Since the weight of (v8, v9) changes and γ(v8) < γ(v9), v8
is identified as an affected vertex. Then, it explores the shortcuts
generated upon (v8, v9) in a depth-first search manner and further
identifies other affected vertices. As (v9, v5) is generated upon
(v8, v9) and γ(v9) < γ(v5), v9 is identified as an affected ver-
tex. Recursively, v6, v7 and v5 are also identified as affected ver-
tices. Therefore, the affected vertices regarding the weight update
of (v8, v9) are {v8, v9, v6, v7, v5}, which are marked with dark
grey in Figure 1 (c). In Step 2, DCHvcs recontracts all the affected
vertices following γ with 	. In Figure 1 (c), the checked shortcuts
of DCHvcs are marked with dash lines and the original and updated
weights for the shortcuts with weight change are shown near the
shortcuts. For example, the weight of shortcut (v5, v9) changes
from 4 to 3, when performing 	 on v8 with the updated weight of
(v8, v9). 2

Theorem 3.1: Given the shortcut indexG′ ofG, for an edge weight
update inG, the time complexity of DCHvcs to maintainG′ isO(n ·
d2max), where dmax is the maximum degree of G.

4. STREAMING UPDATE ALGORITHM

4.1 A Shortcut-Centric Paradigm
DCHvcs adopts a vertex-centric paradigm and maintains the

shortcut index G′ from the vertex perspectives. However, the
vertex-centric paradigm is not suitable for maintaining G′. It
causes two kinds of unnecessary computation in DCHvcs: (1) In
Step 1, DCHvcs considers all the vertices incident to the explored
shortcuts generated upon the edge e as the affected vertices. How-
ever, not all of the weights of these explored shortcuts will change
after the weight update of e. (2) In Step 2, for an identified vertex
u, all pairs of u’s neighbors with a higher rank than u regarding
γ are checked due to the vertex contraction operation applied on
u. However, some shortcut weights may remain the same after the
weight of e changes, which means checking all pairs of neighbors
of u with a higher rank than u in Step 2 of DCHvcs creates lots of
unnecessary computations. Example 4.1 shows these problems.

Example 4.1: Reconsider the procedure of DCHvcs to handle the
edge weight update of (v8, v9) shown in Figure 1. In Step 1,
DCHvcs identifies {v8, v9, v6, v7, v5} as affected vertices. How-
ever, since the weight of (v7, v5), (v7, v0), and (v5, v0) does not
change after the weight change of (v8, v9), v7 and v5 are mistak-
enly identified as affected vertices. In Step 2, when applying 	 on
v9, DCHvcs also checks the neighbor pair v6 and v7 of v9. Obvi-
ously, checking neighbor pair v6 and v7 is unnecessary computa-
tion when maintainingG′, since the weight of (v9, v6) and (v9, v7)
does not change after the weight update of (v8, v9). 2

Based on above analysis, the vertex-centric paradigm is not suit-
able for maintainingG′. On the other hand, revisiting Example 4.1,
we can observe that the topological structure ofG′ does not change
when the weight of an edge e changes and the essence of maintain-
ing G′ is to correct the weights of shortcuts with weight change
after the weight update of e. Meanwhile, as shown in Exp-5 in Sec-
tion 6, the number of shortcuts with weight change after the weight
update of e is small in practice. Therefore, in this paper, we adopt
a shortcut-centric paradigm and maintain G′ from the shortcut per-
spectives rather than the vertex perspectives. Specifically, when the
weight of e is updated, instead of identifying the affected vertices
as DCHvcs, we identify the affected shortcuts with weight change

caused by the weight update of e. For these affected shortcuts,
we correct their weights based on the new road network after the
weight update of e. In this way, we can totally avoid the unneces-
sary computation involving in DCHvcs caused by the vertex-centric
paradigm. However, to make our idea applicable in practice, the
following issues need to be addressed: (1) how to efficiently iden-
tify the affected shortcuts, and (2) how to efficiently correct the
weights of these affected shortcuts. In the following section, we
will address these two issues.

4.2 Running Time Bounded Algorithms
For a road network G, we first prove that the topological struc-

ture of its shortcut index G′ stays the same when the weight of an
edge in G changes. For brevity, we use G⊕(e,k) to denote the road
network after updating the weight of an edge e to k and G′⊕(e,k) to
denote the corresponding shortcut index of G⊕(e,k). We have:

Lemma 4.1: Given a road network G and its corresponding short-
cut index G′, after updating the weight of an edge e to k in G,
V (G′) = V (G′⊕(e,k)) and E(G′) = E(G′⊕(e,k)).

According to Lemma 4.1, G′ and G′⊕(e,k) shares the same topo-
logical structure when the weight of an edge e in G is updated.
Therefore, to efficiently maintain the shortcut index G′, we only
need to concentrate on updating the weights of shortcuts whose
weights inG′ andG′⊕(e,k) are different. However, since the weight
of a shortcut depends on the weights of other shortcuts in the short-
cut index, it’s hard to identify these shortcuts and update their
weights directly. To address this problem, we first define:

Definition 4.1: (Supporting Shortcut Pair) Given a shortcut in-
dexG′, for a shortcut (u, v) ∈ E(G′), let (u,w), (v, w) be another
two shortcuts in G′, we call (u,w) and (v, w) are a supporting
shortcut pair of (u, v) if γ(w) < γ(u) and γ(w) < γ(v). 2

Definition 4.2: (SS-Graph) Given a shortcut index G′, the SS-
Graph (Shortcut Supporting Graph) G∗ of G′ is a directed graph
that contains two types of vertices: (1) Shortcut type vertices Vs,
each such vertex vs corresponds to a shortcut s inG′ and the weight
of vs is equal to the weight of s. (2) Supporting relation type ver-
tices Vr , each such vertex vr corresponds to a supporting relation
instance between a shortcut s and one of its supporting shortcut pair
s1 and s2. For each supporting relation type vertex vr , we con-
nect three directed edges 〈vr, vs〉, 〈vs1 , vr〉 and 〈vs2 , vr〉 in G∗,
where vs, vs1 and vs2 are the corresponding shortcut type vertices
of shortcuts s, s1 and s2, respectively. 2

As shown in Lemma 4.1, for a given road network G, when the
weight of an edge in G changes, the topological structure of its
shortcut index G′ does not change. Following Definition 4.2, it is
clear that the topological structure of G∗ is only determined by the
topological structure of the given shortcut index G′. Therefore, for
a road network G, the topological structure of the corresponding
SS-GraphG∗ does not change either when the weight of an edge in
G changes. For this reason, hereafter, when we talk about the road
network G, shortcut index G′ and SS-Graph G∗, we assume that
their topological structures match each other unless specified.

