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ABSTRACT
Bump hunting is an important approach to the extraction
of insights from Euclidean datasets. Recently, it has been
explored for graph datasets for the first time, and a single
bump is hunted in an unweighted graph in this exploration.
Here, we extend this exploration by hunting multiple bumps
in a weighted graph. Given a weighted graph and a set of
query nodes exhibiting a property of interest, our objective
is to find k non-overlapping and connected subgraphs, i.e.,
bumps, in which the discrepancy between the numbers of
query and non-query nodes is maximized and the sum of
edge costs is minimized simultaneously.

We prove that our extended bump hunting problem can
be transformed to a recently formulated Prize-Collecting
Steiner Forest Problem (PCSFP). We further prove that
PCSFP is NP-hard even in trees. Then, we propose a fast
approximation algorithm for solving PCSFP in trees. Based
on this algorithm, we improve the state-of-the-art approxi-
mation algorithm for solving PCSFP in graphs, and prove
that the solutions of our improvement are always better than
or equal to those of the state-of-the-art algorithm. More-
over, we adapt the existing bump hunting algorithms for
solving our extended bump hunting problem.

We evaluate our methodology via real datasets, and show
that 1) our improvement scales well to large graphs, while
producing solutions that dominate those of the state-of-the-
art algorithm; and 2) our adaptation of an existing bump
hunting algorithm can also produce solutions that are better
than those of the state-of-the-art algorithm in some cases.
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Bump hunting is a data analysis approach that has been
continuously studied in the last few decades [3, 14, 19]. The
main idea is to search for regions of a dataset where a prop-
erty of interest occurs frequently. Traditional bump hunt-
ing methods apply geometric knowledge to find such regions
of Euclidean datasets. These methods do not suit graph
datasets, such as social networks and knowledge graphs. To
address this issue, Gionis et al. [12] recently explored the
bump hunting approach for graph datasets for the first time.
They divided nodes in a graph into two groups: query nodes
that exhibit a property of interest, and non-query nodes that
do not exhibit a property of interest. Given a graph and a set
of query nodes, their objective was to find a connected sub-
graph with the maximum discrepancy between the numbers
of query and non-query nodes. As Gionis et al. pointed out,
this discrepancy maximization objective is different from the
objectives of the other graph mining approaches (e.g. find-
ing high-modularity graph divisions for community detec-
tion [28, 5]), and enables us to find a region of the graph
dataset where the property of interest occurs frequently, i.e.,
nodes are often query nodes. We describe two application
scenarios as follows:

Scenario 1 [12]: Given a social network where vertices and
edges represent persons and personal interactions respec-
tively; and a set of query nodes representing persons who
exhibit a property of interest, we can hunt bumps that rep-
resent communities of this property of interest. For example,
given the DBLP network where vertices and edges represent
researchers and collaborations between researchers respec-
tively; and a set of query nodes representing researchers who
have publications in an area, we can hunt bumps that rep-
resent communities of researchers in this area (see Figure 1;
details in Section 5.1).
Scenario 2 [32]: Given an activity network where vertices
and edges represent road intersections and roads respec-
tively; and a set of query nodes representing road intersec-
tions near which high-level activities are detected, we can
hunt bumps that represent regions that exhibit high levels
of activity. For example, given the Twitter activity network
[29]; and a set of query nodes representing road intersections
near which abundant geo-located Twitter posts are detected,
we can hunt bumps that represent regions that exhibit high
levels of Twitter activity (details in Section 5.2).

Motivation: In the exploratory work of Gionis et al., a sin-
gle bump is hunted in a graph. However, it may be prefer-
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Figure 1: The DBLP network in Section 5.1, where ver-
tices represent researchers; edges represent collaborations
between researchers; and edge costs are Jaccard distances
that indicate the dis-closeness between researchers. For a
query: “snake robots”, green vertices represent researchers
who have related publications, and green edges highlight
bumps that represent communities of these researchers.

able to hunt multiple bumps in a graph in many cases. For
example, in the above Scenario 1, finding multiple communi-
ties of researchers via DBLP helps analyze the development
of a queried research area statistically; and in the above
Scenario 2, finding multiple regions that exhibit high lev-
els of Twitter activity helps analyze the behaviors of Twit-
ter users statistically. Moreover, edges are unweighted in
this exploratory work, while edges are often weighted in real
graph datasets, and it may be preferable to hunt bumps in
such weighted graphs in many cases. For example, in the
above Scenario 1, edges are often associated with costs that
indicate the dis-closeness between researchers (e.g. Jaccard
distances [25]), and it may be preferable to minimize such
costs in bumps for finding close communities of researchers
[25]; and in the above Scenario 2, edges are often associ-
ated with costs that indicate road distances, and it may be
preferable to minimize such costs in bumps for finding re-
gions that exhibit high levels of close activity, which often
indicate events in the physical world [32].

The above issues can be addressed by hunting multiple
bumps in a weighted graph, yet it is highly non-trivial to do
this. Specifically, we will later prove that it is NP-hard to
do this even when the graph is a tree, and the existing bump
hunting algorithms developed by Gionis et al. can be inef-
fective for several reasons. First, the TreeOptimal algorithm
[12], which is the core of these existing algorithms, requires
a given bump root that may not be available in many cases.
Second, these existing algorithms do not consider edge costs
in graphs. Third, these existing algorithms keep hunting a
single bump with a high discrepancy between the numbers
of query and non-query nodes, and cannot be modified easily
for hunting multiple bumps in an efficient way.

We will later prove that hunting multiple bumps in a
weighted graph can be transformed to solving Hegde et
al.’s Prize-Collecting Steiner Forest Problem (PCSFP) [21],
which was formulated recently for graph-structured spar-
sity. To the best of our knowledge, Hegde et al.’s algo-
rithm [21], which is based on their fast implementation of
the Goemans-Williamson scheme [20] in the latest DIMACS
Implementation Challenge on Steiner tree problems [1] , is
the only existing and thus the state-of-the-art algorithm for
solving PCSFP to date. We refer to this algorithm as FGWA
(Fast Goemans-Williamson Algorithm). We observe that it

may not be able to produce solutions with satisfactorily high
qualities in some cases. The reason is that, given a weighted
graph, it first clusters vertices into multiple trees, and then
hunts the optimal bump in each of these trees, while miss-
ing sub-optimal bumps in some trees that are possibly better
than the optimal bumps in some other trees.

Our contributions: To address the above issues, we make
the following contributions in this paper.

• We formulate the Bump Hunting Problem in Graphs
(BHPG). Our formulation extends the existing one by
hunting multiple bumps in a weighted graph.

• We prove that BHPG can be transformed to PCSFP.
We further prove that PCSFP is NP-hard even in trees.
Given this hardness result, we propose a fast approxi-
mation algorithm for solving PCSFP in trees.

• Based on our algorithm in trees, we improve FGWA for
solving PCSFP in graphs, and prove that the solutions
of our improvement are always better than or equal
to those of FGWA. Our improvement suits not only
bump hunting, but also other applications that require
solving PCSFP (e.g. graph-structured sparsity [21]).

• Based on our algorithm in trees, we adapt the existing
bump hunting algorithms for solving BHPG.

• We evaluate our methodology via real datasets1, and
show that 1) our improvement scales well to large
graphs, while producing solutions that dominate those
of FGWA; and 2) our adaptation of an existing bump
hunting algorithm can also produce solutions that are
better than those of FGWA in some cases. We further
show that two existing bump hunting applications can
be extended by hunting multiple bumps in graphs.

Roadmap: The rest of this paper is organized as follows:
in Section 2, we formulate BHPG, and describe our solutions
for improving the readability of this paper; in Section 3,
we propose our methodology; in Section 4, we evaluate our
methodology; in Section 5, we extend two existing bump
hunting applications; in Section 6, we review the related
work; and ultimately in Section 7, we conclude this paper.

2. PRELIMINARIES
In this section, we first formulate BHPG, then present

the Prize-Collecting Steiner Forest solution approach, and
ultimately describe our solutions in brief.

