
Personal Insights for Altering Decisions of Tree-based
Ensembles over Time

Naama Boer∗ Daniel Deutch† Nave Frost‡ Tova Milo§
Tel Aviv University

{naamaboer∗, navefrost‡}@mail.tau.ac.il {danielde†, milo§}@post.tau.ac.il

ABSTRACT
Machine Learning models are prevalent in critical human-
related decision making, such as resume filtering and loan
applications. Refused individuals naturally ask what could
change the decision, should they reapply. This question is
hard for the model owner to answer: first, the model is typ-
ically complex and not easily interpretable; second, models
may be updated periodically; and last, attributes of the in-
dividual seeking approval are apt to change in time. While
each of these challenges have been extensively studied in
isolation, their conjunction has not.

To this end, we propose a novel framework that allows
users to devise a plan of action to individuals in presence of
Machine Learning classification, where both the ML model
and the user properties are expected to change over time.
Our technical solution is currently confined to a particular
yet important class of models, namely those of tree-based en-
sembles (Random Forests, Gradient Boosted trees). In this
setting it uniquely combines state-of-the-art solutions for
single model interpretation, domain adaptation techniques
for predicting future models, and constraint databases to
represent and query the space of possible actions. We de-
vise efficient algorithms that leverage these foundations in a
novel solution, and experimentally show that they are effec-
tive in proposing useful and actionable steps leading to the
desired classification.

PVLDB Reference Format:
Naama Boer, Daniel Deutch, Nave Frost, Tova Milo. Personal In-
sights for Altering Decisions of Tree-based Ensembles over Time.
PVLDB, 13(6): 798-811, 2020.
DOI: https://doi.org/10.14778/3380750.3380752

1. INTRODUCTION
Critical decision-making processes, such as credit score as-

signment, resume filtering and loan approvals, is supported
by complex machine learning (ML) classifiers. A significant
drawback to the utilization of such models is their opaque-
ness: ML models are typically complex and hard to under-
stand. Indeed, much research has been devoted recently to

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 6
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3380750.3380752

the analysis of complex ML models. For example, some so-
lutions [47, 12] identify the input’s most influential features,
and others [53] produce approximated interpretable models.

In this paper we focus on a novel class of analysis (to our
knowledge, see discussion of related work in Section 7), that
is (1) personal, i.e. aims at explaining a particular classifi-
cation related to an individual (e.g. a loan applicant) rather
than the entire model, and (2) temporal, in the sense that
it accounts for the evolution of both the user characteristics
and the classification models. Combined, these two aspects
yield concrete plans of action for users aspiring to change
the decision, supporting queries such as:

1. No modification: What is the closest time point (if
any) at which reapplying without modifications to the
applicant features is expected to be APPROVED?

2. Minimal features set: What is the smallest set of
features whose modification can lead to APPROVAL?
(also, how should they be modified, and over what
timeframe?).

3. Minimal overall modification: What is the mini-
mal overall modification (according to some distance
measure) that leads to APPROVAL, and when?

4. Maximal confidence: Which modifications (and at
which time point) would maximize the APPROVAL
score 1?

5. Dominant feature: Is there a single feature whose
modification leads to APPROVAL in all future time
points? (and how should it be modified at each point?)

Our solution is the first, to our knowledge, to support such
queries with respect to ML classifications. Our approach is
general, but the concrete technical solution is confined to a
restricted yet important class of ML models: that of decision
trees and their ensembles (including in particular Random
Forests and Gradient Boosted Trees).

We next outline our main contributions, referring to the
sections that follow for details.

Model (Section 3). After reviewing the necessary prelim-
inaries in Section 2, we formally state our problem. At a
high level, the idea is that given a set of time-points, at
each time point we have (or estimate, see below) a model
instance and a profile of the relevant individual (e.g. loan
applicant). Then, we consider the “hypothetical” infinite
database of all possible modifications to the input profile

1ML classification models often output a score reflecting
their confidence in the binary classification.

798

that alter the classification result, at each time point. Intu-
itively, this is the database of all relevant action items that
could be proposed to the individual. Then, the semantics
of queries is defined with respect to this database, so that
query results correspond to combination of action items into
an “action plan”: e.g. gradually change a particular feature
each year, or wait for five years before re-applying, etc.

Exact (Inefficient) Solution (Section 4). We then devise a
first solution for the problem, whose architecture is depicted
in Figure 3. Recall that at each point we need a model
instance and the applicant’s individual profile. Both are
given as input for at present time. Expected changes in
the profile are modeled through a function that we refer
to as “temporal update function” capturing the semantics
of temporal features. It may reflect e.g. changes in age
over years, etc. Future model instances are often harder to
predict, but they may be estimated using model adaptation
techniques [3]. Then, the main technical novelty is in that we
compactly represent the infinite set of classification-altering
modifications in each time point in a finite form, using a
Constraint Database [40, 52]. This construction is model-
dependent and we develop it for tree-based ensembles. Its
main idea is to use constraints to jointly capture regions of
modifications that are of interest. Finally, query evaluation
is performed with respect to the constraint database.

Heuristic Improvement (Section 5). The constraint
database obtained in the exact solution is finite but its size
may be exponential in the model’s size. For complex mod-
els this is intractable, thus we provide a polynomial time
inexact alternative. The solution is based on limiting the
allowed modifications’ size, combined with leveraging con-
straints that arise from the input database. Using these two
types of restrictions, we devise a polynomial time algorithm
for database generation at each time point, and then extend
these databases to form a time-aware database. The main
idea of our solution is to apply a beam search methodology
that identifies regions able to alter a single tree classification
at each step, ultimately identifying a polynomial number of
regions in the locality of the applicant profile.

Experimental Study (Section 6). We have experimentally
studied our solution in terms of its execution time and out-
puts quality. We have used three openly available datasets
(peer-to-peer loans, home credit and Visa petitions), trained
tree-based ensemble models and executed our solution with
respect to them. We show that our algorithms generally
incur reasonable execution times and are successful in pro-
viding insights. In particular our heuristic speeds up the
solution by orders of magnitude, allowing its application to
large-scale models, without significant deterioration of the
quality of found solutions.

2. PRELIMINARIES
Next, we overview some basic notions used in our work. In

particular, we will briefly review tree-based learning models,
the notion of model adaptation, and constraints databases.
For the convenience of the reader, Table 1 summarizes the
different notations that will be used throughout the paper.

2.1 Tree-based Models
There is an active research on the development of learn-

ing models. The models differ from one another in their
complexity and prediction power. We focus in this work on

Table 1: Symbols Table
Symbol Meaning

x Input vector
d Dimension of input space
M Machine learning model instance
δ Threshold score for positive classification
T Decision tree instance
E Tree-based ensemble instance
N Number of trees in the ensemble
L Number of leaves in a tree
T Number of time points
�t � at time t (e.g. Tt is a tree at time t)

�̂ Estimated � (e.g. T̂ is an estimated tree)
ψ Conjunction of linear inequalities
D Positive Candidates Database (Definition 3.1)
C Additional constraints (Definition 3.7)
R Positive regions (Definition 4.2)
G Database generator
ϕ Query
ε Algorithm 2 improvement factor
k Algorithm 3 beam size

tree-based models, which are the most popular non-linear
Machine Learning models [32]. Next we will briefly describe
this class of models, starting with the simple rather weak
model of decision trees, then the more complex (and re-
spectively more powerful) tree-based ensembles. For ease of
presentation, we will focus on binary classification, but the
framework can be easily generalized to multi-class problems.

Decision Trees. A Decision Tree T is a binary tree repre-
senting a function Rd 7→ [0, 1]. Each internal node is labeled
by a condition over one of the d coordinates of the input
vector, and each of the leaves is associated with a numeric
value in the range [0, 1]. Each input vector x ∈ Rd defines a
root-to-leaf path in T : for each internal node, if the condi-
tion is satisfied we choose the left branch and otherwise the
right branch. We then define the tree prediction of T with
respect to x, denoted by T (x), as the value associated with
the leaf thus obtained.

Note that the tree prediction is a numeric value in [0, 1]; it
should be understood as the estimated probability that the
input x is classified as True. A model is further associated
with a threshold for accepting/rejecting an input.

Example 2.1. Figure 1 depicts a small decision tree for
classifying loan applications. For instance, given the appli-
cant’s properties vector x, the tree prediction is 0.3 (as de-
picted by the highlighted path); Assuming a threshold of 0.5
for a positive classification, this applicant will be rejected by
the model in Figure 1.

income ≤ 50

amount ≤ 20

amount ≤ 90

0.20.7

0.9

amount ≤ 10

0.1home

0.30.8

Own Rent

x = {income = 20, amount = 5, home = Rent}

Figure 1: Decision Tree Example

The prediction of decision trees can be backtracked by
traversing the tree from root to leaf and identifying the rele-
vant conditions of the computation. Thus decision trees are
considered to be interpretable models.