In an SS-Graph G∗, if there is a directed edge 〈u, v〉 in G∗, we
call u is an in-neighbor of v and v is an out-neighbor of u. For
each vertex v ∈ V (G∗), we use nbr−(v,G∗) and nbr+(v,G∗) to
denote the set of its in-neighbors and out-neighbors in G∗. Given a
road network G, a shortcut index G′ and the SS-Graph G∗ of G′,
for a shortcut s ∈ G′ and its corresponding shortcut type vertex
vs ∈ G∗, we use φ(s,G) to denote the weight of s in G if s ∈ G
(if s /∈ G, φ(s,G) is +∞), φ(s,G′) to denote the weight of s in
G′ and φ(vs, G

∗) to denote weight of vs in G∗. We define:
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Figure 2: SS-Graph G∗ and DCHscs-WDec for (v8, v9) with weight decrease

Definition 4.3: (Minimum Weight Property) Given a road net-
work G, a shortcut index G′ and the SS-Graph G∗ of G′, for a
shortcut s ∈ G′ and its corresponding shortcut type vertex vs ∈
G∗, let vr1 , vr2 , · · · , vrn be the in-neighbors of vs and vs11 , vs12 ,
vs21 , vs22 , · · · , vsn1 , vsn2 be the in-neighbors of vr1 , vr2 , · · · , vrn
in G∗, respectively, we say vs satisfies the minimum weight prop-
erty if φ(vs, G

∗) = min{φ(s,G), φ(vs11 , G
∗) + φ(vs12 , G

∗),
φ(vs21 , G

∗)+φ(vs22 , G
∗), · · · , φ(vsn1 , G

∗)+φ(vsn2 , G
∗)}. 2

Lemma 4.2: Given a road network G, a shortcut index G′ and the
SS-Graph G∗ of G′, G′ is the shortcut index of G if and only if
all the shortcut type vertices vs in G∗ satisfy the minimum weight
property.

As the weight of a shortcut in G′ directly corresponds to the
weight of a shortcut type vertex in G∗ according to Definition 4.2,
the problem of maintaining the shortcut index G′ when the weight
of an edge in G changes is equivalent to maintaining the mini-
mum weight property for all shortcut type vertices in G∗ based on
Lemma 4.2. Therefore, we redefine our problem as follows:

Definition 4.4: (Problem Definition∗) Given a road network G
and its SS-Graph G∗, we aim to adjust φ(vs, G

∗) for all shortcut
type vertices inG∗ to make them satisfy the minimum weight prop-
erty when the weight of an edge e in G is updated to k. 2

To address this problem, we have the following lemma:

Lemma 4.3: Given a road network G and the SS-Graph G∗, when
the weight of an edge e in G changes, the shortcut type vertices
unreachable from ve in G∗ satisfy the minimum weight property,
where ve is the corresponding shortcut type vertex of e in G∗.

Therefore, when the weight of an edge e in G is updated, we do
not need to consider the shortcut type vertices unreachable from ve
in G∗. However, all the other shortcut type vertices may violate
the minimum weight property. The remaining problem is how to
identify these shortcut type vertices and adjust their φ(vs, G

∗).

Shortcut Weight Propagation Mechanism on G∗. Accord-
ing to Definition 4.3, for a shortcut type vertex vs, φ(vs, G

∗)
may violate the minimum weight property if and only if at least
one of the values in φ(s,G), φ(vs11 , G

∗) + φ(vs12 , G
∗), · · · ,

φ(vsn1 , G
∗) + φ(vsn2 , G

∗) changes, where s, vs11 , · · · , vsn2 fol-
lows Definition 4.3. In addition, when φ(vs, G

∗) changes, let vr
be one of the out-neighbors of vs and v′s be the out-neighbor of
vr . The change of φ(vs, G

∗) may further cause the shortcut type
vertices v′s to violate the minimum weight property and we need
to adjust φ(v′s, G

∗) consequently. Therefore, our shortcut weight
propagation mechanism works as follows: for a shortcut type ver-

tex vs whose φ(vs, G
∗) may change, we first determine whether

φ(vs, G
∗) needs to be adjusted based on the the minimum weight

property. If φ(vs, G
∗) changes, we notify the out-neighbors v′s

of vs’s out-neighbors as the candidate shortcut type vertices that
φ(v′s, G

∗) may need to be further adjusted. Following this shortcut
propagation mechanism, we can iteratively adjust φ(vs, G

∗) until
all the shortcut type vertices satisfy the minimum weight property.

Shortcut weight propagation mechanism achieves the goal of
identifying and adjusting φ(vs, G

∗) not satisfying the minimum
weight property. However, using the weight propagation mech-
anism alone may propagate incorrect shortcut weight and futile
notifications will be introduced. For example, when we adjust
φ(vs, G

∗) for a shortcut type vertex vs, if one of the value in
φ(vs11 , G

∗), · · · , φ(vsn2 , G
∗) has not been correctly adjusted, the

adjusted φ(vs, G
∗) may not be the final correct value. If we no-

tify the out-neighbors v′s of vs’s out-neighbors with this incorrect
φ(vs, G

∗) and adjust φ(v′s, G
∗) accordingly, then, φ(v′s, G

∗) may
not be its final correct value. Therefore, we need further notifica-
tions regarding v′s to adjust φ(v′s, G

∗) correctly, which means the
previous notification is futile. On the other hand, based on Defi-
nition 4.3, for vs, if φ(vs11 , G

∗), · · · , φ(vsn2 , G
∗) have been cor-

rectly adjusted before vs notifies its out-neighbors, then φ(vs, G
∗)

can be adjusted correctly and the futile notification problem can be
avoided. Inspired by this, we define the shortcut type vertex priority
based on the total vertex order γ:

Definition 4.5: (Shortcut Type Vertex Priority) Given the SS-
GraphG∗ of a shortcut indexG′, let vs and v′s be two shortcut type
vertices in G∗ and their corresponding shortcuts in G′ are (u, v)
and (u′, v′), respectively. Without loss of generality, assume that
γ(u) < γ(v) and γ(u′) < γ(v′). We define vs has a higher prior-
ity than v′s if:
• γ(u) < γ(u′), or
• γ(u) = γ(u′) and γ(v) < γ(v′)

2

If we process the shortcut type vertices following above priority,
we can guarantee that φ(vs11 , G

∗), · · · , φ(vsn2 , G
∗) have been

correctly adjusted before vs notifies its out-neighbors. With the
shortcut weight propagation mechanism and shortcut type vertex
priority, we are ready to introduce our algorithm to maintain G∗.