2.1 Problem formulation
We consider an undirected (connected or disconnected)

graph G(V,E, c), where V is the set of vertices, E is the set
of edges, and c is a function which maps each edge e ∈ E
to a positive value c(e) that we refer to as edge cost. A set
of query nodes Q ⊆ V that exhibit a property of interest is
provided as the input. We refer to a connected subgraph of
G as a component of G. We consider a set of components of
G as non-overlapping if they do not share vertices with each
other. Let C(VC , EC) be a component of G. We refer to
pC as the number of query nodes in C, i.e., pC = |VC ∩Q|.
We refer to nC as the number of non-query nodes in C, i.e.,
nC = |VC \Q|. We define the discrepancy of C in the same
way as the exploratory work [12] as follows.
1The codes and datasets are available at https://github.
com/YahuiSun/bump_hunting
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Definition 1 (Discrepancy [12]). Given a compo-
nent C(VC , EC) of a graph G(V,E, c); and a set of query
nodes Q ⊆ V , the discrepancy of C is

g(C) = αpC − nC (1)

where α is the regulating weight between the numbers of
query and non-query nodes in C, and α > 0.

High-discrepancy components are regions of G where the
property of interest occurs frequently, i.e., nodes are often
query nodes. Finding these regions is useful in practice.
For example, when one submits a query to DBLP’s search
engine, DBLP returns a list of researchers who have related
publications. If we use query nodes to represent the returned
researchers for a query, then high-discrepancy components
of the DBLP network are communities of the returned re-
searchers (see Figure 1).

Furthermore, high-discrepancy components with small
edge costs inside are regions ofG where the property of inter-
est occurs both frequently and closely. Finding these regions
is also useful in practice. For example, edges in the DBLP
network are often associated with costs that indicate the dis-
closeness between researchers (e.g. Jaccard distances [25]),
and high-discrepancy components with small edge costs in-
side are close communities of the returned researchers.

We consider high-discrepancy components with small edge
costs inside as bumps. Hunting bumps is then to find regions
of G where the property of interest occurs both frequently
and closely. To hunt such bumps, we refer to cC as the
sum of edge costs in C, i.e., cC =

∑
e∈EC

c(e), and con-

sider the quality of C as the difference between g(C) and
cC . This consideration enables us to add a possibly-zero
regulating weight on cC , and echoes the related graph min-
ing approaches that minimize the sums of edge costs in the
identified subgraphs (e.g. [25, 32]). Specifically, we define
the quality of C as follows.

Definition 2 (Quality). Given a component
C(VC , EC) of a graph G(V,E, c); and a set of query
nodes Q ⊆ V , the quality of C is

Qua(C) = g(C)− βcC (2)

where β is the regulating weight between the discrepancy of
C and the sum of edge costs in C, and β ≥ 0.

There are often multiple bumps in a real graph dataset.
We rank these bumps with respect to their qualities. Our
objective is to find the top-k non-overlapping bumps. This
non-overlapping requirement is necessary, as otherwise we
may hunt bumps with the same set of vertices, which should
be avoided in most scenarios. Specifically, we define the
Bump Hunting Problem in Graphs (BHPG) as follows.

Problem 1 (BHPG). Given a graph G(V,E, c); a set
of query nodes Q ⊆ V ; and a target number k ∈ N, the
Bump Hunting Problem in Graphs is to find the top-k non-
overlapping bumps in G: ∪k

m=1Cm(VCm , ECm) such that∑k
m=1 Qua(Cm) is maximized.

Solving BHPG is useful in various scenarios. For example,
given the DBLP network; a set of query nodes representing
researchers in an area; and a target number k, we can solve
BHPG for finding the top-k communities of researchers in
this area (see Figure 1; details in Section 5.1).

Since edge costs in the hunted bumps are minimized when
β > 0, the optimal solution to BHPG is a set of k non-
overlapping trees when β > 0. It is preferable to restrict the
hunted bumps to trees in scenarios where edge costs are min-
imized (e.g. [25, 32]), but not in scenarios where edge costs
are not minimized (e.g. [12]). The exploratory formulation
[12] does not restrict the hunted bumps to trees. By setting
β = 0, BHPG does not restrict the hunted bumps to trees as
well, given that every component Cm with the same set of
vertices VCm has the same discrepancy g(Cm). Specifically,
we define BHPG in such a way that it degenerates to the
exploratory formulation [12] when k = 1 and β = 0. Since
the exploratory formulation is NP-hard, BHPG is NP-hard.
Moreover, we will later prove that BHPG is NP-hard even
when 1) G is a set of non-overlapping trees; and 2) β = 0.

2.2 The Steiner forest solution approach
A set of non-overlapping trees is usually referred to as

a forest. We observe that BHPG can be transformed
to Hegde et al.’s Prize-Collecting Steiner Forest Problem
(PCSFP) [21]. In PCSFP, we consider an undirected graph
G(V,E,w, c), where w is a function which maps each vertex
i ∈ V to a non-negative value w(i) that we refer to as vertex
prize. We present the definition of PCSFP as follows.

Problem 2 (PCSFP). Given a graph G(V,E,w, c);
and a target number k ∈ N, the Prize-Collecting Steiner
Forest Problem is to find k non-overlapping trees of G:
Csum(Vsum, Esum) = ∪k

m=1Cm(VCm , ECm) such that the
net-cost of these trees:

c(Csum) =
∑

v∈V \Vsum

w(v) +
∑

e∈Esum

c(e) (3)

is minimized, or the net-weight of these trees:

w(Csum) =
∑

v∈Vsum

w(v)−
∑

e∈Esum

c(e) (4)

is maximized.

Since
∑

v∈V \Vsum
w(v) +

∑
v∈Vsum

w(v) is constant for a

given graph, the above two objectives are equivalent. Hegde
et al.’s PCSFP is a unique problem that is different from
previous problems with the same or similar names (e.g. [15,
16, 35])2. We show the transformation from BHPG to Hegde
et al.’s PCSFP below, for which the proof is in the appendix.

Theorem 1. Given two graphs G(V,E, c) and
G′(V,E,w′, c′); a set of query nodes Q ⊆ V ; and a
target number k ∈ N, if

w′(v) =

{
α+ 1, v ∈ V ∩Q

0, v ∈ V \Q (5)

c′(e) = βc(e) + 1, e ∈ E (6)

then the optimal solution to BHPG in G and the optimal so-
lution to PCSFP in G′ have the same set of vertices despite
β, and further have the same set of edges when β > 0.
2In these previous problems, pairs of vertices are given, and
the objective is to find a forest to minimize the prizes of
the given pairs of vertices not connected by this forest plus
the edge costs in this forest. We observe that, when pairs
of vertices are copies of vertices (e.g. {v, v}), this objective
is to find an unlimited number of non-overlapping trees to
minimize c(Csum), for which the optimal solution is simply
the set of vertices with positive prizes.
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This theorem shows that we can solve BHPG in G by
solving PCSFP in G′. We will later develop Prize-Collecting
Steiner Forest algorithms for solving BHPG.

2.3 The solution overview
The existing solutions: Hegde et al.’s FGWA [21] is the
state-of-the-art algorithm for solving PCSFP. In FGWA,
the fast implementation of the Goemans-Williamson grow-
ing scheme [20] is first used to cluster vertices into k non-
overlapping trees, and the Goemans-Williamson pruning al-
gorithm [13] or the strong pruning algorithm [23] is then
used to find the maximum-net-weight subtree in each of
these trees. The combination of these maximum-net-weight
subtrees is the solution of FGWA. We show this problem-
solving process via the following example.

Applying Hegde et al.’s FGWA to solve PCSFP (k = 2)
in the graph in Figure 2: First, the fast implementation of
the Goemans-Williamson growing scheme returns the two
trees in this graph (details in [21]). Then, the Goemans-
Williamson pruning algorithm or the strong pruning algo-
rithm returns the maximum-net-weight subtrees in these two
trees: {(v1, v2)} and {(v6, v7)}, of which the net-weights are
2 + 2 − 1.5 = 2.5 and 2 + 2 − 1.7 = 2.3 respectively. The
solution of FGWA is the combination of these two subtrees,
of which the net-weight is 2.5 + 2.3 = 4.8.