We next consider stronger models, which combine multi-
ple decision trees in an ensemble.

799

Tree-based Ensemble. Ensemble learning methods are
used for many ML tasks [16, 8]; They aggregate multiple
learning algorithms to gain better predictive capabilities.
Tree-based Ensemble is a popular learning method which
boosts the performance of the weak decision tree learners.

Definition 2.2. A Tree-based Ensemble E is a set of n
decision trees {T1, . . . TN}. Given an input vector x ∈ Rd,
the ensemble prediction is a weighted mean of all individual
tree predictions. For simplicity we will assume the ensemble

trees have equal weights, i.e. E(x) =
∑N

i=1 Ti(x)
N

.

As the number of trees grows, it is harder to understand
the reason for the final model prediction: the result depends
on the interaction between different trees. This interaction
will also be the main challenge for our solution.

There are two popular types of tree-based ensemble learn-
ing methods - Random Forest [25] and Gradient Boosted
Trees [17]. For our purposes, the ensemble approach se-
lected is irrelevant, as the final model structure remains the
same; our solution is general for tree-based ensembles.

2.2 Domain Adaptation
As explained in the introduction, considering only the

modification that would alter the decision in the present
model is insufficient; in contrast, in order to supply timely
relevant explanations it is necessary to understand how the
model will behave in the future. The field of Domain Adap-
tation studies the task of recognizing and applying knowl-
edge learned in previous domains (sources), to novel ones
(targets). In this context, the evolution of models over time
has been investigated, taking the temporal aspect into con-
sideration and studying a time-varying probability distri-
bution from which sample sets at different time points are
observed (e.g. [41]).

There are three main approaches for the task of domain
adaptation: (1) Instance Weighting: reweight or select in-
stances to reduce the discrepancy between source and tar-
get domains. (2) Representation Learning: change the feature
representation to better represent shared characteristics be-
tween the two domains. (3) Adjusting: integrate some infor-
mation about the target samples iteratively.

Our problem setting uniquely differs from most settings in
which domain adaptation techniques are applied, since there
is no access to any data from the target domain, i.e future
data. This means approaches (2) and (3) are irrelevant by
and large, hence we decided to focus more attention towards
instance weighting. However, our solution is independent of
the domain adaptation technique being used and we will use
domain adaptation as a black box for our solution.

2.3 Constraint Databases
Constraint databases [33, 40, 18] are a generalization of

relational databases, optimized for storing and querying pos-
sibly infinite-sized data points represented by a finite set
of constraints. In general, constraints are expressed by
quantifier-free first-order formulas over a fixed vocabulary.

Example 2.3. Consider a constraint database with two
relations R and S, where R contains the record ψ1(x, y) (de-
picted in Figure 2a), and S contains the record ψ2(x, y) (de-
picted in Figure 2b). Figure 2c depicts the intersection of
both relations, i.e. the result of the following query:

ϕ(x, y) ..= R(x, y) ∧ S(x, y) = 0 ≤ x ≤
1

2
∧ 0 ≤ y ≤ 1− x.

0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1− x

(a) ψ1(x, y)

0 ≤ x ≤ 1
2
∧ 0 ≤ y ≤ 1

(b) ψ2(x, y) (c) ϕ(x, y)

Figure 2: Constraint Database Example

Constraints databases have been extensively studied;
There has been much work on studying the expressive power
and complexity of such systems (e.g. [33, 34, 2]), and on de-
veloping query evaluation strategies for queries over such
DBs [35, 56, 24, 5].

3. PROBLEM DEFINITION
In this section we define the problem of deriving personal

insights for altering model decisions over time. We start by
defining the Positive Candidates Database, a “hypothetical”
infinite database containing all vectors positively classified
by the model.

Definition 3.1. Given a model M, the Positive Candi-
dates Database DM is a hypothetical database with d at-
tributes, each corresponding to a feature of the input space.
The tuples of DM are all vectors positively classified by M,
i.e. DM = {x ∈ Rd | M(x) > δ}. For brevity, we will
refer to DM as D when M is clear from the context, and to
DMt as Dt when a models sequence is clear from context.

We extend our setting to be time-aware, in the sense that
we don’t consider a single model and input but rather a
sequence thereof. We support queries over their positive
candidate databases, in a quite expressive query language:
First Order Logic augmented with a distance function over
candidate vectors, which we denote FOdist. We are now
ready to define the Decision Altering Problem.

Problem 3.2 (Decision Altering Problem).
Given a sequence of tree-based models M0, . . . ,MT , input
vectors x0, . . . , xT , and a query ϕ in FOdist, return the
result of ϕ with respect to D0, . . . ,DT .

Note that D0, . . . ,DT may each be of infinite size and so
may not be materialized in general.

Example 3.3. We start by exemplifying the problem for
a single time point. Recall the decision tree and rejected ap-
plicant from Example 2.1, she may ask what is the minimal
modification she needs to make (in terms of l2 distance) as-
suming she is not willing to become a home owner; It can be
formulated as the following query:

ϕ(x) = {x1 ∈ D |x1[home] = Rent ∧ ∀x2 ∈ D.
x2[home] = Rent→ dist(x, x1) ≤ dist(x, x2)}

where x is the vector representation of the rejected applicant
depicted in Figure 1. Evaluating the above query will reveal
that the minimal modification required for loan acceptance
(while living in rent) is an increase of income to 50.

Next, we will exemplify the problem over multiple time
points.

Example 3.4. Recall the dominant feature query pre-
sented in the introduction, asking whether an attribute a is a

800

feature whose sole modification (possibly differently at each
time point) can lead to approval in all the future time points;
this may be captured by the following formal query:

ϕ(x0, . . . , xT) =∃x′
0 ∈ D0, . . . , x

′
T ∈ DT .

ϕa(x0, x
′
0) ∧ . . . ∧ ϕa(xT , x

′
T)

ϕa(x1, x2) =(x1[0] = x2[0]) ∧ . . . ∧ (x1[a− 1] = x2[a− 1])∧
(x1[a+ 1] = x2[a+ 1]) ∧ . . . ∧ (x1[d] = x2[d]).

In what follows, we discuss how we obtain the individual
representation of the user in future time points. In the next
section we will discuss our solution for the generation of
the classifier models for future time points and the positive
candidates database creation.

Handling Temporal Attributes. Recall that at the time of
the query we do not know how user properties will change.
Some of the attributes are known to change over time (e.g.
age increases), while others are known to remain constant
(e.g. gender does not change), or may change in an un-
predictable manner. Our framework allows both the user
and the administrator to provide guidelines on changes to
the user properties over time. The administrator will define
global guidelines which will hold to all the users in the sys-
tem, while the users are able to provide guidelines regards to
their own plans. We formulate those guidelines as a Tempo-
ral Update Function which defines the set of T input vectors
x̂0, . . . , x̂T that will be used for the database generation.

Definition 3.5. A Temporal Update Function operates
on the original input vector x:

f : Rd × {1, . . . , T} 7→ Rd

For each future time point, f outputs a representation of the
applicant in that time point. For brevity {f(x, t)}Tt=1 will be
denoted as x̂1, . . . , x̂T .

Example 3.6. To continue with our running example,
we can expect the system administrator to specify that
f(x, t)[age] = x[age] + t which will result in x̂t[age] =
x0[age] + t. For simplicity, we assume that every fea-
ture absent from the guidelines formulated by either the
administrator or applicant will stay constant. E.g. in
case there were no guidelines on the income feature, then
∀i ∈ {1, . . . T} : f(x, i)[income] = x[income].

We assume in our framework that the temporal update
function is given as input, and leave a study of its (semi-)
automatic inference for future work.

Additional Constraints. There are numerous cases in
which some of the model’s positive regions are irrelevant,
or only partially relevant for the generation of positive can-
didates database. For example, a person’s age can not de-
crease, a user may prefer not to change her address, etc.
Thus, our framework enables specification of additional con-
straints by the system administrator and the applicant alike.
Those constraints are conjuncted to the query. Constraints
may refer to a single point in time or all of them.

Definition 3.7. Personal and Domain Constraints
{C}Tt=0 is a set of formulas; each formula consists of
conjunctions and disjunctions of boolean conditions over
the d input features. The constraints are added as conjuncts
to the query in Problem 3.2.

Example 3.8. Personal and Domain Constraints may
help specifying what type of modifications are of interest. For
example, the system administrator may state that changing
the applicant’s gender is irrelevant, while the user may spec-
ify that her income may increase by up to 10% each year;
These will result in the following constraints:

Ct = (xt[gender] = x[gender]) ∧ (xt[income] ≤ 1.1
t · x[income]).