4.2.1 Edge Weight Decrease Case
Our algorithm to handle edge weight decrease case, DCHscs-

WDec (scs denotes shortcut-centric for streaming update), is
shown in Algorithm 2. DCHscs-WDec uses a priority queue Q to
store the shortcut type vertices with φ(vs, G

∗) changed and the
processing priority of shortcut type vertices in Q follows Defini-
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Algorithm 2 DCHscs-WDec (G∗, G, e, k)

1: PriorityQueueQ← ∅; φ(e,G)← k;
2: if φ(ve, G∗) > k then
3: φ(ve, G∗)← k; Q.push(ve);
4: while Q 6= ∅ do
5: vs ← Q.pop();
6: for each vr ∈ nbr+(vs) do
7: v′s ← the other in-neighbor of vr except vs;
8: v′′s ← nbr+(vr);
9: if φ(v′′s , G∗) > φ(vs, G∗) + φ(v′s, G

∗) then
10: φ(v′′s , G

∗)← φ(vs, G∗) + φ(v′s, G
∗);

11: if v′′s /∈ Q then
12: Q.push(v′′s );

tion 4.5. The priority queue is initialised as ∅ (line 1). When the
weight of an edge e in G is decreased to k, if φ(ve, G

∗) > k (ve
denotes the corresponding shortcut type vertex of e in G∗), which
means φ(ve, G

∗) does not satisfy the minimum weight property, it
adjusts φ(ve, G

∗) to k and pushes ve into Q (line 3). After that,
it iteratively notifies other shortcut type vertices that may violate
the minimum weight property to adjust their φ(vs, G

∗) following
the shortcut weight propagation mechanism (line 4-12). Specif-
ically, DCHscs-WDec first pops out the shortcut type vertex vs
from Q and iterates the out-neighbors of vs (line 5-6). For each
out-neighbor vr of vs, it retrieves the other in-neighbor v′s of vr
and the unique out-neighbor v′′s of vr (line 7-8). If φ(v′′s , G

∗) >
φ(vs, G

∗) + φ(v′s, G
∗) (line 9), which means φ(v′′s , G

∗) does
not satisfy the minimum weight property, it updates φ(v′′s , G

∗) to
φ(vs, G

∗)+φ(v′s, G
∗) (line 10) and pushes v′′s intoQ (line 11-12).

DCHscs-WDec terminates when Q is empty (line 4).

Example 4.2: Recall the road network G in Figure 1 (a) and
consider the weight of (v8, v9) decreases from 2 to 1. Figure 2
shows the procedure of DCHscs-WDec to maintain G∗. In Fig-
ure 2, each rectangle represents a shortcut type vertex. For a short-
cut type vertex, its corresponding shortcut in G′ and weight are
shown in the top and bottom of the rectangle, respectively. As
φ((v8, v9), G) decreases from 2 to 1 and φ(v(v8,v9), G

∗) is big-
ger than 1, φ(v(v8,v9), G

∗) is adjusted from 2 to 1 and v(v8,v9)
is pushed into Q. Then, v(v8,v9) is popped from Q and we
check whether φ(v(v5,v9), G

∗) needs to change following the out-
neighbor of v(v8,v9). Since φ(v(v5,v9), G

∗) = 4 is bigger than
φ(v(v5,v8), G

∗) + φ(v(v8,v9), G
∗) = 3, φ(v(v5,v9), G

∗) is adjusted
from 4 to 3 and v(v5,v9) is pushed intoQ. The procedure continues
iteratively until Q is empty. 2

Theorem 4.1: Given a road networkG, when the weight of an edge
e in G decreases to k, Algorithm 2 computes G′⊕(e,k) correctly.

Performance Guarantees. Now, we arrive at the first main result:

Theorem 4.2: Given a road network G, when the weight of an
edge e in G decreases to k, the time complexity of Algorithm 2
to compute G′⊕(e,k) is O(|∆| · (log |∆|+ deg′max) + 1), where
∆ represents the shortcuts s whose φ(s,G′) and φ(s,G′⊕(e,k))

are different and deg′max is the maximum degree of G∗.

To compute G′⊕(e,k), we have to explore the shortcuts in ∆ at
least. Meanwhile, as shown in Theorem 4.2, the number of ex-
plored vertices in Algorithm 2 can be bounded by the number of
shortcut type vertices for the shortcuts in ∆ and their 1-hop neigh-
bors in G∗. In worst case, |∆| could be the number of shortcuts
in the shortcut index. However, as shown in our experiment (Exp-
5), |∆| could be very small in practice. Therefore, Algorithm 2 is
efficient regarding computing G′⊕(e,k).

Algorithm 3 DCHscs-WIncDirect (G∗, G, e, k)

1: PriorityQueueQ← ∅; φ(e,G)← k;
2: φ← minWeight(G∗, ve);
3: if φ(ve, G∗) > φ then
4: φ(ve, G∗)← φ; Q.push(ve);
5: while Q 6= ∅ do
6: vs ← Q.pop();
7: for each vr ∈ nbr+(vs) do
8: v′s ← nbr+(vr); φ← minWeight(G∗, v′s);
9: if φ(v′s, G′) > φ then

10: φ(v′s, G
′)← φ; if v′s /∈ Q then Q.push(v′s);

11: procedure minWeight(G∗, vs)
12: φ← φ(s,G);
13: for each vr ∈ nbr−(vs) do
14: let vs1 and vs2 be the two in-neighbors of vr ;
15: if φ > φ(vs1 , G

∗) + φ(vs2 , G
∗) then

16: φ← φ(vs1 , G
∗) + φ(vs2 , G

∗);
17: return φ;

4.2.2 Edge Weight Increase Case

A 3-hop neighbors bounded algorithm. Following the shortcut
weight propagation mechanism, we can directly obtain an algo-
rithm for edge weight increase case (Algorithm 3).

DCHscs-WIncDirect uses a priority queue Q to store the short-
cut type vertices with φ(vs, G

∗) changed and initialises it as ∅
(line 1). After updating the weight of edge e with k (line 1), it
checks whether φ(ve, G

∗) satisfies the minimum weight property
(ve denotes the corresponding shortcut type vertex of e in G∗). If
φ(ve, G

∗) is larger than the minimum weight φ computed by pro-
cedure minWeight, DCHscs-WIncDirect updates φ(ve, G

∗) with
φ and pushes it into Q (line 3-4). Then, it iteratively propagates
the shortcut weight and further notifies the shortcut type vertices
through its out-neighbor. DCHscs-WIncDirect terminates when Q
is empty (line 5). Procedure minWeight computes min{φ(s,G),
φ(vs11 , G

∗) +φ(vs12 , G
∗), · · · , φ(vsn1 , G

∗) +φ(vsn2 , G
∗)} for

the given shortcut type vertex vs following Definition 4.3. It first re-
trieves φ(s,G) as the minimum weight φ (line 12). Then, for each
in-neighbor vr of vs (line 13), it computes the sum of φ(vs1 , G

∗)
and φ(vs2 , G

∗), where vs1 and vs2 are the two in-neighbors of vr .
If the sum is less than the φ, φ is updated with the sum (line 15-16).
It returns the minimum weight in line 17.