Hegde et al.’s FGWA has a tight approximation guarantee
of 2 with respect to minimizing c(Csum), and a nearly-linear
time complexity of O(d|E|log|V |+ |V |), where d is the preci-
sion of prizes and costs, and O(d|E|log|V |) and O(|V |) cor-
respond to the above growing and pruning processes respec-
tively. We observe that the solutions of Hegde et al.’s FGWA
can be improved. The reason is that, given a graph, it first
clusters vertices into k non-overlapping trees, and then com-
bines the maximum-net-weight subtree in each of these trees
as the solution, while missing non-maximum-net-weight sub-
trees in some trees that may have larger net-weights than the
maximum-net-weight subtrees in some other trees. For ex-
ample, in Figure 2, it misses the non-maximum-net-weight
subtree {(v4, v5)} in the left tree, which has a larger net-
weight of 2 + 2 − 1.6 = 2.4 than the maximum-net-weight
subtree {(v6, v7)} in the right tree.

Our improved solutions: To address the above issue, we
develop the following improved solutions in this paper.

Phase 1: Given a graph, we first cluster vertices into a set of
non-overlapping trees. This can be done via the Goemans-
Williamson growing scheme, like Hegde et al.’s FGWA. For
example, given the graph in Figure 2, we can employ the
fast implementation of the Goemans-Williamson growing
scheme, which returns the two trees in this graph.

Phase 2: Different from Hegde et al.’s pruning method of
combining the maximum-net-weight subtree in each tree, we
propose a more effective pruning method for hunting bumps
from the set of non-overlapping trees obtained via the above
phase (see our ABHA in Section 3.2). We briefly introduce
this method as follows. We employ a max priority queue to
store candidate subtrees. Initially, we push the maximum-
net-weight subtree in each tree into the queue with the pri-
orities of their net-weights. For example, we push {(v1, v2)}
and {(v6, v7)} into the queue with the priorities of 2.5 and
2.3 respectively. Then, we pop out the top subtree in
the queue, e.g., {(v1, v2)}, into the solution, and remove it
from the trees. New trees are induced due to this removal.

Figure 2: A graph composed of two non-overlapping trees.
The prize of each box vertex is 2; the prize of each dot vertex
is 0. The costs of solid edges {(v1, v2), (v4, v5), (v6, v7)} are
1.5, 1.6, 1.7 respectively; the cost of each dash edge is 1.5.

For example, {(v3, v4), (v4, v5)} is induced after removing
{(v1, v2)} from {(v1, v2), (v2, v3), (v3, v4), (v4, v5)}. Subse-
quently, we push the maximum-net-weight subtree in each
of the induced new trees into the queue with the priorities of
their net-weights. For example, we push {(v4, v5)}, which is
the maximum-net-weight subtree in {(v3, v4), (v4, v5)}, into
the queue with the priority of 2.4. We keep doing this until
k subtrees are popped out into the solution.

By applying the Goemans-Williamson growing scheme to
cluster vertices into the same set of non-overlapping trees
for the pruning process, our improved solutions are always
better than or equal to those of Hegde et al.’s FGWA.
For example, in Figure 2, we can produce the solution
{(v1, v2), (v4, v5)}, which has a larger net-weight than Hegde
et al.’s solution {(v1, v2), (v6, v7)}. The time complexity of
producing our improved solutions is O(d|E|log|V | + k|V |),
where O(k|V |) corresponds to our improved pruning process
above. We note that the set of non-overlapping trees pro-
duced via the Goemans-Williamson growing scheme are raw
solution trees. Since the pruning process is implemented on
these raw solution trees, the time complexity of producing
our improved solutions can be considered as O(d|E|log|V |+
k|Vraw solu|), while the time complexity of Hegde et al.’s
FGWA can be considered as O(d|E|log|V | + |Vraw solu|),
where Vraw solu is the set of vertices in these raw solution
trees. We further note that the number of query nodes is
often much smaller than the number of vertices in practice,
i.e., |Q| � |V | (e.g. researchers in a single area are of-
ten a fraction of researchers in all areas). As a result, we
have |Vraw solu| � |V |. Moreover, we often have |V | < |E|
and a limited value of k in practice. Consequently, we have
O(d|E|log|V | + k|Vraw solu|) ≈ O(d|E|log|V | + |Vraw solu|),
which means that our improved solutions and Hegde et al.’s
FGWA have nearly the same scalabilities in practice. We
will later show this via experiments.

3. METHODOLOGY
In this section, we present our complete methodology for

hunting multiple bumps in graphs.

3.1 The NP-hardness in trees
As stated above, given a graph, we first cluster vertices

into a set of non-overlapping trees, and then hunt multi-
ple bumps in this set of non-overlapping trees. Here, we
show the NP-hardness of hunting multiple bumps in a set of
non-overlapping trees. First, we define the Prize-Collecting
Steiner Forest Problem in Trees (PCSFPT) as follows.

Problem 3 (PCSFPT). Given a set of non-
overlapping trees ∪Θi(VΘi , EΘi , w, c); and a target number
k ∈ N, the Prize-Collecting Steiner Forest Problem in
Trees is to find k non-overlapping subtrees of these trees:
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Csum(Vsum, Esum) = ∪k
m=1Cm(VCm , ECm) such that the

net-weight of these subtrees:

w(Csum) =
∑

v∈Vsum

w(v)−
∑

e∈Esum

c(e) (7)

is maximized.

Since the connectivity of G is not specified in the defi-
nition of PCSFP, PCSFPT can be considered as a special
case of PCSFP where G is a set of non-overlapping trees,
i.e., a forest. Thus, hunting multiple bumps in a set of non-
overlapping trees can be transformed to PCSFPT via The-
orem 1. We prove the NP-hardness of PCSFPT as follows.

Theorem 2. PCSFPT is NP-hard.

Proof. We prove the NP-hardness of PCSFPT by prov-
ing the NP-completeness of the decision version of PCSFPT
via a reduction from the Boolean 3-satisfiability (3-SAT)
problem [24]. The decision version of PCSFPT is as follows:
given a set of non-overlapping trees ∪Θi(VΘi , EΘi , w, c); a
target number k ∈ N; and a constant M , are there k
non-overlapping subtrees of these trees: Csum(Vsum, Esum)
such that

∑
v∈Vsum

w(v) −
∑

e∈Esum
c(e) ≥ M? The 3-

SAT problem is as follows: given a collection of clauses
CL = {c1, c2, · · · , cn} on a set of Boolean variables BV =
{b1, b2, · · · , bk} such that |ci| = 3 | ∀ci ∈ CL, is there a truth
assignment for BV that satisfies all the clauses in CL?

First, a given solution to the decision version of PCSFPT
can be verified in polynomial time, which means that the
decision version of PCSFPT is in NP. Then, we give the
reduction as follows. For each variable bi ∈ BV , we have
a root vertex r(bi) and a literal class Vi = {v(bi), v(bi)} of
two literal vertices representing the positive and negative
literals respectively. There are k root vertices and k literal
classes in total. We connect each r(bi) with v(bi) and v(bi)
by an edge of cost δ respectively. For each clause ci ∈ CL,
we create a clause class Vk+i that contains a clause vertex
vi(l) for each literal l in ci. We connect each clause vertex
vi(l) by an edge of cost δ to the corresponding literal vertex
v(l). The prizes of root vertices are P , and P � δ. For
each clause class Vk+i, we select a single clause vertex vi(l)
in Vk+i and associate vi(l) with the prize of P . Every root
vertex is connected with at least one of these special clause
vertices. The prizes of all the other vertices are 0. The
graph above is a set of non-overlapping trees. An instance
of the decision version of PCSFPT in this graph is that: are
there k non-overlapping subtrees: Csum(Vsum, Esum) such
that

∑
v∈Vsum

w(v)−
∑

e∈Esum
c(e) ≥M = (n+ k)(P − δ)?

Suppose that there are such k non-overlapping subtrees. In
this case, all the root vertices and clause vertices with prizes
of P are in these k non-overlapping subtrees. Since every
root vertex connects at least one of the clause vertices with
prizes of P , these k non-overlapping subtrees contain at least
one literal vertex v(l) in each literal class Vl. Suppose that
there are k+x literal vertices in these k non-overlapping sub-
trees, and x ≥ 0. We have

∑
v∈Vsum

w(v)−
∑

e∈Esum
c(e) =

(n+k)P − (n+k+x)δ. If
∑

v∈Vsum
w(v)−

∑
e∈Esum

c(e) ≥
M = (n+ k)(P − δ), then x = 0, which means that these k
non-overlapping subtrees contain exactly one literal vertex
v(l) in each literal class Vl. As a result, there is a truth as-
signment for BV that satisfies all the clauses in CL. Given
that the 3-SAT problem is among Karp’s original 21 NP-
complete problems [24], the decision version of PCSFPT is
NP-complete. Hence, this theorem holds.