4. EXACT SOLUTION
We introduce our temporal decision altering framework;

its architecture is presented in Figure 3. The architecture
consists of four main components. The first component is
Future Models Estimation: since M1, . . . ,MT are unknown
in advance we will need to estimate them; the estimated
models will be generated through domain adaptation over
the historic training data. Next, the system will initiate the
Database Generation phase; in this phase it will combine
the estimated future models and applicant representations,
and generate D1, . . . ,DT which will populate a constraint
database with the positive candidates. To focus on relevant
candidates, we give both the user and system administrator
the option of defining additional constraints on top of the
generated ones; this restricts queries to only return relevant
and actionable candidates. By pushing the administrator
and the user constraints into the database generation phase,
we enable re-usage of the generated database for multiple
queries. Then, in the Query Evaluation phase, the query
will be evaluated over the generated database, allowing the
user to obtain insights for achieving the desired classifica-
tion. Note that Figure 3 depicts an additional component
for Time Expansion. For now it can be ignored; it will be
revisited in Section 5.

Figure 3: System Architecture

4.1 Future Models Estimation
Generating estimated future models requires labeled

training data with timestamps, such that each point x ∈ Rd
is associated with a label y ∈ {0, 1}. Additionally, two
parameters, T and ∆, determine the timespan handled by
the system: T is the number of time points considered and
∆ sets the interval length between consecutive points. As
noted earlier, our system may use any suitable domain adap-
tation technique as a black box.

Our goal is to create a sequence of pairs (M̂t, δt)
T
t=0, where

M̂t is the expected approximated model at future time t,
and δt is its threshold. Concretely, our implementation is
inspired by methods described in [41, 38, 39], that use the
training data and past models to learn the time variations of
the labels distribution, thus overcoming the lack of available
data from the target (future) distribution.

801

In the implementation of this framework, we solved the
problem under the class imbalance assumption [29, 30], stat-
ing that given some class label, the conditional distribution
of x is the same in the past and future distributions. Then
we assigned instance-dependent weights to the loss function
before training the estimated future models. Note that this
part of the candidates generation process is performed only
once and is independent of any specific user. In Section 6, we
give a detailed description of the Models Estimation process
used for evaluation.

x = {income = 20, amount = 5, home = Rent}

income ≤ 50

amount ≤ 20

amount ≤ 90

0.20.7

0.9

amount ≤ 10

0.1home

0.30.8

Own Rent

(a) Present Decision Tree

amount ≤ 10

income ≤ 100

0.9home

0.10.7

Own Rent

income ≤ 60

home

0.30.8

Own Rent
0.1

(b) Future Decision Tree

Name Time Region

ψ1 0 (Present) income ≤ 50 ∧ amount ≤ 10 ∧ home = Own
ψ2 0 (Present) income > 50 ∧ amount ≤ 90
ψ3 1 (Future) income > 60 ∧ amount ≤ 10 ∧ home = Own
ψ4 1 (Future) income > 100 ∧ amount > 10
ψ5 1 (Future) income ≤ 100 ∧ amount > 10 ∧ home = Own

(c) Positive Candidates Databases

Figure 4: Decision tree adaptation with relevant
databases

Example 4.1. Reconsider the decision tree from Figure
1, appearing as the “present” tree in Figure 4a. Assume
that the training data indicates an increase in incomes and
in the rate of home owners; Thus the present model becomes
obsolete, and needs to be modified. A re-trained decision tree
for time “present+ ∆” appears in Figure 4b.

4.2 Database Generation
The core of the temporal candidates generation phase is

a set of candidates generator components. Each generator
Gt is responsible for outputting D̂t, a positive candidate
database fitted for the corresponding time point t ∈ [T],

that is obtained based on the predicted model M̂t and the
expected input representation x̂t. The generators are inde-
pendent of each other, thus they can be executed in parallel.
Consequently, from now on we will describe an algorithm for
a single time point. The results (set of candidates per time
point) are then stored in a candidates table, ready to be
queried by the user. Since the number of candidates may be
infinite, explicit generation of all candidates is impossible.
Hence, we store a representation of the different Positive Re-
gions of M̂t in a constraint database which will be queried
in the following step.

Definition 4.2. Given a model M, we say that a set
RM = {ψ1, . . . , ψm} where ψi is a conjunction of boolean
conditions over the d input features, is a set of Positive Re-
gions if it satisfies that M(x) > δ iff ∃ψi ∈ RM : ψi(x) =
True.

Example 4.3. Recall the trees from Example 4.1. The
relevant Positive Regions are depicted in Figure 4c. Regions
ψ1 and ψ2 were generated according to the model in Figure
4a; ψ3, ψ4, and ψ5 according to the model in Figure 4b.

The process of computing such a set RM is model depen-
dent. As described in Section 2, a tree ensemble E consists of
N decision trees and it classifies a point based on a weighted
sum of their scores. Next, we show that for tree-based en-
sembles the size of the minimal RE may grow exponentially
in the number of ensemble trees. Given a tree-based en-
semble E , Algorithm 1 generates a constraint database DE ,
such that E(x) > δ iff x satisfies exactly one of the con-
straints in DE . The algorithm iterates over all ensemble
leaves combinations that lead to positive label (Lines 2, 3).
For each positive combination a conjunction of all the con-
ditions is calculated (while loop in Line 5). Eventually, the
positive regions are stored in a constraint database (Line
10). After the database generation, one can add an op-
timization “cleanup” step that deletes constraints that are
unsatisfiable; though this is not essential for correctness, nor
it affects the worst-case complexity bounds discussed next.

Algorithm 1: Database Generation for Tree Ensembles

input : Tree-based Ensemble E
output: Constraint database of all positive regions

1 D = {};
2 foreach 〈l1, . . . lN 〉 ∈ E.T1.leaves× . . .× E.TN .leaves do

3 if 1
N

∑N
i=1 li.value() ≥ E.δ then

4 C = {};
5 foreach l ∈ 〈l1, . . . , ln〉 do
6 parent = l.parent();
7 while parent 6= Null do
8 C.add(parent.condition());
9 parent = parent.parent();

10 D.add(
∧
c∈C

c);

11 return D;

income ≤ 30

home

0.30.8

Own Rent
amount ≤ 10

0.20.7

(a)

amount ≤ 10

income ≤ 50

0.90.1

home

0.20.9

Own Rent

(b)
(c)

income ≤ 40

amount ≤ 15

0.30.9

amount ≤ 5

0.20.8

x = {income = 20, amount = 50, home = Rent}

Figure 5: Tree-based ensemble example.

Example 4.4. Consider the tree ensemble depicted in
Figure 5 with a threshold of 0.5. Let us consider the it-
eration step where the current leaves are all of the left-most
leaves in their respective trees. This combination leads to an
overall score of 0.7+0.9+0.8

3
= 0.8 ≥ δ, and thus a positive

region is found; the conjunction of these 3 paths yields the
following region, which will be stored in the database:

(x[income] ≤ 30) ∧ (x[amount] ≤ 5) ∧ (x[home] = Own).

Overall, for the ensemble depicted in Figure 5, with 3 trees
having 4 leaves each, we obtain a database containing 28
positive regions.

802

Table 2: Formal definition in FOdist of queries pre-
sented in the introduction.

Query

Q1 {t1 | x ∈ Dt1
∧ ∀t2. t2 < t1 → x 6∈ Dt2

}
Q2 {(x1, t) | x1 ∈ Dt ∧ ∀t2∀x2 ∈ Dt2

. dl0 (xt1
, x1) ≤ dl0 (xt2

, x2)}
Q3 {(x1, t) | x1 ∈ Dt ∧ ∀t2∀x2 ∈ Dt2

. dl2 (xt1
, x1) ≤ dl2 (xt2

, x2)}
Q4 {(x1, t) | x1 ∈ Dt ∧ ∀t2∀x2 ∈ Dt2

.Mt(x1) ≤Mt2
(x2)}

Q5 Dominant feature (See Example 3.4)

In general, the correctness proof of Algorithm 1 (omitted
here) implies the following:

Proposition 4.5 (Upper bound). All positive re-
gions of a tree-based ensemble model can be stored in
a constraint database D of size O(LN), where L is the
maximal number of leaves of a tree in the ensemble.

Can this exponential blowup be avoided? Unless P =
NP , the answer is negative (proof omitted for space con-
straints).

Proposition 4.6 (Lower bound). Assuming P 6=
NP , there exists a tree ensemble E with N trees, whose posi-
tive regions set RE can not be stored in a constraint database
DE whose size is polynomial in N .

4.3 Query Evaluation
We have explained so far how the constraints database

that represents the relevant positive candidates is generated.
Next, users query the generated database using an engine
such as [9, 22] in order to obtain insights.