Algorithm 3 is intuitive for edge weight increase case. However,
for an edge weight increase in G, the number of explored vertices
in Algorithm 3 cannot be bounded by the number of shortcut type
vertices for the shortcuts in ∆ and their 1-hop neighbors in G∗ as
Algorithm 2. This is because two types of shortcut type vertices are
pushed in Q in Algorithm 3, namely:
• Type-1: The set of shortcut type vertices that the weight of cor-

responding shortcuts in G′ and G′⊕(e,k) are different, i.e., the
corresponding shortcut type vertices for the shortcuts in ∆.
• Type-2: The set of shortcut type vertices that are (1) 2-hop out-

neighbors of Type-1 vertices; and (2) not Type-1 vertices.
In Algorithm 3, every vs in Q is processed by minWeight. As a

result, for each Type-2 shortcut type vertex, its 2-hop in-neighbors
are explored in line 14 because we do not know whether vs is a
Type-2 vertex before invoking minWeight. Since a Type-2 shortcut
type vertex is a 2-hop neighbor of a Type-1 shortcut type vertex, the
4-hop neighbors of some Type-1 vertices need to be explored. This
means the number of explored shortcut type vertices in Algorithm 3
is only bounded by the number of shortcut type vertices for the
shortcuts in ∆ and their 3-hop neighbors in G∗.

A 1-hop neighbors bounded algorithm. As discussed above,
the reason that Algorithm 3 has to push the Type-2 shortcut type
vertices into Q is that Algorithm 3 cannot determine whether
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Figure 3: SS-Graph G∗ and DCHscs-WInc for (v6, v9) with weight increase

φ(vs, G
∗) will change without invoking minWeight. In other

words, if we can determine whether φ(vs, G
∗) will change inO(1)

time, then we can avoid exploring the neighbors of Type-2 shortcut
type vertices and the number of explored shortcut type vertices can
be bounded as Algorithm 2. Inspired by this, we define:

Definition 4.6: (Shortcut Weight Counter) Given a shortcut
type vertex vs, the shortcut weight counter of vs, denoted by
cφ(vs), records the number of values in φ(s,G), φ(vs11 , G

∗) +
φ(vs12 , G

∗), · · · , φ(vsn1 , G
∗)+φ(vsn2 , G

∗) that equals the value
of φ(vs, G

∗), where s, vs11 , . . . follows Definition 4.3. 2

Lemma 4.4: Given a shortcut type vertex vs in G∗, cφ(vs) ≥ 1.

According to Lemma 4.4, when the weight of an edge e in G in-
creases, if we can maintain φ(s,G), φ(vs11 , G

∗), . . . , φ(vsn2 , G
∗)

and cφ(vs) correctly as their definitions, then, when we process vs,
if cφ(vs) is still not less than 1, we know immediately that the
value of φ(vs, G

∗) will not change after the weight increase of e;
otherwise, the current value of φ(vs, G

∗) will definitely change.
In this way, we can determine whether φ(vs, G

∗) will change af-
ter the weight increase of e in O(1) time. The remaining problem
is how to maintain them without introducing extra theoretical time
complexity. We show it in Algorithm 4.

The framework of Algorithm 4 is similar to that of Algorithm 3.
It utilizes a priority queue Q to store the shortcut type vertices that
need to be processed (line 1). Then, it iteratively pops the shortcut
type vertex vs out from Q (line 8), and propagates the change of
φ(vs, G

∗) to its out-neighbors and further pushes the shortcut type
vertices whose φ(vs, G

∗) are updated into Q (line 9-12). The pro-
cedure terminates when Q is empty (line 7). Different from Algo-
rithm 3, we introduce cφ(vs) and a new procedure updateWeight
in Algorithm 4. For each shortcut type vertex vs whose weight may
change, we first check whether cφ(vs) is less than 1 (line 5 and line
11). If it is less than 1, we invoke updateWeight to compute the
new value of φ(vs, G

∗) and update cφ(vs) regarding the new value
of φ(vs, G

∗) (line 8).
Procedure updateWeight is used to compute the new value of

φ(vs, G
∗) and maintain cφ(vs) accordingly. Specifically, for a

shortcut type vertex vs, it first iterates the out-neighbors of vs
(line 14) and for each out-neighbor vr of vs, it retrieves the two
in-neighbors vs1 and vs2 of vs and the out-neighbor vs3 of vr
(line 15). If φ(vs3 , G

∗) = φ(vs1 , G
∗) + φ(vs2 , G

∗), cφ(vs3) de-
creases by 1 according to Definition 4.6 (line 16-17). After that,
updateWeight computes the new value of φ(vs, G

∗) and main-
tains cφ(vs) regarding the new value of φ(vs, G

∗) by iterating the
in-neighbors of vs and computing the minimum weight based on
Definition 4.3 (line 19-25).

Algorithm 4 DCHscs-WInc (G∗, G, e, k)

1: PriorityQueueQ← ∅;
2: if φ(ve, G∗) = φ(e,G) then
3: cφ(ve)← cφ(ve)− 1;
4: φ(e,G)← k;
5: if cφ(ve) < 1 then
6: Q.push(ve);
7: while Q 6= ∅ do
8: vs ← Q.pop(); updateWeight(G∗, v′s);
9: for each vr ∈ nbr+(vs) do

10: v′s ← nbr+(vr);
11: if cφ(v′s) < 1 then
12: if v′s /∈ Q then Q.push(v′s);

13: procedure updateWeight(G∗, vs)
14: for each vr ∈ nbr+(vs) do
15: vs1 , vs2 ← nbr−(vr); vs3 ← nbr+(vr);
16: if φ(vs3 , G∗) = φ(vs1 , G

∗) + φ(vs2 , G
∗) then

17: cφ(vs3 )← cφ(vs3 )− 1;
18: φ← φ(s,G); cφ(vs)← 1;
19: for each vr ∈ nbr−(vs) do
20: vs1 , vs2 ← nbr−(vr);
21: if φ > φ(vs1 , G

∗) + φ(vs2 , G
∗) then

22: φ← φ(vs1 , G
∗) + φ(vs2 , G

∗); cφ(vs)← 1;
23: else if φ = φ(vs1 , G

∗) + φ(vs2 , G
∗) then

24: cφ(vs)← cφ(vs) + 1;
25: φ(vs, G∗)← φ;

Note that we can easily extend Algorithm 2 to maintain the short-
cut weight counter for the weight decrease case without affecting
its time complexity. We omit the details for brevity.

Example 4.3: Figure 3 shows the SS-Graph G∗ with shortcut
weight counter for the road network G in Figure 1 (a). For each
shortcut type vertex, Figure 3 shows its shortcut weight counter
and its weight in the left side and right side at the bottom of
each corresponding rectangle. Take v(v0,v7) as an example, since
φ((v0, v7), G) = 4 and φ(v(v6,v7), G

∗) + φ(v(v0,v6), G
∗) = 4,

cφ(v(v0,v7)) is 2 and φ(v(v0,v7), G
∗) is 4. When the weight of

(v6, v9) increases from 1 to 2, the dark lines in Figure 3 highlight
the procedure of DCHscs-WInc to maintain G∗. As φ((v6, v9), G)
increases from 1 to 2 and φ(v(v6,v9), G

∗) is 1, cφ(v(v6,v9)) de-
creases by 1 and is less than 1, updateWeight is invoked with
v(v6,v9). In updateWeight, cφ(v(v6,v7)) decreases from 2 to 1,
cφ(v(v5,v6)) decreases from 1 to 0 (not shown in Figure 3 as it is
an intermediate state), φ(v(v6,v9), G

∗) increases from 1 to 2 and
cφ(v(v6,v9)) is 1 regarding the new value of φ(v(v6,v9), G

∗). Since
the value of φ(v(v6,v9), G

∗) changes, v(v6,v9) is pushed into Q.
The procedure continues iteratively until Q is empty. 2
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Theorem 4.3: Given a road networkG, when the weight of an edge
e in G increases to k, Algorithm 4 computes G′⊕(e,k) correctly.