In the above reduction from 3-SAT to PCSFPT, all the
positive vertex prizes are equal and all the edge costs are
equal. This shows that PCSFPT is NP-hard even when all
the positive vertex prizes are equal and all the edge costs are
equal. Solving BHPG in a set of non-overlapping trees can
be transformed to solving PCSFPT via Theorem 1. It can
be seen from Theorem 1 that, in the transformed graph G′,
all the positive vertex prizes, i.e., α+1, are always equal, and
all the edge costs, i.e., βc(e)+1, are equal when β = 0. Thus,
we have the following corollary via the above reduction.

Corollary 1. BHPG is NP-hard even when 1) G is a
set of non-overlapping trees; and 2) β = 0.

3.2 Our fast approximation algorithm in trees
Given a set of k non-overlapping trees, Hegde et al. used

the Goemans-Williamson pruning algorithm [13] to find the
maximum-net-weight subtree in each tree, and then com-
bined these subtrees as a solution. Their method only suits
scenarios where the input is a set of k non-overlapping trees.
Even in these scenarios, their solutions may not have satis-
factorily high qualities. To address these issues, we propose
the Arborescent Bump Hunting Algorithm (ABHA), which
can produce fast and high-quality solutions to PCSFPT for
any input set of non-overlapping trees. There are three
phases in ABHA. We introduce them as follows.

Phase 1: pushing bumps into a max priority queue:
Given a set of non-overlapping trees ∪Θi(VΘi , EΘi , w, c) and
a target number k ∈ N, we first initialize a max priority
queue: QP = ∅ (Step 1). We will later push bumps into this
queue with priorities of their net-weights. By doing this, we
can hunt k large-net-weight bumps by popping out bumps

Algorithm 1 Our Arborescent Bump Hunting Algorithm
(ABHA)

Input: a set of non-overlapping trees ∪Θi(VΘi , EΘi , w, c),
a target number k ∈ N
Output: k non-overlapping subtrees
Csum(Vsum, Esum) = ∪k

m=1Cm(VCm , ECm)

1: Initialize QP = ∅
2: for each non-overlapping tree Θi do
3: nw(v) = w(v), up(v) = 1 | ∀v ∈ VΘi

4: while there is a vertex v: up(v) = 1 & ξ(v) = 1 do
5: if c(v, vadj) < nw(v) then
6: Update nw(vadj) using Equation (9)
7: end if
8: up(v) = 0
9: end while

10: Find vertex r: nw(r) ≥ nw(i) | ∀i ∈ VΘi

11: QP : enqueue([r,Θi];nw(r))
12: end for
13: while |Csum| < k & QP 6= ∅ do
14: QP : dequeue([vtop,Θvtop ];nw(vtop))
15: Θbump = StrongPruning(Θvtop ; r = vtop)
16: Csum = Csum ∪Θbump

17: ∪Θx = Θvtop \Θbump

18: Do Steps 2-12 on ∪Θx

19: end while
20: while |Csum| < k do
21: Esum = Esum \ (i, j)max

22: end while
23: return Csum(Vsum, Esum)
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from this queue. For each non-overlapping tree Θi (Step
2), we associate each vertex in Θi with an nw value that
equals the prize of this vertex, and mark all these vertices
as unprocessed: nw(v) = w(v), up(v) = 1 | ∀v ∈ VΘi (Step
3). If vertex v is processed, then up(v) = 0. We define
the processing degree of vertex v, ξ(v), as the number of its
adjacent vertices that are unprocessed:

ξ(v) =
∑

(v,x)∈EΘi

up(x) (8)

Initially, only leaves have a processing degree of 1. While
there is a vertex v such that up(v) = 1 and ξ(v) = 1 (Step
4), we update the nw values of vertices in Θi as follows. If
c(v, vadj) < nw(v) (Step 5), where vadj is the unprocessed
adjacent vertex to v, then we update nw(vadj) using the
equation below (Step 6).

nw(vadj) = nw(vadj) + nw(v)− c(v, vadj) (9)

Subsequently, we mark vertex v as processed: up(v) = 0
(Step 8). Notably, ξ(vadj) decreases one due to this change.
We iterate the above process until there is no vertex v such
that up(v) = 1 and ξ(v) = 1. This process of updating
nw values is the same with the first few steps of the gen-
eral pruning algorithm [36]. We find vertex r that has the
largest updated nw value (Step 10). The optimality of the
general pruning algorithm for the Node-Weighted Steiner
Tree Problem in Trees (NWSTPT) [36] shows that r is the
root of the maximum-net-weight bump in Θi, and the net-
weight of this bump is nw(r). This bump is possibly in the
solution of ABHA. To speed up ABHA, we do not directly
find and push this bump into QP . Instead, we only push
r (and thus Θi) into QP , with the priority of nw(r) (Step
11). After this phase, the root of the maximum-net-weight
bump in each non-overlapping tree Θi is in QP . Clearly, the
top element in QP is the root of the maximum-net-weight
bump in ∪Θi(VΘi , EΘi , w, c).

Phase 2: popping out bumps from the priority
queue: While k bumps have not been hunted and QP is not
empty yet, i.e., |Csum| < k & QP 6= ∅ (Step 13), we hunt
the maximum-net-weight bump as follows. First, we pop out
the top element in QP (Step 14). Then, we use the strong
pruning algorithm [23] to hunt the maximum-net-weight
bump Θbump for the root vtop (Step 15). We incorporate
the hunted bump into the solution: Csum = Csum ∪ Θbump

(Step 16), and remove the hunted bump from the tree (Step
17). New trees may be induced due to this removal. We
push the maximum-net-weight bumps in the new trees into
QP in the same way as the first phase (Step 18).

Phase 3: guaranteeing the target number k: It is
possible that we cannot hunt k bumps through the above
phase. For example, in scenarios where we have a single in-
put tree and the net-weight of any subtree is smaller than
the net-weight of this input tree, we can only hunt this in-
put tree through the above phase. If we have not hunted k
bumps through the above phase, i.e., |Csum| < k (Step 20),
we remove the largest-cost edges in the hunted bumps, i.e.,
Esum = Esum\(i, j)max (Step 21), until k bumps are hunted.
Ultimately, we return k bumps, i.e., non-overlapping sub-
trees (Step 23). Notably, it is implied that k ≤

∑
|VΘi |, as

otherwise the target number k can never be achieved.

The solution quality of our ABHA: We prove that the
solutions of our ABHA are always better than or equal to

those of Hegde et al.’s method of combining the maximum-
net-weight subtree in each tree as follows.

Theorem 3. The solutions of our ABHA are always bet-
ter than or equal to those of Hegde et al.’s method for solving
PCSFPT.

Proof. Suppose that ∪k
i=1Θi(VΘi , EΘi , w, c) are k non-

overlapping trees; the roots of the maximum-net-weight sub-
trees in each ∪k

i=1Θi are r1, · · · , rk; and their priorities in
QP satisfy nw(r1) ≥ · · · ≥ nw(rk). Since there are k non-
overlapping trees, ABHA hunts k bumps in Phase 2, and
Phase 3 is not triggered. Suppose that the roots of the
hunted k bumps by ABHA are x1, · · · , xk; and their priori-
ties in QP satisfy nw(x1) ≥ · · · ≥ nw(xk). The optimality
of the general pruning algorithm for NWSTPT [36] shows

that the net-weight of the solution of ABHA is
∑k

i=1 nw(xi),
where the nw values are the priorities of these roots in QP .
Similarly, the net-weight of the solution of Hegde et al.’s
method is

∑k
i=1 nw(ri). There are two possible scenarios:

Scenario 1: @i ∈ {1, · · · , k} xi 6= ri, i.e., the roots of the
hunted k bumps by ABHA are r1, · · · , rk. In this scenario,
the net-weights of the solutions of both ABHA and Hegde
et al.’s method are

∑k
i=1 nw(ri).