Example 4.7. Recall the decision trees and databases
over two time points presented in Figure 4, and let us con-
sider the applicant depicted in the Figure (where the relevant
root-to-leaf paths are highlighted). According to both models
the application will be denied, receiving 0.3 by the present
model and 0.1 by the future model. Table 2 shows multiple
example queries. For example, assume the applicant wishes
to check if “income” is a dominant feature (i.e. Q5). Eval-
uating Q5 over the above database will reveal that “income”
is not a dominant feature. At the present year the applicant
may increase her income to be above $50 in order to get pos-
itive classification (ψ2), however in the second year it is not
sufficient to solely increase the income: the applicant would
also be required to be a home owner (ψ3) or to raise the loan
amount (ψ4).

Complexity of query evaluation over constraints databases
has been extensively studied through the years [33, 35, 56];
Our database contains conjunctions of inequality conditions,
i.e. linear constraints. Thus, the evaluation of constraint
queries can be done in polynomial data complexity [23].

5. PARTIAL REGIONS
In Section 4.2 we observed an exponential blowup of the

constraint database size. We next propose a heuristic alter-
native to the exact Database Generation component, that
does not generate all positive regions; instead, the approach
focuses on the area in proximity of the input vector, and fur-
thermore leverages additional constraints (i.e. administrator
and user constraints) to avoid the insertion of irrelevant re-
gions into the database. Note that, in contrast to the exact
database generation, where the DB is generated once and
can then serve multiple users, our heuristic database is gen-
erated per user. However, as illustrated in our experiments,

the brief generation time makes up for theses multiple con-
structions (whereas the exact generation is non-feasible for
practical size models).

Our solution is then comprised of three algorithms, as fol-
lows. Algorithms 2 and 3 operate on a single time point,
and can be executed in parallel over the T time-points; Al-
gorithm 4 aggregates the T partial databases, and extends
them by checking if a region that was obtained at time t can
be applied to the remaining time points.

First, Algorithm 2 generates only a pruned set of all pos-
itive regions, focusing only on those that alter the the de-
cision of (at least) a single tree in the ensemble. It iterates
over all the regions induced by a single ensemble tree (lines
3,4) and for each it finds the closest point in it to the in-
put vector (line 5). This point is called a seed. For each
seed, the algorithm calculates its score, i.e. its acceptance
probability by the trees in the ensemble (line 6), and in case
the seed score is substantially higher than the input vec-
tor score, the algorithm will compute the ensemble-region
in which the seed lies (lines 7–8), i.e. for each ensemble tree
identify the seed’s root-to-leaf path and compute their con-
junction. Next, the obtained region will be combined with
the additional constraints (line 9), and in case the resulting
region is non-empty it will be stored along with the seed and
its score (lines 10–11). Eventually the algorithm will return
all stored seeds and corresponding regions.

Algorithm 2: Seeds Generation

input : Tree-based ensemble E
Input vector x
Required Constraints C
Metric dist

output: Seeds along with their score and accepting region

1 S = {};
2 score = E.score(x);
3 foreach T ∈ E.trees do
4 foreach R ∈ T .regions do
5 seed = argminx′∈R dist(x, x

′);
6 seedScore = E.score(seed);
7 if seedScore > score+ ε then
8 AR = E Regions accepting seed;
9 ψ = AR.intesect() ∧ C;

10 if ψ 6= contradiction then
11 S.add(〈seed, seedScore, ψ〉));

12 return S;

Example 5.1. Recall the tree-based ensemble and appli-
cant depicted in Figure 5; the model’s decision boundaries
are presented in Figure 6. The applicant input vector x is
also presented in Figure 6b, and is outside all accepting re-
gions; its model score is 0.167. Further assume the user
defined a personal constraint stating she is not interested in
becoming a home owner; the relevant positive regions are
shown in Figure 6b. For each of the ensemble trees, Al-
gorithm 2 will iterate over its positive regions, and will re-
turn as seeds the closest points in each region. The regions
identified by Algorithm 2 are presented in Figure 6c and are
marked with numbers in Figures 6a and 6b. The first two
seeds were derived from tree (a), the third and fourth were
derived from tree (b) and the last two seeds were derived from
tree (c); i refers to income, a is amount, h is home, and
dist is the l2 distance between x and the seed (where home
is treated as a binary feature). As seeds 2 and 3 violate the
constraint they will not be returned by the Algorithm.

803

(a) home = Own (b) home = Rent
id i a h score dist ψ

1 20 10 Rent 0.367 40 (i ≤ 30) ∧ (5 < a ≤ 10) ∧ (h = Rent)
2 31 50 Own 0.367 11.05 (30 < i ≤ 40) ∧ (10 < a) ∧ (h = Own)
3 20 10 Own 0.6 40.01 (i ≤ 30) ∧ (5 < a ≤ 10) ∧ (h = Own)
4 51 50 Rent 0.5 31 (50 < i) ∧ (15 < a) ∧ (h = Rent)
5 20 5 Rent 0.567 45 (i ≤ 30) ∧ (a ≤ 5) ∧ (h = Rent)
6 41 15 Rent 0.433 40.82 (40 < i ≤ 50) ∧ (10 < a ≤ 15) ∧ (h = Rent)

(c) Output of Algorithm 2

Figure 6: Tree-based Ensemble Decision Boundary

Algorithm 2 considers only regions that require a modifi-
cation of a single ensemble tree, and thus it may miss some
positive regions. Thus, we introduce Algorithm 3 to refine
its output and identify additional positive regions in the lo-
cality of the regions computed by Algorithm 2.

Algorithm 3 begins with the input vector as its only seed
(line 1). In each iteration, seeds that are positively classified
by the ensemble (i.e their score exceeds the model thresh-
old, see line 8), are stored in the positive regions database
(line 9). Otherwise, for each seed scored below the model
threshold, Algorithm 2 is called with the seed as its input,
generating a new set of seeds (line 11). In line 12 the al-
gorithm will apply pruning of the obtained seeds based on
their distance from x and will continue the process until the
list of seeds will be fully exploited, or until the database is
no longer expanded.

Algorithm 3: Partial Database Generation for Trees
Ensemble
input : Tree-based ensemble E

Input vector x
Required Constraints C
Integer k
Metric dist

output: Partial database with respect to x and C

1 S = {〈x, E.score(x), x accepting regions〉};
2 D = {};
3 s = −∞;
4 while S 6= ∅ and |D| > s do
5 s = |D|;
6 Snext = {};
7 foreach seed ∈ S do
8 if seed.score ≥ E.δ then
9 D.add(seed.region);

10 else
11 Snext.add(Seeds(E, seed.vector, C, dist));

12 S = Prune(Snext, x, k, d);
13 return D;

Example 5.2. Observe that out of the regions retrieved
in Example 5.1 the fifth region is positive (seed number 5
is the only one with score > 0.5), hence it would be stored
in the database. Out of the remaining valid seeds the forth
one is closest to the input vector (has minimal distance);
hence seed number 4 will remain after the pruning step. In
the second iteration Algorithm 2 will be executed with seed

4 as its input vector. This execution will return the positive
region (50 < i) ∧ (10 < a ≤ 15) ∧ (h = Rent) which will be
stored in the database as well. After the second iteration all
positive regions were identified by the algorithm.

Discussion. Due to the complexity of tree-based ensem-
bles, it is infeasible to build an exact database of positive
candidates. The proposed solution is a heuristic aiming to
generate a constraint database in the locality of the appli-
cant’s representation. To do so it applies beam search over
the input space – in each step Algorithm 2 explore regions
in the locality of its input vector, and Algorithm 3 prunes
the list of identified regions. The parameters k and ε con-
trol the operation of the solution, and balance between the
execution time and the size of the generated database. The
improvement factor, ε, defines a lower bound for the confi-
dence increase at each iteration. Small ε values will entail
that more regions would be considered, and thus both the
database size and execution time will increase, as opposed
to large ε values which will cause the solution to overlook
regions that are not significantly preferable over the previ-
ous regions. The beam size, k, defines how many seeds will
remain after each iteration. Small k values will result in
massive pruning after each iteration, guiding the solution to
focus on a small number of potential regions, whereas larger
k values will enable the solution to explore more regions, in-
creasing the execution time. There are no theoretical guar-
antees on the quality of the solution; in extreme cases the
search process may reach a negative region which is a local
maximum, and as a result, it will return an empty database.
In Section 6 we empirically analyze the solution quality, and
show that for real-world data this rarely occurs.

Time Sensitive Expansion. A pitfall of our heuristic thus
far is that it is executed separately for each time point. Con-
sequently, queries involving intersections of regions across
several time points (such as the “dominant feature” query)
may return a sub-optimal answer. To illustrate, consider
the following example.

To address this issue, we add a Time Expansion compo-
nent which will consume the results of the parallel execution
of G1, . . . , GT , evaluate each of the obtained regions across
all the time-points, and extend the database accordingly.