Performance Guarantees. We arrived at the second main result:

Theorem 4.4: Given a road networkG, when the weight of an
edge e in G increases to k, the time complexity of Algorithm 4
to compute G′⊕(e,k) is O(|∆| · (log |∆|+ deg′max) + 1).

4.3 Extensions
Extension for directed road networks. Our techniques can be
extended to support directed road networks. For a directed road
network G, CH contracts a vertex v similarly as a undirected road
network as follows: CH contracts v by inserting a directed shortcut
〈u,w〉 (resp. updating the weight of 〈u,w〉) between any pair of
u and w where u ∈ nbr−(v), w ∈ nbr+(v), γ(u) > γ(v) and
γ(w) > γ(v). Therefore, we extend Definition 4.1 and Defini-
tion 4.2 for directed road networks as follows:

Given a shortcut index G′ for a directed road network G, for a
directed shortcut 〈u,w〉 ∈ E(G′), let 〈u, v〉 and 〈v, w〉 be another
two directed shortcuts in G′, we call 〈u, v〉 and 〈v, w〉 are a sup-
porting shortcut pair of 〈u,w〉 if γ(v) < γ(u) and γ(v) < γ(w).
For the SS-Graph G∗ of G′, each shortcut type vertex in G∗ cor-
responds to a directed shortcut in G′ and each supporting relation
type vertex inG∗ corresponds to a supporting shortcut pair instance
in G′. The shortcut type vertices and supporting relation type ver-
tices are connected the in the same way as Definition 4.2. For the
edge weight updates on the directed road network G, we just run
our algorithms on G∗ for the directed road network and we can
guarantee that G∗ is maintained correctly. The correctness of the
algorithms can be proved similarly as the undirected case.

Extension for vertex/edge update. Our techniques can be ex-
tended to support vertex/edge update. Since a vertex dele-
tion/insertion can be regarded as a sequence of edge dele-
tions/insertion, we mainly focus on edge update here.

Regarding the edge deletion, our techniques can handle it di-
rectly. Given a deleted edge e, we can treat the deletion of e as the
weight of e increases to +∞. Thus, we can use our algorithm for
edge weight increase to address this case directly.

Regarding the edge insertion, assume that we insert an edge
e = (u, v) with weight k in G, if (u, v) is already a shortcut in
G′, then, we just treat it as the weight of (u, v) decrease to k and
use Algorithm 2 to address this case directly. If (u, v) is not a short-
cut in G′ (assume γ(u) < γ(v)), then, we first add a shortcut type
vertex for (u, v) with weight k in G∗ (resp. a shortcut (u, v) with
weight k in G′). After that, for each w ∈ nbr(u) with γ(u) <
γ(w), if there is a shortcut type vertex for (v, w) in G∗, then we
check whether φ(v(v,w), G

∗) ≤ φ(v(u,v), G
∗) + φ(v(u,w), G

∗).
If φ(v(v,w), G

∗) ≤ φ(v(u,v), G
∗) + φ(v(u,w), G

∗), we do noth-
ing and continue our procedure. Otherwise, we treat it as the
weight of (v, w) decreases to φ(v(u,v), G

∗) + φ(v(u,w), G
∗) and

invoke Algorithm 2 to adjust the weight of v(v,w) and other short-
cut type vertices whose weight may be changed due to the weight
decrease of v(v,w). If there is no shortcut type vertex for (v, w)
in G∗, then we add a shortcut type vertex for (v, w) with weight
φ(v(u,v), G

∗) + φ(v(u,w), G
∗) in G∗ (resp. a shortcut (v, w) with

weight φ((u, v), G′) + φ((u,w), G′) in G′) and recursively pro-
cess (v, w) following the above procedure. We finish the process-
ing when all the neighborsw of uwith γ(u) < γ(w) are processed.

4.4 Algorithms without Materialized G*
In the above discussion, we always assume that G∗ has been

materialized and all the algorithms are designed based on the mate-

Algorithm 5 DCH+
scs-WDec (G′, e = (u, v), k)

1: PriorityQueueQ← ∅; φ((u, v), G)← k;
2: if φ((u, v), G′) > k then // w.l.o.g., assume γ(u) < γ(v)
3: φ((u, v), G′)← k; Q.push((u, v));
4: while Q 6= ∅ do
5: (u, v)← Q.pop();
6: for each w ∈ nbr(u) and γ(u) < γ(w) and w 6= v do
7: if γ(w) < γ(v) then
8: if φ((w, v), G′) > φ((u,w), G′) + φ((u, v), G′) then
9: φ((w, v), G′)← φ((u,w), G′) + φ((u, v), G′);

10: if (w, v) /∈ Q then Q.push((w, v));
11: else
12: if φ((v, w), G′) > φ((u,w), G′) + φ((u, v), G′) then
13: φ((v, w), G′)← φ((u,w), G′) + φ((u, v), G′);
14: if (v, w) /∈ Q then Q.push((v, w));

rialized G∗. However, the space consumption of G∗ could be large
for big road networks. In this section, we remove this assumption
and propose efficient algorithms without materialized G∗.

Space consumption of G∗. We first analyze the space consump-
tion of G∗ from theoretical aspect.

Lemma 4.5: Given G∗ of a shortcut index G′, the space of G∗

is O(|E(G′)| +
∑
v∈V (G′)(|Nbr(v)| · (|Nbr(v)| − 1)/2)), where

Nbr(v) = {u|u ∈ nbr(v) ∧ γ(u) > γ(v)}.
According to Lemma 4.5, the space consumption of G∗ is much

larger than that of G′. We also compare the space consumption of
G∗ and G′ for the datasets used in our experiments (Exp-4, Sec-
tion 6). The experimental results confirm the theoretical analysis
in Lemma 4.5. For example, on CAL, G∗ consumes 12.7 times
more space than G′. The large space consumption of G∗ limits the
scalability of our algorithm to handle big road networks. In this
section, we propose efficient algorithms to handle the edge weight
update without introducing any extra memory consumption. For
brevity, we only show the weight decrease case and the proposed
techniques can be easily extended to other cases.

Revisiting Algorithm 2, for a shortcut type vertex vs, we lever-
age G∗ to retrieve its out-neighbor vr in line 6. For the computed
vr regarding vs, we leverage G∗ to retrieve its in-neighbors and
out-neighbor in line 7-8. Suppose vs represents the shortcut (u, v)
inG′. Essentially, these operations in Algorithm 2 regarding vs are
equal to retrieving the shortcuts that (u, v) supports and the short-
cut forming a supporting shortcut pair with (u, v). According to
Definition 4.1, we can retrieve these shortcuts for (u, v) based on
G′ directly, which means we can achieve the same goal of Algo-
rithm 2 based on G′ without the materialized G∗.