Scenario 2: ∃i ∈ {1, · · · , k} xi 6= ri, i.e., there is at least one
root of the hunted k bumps by ABHA that is not the root of
the maximum-net-weight bump in an input tree. Suppose
that xi is such a root, and rj is the root of a maximum-
net-weight bump that is not hunted by ABHA. Since QP

is a max priority queue, we have nw(xi) ≥ nw(rj). Thus,∑k
i=1 nw(xi) ≥

∑k
i=1 nw(ri), i.e., the net-weight of the so-

lution of ABHA is larger than or equal to that of Hegde et
al.’s method. Hence, this theorem holds.

Given an instance for PCSFPT, it is implied that k ≤∑
|VΘi | and there is at least one vertex with a positive prize.

Therefore, there is always a feasible solution to PCSFPT
that has a positive net-weight. For example, a set of k ver-
tices in which at least one vertex has a positive prize is
such a feasible solution. The above proof also indicates that
the net-weights of the solutions of our ABHA are always
positive, as these net-weights are larger than or equal to∑k

i=1 nw(ri). We prove the approximation guarantee of our
ABHA for solving PCSFPT as follows.

Theorem 4. Our ABHA has an approximation guaran-
tee of 1/k for solving PCSFPT.

Proof. Given a set of non-overlapping trees ∪Θi, let
ΘABHA and Θopt be the solution of ABHA and the op-
timal solution respectively. Suppose that Cmax is the
maximum-net-weight component in ∪Θi. Clearly, Cmax is
the first bump hunted by ABHA in Phase 2, and we have
w(ΘABHA) ≥ w(Cmax). Let Cmaxopt be the maximum-net-
weight bump in the optimal solution to PCSFPT. We have
w(Cmax) ≥ w(Cmaxopt). Thus, we have

kw(ΘABHA) ≥ kw(Cmax) ≥ kw(Cmaxopt) ≥ w(Θopt) (10)

Hence, this theorem holds.

The time complexity of our ABHA: Our ABHA has
a polynomial time complexity of O(k|V |), where |V | =∑
|VΘi |. The details are as follows: the time complexity

of Phase 1 is O(|V |), as the time complexity of updating
nw values by traversing all the vertices is O(|V |); the time
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complexity of Phase 2 is O(k|V |), as the time complexity
of de-queue for priority queues is O(log|V |), the time com-
plexity of the strong pruning algorithm is O(|V |) [23], and
we need to implement it k times in the worst case; and the
time complexity of Phase 3 is O(|V |), as we need to locate
and remove the largest-cost edges, and

∑
|EΘi | <

∑
|VΘi |.

3.3 Our improved fast approximation algo-
rithm for hunting bumps in graphs

We improve Hegde et al.’s FGWA using our ABHA. We re-
fer to the improved algorithm as the Graphical Bump Hunt-
ing Algorithm (GBHA). There are two phases in GBHA.

Phase 1: clustering vertices: Same as FGWA, we em-
ploy the fast implementation of the Goemans-Williamson
growing scheme [20, 21] to cluster vertices into k non-
overlapping trees (Step 1).

Phase 2: hunting k non-overlapping subtrees: Dif-
ferent from FGWA that combines the maximum-net-weight
subtree in each of k non-overlapping trees, we apply our
ABHA to find k non-overlapping subtrees (Step 2). These
subtrees are the solution of GBHA (Step 3).

The solution quality of our GBHA: Our GBHA is dif-
ferent from Hegde et al.’s FGWA in the second phase. Since
the solutions of our ABHA are always better than or equal
to those of Hegde et al.’s method in the second phase (see
Theorem 3), we have the following corollaries.

Corollary 2. The solutions of our GBHA are always
better than or equal to those of Hegde et al.’s FGWA for
solving PCSFP.

Corollary 3. Given a graph G(V,E,w, c); and a target
number k ∈ N, our GBHA returns k non-overlapping trees
such that∑

e∈Esum
c(e) + 2

∑
i∈V \Vsum

w(i) ≤
2
∑

e∈EOPT
c(e) + 2

∑
i∈V \VOPT

w(i)
(11)

2
∑

i∈Vsum
w(i)−

∑
e∈Esum

c(e) ≥
2
∑

i∈VOPT
w(i)− 2

∑
e∈EOPT

c(e)
(12)

where Csum(Vsum, Esum) and COPT (VOPT , EOPT ) are the
solution of our GBHA and the optimal solution to PCSFP
respectively.

Equation (11) is from the approximation guarantee of
FGWA, and induces Equation (12). Equation (11) shows
that our GBHA has an approximation guarantee of 2 with
respect to minimizing c(Csum), while the work of Feigen-
baum et al. [10] shows that it is NP-hard to approximately
maximize w(Csum) within any constant factor.

The time complexity of our GBHA: Our GBHA has a
polynomial time complexity of O(d|E|log|V |+ k|V |), as the

Algorithm 2 Our Graphical Bump Hunting Algorithm
(GBHA)

Input: a graph G(V,E,w, c); a target number k ∈ N
Output: k non-overlapping trees
Csum(Vsum, Esum) = ∪k

m=1Cm(VCm , ECm)

1: ∪k
i=1Θi(VΘi , EΘi , w, c) = FastGW (G)

2: Csum(Vsum, Esum) = ABHA(∪k
i=1Θi, k)

3: Return Csum(Vsum, Esum)

time complexity of the fast implementation of the Goemans-
Williamson growing scheme is O(d|E|log|V |) [20], where d
is the precision of prizes and costs, and the time complexity
of our ABHA is O(k|V |).

3.4 Our adaptions of the existing bump hunt-
ing algorithms in graphs

Three heuristic algorithms have been developed by Gionis
et al. [12] for hunting a single bump in an unweighted graph:
Breadth-first search trees (BF-ST), Random spanning trees
(Random-ST), and Smart spanning trees (Smart-ST). The
main idea is to apply their TreeOptimal algorithm to hunt
a high-discrepancy bump in a spanning tree of the graph.
Here, we adapt these algorithms by replacing their TreeOp-
timal algorithm with our ABHA.

Our adapted BF-ST: First, we select a root query node,
and add dummy edges between this query node and a ran-
dom query node in each maximal component that contains
at least one query node and is disconnected with the root
query node. Subsequently, we find the breadth-first search
tree from the root query node, and remove dummy edges
from this tree for generating a set of non-overlapping trees
that contains all the query nodes. We apply ABHA to hunt
k bumps in this set of non-overlapping trees. Gionis et al.
select every query node to be a root query node for produc-
ing multiple heuristic solutions, and then consider the best
solution as the final solution. It is too slow to do this in large
graphs. Thus, we only randomly select a pre-fixed number of
query nodes to be root query nodes. Since the time complex-
ity of checking the graph connectivity is O(|V | + |E|) [37];
the time complexity of breadth-first search is O(|V | + |E|)
[9]; and the time complexity of our ABHA is O(k|V |), the
time complexity of our adapted BF-ST is O(mk|V |+m|E|),
where m is the number of selected root query nodes.

Our adapted Random-ST: First, we assign new edge
costs randomly. Then, we add a dummy vertex to connect
all the other vertices using dummy edges with large costs
for guaranteeing that there is a spanning tree that spans all
the query nodes. We find a Minimum Spanning Tree (MST)
for the above edge costs as a random spanning tree, and re-
move dummy edges from this tree for generating a set of
non-overlapping trees that contains all the query nodes. We
apply ABHA to hunt k bumps in this set of non-overlapping
trees. We sample multiple random spanning trees for pro-
ducing multiple heuristic solutions, and then consider the
best solution as the final solution. Since the time complex-
ity of adding and removing a dummy vertex for an adja-
cency list is O(|V |+ |E|); the time complexity of finding an
MST is O(|E|+ |V |log|V |) [31]; and the time complexity of
our ABHA is O(k|V |), the time complexity of our adapted
Random-ST is O(p|E|+ p|V |log|V |+ pk|V |), where p is the
number of sampled random spanning trees.

Our adapted Smart-ST: First, like the original Smart-
ST, we assign new edge costs as follows.

c′(u, v) = 2− I{u ∈ Q} − I{v ∈ Q} (13)

where I{·} is the indicator function. We add a dummy ver-
tex to connect all the other vertices using dummy edges with
large costs for guaranteeing that there is a spanning tree that
spans all the query nodes. We find an MST for the above
edge costs as a smart spanning tree, and remove dummy
edges from this tree for generating a set of non-overlapping
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trees that contains all the query nodes. We apply ABHA to
hunt k bumps in this set of non-overlapping trees. Since the
time complexity of adding and removing a dummy vertex
for an adjacency list is O(|V | + |E|); the time complexity
of finding an MST is O(|E| + |V |log|V |) [31]; and the time
complexity of our ABHA is O(k|V |), the time complexity of
our adapted Smart-ST is O(|E|+ |V |log|V |+ k|V |).