Algorithm 4 iterates over all of the obtained regions (line
2), and evaluates their interaction across all other time
points. Each region will be divided into a grid across all
its features (line 3), and each vector over the grid will be
evaluated over the different T models (line 4), in case some
grid point found to be accepted by any of the models (line 5)
we will add the relevant region to the appropriate database
(lines 6–9). Eventually, the extended databases will be re-
turned (line 10).

Complexity. Algorithm 2 iterates over N ensemble trees,
and each of their accepting regions, which is proportional to
the number of tree leaves (denoted by L). For each accepting
region, the algorithm first identifies the seed vector (can be
done in O(d) by applying minimal modifications to each
feature that satisfies the region constraints). Once the seed
was identified, the algorithm obtains AR which are all of the
regions that accept the seed vector, this can be achieved by
a second iteration over the N trees and obtain a prediction
after at most h = logL steps. Thus the overall complexity
of Algorithm 2 is O(N2dL logL).

804

Algorithm 4: Time Expansion

input : Set of all saved positive regions Rs
Expected models for all time points (M̂t, δt)Tt=0

output: Expansion of positive regions to all time points

1 D1, . . . ,DT = {};
2 foreach R ∈ Rs do
3 foreach x ∈ R.grid() do
4 foreach t ∈ [T] do

5 if M̂t(x) ≥ δt then
6 AR = M̂t Regions accepting x;
7 ψ = AR.intesect() ∧ C;
8 if ψ 6= contradiction then
9 Dt.add(ψ);

10 return D1, . . . ,DT ;

At each iteration of Algorithm 3 it holds at most k seeds,
and for each seed there is at most one call to Algorithm
2. Note that at each iteration of Algorithm 3, either we do
not find a new set of seeds, or the scores of the newly re-
trieved seeds are greater than the previous seed score plus
some constant ε, thus there can be at most 1

ε
iterations.

Overall the running time of Algorithm 3 is bounded by
O(k

ε
N2dL logL). Finally, the positive regions obtained for

each time-point are being tested on all other time-points
by Algorithm 4, hence our solution’s overall complexity is
O(T 2 k

ε
N2dL logL). Note that unlike the procedure in Sec-

tion 4, the complexity is polynomial in the ensemble size,
and thus feasible even for large models.

6. EXPERIMENTS
We have implemented a system prototype [6] and con-

ducted an experimental study to evaluate our proposed al-
gorithms in terms of execution times and output quality. We
start by describing the experimental settings and datasets,
then give the results.

6.1 Experimental settings

Datasets. We have used three publicly accessible datasets:
(1) the Lending Club (LC) dataset [43] describes loans is-
sued by the Lending Club peer-to-peer lending company in
the years 2007-2018, where the classification variable indi-
cates whether the loan was fully paid or not; (2) the Home
Credit (HC) dataset [26] describing loan applications made
to the Home Credit company, where the classification vari-
able indicates whether the loan was fully paid or not; (3) a
dataset of H-1B Visa Petitions (H1-B) from the years 2011-
2016, where the classification variable indicates whether the
visa application was certified or not. HC does not in-
clude timestamps, yet many of its features are temporal (e.g
days employed, days birth). We thus assumed that for this
dataset the model stays fixed over time; changes still ap-
ply to applicant profiles. We have performed standard pre-
processing (removing tuples with inconclusive classification
variables and features with too much missing data, scaling
etc.), resulting in 892544, 307511 and 690531 records and
25,25 and 7 features in LC, HC and H1-B correspondingly.

The experimental setting also includes a base configura-
tion for a Random Forest classification model for each of
the datasets, to be used throughout the evaluation process.
We used grid search to select the best performing configura-
tion of parameters ntrees (number of trees) and max depth

(maximal tree depth), in terms of the model performance
on the validation set and its size and complexity. The se-
lected configurations are (1) max depth = 6, ntrees = 20
(LC), (2) max depth = 6, ntrees = 15 (HC), and (3)
max depth = 9, ntrees = 5 (H1-B).

In all the conducted experiments we used a random sam-
ple of 100 negatively-classified applicants, i.e ones the eval-
uated model classifies as high-risk for defaulting on their
loans or unworthy of a visa.

For applicants rejected at time t0, unless stated otherwise,
experiments were performed on single classification models
trained on data gathered during that time point. Subsec-
tions 6.3 and 6.4 each contain an experiment that examines
the effects of incorporating multiple time points, with a cor-
responding approximated classification model for each. Al-
gorithm 2 gets a distance metric as input. We executed all
experiments with two metrics l0 and l2.

Queries. Throughout this Section we evaluate our solu-
tion’s performance on the queries presented in the intro-
duction, that are later formalized in Section 6.4.

Baselines. To the best of our knowledge, ours is the first
work to formulate Problem 3.2, and so no previous work
could be used as a baseline. Algorithm 1 is used as a baseline
for database generation, for small models (having roughly
ntrees · max depth ∼ 25. Due to the exponential blowup
it is infeasible for large models). We have also designed a
fairly simple heuristic baseline for partial database genera-
tion, inspired by A∗ algorithm. It is detailed next.
A* baseline. We implemented the well known path-finding
search algorithm for identifying decision-altering regions.
We briefly describe the algorithm bellow. Full details can be
found in the technical report [7]. For each feature i ∈ [d] let
splitsi be the set of split values extracted from traversing the
ensemble’s trees. For an applicant x, We construct a graph
G who’s nodes are {z | ∀i.zi ∈ splitsi ∪ {xi}}, and edges
connect nodes who differ in exactly one attribute. A* pri-
oritizes nodes according to a function f(·) = g(·) +h(·). g is
the distance from the temporal input xt, while h is a heuris-
tic measuring the difference between the node’s prediction
score and the threshold model score δt. The algorithm can
be executed with different choices of a distance function g
each time, taking the union of results.

As a post-processing step, we convert every modification
discovered by the execution of A* to its corresponding pos-
itive region (by executing lines 8-9 of Algorithm 2).

Hyper-parameter Tuning. Last, we need to set the beam
width k and improvement factor ε used in our solution. To
tune the value of k we have experimented with different k
values from 2 to 10, and chose to fix k to be 10,6,6 for H1-B,
LC and HC respectively, since they produced the largest
database with a manageable execution time overhead (on
average 2.52, 22.72, 12.35 seconds for H1-B, LC and HC re-
spectively). As the execution times were reasonable we fixed
ε to be 0 for all datasets, thus ensuring the the considera-
tion of all potential improving regions. These k and ε values
will be used for the remainder of this Section. We start
by examining the execution time of the partial database
generation (6.2). Then study the quality of the generated
database (6.3) and queries answers over it (6.4). Eventually,
we present insights generated for real-world users (6.5).

805

Figure 7: Exploring the affect of varying the models
size on the database generation runtimes, comparing
the exhaustive solution to our proposed approach.
The fixed parameter (ntrees/max depth) in each set-
ting is set to 5.

Figure 8: Exploring the impact of the model’s size
on execution times. The fixed parameter in each
chart is set to its value in the base configuration
detailed in Section 6.1.

6.2 Execution Time
In this part of the evaluation we study the execution times

of our framework in different settings.

Comparison with the exact solution. We compare the
execution time of our partial database generation solution
(Algorithms 2 - 4) to the exact costly solution (Algorithm
1), for small models where the latter is still feasible. Fig-
ure 7 depicts the execution time of our solution in the red
plot and the exact alternative in the solid blue plot, as a
function of the model depth and number of trees. The size
of the complete database generated by Algorithm 1 is pre-
sented in each figure; the size of the partial database in all
settings did not exceed 10. Observe the moderate growth of
the execution time for our heuristic solution, in contrast to
the exponential growth of the exact one. We also present a
breakdown of the exact solution to the database generation
step (blue dashed line) and query evaluation (blue dotted
line). Both grow exponentially, indicating that a perceived
solution of running exact database generation once and re-
peatedly querying it would still be infeasible. In contrast,

the execution time of the query evaluation step in our solu-
tion is negligible: it never exceeded 2 seconds in our exper-
iments, and on average took only 0.3154 seconds.

Execution Times for Practical-Size Models. We then
consider larger models, where the exact solution is no longer
feasible. The results are depicted in Figure 8. We observe
a reasonably moderate growth here as well, where the ex-
ecution time is more sensitive to an increase in max depth
compared to ntrees. This is consistent with our complexity
analysis in Section 5. Note that HC exhibited the largest
execution times in the left chart, since its base configuration
has max depth = 9, the largest among the datasets, as well
as its features amount d. Similarly LC exhibited the longest
runtimes on the right chart, since its base configuration has
ntrees = 20, which is the largest among the datasets.

6.3 Database Generation Quality
In this Subsection we study the quality of the Database

Generation component (Section 4.2). We first measure the
percentage of applicants for which our framework success-
fully identified at least one classification-altering region (i.e.
at least one tuple). We term this rate ”coverage”.