Algorithm. Following the above idea, our new algorithm is shown
in Algorithm 5. Algorithm 5 shares the same framework with Al-
gorithm 2. The differences locate in line 6-14. In Algorithm 5, for a
shortcut (u, v), to retrieve all the shortcuts that (u, v) supports, we
iterate all the neighbors w of u with γ(w) > γ(u) and the short-
cut (v, w)/(w, v) are the shortcuts that (u, v) supports based on
Definition 4.1 (line 6). For (v, w)/(w, v), another shortcut except
(u, v) supporting it is (u,w). We retrieve it in this way in line 8-9
and line 12-13.

5. BATCH UPDATE ALGORITHM

5.1 A Direct Batch Update Algorithm
Since a batch of weight updates can be treated as a series of

streaming weight updates, a direct approach to process the batch
weight update is to leverage the techniques designed for the stream-
ing update. The algorithm for batch weight decrease update is
shown in Algorithm 6. Since the pseudocode is self-explanatory,
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Algorithm 6 DCHscb-WDec (G∗, {(e1, k1), . . . , (en, kn))})

1: PriorityQueueQ← ∅;
2: for each ei do
3: φ(ei, G)← ki;
4: if φ(vei , G∗) > k then
5: φ(vei , G

∗)← k; Q.push(vei );
6: line 4-12 of Algorithm 2;

we omit the detailed description for brevity. The batch weight in-
crease update can be handled similarly and the pseudocode is omit-
ted for the same reason. We have the following theorem:

Theorem 5.1: Given a road network G and a batch of edge weight
decrease/increase updates U , G′ can be maintained correctly in
O(|U | + |∆| · (log |∆| + deg′max)), where |U | is the number of
edge weight decrease/increase updates in U .

At first glance, Algorithm 6 is an ideal algorithm for batch up-
date. Besides the inevitable exploration of the edges in U , the num-
ber of explored vertices in Algorithm 6 can be bounded by the num-
ber of shortcut type vertices for the shortcuts in ∆ and their 1-hop
neighbors and the time complexity of Algorithm 6 has a similar
form to that of Algorithm 2 and Algorithm 4. However, for the
batch update case, |∆| could be large. Consequently, the factor
log |∆| in Theorem 5.1 could be large as well, which limits the
efficiency of Algorithm 6 for batch update. In the following, we
aim to eliminate the log |∆| factor in the time complexity of Algo-
rithm 6 to further improve the efficiency to handle batch update.

5.2 An Improved Batch Update Algorithm
In this section, we present our approach for the batch update. In

Algorithm 6, we follow the shortcut type vertex priority and use
a priority query Q to store the shortcut type vertices with weight
change. With the help of Q, for a shortcut type vertex vs, we can
guarantee that φ(vs11 , G

∗), · · · , φ(vsn2 , G
∗) have been correctly

adjusted before vs notifies its out-neighbors as discussed in Sec-
tion 4.2. However, due to the introduction of Q, the factor log |∆|
is involved in the time complexity of Algorithm 6. Therefore, to
eliminate the log |∆| factor, we have to design a new structure with
which we can still guarantee that the order of processing shortcut
type vertices with weight change to replace Q.

Recall that to guarantee that φ(vs11 , G
∗), · · · , φ(vsn2 , G

∗) have
been correctly adjusted before vs notifies its out-neighbors, we only
need to guarantee that we have an order in which vs ranks after
vs11 , · · · , vsn2 and process the shortcut type vertices based on the
order. Meanwhile, it is clear that G∗ is a directed acyclic graph.
Hence, we define:

Definition 5.1: (SS-Graph Level) Given a SS-Graph G∗, for a
shortcut type vertex vs inG∗, the SS-Graph level of vs, denoted by
l(vs), is defined as l(vs) ={

max{l(v′s)|v′s ∈ ∪vr∈nbr+(vs)nbr
+(vr)}+ 1, nbr+(vs) 6= ∅

1, nbr+(vs) = ∅

2

Lemma 5.1: Given a SS-Graph G∗, for a shortcut type vertex vs,
let v′s be a shortcut type vertex positioned after vs in any directed
path in G∗, then, l(v′s) < l(vs).

Following Lemma 5.1, if we process the shortcut type vertices
in non-ascending order of SS-Graph levels, we can still guaran-
tee that φ(vs11 , G

∗), · · · , φ(vsn2 , G
∗) have been correctly updated

when vs is processed, as they have higher levels than vs. The re-
maining problem is how to implement the shortcut weight propa-
gation mechanism efficiently based on SS-Graph levels. According

Algorithm 7 DCH+
scb-WDec (G∗, U = {(e1, k1), . . . , (en, kn))})

1: BinArray B ← ∅;
2: for each ei ∈ U do
3: φ(ei, G)← k;
4: if φ(vei , G∗) > k then
5: φ(vei , G

∗)← k;
6: B[l(vei )]← B[l(vei )] ∪ vei ;
7: i = argmaxi∈N+{B[i] 6= ∅};
8: while B 6= ∅ do
9: for each vs ∈ B[i] do

10: for each vr ∈ nbr+(vs) do
11: v′s ← the other in-neighbor of vr except vs;
12: v′′s ← nbr+(vr);
13: if φ(v′′s , G∗) > φ(vs, G∗) + φ(v′s, G

∗) then
14: φ(v′′s , G

∗)← φ(vs, G∗) + φ(v′s, G
∗);

15: if v′′s /∈ B[l(v′′s )] then
16: B[l(v′′s )]← B[l(v′′s )] ∪ v′′s ;
17: i← i− 1;

to the procedure of shortcut weight propagation mechanism, only
shortcut type vertices with big SS-Graph levels notify the shortcut
type vertices with small SS-Graph levels. Therefore, we utilize a
bucket array to store the shortcut type vertices with weight change
based on their SS-Graph levels and process shortcut type vertices
in the bucket array in non-ascending order of their SS-Graph lev-
els. When a new shortcut type vertex is notified by the shortcut
weight propagation mechanism, we distribute it in the correspond-
ing bucket based on its level and iteratively continue the procedure
until all φ(vs, G

∗) are adjusted.

Algorithm. Following the above idea, we show the algorithm to
handle the batch weight decrease in Algorithm 7. As our tech-
niques can be directly extended for batch weight increase case, the
pseudocode for the batch weight increase is omitted for clearness.