4. EXPERIMENTAL EVALUATION
We conduct experiments using 8 virtual machines, each

with 16 GB RAM, on a cloud with Intel 8168 Processors3.

4.1 The experiment settings
Datasets: We apply two real datasets as follows.
1) Twitter: It was collected by Nikolakaki et al. [29] for
building a Twitter activity network. This network corre-
sponds to the road network in Austin. Each vertex repre-
sents a road intersection, and each edge represents a road.
Each vertex is associated with a prize that is the number of
geo-located Twitter posts near the corresponding road in-
tersection. Each edge is associated with a cost that is the
length of the corresponding road. There are 66,200 vertices
and 92,707 edges in total.
2) DBLP: We collect it from the DBLP website [2]. We
use it to build a social network, where vertices represent
researchers, and two researchers are connected if they have
co-authored publication(s). Each researcher is associated
with a list of keywords that are in the titles of his or her
publications. We use pairwise Jaccard distances as edge
costs between researchers, i.e., c(u, v) = 1− |Vu ∩ Vv|/|Vu ∪
Vv|, where Vu and Vv are the sets of adjacent vertices of u
and v respectively. There are 1,094,552 vertices, 6,911,318
edges, and 82,492 keywords in total.

Algorithms: We compare five algorithms as follows.
1) Hegde et al.’s FGWA [21]: It is Hegde et al.’s algorithm
for solving PCSFP.
2) Our GBHA: It is our improvement on Hegde et al.’s
FGWA. Its solutions are always better than or equal to those
of Hegde et al.’s FGWA (details in Corollary 2).
3) Our adapted BF-ST: It is our adaption of Gionis et al.’s
[12] first bump hunting algorithm in graphs.
4) Our adapted Random-ST: It is our adaption of Gionis et
al.’s [12] second bump hunting algorithm in graphs.
5) Our adapted Smart-ST: It is our adaption of Gionis et
al.’s [12] third bump hunting algorithm in graphs.

The running times of our adapted BF-ST and Random-ST
are proportional to m and p respectively (details in Section
3.4). We set m = p = 10 for guaranteeing that our adapted
BF-ST and Random-ST are fast enough to be implemented.

Parameters: We vary five parameters as follows.
1) |V |: It is the number of vertices.
2) |Q|: It is the number of query nodes.
3) k: It is the target number of bumps.
4) α: It is the regulating weight between the numbers of
query and non-query nodes in Equation (1).
5) β: It is the regulating weight between component dis-
crepancies and edge costs in Equation (2).

Metrics: We evaluate two metrics as follows.
1) w(Csum): It is the objective value of PCSFP, and is equiv-
alent to that of BHPG (details in the proof of Theorem 1).

3The codes and datasets are available at https://github.
com/YahuiSun/bump_hunting

Figure 3: The greedy algorithms (best viewed in color)

2) trun: It is the running time of algorithms.
Notably, the original BF-ST, Random-ST and Smart-ST

can hunt multiple bumps by iteratively hunting and remov-
ing a single bump. Such a greedy implementation does not
consider edge costs, and is too slow to be implemented in
large graphs due to 1) the requirement of bump roots in the
TreeOptimal algorithm [12] (a detailed comparison of rooted
and unrooted pruning algorithms is in [36]); and 2) the re-
quirement of finding a large number of spanning trees (e.g.,
such a greedy implementation of Smart-ST finds k smart
spanning trees for hunting k bumps). As a result, such
a greedy implementation cannot hunt high-quality bumps
in large weighted graphs. We show this in Figure 3, for
which the implementation details are the same with our fol-
lowing experiments in Figures 5a (1-A,B), and we also set
m = p = 10 for such a greedy implementation of BF-ST and
Random-ST. Due to the above issues, we do not compare
such a greedy implementation in our following experiments.

4.2 The implementation details
Here, we describe how the experiments are implemented.

Building raw networks: We read raw datasets to build
the raw Twitter and DBLP networks as described above.

Querying nodes: Query nodes are nodes that exhibit a
property of interest. For Twitter, we set a random Lower
Bound (LB) of prizes, and consider vertices that have larger
or equal prizes as query nodes. For DBLP, we first randomly
query a keyword, and then randomly find some other key-
words that share researchers with the queried keyword. The
set of all these keywords is a set of correlated keywords with
the queried keyword being the core. We consider vertices
that represent researchers who are associated with at least
one of these correlated keywords as query nodes. The reason
for finding a set of correlated keywords is that the number of
researchers who are associated with a single keyword is often
limited. As a result, considering only vertices that represent
researchers who are associated with the queried keyword as
query nodes often makes the generated instances too trivial
to solve for the experimental evaluation.

Varying parameters: We vary five parameters as follows.
Varying |V |: We vary |V | to the maximum in Figures 5a-5b
(1) for Twitter and DBLP respectively.
Varying |Q|: The results of varying |Q| by varying the LB
of prizes for Twitter and the number of correlated keywords
for DBLP are in Figures 4 (1-2). We vary |Q| in Figures 5a-
5b (2) by randomly selecting an LB of prizes in the range
of [10, 20] for Twitter, and randomly selecting a set of 30
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Figure 4: Some statistic results on Twitter and DBLP

correlated keywords for DBLP. We visualize such ranges of
|Q| that the experiment results are visualized clearly.
Varying k: We explain the logic behind varying k as fol-
lows. We are interested in components with positive qual-
ities. Such components represent regions or communities
that exhibit the property of interest in the Twitter or DBLP
network. We consider such components as bumps. We fur-
ther neglect bumps that overlap with another bump that
has a higher quality (a tie is broken randomly) for guaran-
teeing that bumps do not overlap with each other, as oth-
erwise different bumps may correspond to the same region
or community. We refer to such non-overlapping bumps as
concrete bumps. The number of concrete bumps in a graph
can then be counted by iteratively finding and removing the
highest-quality concrete bump. Theorem 1 indicates that
finding the highest-quality concrete bump is equivalent to
solving the Prize-Collecting Steiner Tree Problem [23], for
which a state-of-the-art solution approach is the Goemans-
Williamson scheme [13, 20, 36]. Applying the Goemans-
Williamson scheme to count the number of concrete bumps
in a graph by iteratively finding and removing the highest-
quality concrete bump can be done efficiently by 1) applying
the Goemans-Williamson growing scheme to cluster vertices
to such a degree that only one active cluster remains; and
2) applying Steps 1-19 in our ABHA (push r into QP when
nw(r) > 0 in Step 11; and without |Csum| < k in Step
13) to hunt concrete bumps in both active and non-active
clusters. The time complexity of conducting the above two
phases is O(d|E|log|V | + h|V |), where h is the number of
concrete bumps in a graph. We visualize the numbers of
concrete bumps with respect to |Q| (when α = β = 1) for
Twitter and DBLP in Figures 4 (3-4). The running times
of counting each of these numbers are around 1.5s and 250s
for Twitter and DBLP respectively.

When k ≤ h, the top-k highest-quality concrete bumps
are hunted, otherwise divided concrete bumps are hunted.
In practice, it is often preferable to set k ≤ h for guaran-
teeing that concrete bumps are not divided (e.g. hunting
bumps in the DBLP network for analyzing naturally formed
communities). We vary k in Figures 5a-5b (3) for Twitter
and DBLP respectively. For Twitter, the number of concrete
bumps is 1104, and the percentage of these concrete bumps
that contain more than one vertex is 16%. For DBLP, the

number of concrete bumps is around 750, and the percent-
age of these concrete bumps that contain more than one
vertex is around 30%. This means that most of these con-
crete bumps only contain a single vertex and thus have the
same low quality, while, in practice, it is often preferable to
hunt large and high-quality bumps that have collective rep-
resentations (e.g. regions or communities). Following this
logic and with the statistic results above, we vary k in the
ranges of [100, 150] and [150, 200] for Twitter and DBLP
respectively for hunting large and high-quality bumps.