Coverage and Interpretability. As mentioned in Section
5, the success of our approach in identifying decision-altering
regions is not guaranteed in general; however in practice we
observed high coverage for all datasets tested: 100% cover-
age in HC and H1-B, whereas LC had coverage of 81%.

We further looked at the number of identified regions (ob-
tained database size). The average size and standard devia-
tion obtained for each of the datasets were: avg 8.89, std 3.16
(HC); avg 9.03, std 0.68 (H1); avg 6.28, std 3.99 (LC). We
note that we have observed low correlation between the ap-
plicant score and the number of identified regions, implying
that our solution is equally effective for the different users
(maximal Pearson Correlation of |0.193| over all datasets).

Decision-altering regions that require a large number of
modifications (even if many of them are “small”), are gen-
erally less interpretable for humans. This viewpoint on in-
tepretability is intuitive and common in the literature, i.e.
[53, 58]. Table 3 shows additional statistics on the partial
database regions’ l0 distance. A smaller l0 distance means
the user is presented with classification altering options re-
quiring a modification to only a few items in their profile. On
average, our plans will include a modification to only 3.15,
2.24 and 1.89 features (for LC, H1-B and HC accordingly).
The Max-Min column in the table specifies the maximal l0
distance a user from our test sample was presented with,
when asking to minimize that distance (i.e, w.r.t Q2).

Distance Evaluation. We next compare the database D̂t
generated by Algorithm 3 for a fixed time point t, to the
optimal one Dt generated by Algorithm 1. As a baseline,
we also compare the output of A* to Dt.

We use the well known normalized cumulative gain score
as a quality metric. nDCG is commonly used for evalua-
tion in information retrieval, web search engines and recom-
mender systems [60]. A perfect algorithm that returns the
top-ranked r tuples w.r.t the relevance function of interest,
will have an nDCGr score 1.0. Intuitively, a high nDCG
score implies that the regions in the partial database are
comparable to the best regions of the complete database, in
terms of the relevance functions of interest. The relevance

806

(a) Lending Club (b) Home Credit (c) H1-B Visas

Figure 9: heatmaps depicting the nDCG scores recorded in the distance evaluation experiment.

functions considered for this evaluation are based on two dis-
tance metrics l2, l0, thus rating regions that are closer to the
input (and require smaller modifications) as more relevant.

Each experiment was performed on 14 small models, hav-
ing max depth and ntrees ranging between 2 to 5, and
w.r.t 2 relevance functions and 3 datasets. Thus, a total
of 14 · 2 · 3 = 84 results were recorded for each of the tested
approaches. The results are depicted in Figure 9, where for
each dataset, four heatmaps were plotted. On 80 out of 84
scores, Algorithm 3 (i.e, ”proposed”) outperformed A*. For
the 4 models in which A* achieved better scores, the differ-
ence was minor (< 0.16). The average nDCG scores of the
proposed algorithm are 0.68, 0.78 and 0.84 (for H1-B, LC
and HC), as opposed to 0.51, 0.55, 0.59 for A∗ respectively.
See the full version of this paper for more details [7].

Adaptation Effectiveness. In experiments presented thus
far, we focused on a single time point for which the classifica-
tion model Mt is known. When Algorithms 2-4 are applied
to the same model used at the time of re-evaluation, each
point in the partial database is guaranteed to induce the
desired outcome. In this experiment we change the setting
to include multiple time-points, for which the classification
models may be unknown. Such a setting demonstrates the
full capabilities of our solution to produce actionable and
effective insights in a temporal framework. The temporal
framework suggested in this work is composed of two inde-
pendent components: the temporal update function, and the
model estimation component. In some scenarios the model
estimation component is irrelevant, either because the deci-
sion making model is expected to remain constant through-
out the relevant time-period, or due to the unavailability of
timestamps of the historic training data records (like in HC
dataset). When this is the case, the temporal framework still
applies to the inputs (i.e, the user profile). However, when
the decision making model is likely to change, the model
estimation component is activated as well.

Next, we define the notion of effectiveness: an effective
modification is one that leads to the desired classification
at the time of re-evaluation. We measure the precision,
namely the fraction of regions containing effective sugges-
tions among all database regions.

We used time-series analysis to predict the target distri-
bution for future time points. The predicted distributions
were then used for assigning appropriate weights to the loss

Table 3: The average, median and max-min l0 dis-
tances of regions in the partial database.

Average Median Max-Min

Lending Club 3.15 3 5
H1B Visas 2.24 2 2

Home Credit 1.89 2 2

Table 4: precision scores of H1-B and LC estimated
models.

Year
Instance

Reweighting
No

Adaptation

Lending Club
t0 + 1 (2017) 0.832 0.656
t0 + 2 (2018) 0.80 0.746

H1B Visas
t0 + 1 (2015) 1.0 0.992
t0 + 2 (2016) 0.992 0.985

function, and generating approximated future models using
the training data known at the time of application. This
standard technique is called “Instance Reweighting”; See
the full online version of this paper for a detailed explana-
tion [7]. We assume that classifiers are updated on a yearly
basis. For each of the datasets we selected a time point t0,
and a sample of rejected applicants that applied during t0.
We created adapted models for 2 future time-points and ex-
ecuted Algorithms 2–4 on them to produce partial regions
databases. As a baseline, we used the known model at the
time of the application to generate modifications for the fu-
ture time-points (i.e, “no adaptation”). The experiment was
performed for LC (t0 = 2016) and H1-B (t0 = 2014), for
which all records include timestamps (as opposed to HC). In
table 6 we present a comparison of f1 scores of the adapted
and non-adapted models, all evaluated on the test set.

The precision scores are presented in Table 4. We can
see that even the simple adaptation technique applied was
consistently preferable over not adapting the known model
at all. The improvement was especially significant in the LC
dataset, where the adapted models showed an improvement
of 17.6%, 5.4% for 2017, 2018 respectively.

Tightness. An overly strict adapted model will likely
achieve high precision, since altering its classification will

Table 5: nDCG tightness scores of the H1-B Visas
and LC.

Year l2 l0

Lending Club
t0 + 1 (2017) 0.895 0.879
t0 + 2 (2018) 0.904 0.688

H1-B Visas
t0 + 1 (2015) 0.869 0.883
t0 + 2 (2016) 0.725 0.962

807

Table 6: A comparison of f1 scores calculated on
the test sets of the estimated models and the reused
models.

Lending Club H1-B Visas
t0 + 1
(2017)

t0 + 2
(2018)

t0 + 1
(2015)

t0 + 2
(2016)

Instance Reweighting 0.497 0.522 0.898 0.691
No Adaptation 0.496 0.521 0.665 0.670

require larger modifications in general. For example, an
overly strict model in the case of the H1-B dataset may re-
quire prevailing wage ∼ $500, 000, when in fact the mean
prevailing wage among all certified applicants in the dataset
is approximately $72, 000. Unfortunately, due to the pro-
hibiting complexity of the full database generation, it can-
not be used as a baseline for models of realistic size. As
an alternative, we study the tightness of partial databases
generated by Algorithm 3, by comparing databases derived
from adapted models to ones derived from actual models.

We used the same adapted models and time points from
the Adaptation Effectiveness experiment, and calculated
nDCG scores as detailed in the Distance Evaluation exper-
iment, compared to actual future models. This experiment
aims to isolate and quantify the effect of the adaptation
process on the quality of positive regions identified by our
solution, in terms of the relevance functions l0 and l2.

The nDCG scores are plotted in Table 5. For that pur-
pose, a score of 1.00 means that the retrieved regions derived
from the adapted and actual future models were equally rel-
evant for all sampled applicants. As one can expect, positive
regions calculated on the actual future models were tighter,
i.e closer to the inputs in general, in all the settings we
tested. However, the nDCG scores shown in Table 5 demon-
strate that the partial databases driven by the reweighted
adapted models contain results that are comparable in terms
of their l2, l0 distances, suggesting that the decision bound-
aries of the adapted models are not very far off from those
trained on data from the future target distributions.

6.4 Query Evaluation Quality
In this Subsection we incorporate the Query Evaluation

component, and aim to evaluate the quality of our solu-
tion’s end-to-end queries’ outputs. All experiments were
performed over the queries presented in Section 4.3.

Comparison with exact solution. In this experiment
we measure the approximation ratio (ratio between input-
output distances according to the metric of interest) of out-
puts generated by our framework to exact outputs generated
by the Exhaustive baseline on small models. We executed
queries 2-4 (suitable for a single time-point setting) on 14
small models for each of the datasets.

We calculated the approximation ratio of the outputs for
every rejected applicant in our sample. The averaged ratios
are depicted in Figure 10. For example, if Q3’s optimal
output requires a modification that has l2 distance 13.64
from the input, while our solution has l2 distance 15, the
ratio is 1.09. The average scores measured for each dataset
were 1.04 (H1-B), 1.31 (HC), and 1.38 (LC).