Instead of the priority queue Q, Algorithm 7 uses a bucket
array B to store the shortcut type vertices with weight change
and B is initialized as ∅ (line 1). For each edge ei with weight
decrease, it first updates ei’s weight in G as k (line 3) and if
φ(vei , G

∗) > k, where vei is the corresponding shortcut type ver-
tex of ei, φ(vei , G

∗) is updated with k and vei is inserted into
the l(vei)-th bucket of B (line 4-6). After that, Algorithm 7 itera-
tively conducts the shortcut weight update propagation through B.
Specifically, it first computes the maximum level i such that the
corresponding B[i] is not empty (line 7). Then, for each shortcut
type vertex vs (line 9), it inserts all the shortcut type vertices whose
weights may change due to the weight change of vs in B similar
to Algorithm 2 and continues the procedure (line 10-17). It termi-
nates when B is empty (line 8). For the SS-Graph level, we can
compute it based on Definition 5.1 directly. Note that for a specific
SS-Graph G∗, the level of a shortcut type vertex is fixed and we
only need to compute it once for G∗.

Theorem 5.2: Given a road network G, for a batch of edge weight
decrease/increase updates U , G′ can be correctly maintained in
O(|U | + β + |∆| · deg′max), where β is the maximum SS-Graph
level of G∗.

6. EXPERIMENT
In this section, we compare our algorithms with the state-of-the-

art methods. All experiments are conducted on a machine with
an Intel Xeon 2.8GHz CPU (10 cores) and 256 GB main memory
running Linux (Red Hat Linux 4.4.7, 64bit).

Datasets. We use eight publicly available real road net-
works from DIMACS (http://www.dis.uniroma1.it/
challenge9/download.shtml). In each road network, ver-
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Table 1: Datasets used in Experiments
DataSet G Region |V (G)| |E(G)| β

NY New York City 264,346 733,846 767
COL Colorado 435,666 1,057,066 558
FLA Florida 1,070,376 2,712,798 580
CAL California and Nevada 1,890,815 4,657,742 939
E-US Eastern US 3,598,623 8,778,114 1,372
W-US Western US 6,262,104 15,248,146 1,489
C-US Central US 14,081,816 34,292,496 2,982

US United States 23,947,347 58,333,344 3,976

tices represent intersections between roads, edges correspond to
roads or road segments and the weight of an edge is the transit
time between two vertices. Table 1 provides the details about these
datasets. Table 1 also shows the value of β in Theorem 5.2 for each
dataset and it is clear that β is small in practice.

Algorithms. We implement and compare the following algorithms.
All the algorithms are implemented in C++ 11, using g++ complier
with -O3 optimization.
• DCHscs-WDec/DCHscs-WInc: our algorithm to handle stream-

ing weight decrease/increase with materialised G∗.
• DCH+

scs-WDec/DCH+
scs-WInc: our algorithm to handle stream-

ing weight decrease/increase without materialised G∗.
• DCHscb-WDec/DCHscb-WInc: the direct algorithm for batch

weight decrease/increase update.
• DCH+

scb-WDec/DCH+
scb-WInc: the improved algorithm for batch

weight decrease/increase update.
• DCHvcs/DCHvcb: the state-of-the-art algorithm for stream-

ing/batch update. Note that [20] only discusses the streaming up-
date. In our experiment, we implement DCHvcb based on DCHvcs

in a similar way of Algorithm 6.
• CRP: The algorithm for shortest path query proposed in [17]. It

also supports the dynamic maintenance of its index structure. 1

• Rebuild: rebuild the shortcut index from scratch.
Exp-1: Efficiency for streaming weight decrease update. In
this experiment, we compare the efficiency of the algorithms for
streaming weight decrease update. To test the efficiency, we gen-
erate 9 groups of weight decrease instances for each dataset as
follows: for the group i, we randomly select 1000 edges in the
road network. For each selected edge e, we decrease its weight to
(1.0 − 0.i) × φ(e). We report the average processing time for the
1000 weight decrease instances for each group and the results are
shown in Figure 4.

According to the results shown in Figure 4, we make the fol-
lowing observations. First, for all test cases, CRP consumes the
most time. DCHvcs is faster than CRP but consumes much more
time than our algorithms. As shown in Figure 4, DCHvcs consumes
nearly 2-3 orders of magnitude more time than DCHscs-WDec and
DCH+

scs-WDec for all test cases on all datasets. This is because
DCHvcs shares the same time complexity with reconstructing the
shortcut index from scratch for an edge weight decreases and it in-
volves lots of unfruitful computation in the maintenance. Second,
DCHscs-WDec and DCH+

scs-WDec consume similar time and their
average processing times are much smaller than that of DCHvcs.
This is because DCHscs-WDec and DCH+

scs-WDec share the same
time complexity and they avoid the unfruitful computation in the
maintenance of DCHvcs due to the introduction of shortcut-centric
paradigm. Another thing that needs to mention is the running time
of CRP in our paper is slower than that in [17]. The following
three factors together lead to the difference of the running time: (1)
1We implement CRP by ourselves as the code of [17] cannot be
provided publicly. We set its parameters uniformly for all datasets.

As CRP is implemented by ourselves, some hidden tricks in [17]
may be missed in our implementation. (2) CRP involves several
parameters closely related to the query and update efficiency, such
as the number of levels and cell sizes. However, [17] does not pro-
vide clear guidelines to set these parameters for a given dataset.
Therefore, we set these parameters uniformly for all datasets with-
out tuning. It is also a possible source leading to the different run-
ning times of our paper and that of [17]. (3) The experimental
environments of [17] and our paper are different, which has a sig-
nificant effect on the running time of the algorithm. We also evalu-
ate the query efficiency of CRP and CH and the results are shown
in Table 4 of the long version of our paper 2. Based on our experi-
mental results regarding query efficiency, not only the running time
of CRP in this paper is 2 orders of magnitude slower than that in
[17], but the running time of CH in our paper is also 1∼2 orders
of magnitude slower than that in [17]. It means the experimental
environments affect the running time of both algorithms. On the
other hand, CH is 1∼2 orders of magnitude faster than CRP re-
garding the query efficiency in both papers. From this point, the
experiment results of [17] are consistent with our paper.

Exp-2: Efficiency for streaming weight increase update. In
this experiment, we evaluate the performance of the algorithms for
streaming weight increase update. To test the efficiency, we gen-
erate 9 groups of weight increase instances for each dataset as fol-
lows: for the group i, we randomly select 1000 edges. For each
selected edge e, we increase its weight to (i + 1.0) × φ(e). We
report the average processing time for the 1000 weight increase in-
stances for each group and Figure 5 shows the results.

Figure 5 shows that CRP consumes the most time in most cases
while DCHvcs is faster than CRP but consumes much more time
than our algorithms. DCHscs-WInc and DCH+

scs-WInc consumes
similar time for each update and outperform DCHvcs by 2-3 orders
of magnitude. The reasons are similar as presented in Exp-1.

Exp-3: Efficiency for batch weight decrease/increase update.
In this experiment, we evaluate the efficiency of the algorithms re-
garding batch update. We select 0.001% to 100% edges from each
dataset randomly as a batch and decrease/increase the weight of
each selected edge e to 0.9× φ(e)/2.0× φ(e). We report the pro-
cessing time of the algorithms and show the results in Figure 6 and
Figure 7, respectively.