Furthermore, we note that, as k is closer to h, w(Csum)
and trun values of our GBHA and Hegde et al.’s FGWA
become closer, since the number of concrete bumps in each
cluster of vertices produced via the Goemans-Williamson
growing scheme is closer to 1 (see Figure 2). In the extreme
scenario where k = h and the Goemans-Williamson growing
scheme returns h concrete bumps, w(Csum) and trun values
of our GBHA and Hegde et al.’s FGWA are the same. This
does not undermine our contributions in this paper, since
setting k close to h requires the prior-knowledge of h, and
this prior-knowledge is obtained via the above two phases
that incorporate our ABHA, which is the basic difference
between our GBHA and Hegde et al.’s FGWA.
Varying α and β: It is preferable to set α large, as other-
wise small vertex prizes turn bumps into singular vertices
(see Equation (5)). It is preferable to set β small, as other-
wise large edge costs turn bumps into singular vertices (see
Equation (6)). In Figures 5a-5b (4-5), we vary α and β in
the ranges of [1, 1.1] and [0, 1] respectively for Twitter, while
in the ranges of [1, 1.1] and [0.9, 1] respectively for DBLP.
We select these ranges in such a way that w(Csum) values
of different algorithms are visualized clearly.

Generating instances: After the process above, we have
raw networks, query nodes and parameters to generate in-
stances. For each instance, we select the first |V | vertices
from the raw network, and build a graph G(V,E, c) using
these vertices and all the edges between them in the raw net-
work. Since graph connectivity is not specified in BHPG, we
do not check the connectivity of G. We update vertex prizes
and edge costs to generate an instance graph G′(V,E,w′, c′)
for PCSFP using Equations (5-6).

Producing and visualizing experiment results: The
experiment results are visualized in Figure 5. In each pair
of sub-figures, e.g. Figures 5a (1-A,B), we target a dataset,
and randomly vary a parameter 2000 times to generate 2000
instances. Then, we apply algorithms to solve these in-
stances. Since our adapted algorithms do not scale well to
large graphs, we only implement our adapted algorithms for
Twitter. Since the changes of w(Csum) values are roughly
linear, we use smoothing lines of the Generalized Additive
Model [41] to visualize w(Csum) values, while we use scatter
plots to visualize trun values. To visualize trun values of
different algorithms clearly, we use the exponential notation
of trun values in some figures, such as Figure 5a (1-B).

4.3 The experiment results
Varying |V |: We vary |V | in Figures 5a-5b (1). We observe
that w(Csum) values of our GBHA are the largest. This has
been observed in the following experiment results as well.
We also observe that w(Csum) increases with |V |. The rea-
son is that bumps with larger net-weights may exist in larger
graphs. We further observe that, different from our adapted
algorithms, both our GBHA and Hegde et al.’s FGWA scale
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(a) Twitter (default values: |V | = 66200; the LB of prizes is 10 for |Q|; k = 100; α = β = 1)

(b) DBLP (default values: |V | = 1094552; the number of correlated keywords is 30 for |Q|; k = 150; α = β = 1)

Figure 5: The experiment results in Twitter and DBLP (best viewed in color)

well to large graphs. This verifies the usefulness of the fast
implementation of the Goemans-Williamson scheme [20] in
large graphs.

Varying |Q|: We vary |Q| in Figures 5a-5b (2). We observe
that w(Csum) increases with |Q|. The reason is that bumps
with larger net-weights may exist in graphs with more query
nodes. We also observe that scatter plots for Twitter are
discontinuous with respect to |Q|. The reason is that vertex
prizes in Twitter are integers, and we vary |Q| by randomly
selecting an LB of prizes in the range of [10, 20] (details in
Section 4.2). We further observe that trun values of our
GBHA and Hegde et al.’s FGWA increase with |Q|. The
reason is that the number of initial clusters in the Goemans-
Williamson growing scheme equals the number of vertices
with positive prizes, which is |Q| (see Theorem 1).

Varying k: We vary k in Figures 5a-5b (3). We observe
that w(Csum) increases with k. The reason is that a larger
number of bumps has a larger net-weight. We also observe

that trun values of our GBHA and Hegde et al.’s FGWA de-
crease with k. The reason is that the Goemans-Williamson
growing scheme terminates when k out of |Q| active clusters
of vertices remain. Nevertheless, it may not be preferable to
set k close to the number of concrete bumps in many cases,
as 1) doing this requires counting the number of concrete
bumps, which is slow; and 2) most concrete bumps only
contain a single vertex, and thus are less meaningful to be
hunted in practice (details in Section 4.2).

Varying α: We vary α in Figures 5a-5b (4). We observe
that w(Csum) increases with α. The reason is that node
weights increase with α (see Equation (5)). We further ob-
serve that trun does not change much with α.

Varying β: We vary β in Figures 5a-5b (5). We observe
that w(Csum) decreases with β. The reason is that edge
costs increase with β (see Equation (6)). To visualize differ-
ent w(Csum) values of our GBHA and Hegde et al.’s FGWA
clearly, we do not vary β to 0 for DBLP. Nevertheless, we
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Table 1: The relative bump qualities (FGWA: 100%)

Datasets GBHA BF-ST Random-ST Smart-ST
Twitter 105.38% 84.04% 82.27% 101.86%
DBLP 104.41% N/A N/A N/A

note that w(Csum) values of our GBHA and Hegde et al.’s
FGWA for DBLP are close when β = 0. The reason is that
most hunted bumps only contain two query nodes and an
edge, and, since edge costs are neglected when β = 0, the
qualities of these bumps are equal when β = 0. We further
observe that trun does not change much with β.

Evaluating algorithms: We present the relative bump
qualities of algorithms in Table 1 by averaging their w(Csum)
values in the above experiment results. We observe that
bumps hunted by our GBHA have the highest quality. We
also observe that bumps hunted by our adapted Smart-ST
have higher qualities than those hunted by Hegde et al.’s
FGWA for Twitter. We further observe that our adapted
BF-ST, Random-ST and Smart-ST do not scale well to
large graphs. In comparison, our GBHA and Hegde et
al.’s FGWA scale well to large graphs. The reason is that
the time complexities of our GBHA and Hegde et al.’s
FGWA can be considered as O(d|E|log|V | + k|Vraw solu|)
and O(d|E|log|V | + |Vraw solu|) respectively, which are ap-
proximately equal in practice (details in Section 2.3). Since
our GBHA is better than Hegde et al.’s FGWA with respect
to bump quality and similar to Hegde et al.’s FGWA with re-
spect to scalability, it may be preferable to apply our GBHA
for hunting multiple bumps in graphs.

5. APPLICATIONS
In this section, we extend two existing bump hunting ap-

plications by hunting multiple bumps in a weighted graph.

5.1 Finding communities of researchers
Gionis et al. [12] showed that, given a social network, we

can find a community of a property of interest by hunting
a bump for a set of query nodes representing persons who
exhibit this property of interest. Here, we extend this ap-
plication by finding multiple communities of a property of
interest. We take the DBLP dataset as an example. The
step-by-step implementation details are as follows.

Loading the social network: We load the DBLP net-
work in Section 4.1. Recall that vertices and edges represent
researchers and collaborations between researchers respec-
tively; each researcher is associated with a list of keywords;
and each edge is associated with a cost that indicates the
dis-closeness between researchers.

Querying researchers: Given a set of correlated keywords
(details in Section 4.2), we consider researchers who are as-
sociated with at least one of these keywords as queried.

Generating a Steiner Forest instance: With the DBLP
network and the queried researchers, which are query nodes,
we generate the Prize-Collecting Steiner Forest instance
G′(V,E,w′, c′) using Theorem 1. Here, the regulating
weights incorporated in this process are α = β = 1.

Finding the top-k communities: We hunt the top-k
bumps by applying our GBHA to solve PCSFP in G′. These
bumps represent communities of the queried researchers who
are closely connected. We visualize the second and third

Table 2: Statistic results on detected communities

Algorithms |Vin| Density g(C) |Ein|/|Eout|
Our GBHA 380 0.019 378 0.04
Newman [28] 73577 0.00014 -72780 1.22
Blondel [5] 199605 0.000068 -198359 53.22

bumps for the single keyword “snake robots” in Figure 1 (no-
tably, communities represented by tree-structured bumps
intuitively contain all the edges between vertices in these
bumps). Such visualizations help us analyze the develop-
ment of a specific research area vividly.