Evaluating queries on Practical Models. In this experi-
ment we study the quality of queries’ outputs evaluated on
practical-sized models, comparing our framework and A*.
We hold this comparison on both actual and adapted fu-
ture models, in a multiple time-point setting. For details

regarding the selected time-points, applicants and adapta-
tion process see experiment Adaptation Effectiveness.

Figure 10: Query Evaluation outputs comparison of
our solution vs. Exhaustive. Top: LC, Middle: HC,
Bottom: H1-B. The numbers signify the average ap-
proximation ratio.

In Table 7, the average ratios between our solution’s out-
puts and A* ’s outputs are presented: a value < 1 means
our solution outperformed A*, and vice versa. Note that
the results of Q1 were omitted from Table 7: since A* ’s
execution always starts from the temporal input xt, it is
guaranteed to return an optimal output for this query, and
the two approaches coincide in this case. For Q5 we summed
the amount of applicants for which some dominant feature
was identified, and calculated the ratio between the sum
obtained by our solution and by A*. We evaluated the 5
queries presented in Subsection 6.4 for each dataset, in a
total of 5 · 5 = 25 experiments. In 22 out of 25 experiments
our solution achieved equal or superior final outputs.

Table 7: The average ratio between the A* ’s output
and our framework’s output. Queries for which our
solution achieved equal or superior scores are noted
in bold.

Q2 Q3 Q4 Q5

Lending Club
Exact models 0.9 0.66 0.97 1.0

Estimated models 1.13 0.9 0.68 1.0

H1-B Visas
Exact models 1.0 1.0 0.99 0

Estimated models 1.0 1.0 0.99 0.15
Home Credit Exact models 1.0 1.05 0.64 1.55

6.5 Real User Cases
In this Subsection we demonstrate the use of our solu-

tion to derive insights and plans for real-life users. For each
of the datasets, Table 8 depicts results for a representative
sample of user profiles who were rejected by the model. For
each user we present the output of queries Q2, Q3, and Q4
suggesting different modifications that would enable their
acceptance in the following year. Even when the datasets
contain tens of features (25 in LC and HC), and the model is
composed of many different regions, it can be seen that the
generated suggestions require a small amount of modifica-
tions to the users’ profiles. For example, the first suggestion

808

Table 8: Real user profiles along with plans for positive classification
Home Credit

Credit Education Family Status Income Type Org Type Region Population Confidence l2 l0

User profile 269.5 Secondary Civil Marriage State servant Government 0.00496 89.2% - -

Q2 269.5 Secondary Civil Marriage Working Government 0.00496 94% 1 1
Q3 269.5 Secondary Civil Marriage State servant Government 0.031885 89.6% 0.027 1
Q4 269.5 Higher Education Civil Marriage State servant Government 0.00496 94.3% 1 1

User profile 270 Secondary Married Working Self-employed 0.019101 87.7% - -

Q2,Q3 270 Higher Education Married Working Self-employed 0.019101 92.4% 1 1
Q4 893.7 Higher Education Married Working Self-employed 0.019101 94.7% 623.7 2

Landing Club
Annual Income Debt to Income Installment Loan Amount Mortgage Accounts Confidence l2 l0

User profile 60.648 28.87 289.1 8,400 0 49.7% - -

Q2 60.648 21.43 289.1 8,400 0 78.2% 7.44 1
Q3 60.648 28.87 289.1 8,400 4 78.1% 4 1
Q4 60.648 13.625 165.2 8,400 2 81.1% 124.8 3

User profile 65 18.52 534.72 15,000 0 48.6% - -

Q2,Q3 65 18.52 534.72 15,000 2 79.5% 2 1
Q4 65 18.52 318.03 8,921 2 80.4% 6,082 3

H1-B Visas
Employer Full Time Title Wage Site Confidence l2 l0

User profile Amazon Y SDE II $102K Seattle 49% - -

Q2, Q3, Q4 Amazon Y SDE III $102K Seattle 100% 1 1

in LC dataset, advises the user to decrease the “Debt to
Income” ratio from 28.87 to 21.43, which is expected to in-
duce an increase of the model’s acceptance confidence from
49.7% to 78.2% in the following year.

7. RELATED WORK
In this section we review related work in three areas: ML

explanations, domain adaptations and constraint databases.
Machine Learning Explanations. In recent years the

problem of interpretable Machine Learning [48, 57, 15, 51]
has been extensively studied. One approach in this respect is
explaining the model as a whole [27, 28]. A second approach
is to focus on the reasoning underlying individual classifica-
tions. Such local explanations can also be divided into two
classes: one quantifying Feature Importance and the other
focuses on Counterfactual Explanations; in this work we fol-
low the latter. Feature importance methods quantify the in-
fluence of the sample attributes on the prediction [53, 12, 47,
54, 1]. In [46, 45], a solution to evaluate Shapley values for
tree-based models was developed. Solutions that quantify
feature importance mostly promote understanding of the
model and its decisions, but they are not well suited for ob-
taining an actionable plan for altering the classification. In
contrast, our solution is more in line with works on counter-
factual explanations. Generally speaking, a counterfactual
explanation of a prediction describes a small change to the
feature values that modifies the prediction to a predefined
output. Recent works, such as [58, 42, 14, 13], have sug-
gested various methods to identify counterfactual examples.
A first prototype of our solution system was demonstrated in
[6]. The short demo paper accompanying the demonstration
presented an earlier version of the system, and gave a high
level overview of the systems capabilities and user interface
whereas the present paper details the model and algorithms
underlying our solution as well their experimental evalua-
tion. To our knowledge, all prior work other than [6] aimed
at finding a single counterfactual explanation; ours is the
first work to generate a database of multiple explanations.
Additionally, prior works on ML explanations handle only a
single model; in contrast, we focus on evolving models and
on explanations that will be relevant for future time points.

Domain Adaptation. The field of domain adaptation
studies the task of utilizing the knowledge learned from
source distribution to be applied on a new target distribu-
tion. Methods for domain adaptation based on Instance
Reweighing were studied in [44, 11]; since those technique

require knowledge of the target distribution, [10] suggested
a method for its estimation. The effect of representation
change for domain adaptation was analyzed in [4]. In recent
years there has been active study of domain adaptation us-
ing deep neural networks [59]; it has been used in numerous
settings such as image classification [37, 55], natural lan-
guage processing [21], and medical diagnosis [31]. We use a
domain adaptation module as a black box in our solution,
and thus these efforts are in a sense orthogonal to our work.

Constraint Databases. Constraints databases were
first introduced in [33]. A large body of theoretical work
was devoted to the expressiveness and complexity of FO
queries over constraints databases (e.g. [34, 35, 56]), as well
as systems that were developed [9] and [22]. [23] studied
the properties of linear and polynomial constraints used in
our framework. The application of constraint databases in
the spatial context led to numerous theoretical results (e.g.
[49, 20]). In recent years, constraint query languages have
been studied in the domain of spatio-temporal and moving
objects [19, 36]. Temporal query languages such as Linear
temporal logic (LTL) [50] also may be used in this context
as they allow formulation of queries about future states of a
temporal system.

Here again, a constraint database is used as a black box
in our solution. To our knowledge, ours is the first usage of
this field to specify the decision boundaries of ML model.

8. CONCLUSION
We have proposed a novel approach for querying ML clas-

sifier results, that accounts for temporal changes in both the
classifier and its input. Query results may be used as action-
able recommendations for individuals affected by the classifi-
cation. We have developed efficient algorithms for the prob-
lem and experimentally shown their effectiveness. As future
work, we aim at extending our framework to support further
ML models including in particular Neural Networks.

Acknowledgements. This research has been funded by the Eu-

ropean Research Council (ERC) under the European Unions Hori-

zon 2020 research and innovation programme (Grant agreement No.

804302), the Israeli Science Foundation (ISF) Grant No. 978/17 and

639/17, the US-Israel Binational Science foundation, the Israel Inno-

vation Authority - MDM, Len Blavatnik and the Blavatnik Family

foundation. The contribution of Nave Frost is part of a Ph.D. thesis

research conducted at Tel Aviv University.

809

9. REFERENCES
[1] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R.

Müller, and W. Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[2] M. Baudinet, M. Niezette, and P. Wolper. On the
representation of infinite temporal data and queries.
In Proc. of the 10th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 280–290. Denver, 1991.

[3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza,
F. Pereira, and J. W. Vaughan. A theory of learning
from different domains. Machine learning,
79(1-2):151–175, 2010.

[4] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira.
Analysis of representations for domain adaptation. In
Advances in neural information processing systems,
pages 137–144, 2007.

[5] M. Benedikt, G. Dong, L. Libkin, and L. Wong.
Relational expressive power of constraint query
languages. Journal of the ACM (JACM), 45(1):1–34,
1998.