Figure 6 shows that the processing time of each algorithm
increases as the number of edges in the batch increases. For
our proposed algorithms, DCH+

scb-WDec consumes less time than
DCHscb-WDec and the processing time gap increases as the num-
ber of edges in the batch increases. For DCHvcb, it consumes much
more time than our proposed algorithms when the number of edge
in the batch is small, but the gap decreases as the number of edges
in the batch increase. When the percentage of selected edges is
more than 10−1, DCHvcb even outperforms DCHscb-WDec on C-
US. This is because as the number of edges in the batch increases,
the number of shortcuts with weight update also increases, which
weakens the advantages of DCHscb-WDec against DCHvcb. How-
ever, DCH+

scb-WDec always outperforms DCHvcb benefiting from
the introduction of bucket array. In addition, even when the weight
of all the edges in the road network are updated, DCH+

scb-WDec
has a similar processing time as Rebuild. The results show that
DCH+

scb-WDec is very suitable for batch update. Figure 7 shows
that DCH+

scb-WInc outperforms DCHscb-WInc and DCHvcb in all
cases and has a similar processing time as Rebuild when all the
weight of all the edges are updated.

2https://www.dropbox.com/s/3s7n9u1sv315785/
DynSDist.pdf?dl=0
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Figure 4: Processing Time for Streaming Update - Weight Decrease (Varying the percentage of weight decrease for an edge)
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Figure 5: Processing Time for Streaming Update - Weight Increase (Varying the percentage of weight increase for an edge)
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Figure 6: Processing Time for Batch Update - Weight Decrease (Varying the percentage of edges with weight decrease)

Table 2: Space consumption of G′ vs G∗

Dataset NY COL FLA CAL E-US W-US C-US US
|G′| (MB) 9.22 9.44 23.97 44.1 84.4 142 358 590
|G∗| (MB) 146 121 209 562 1,390 2,085 12,379 18,199

Exp-4: Space consumption of G′ and G∗. In this experiment,
we report the size of G′ and G∗ for each dataset and the results
are shown in Table 2. As shown in Table 2, the size of G∗ is much
larger than that ofG′. The results are consistent with our theoretical
analysis in Lemma 4.5 and verify the necessity of proposing the
techniques in Section 4.4.

Table 3: ϕ for each update
Dataset NY COL FLA CAL E-US W-US C-US US
ϕ 61.6 46.8 34.8 72.1 66.2 77.9 187.8 172.4

Exp-5: ϕ for each update. Table 3 shows the ϕ (average number
of shortcuts with weight change) when the weight of an edge in
the road network is update. To compute ϕ, we randomly choose
1,000 edges from each road network. For each chosen edge, we
randomly update its weight as Exp-1 or Exp-2, compute G′ for
the updated road network and record the number of shortcuts with
weight update. As shown in Table 3, when the weight of an edge
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Figure 7: Processing Time for Batch Update - Weight Increase (Varying the percentage of edges with weight increase)

is updated, the number of shortcuts with weight change for each
update is very small in practice.

7. RELATED WORK
Shortest path in static road networks. With the proliferation of
graph applications, research efforts have been devoted to many fun-
damental problems in managing and analyzing graph data [41, 42,
43, 44, 45, 39, 30]. Among them, shortest path queries are one
of the most fundamental problem in road networks. The classic
approach is Dijkastra’s algorithm [18] but it may result in a long
running time. Therefore, index-based approaches are studied. ALT
uses landmark to pre-compute some shortest distances for accel-
erating A* searching [21]. HiTi accelerates query processing by
dividing the road network and constructing hierarchical structure
[24]. HH [35] prunes search space to accelerate query. CRP [17]
supports the personalized cost functions. CH [19] and AH [50] are
two state-of-the-art hierarchy approaches for shortest path query on
road networks. CH constructs an index structure named shortcut in-
dex by recursively contracting the vertex based on a total vertex or-
der [19]. AH divides road networks into grids using 2-dimensional
spatial properties of the road networks and follows a similar query
processing procedure of CH. As evaluated in [29], AH can be a
little faster than CH in query processing time but involves larger
index size and longer pre-processing time. Related to the shortest
path queries, computing the shortest distance between two given
query vertices is also extensively studied [7, 8, 23, 9, 10, 12, 32].
[11] provides a comprehensive survey on shortest path/distance al-
gorithms. [38] and [29] experimentally evaluate the practical per-
formance of the representative algorithms.

Shortest path in dynamic road networks. Although many index-
based methods for the shortest path queries are proposed, most of
them assume the input road network is static. In [20], DCHvcs is
proposed to maintain the index structure of CH for dynamic net-
works, which is introduced in Section 3 and used as the baseline so-
lution in our experiment. Besides DCHvcs, CRP [17] also supports
the dynamic maintenance of its index structure and we also com-
pare it with our algorithms in the experiment. [46] studies the dy-
namic shortest path problem in distributed environments. Since it
considers the distributed environments, its objective and proposed
techniques are totally different from ours. [22] studies the dynamic
edge-constrained short path query problem, which considers the
edges associated with multiple labels.

Shortest path in time-dependent road networks. In the litera-
ture, shortest path in time-dependent road networks is also studied.
In a time-dependent road network G = (V,E), each edge (u, v)

is assigned with a function f : R → R≥0 which specifies the time
f(t) needed to reach v from u via edge (u, v) when starting at time
t [16]. As discussed in Section 1, time-dependent road network
model is unable to handle sudden and unpredictable edge weight
update, we adopt the dynamic graph model in this paper. Given
a time-dependent road network G, for a source vertex s, a target
vertex t, and a departure time t, the time dependent shortest path
query returns the path from s to t with the fastest travel time in G
when departing at time t. Given a source vertex s, a target vertex t,
and a departure time interval I , travel time profile query returns the
departing time t ∈ I , at which it takes the fastest travel time from
s to t, and the corresponding shortest path.

[13] first proposes an index-based approach named TCH by gen-
eralizing CH to support the shortest path/travel time profile queries
in time-dependent road networks. [14] further reduces the huge
space requirement of TCH by adopting the approximated shortcuts
technique. By selecting a set of landmark vertices and computing
the travel-time summaries from landmarks towards all reachable
vertices, [25] devises the FLAT oracle to speedup the shortest path
queries in time-dependent road networks. Following the landmark-
based approach, [27] creates a hierarchy of landmark sets to further
reduce the query processing time. [26] experimentally evaluates
the performance of FLAT and HORN. Recently, [37] proposes a
height-balanced tree structured index, called TD-G-Tree, to answer
the shortest path/travel time profile queries. [11] also surveys recent
advances on the shortest path related problems on time-dependent
road networks.

8. CONCLUSION
In this paper, we study the shortest path index maintenance prob-

lem on dynamic road networks. We adopt CH as our underlying
shortest path computation method and aim to efficiently maintain
the shortcut index of CH when the edge weights are updated. We
propose a shortcut-centric paradigm focusing on exploring a small
number of shortcuts to maintain the shortcut index. Following the
paradigm, we design efficient algorithms to maintain the shortcut
index for streaming update and batch update with non-trivial theo-
retical guarantees. The experimental results show the efficiency of
our proposed algorithms.
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