Differentiating from conventional community detec-
tion approaches: Our bump hunting approach is differ-
ent from conventional community detection approaches (e.g.
[28, 5, 11, 26, 42]) in its unique objective of discrepancy max-
imization. The algorithms developed by Newman [28] and
Blondel et al. [5] are two widely-used conventional commu-
nity detection algorithms. These two algorithms aim to de-
tect communities with a large number of within-community
edges and a small number of between-community edges. In
Table 2, we compare the top-5 largest communities detected
by each of these two algorithms with the top-5 communi-
ties detected by our GBHA for each of 10 randomly queried
sets of 10 correlated keywords (details in Section 4.2). Four
metrics are used: 1) |Vin|: the average number of vertices
inside communities; 2) Density [8]: the average density of
communities; 3) g(C): the discrepancy (for communities de-
tected by two conventional algorithms, we randomly select
a set of 10 correlated keywords from the keywords associ-
ated with researchers inside communities, and then consider
researchers who are associated with at least one of these
keywords as query nodes); and 4) |Ein|/|Eout|: the aver-
age number of edges inside communities divide the aver-
age number of edges connecting communities to the outside.
We observe that communities detected by our GBHA have
a smaller |Vin|. The reason is that the number of query
nodes is limited. Since the number of collaborations of each
researcher is often limited in reality, smaller communities
are often denser. As a result, communities detected by our
GBHA have a larger Density. We also observe that com-
munities detected by two conventional algorithms have large
negative g(C), which indicates that these communities may
not exhibit a property of interest frequently. We further
observe that communities detected by our GBHA have a
smaller |Ein|/|Eout|. The reason is that queried researchers
have a lot of collaborations with not-queried researchers,
which indicates that research communities of a property of
interest may not be echo chambers of this property of in-
terest in reality. These comparison results verify the unique
usefulness of bump hunting for community detection.

5.2 Finding regions with high levels of activity
Rozenshtein et al. [32] showed that, given an activity net-

work, we can find a region that exhibits a high level of activ-
ity via the Prize-Collecting Steiner Tree approach. Due to
the similarity between the Prize-Collecting Steiner approach
and the bump hunting approach (see Theorem 1), we con-
sider this application as bump hunting. Here, we extend this
application by finding multiple regions that exhibit high lev-
els of activity. We take the Twitter dataset as an example.
The step-by-step implementation details are as follows.
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Figure 6: Finding regions that exhibit high levels of Twit-
ter activity in Austin. The orange, red and magenta lines
are the top-3 bumps, which correspond to the downtown,
the South Congress Avenue, and the East Sixth Street.

Loading the activity network: We load the Twitter ac-
tivity network in Section 4.1. Recall that vertices and edges
represent road intersections and roads respectively; each
road intersection is associated with an activity level that is
the number of nearby Twitter posts; each edge is associated
with a cost this is the corresponding road distance.

Querying road intersections: Given a lower bound of
activity level, we consider road intersections that have higher
or equal activity levels as queried. Here, we set the lower
bound to 100.

Generating a Steiner Forest instance: With the ac-
tivity network and the queried road intersections, which are
query nodes, we generate the Prize-Collecting Steiner Forest
instance G′(V,E,w′, c′) using Theorem 1. Here, the regu-
lating weights incorporated in this process are α = β = 1.

Finding the top-k regions: We hunt the top-k bumps by
applying GBHA to solve PCSFP in G′. These bumps rep-
resent regions that exhibit high levels of close activity. We
visualize the top-3 bumps in Figure 6. Such visualizations
help us analyze the behaviors of Twitter users, and allocate
governmental resources for building smart cities. Further-
more, techniques of detecting activities (e.g. crowdsensing
[18]) can be incorporated to extend this work in the future.

6. RELATED WORK
The origin and development of bump hunting: The
term “bump hunting” originated in the field of high energy
physics in the middle of the 20th century (e.g. [7, 33]), when
it referred to the activity of detecting real bumps in mass
spectra in scattering experiments. Orear and Cassel (1971)
[30] described bump hunting as “one of the major current
activities of high-energy physicists”, while Trigg (1970) [38]
criticized such a rash in a sarcastic way. Even with this
controversy, bump hunting has been continuously studied
and become an important data analysis approach (e.g. [14,
19, 3, 22]). The traditional bump hunting methods suit Eu-
clidean datasets, but not graph datasets. Recently, Gionis
et al. (2017) [12] explored bump hunting for graph datasets.
Hunting bumps in graphs is different from the other graph
mining approaches (e.g. [6, 4, 27, 17, 40]) in its unique ob-
jective of discrepancy maximization. Gionis et al. hunted a
single bump in an unweighted graph. Here, we extend their
work by hunting multiple bumps in a weighted graph.

The prize-collecting Steiner approach to data ana-
lytics: The prize-collecting Steiner problems, of which the

most well-known one is the Prize-Collecting Steiner Tree
Problem (PCSTP) [23], have been studied intensively in the
last decade. Given a graph, PCSTP is to find such a tree
that edge costs in this tree and positive vertex prizes not
in this tree are minimized simultaneously. A lot of work
has been done to explore the Prize-Collecting Steiner Tree
approach to data analytics (e.g. [39, 32, 34, 12]). Differ-
ent from PCSTP, Hegde et al. (2015) [21] formulated the
Prize-Collecting Steiner Forest Problem (PCSFP) for graph-
structured sparsity. PCSFP is more general than PCSTP in
that, instead of finding a single tree, it finds a set of k non-
overlapping trees. Their Prize-Collecting Steiner Forest al-
gorithm [21] is the only existing and thus the state-of-the-art
algorithm for solving PCSFP to date. Here, we improve this
algorithm for hunting multiple bumps in a weighted graph.

7. CONCLUSIONS
In this paper, we extend the existing bump hunting re-

searches by hunting multiple bumps in a weighted graph.
Initially, we prove that this extended bump hunting problem
can be transformed to PCSFP. Then, we prove that PCSFP
is NP-hard even in trees. Subsequently, we propose a fast
approximation algorithm for solving PCSFP in trees. By
incorporating this algorithm, we improve the state-of-the-
art algorithm for solving PCSFP in graphs, and prove that
the solutions of our improvement are always better than
or equal to those of the state-of-the-art algorithm. More-
over, we adapt the existing bump hunting algorithms for
solving our extended bump hunting problem. We evaluate
our methodology via real datasets, and show that 1) our
improvement scales well to large graphs, while producing
solutions that dominate those of the state-of-the-art algo-
rithm; and 2) our adaptation of an existing bump hunting
algorithm can also produce solutions that are better than
those of the state-of-the-art algorithm in some cases.

Acknowledgment: This work is funded by MOE2016-T2-
2-022 from the Singapore Ministry of Education.

APPENDIX
The proof of Theorem 1:

Proof. Let CB
sum(Vsum, E

B
sum) = ∪k

m=1Cm(VCm , ECm)
be the optimal solution to BHPG in G. Subsequently, let
Csum(Vsum, Esum) ⊆ CB

sum(Vsum, E
B
sum) be a set of k non-

overlapping trees. We have |Vsum| = k + |Esum|. Since
CB

sum is a set of k non-overlapping trees when β > 0, we
have EB

sum = Esum when β > 0. Thus,∑k
m=1 Qua(Cm)

=
∑k

m=1[g(Cm)− βcCm ]
= α|Vsum ∩Q| − |Vsum \Q| − β

∑
e∈Esum

c(e)
= (α+ 1)|Vsum ∩Q| − (|Vsum ∩Q|+ |Vsum \Q|)
−β
∑

e∈Esum
c(e)

= (α+ 1)|Vsum ∩Q| − |Vsum| − β
∑

e∈Esum
c(e)

=
∑

v∈Vsum∩Q(α+ 1)− (k + |Esum|)
−
∑

e∈Esum
βc(e)

=
∑

v∈Vsum∩Q(α+ 1)− k −
∑

e∈Esum
(βc(e) + 1)

=
∑

v∈Vsum
w′(v)− k −

∑
e∈Esum

c′(e)

(14)

Therefore, finding CB
sum(Vsum, E

B
sum) that maximizes∑k

m=1 Qua(Cm) in G and finding Csum(Vsum, Esum) that
maximizes w(Csum) =

∑
v∈Vsum

w′(v) −
∑

e∈Esum
c′(e) in

G′ are equivalent. Hence, this theorem holds.
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