[6] N. Boer, D. Deutch, N. Frost, and T. Milo. Just in
time: Personal temporal insights for altering model
decisions. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 1988–1991. IEEE,
2019.

[7] N. Boer, D. Deutch, N. Frost, and T. Milo. Personal
insights for altering decisions of tree-based ensembles
over time (technical report). http://bit.ly/2YCceoP,
2019.

[8] L. Breiman. Bagging predictors. Machine learning,
24(2):123–140, 1996.

[9] J.-H. Byon and P. Z. Revesz. Disco: A constraint
database system with sets. In ESPRIT WG
CONTESSA Workshop on Constraint Databases and
Applications, pages 68–83. Springer, 1995.

[10] Y. S. Chan and H. T. Ng. Word sense disambiguation
with distribution estimation. In IJCAI, volume 5,
pages 1010–5, 2005.

[11] Y. S. Chan and H. T. Ng. Estimating class priors in
domain adaptation for word sense disambiguation. In
Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual
meeting of the Association for Computational
Linguistics, pages 89–96. Association for
Computational Linguistics, 2006.

[12] A. Datta, S. Sen, and Y. Zick. Algorithmic
transparency via quantitative input influence: Theory
and experiments with learning systems. In Security
and Privacy (SP), 2016 IEEE Symposium on, pages
598–617. IEEE, 2016.

[13] D. Deutch and N. Frost. CEC: Constraints based
explanation for classifications. In Proceedings of the
27th ACM International Conference on Information
and Knowledge Management, pages 1879–1882. ACM,
2018.

[14] D. Deutch and N. Frost. Constraints-based
explanations of classifications. In 2019 IEEE 35th
International Conference on Data Engineering
(ICDE), pages 530–541. IEEE, 2019.

[15] F. Doshi-Velez and B. Kim. Towards a rigorous
science of interpretable machine learning. 2017.

[16] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[17] J. H. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[18] F. Geerts. Constraint databases. In Encyclopedia of
Database Systems, pages 585–586. Springer New York,
2018.

[19] F. Geerts, S. Haesevoets, and B. Kuijpers. A theory of
spatio-temporal database queries. In International
Workshop on Database Programming Languages,
pages 198–212. Springer, 2001.

[20] F. Geerts and B. Kuijpers. Real algebraic geometry
and constraint databases. In Handbook of Spatial
Logics, pages 799–856. Springer, 2007.

[21] X. Glorot, A. Bordes, and Y. Bengio. Domain
adaptation for large-scale sentiment classification: A
deep learning approach. In Proceedings of the 28th
international conference on machine learning
(ICML-11), pages 513–520, 2011.

[22] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin.
Dedale, a spatial constraint database. In International
Workshop on Database Programming Languages,
pages 38–59. Springer, 1997.

[23] S. Grumbach and J. Su. Queries with arithmetical
constraints. Theoretical Computer Science,
173(1):151–181, 1997.

[24] S. Grumbach, J. Su, and C. Tollu. Linear constraint
databases. 1995.

[25] T. K. Ho. Random decision forests. In Document
analysis and recognition, 1995., proceedings of the
third international conference on, pages 278–282, 1995.

[26] Home credit data. https://www.kaggle.com/c/
home-credit-default-risk/data.

[27] J. Huysmans, B. Baesens, and J. Vanthienen. Using
rule extraction to improve the comprehensibility of
predictive models. 2006.

[28] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen,
and B. Baesens. An empirical evaluation of the
comprehensibility of decision table, tree and rule
based predictive models. Decision Support Systems,
51:141–154, 2011.

[29] N. Japkowicz and S. Stephen. The class imbalance
problem: A systematic study. Intelligent data analysis,
6(5):429–449, 2002.

[30] J. Jiang. A literature survey on domain adaptation of
statistical classifiers. 3:1–12, 2008. http://sifaka.cs.
uiuc.edu/jiang4/domainadaptation/survey.

[31] M. Kachuee, S. Fazeli, and M. Sarrafzadeh. Ecg
heartbeat classification: A deep transferable
representation. In 2018 IEEE International
Conference on Healthcare Informatics (ICHI), pages
443–444. IEEE, 2018.

[32] Kaggle. The state of ml and data science 2017.
https://www.kaggle.com/surveys/2017, 2017.

[33] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz.
Constraint query languages. Journal of Computer and
System Sciences, 51(1):26–52, 1995.

[34] M. Koubarakis. Complexity results for first-order
theories of temporal constraints. In Principles of

810

http://bit.ly/2YCceoP
https://www.kaggle.com/c/home-credit-default-risk/data
https://www.kaggle.com/c/home-credit-default-risk/data
http://sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey
http://sifaka.cs.uiuc.edu/jiang4/domainadaptation/survey
https://www.kaggle.com/surveys/2017

Knowledge Representation and Reasoning, pages
379–390. Elsevier, 1994.

[35] M. Koubarakis. The complexity of query evaluation in
indefinite temporal constraint databases. Theoretical
Computer Science, 171(1-2):25–60, 1997.

[36] B. Kuijpers and W. Othman. Trajectory databases:
Data models, uncertainty and complete query
languages. 2010.

[37] B. Kulis, K. Saenko, and T. Darrell. What you saw is
not what you get: Domain adaptation using
asymmetric kernel transforms. In CVPR 2011, pages
1785–1792. IEEE, 2011.

[38] A. Kumagai and T. Iwata. Learning future classifiers
without additional data. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[39] A. Kumagai and T. Iwata. Learning non-linear
dynamics of decision boundaries for maintaining
classification performance. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[40] G. Kuper, L. Libkin, and J. Paredaens. Constraint
databases. Springer Science & Business Media, 2013.

[41] C. H. Lampert. Predicting the future behavior of a
time-varying probability distribution. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 942–950, 2015.

[42] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and
M. Detyniecki. Inverse classification for
comparison-based interpretability in machine learning.
arXiv preprint arXiv:1712.08443, 2017.

[43] Lending club data. https://www.lendingclub.com/
info/download-data.action.

[44] Y. Lin, Y. Lee, and G. Wahba. Support vector
machines for classification in nonstandard situations.
Machine learning, 46(1-3):191–202, 2002.

[45] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave,
J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal, and S.-I. Lee. Explainable ai for trees:
From local explanations to global understanding.
arXiv preprint arXiv:1905.04610, 2019.

[46] S. M. Lundberg, G. G. Erion, and S.-I. Lee.
Consistent individualized feature attribution for tree
ensembles. arXiv preprint arXiv:1802.03888, 2018.

[47] S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In Advances in Neural
Information Processing Systems, pages 4765–4774,
2017.

[48] C. Molnar. Interpretable Machine Learning. 2019.
https:

//christophm.github.io/interpretable-ml-book/.

[49] J. Paredaens, J. Van den Bussche, and D. Van Gucht.
Towards a theory of spatial database queries. In
Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 279–288. ACM, 1994.

[50] A. Pnueli. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer
Science (sfcs 1977), pages 46–57. IEEE, 1977.

[51] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman,
J. W. Vaughan, and H. Wallach. Manipulating and
measuring model interpretability. In NIPS 2017
Transparent and Interpretable Machine Learning in
Safety Critical Environments Workshop, 2017.

[52] P. Z. Revesz. Constraint databases: A survey. In
International Workshop on Semantics in Databases,
pages 209–246. Springer, 1995.

[53] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should
i trust you?: Explaining the predictions of any
classifier. pages 1135–1144, 2016.

[54] A. Shrikumar, P. Greenside, and A. Kundaje.
Learning important features through propagating
activation differences. arXiv preprint
arXiv:1704.02685, 2017.

[55] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko.
Simultaneous deep transfer across domains and tasks.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 4068–4076, 2015.

[56] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains.
Journal of Computer and System Sciences,
54(1):113–135, 1997.

[57] A. Vellido, J. D. Mart́ın-Guerrero, and P. J. Lisboa.
Making machine learning models interpretable. In
ESANN, volume 12, pages 163–172, 2012.

[58] S. Wachter, B. Mittelstadt, and C. Russell.
Counterfactual explanations without opening the
black box: Automated decisions and the gpdr. Harv.
JL & Tech., 31:841, 2017.

[59] M. Wang and W. Deng. Deep visual domain
adaptation: A survey. Neurocomputing, 312:135–153,
2018.

[60] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, and T.-Y.
Liu. A theoretical analysis of ndcg ranking measures.
In Proceedings of the 26th annual conference on
learning theory (COLT 2013), volume 8, page 6, 2013.

811

https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

	Introduction
	Preliminaries
	Tree-based Models
	Domain Adaptation
	Constraint Databases

	Problem Definition
	Exact Solution
	Future Models Estimation
	Database Generation
	Query Evaluation

	Partial Regions
	Experiments
	Experimental settings
	Execution Time
	Database Generation Quality
	Query Evaluation Quality
	Real User Cases

	Related Work
	Conclusion
	References

