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ABSTRACT
Recently, the topic of community search (CS) has gained plenty of
attention. Given a query vertex, CS looks for a dense subgraph that
contains it. Existing studies mainly focus on homogeneous graphs
in which vertices are of the same type, and cannot be directly ap-
plied to heterogeneous information networks (HINs) that consist of
multi-typed, interconnected objects, such as the bibliographic net-
works and knowledge graphs. In this paper, we study the problem
of community search over large HINs; that is, given a query vertex
q, find a community from an HIN containing q, in which all the
vertices are with the same type of q and have close relationships.

To model the relationship between two vertices of the same type,
we adopt the well-known concept of meta-path, which is a se-
quence of relations defined between different types of vertices. We
then measure the cohesiveness of the community by extending the
classic minimum degree metric with a meta-path. We further pro-
pose efficient query algorithms for finding communities using these
cohesiveness metrics. We have performed extensive experiments
on five real large HINs, and the results show that the proposed so-
lutions are effective for searching communities. Moreover, they are
much faster than the baseline solutions.
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1. INTRODUCTION
Heterogeneous information networks (HINs) are networks with

multiple typed objects and multiple typed links denoting different
semantic relations. These graph data sources are prevalent in vari-
ous domains, including bibliographic information networks, social
media, and knowledge graphs. Figure 1(a) illustrates an HIN of the
DBLP network, which describes the relationship among entities of
different types (i.e., author, paper, venue, and topic). In specific,
it consists of six authors (i.e., a1, · · · , a6), six papers (i.e., p1,
· · · , p6), one venue (i.e., v1), and two topics (i.e., t1 and t2). The
directed lines denote their semantic relationship. For example, the
authors a1 and a2 have written a paper p1, which mentions the topic
t1, published in the venue v1.
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Figure 1: An example HIN with the DBLP network schema.

In this paper, we study the problem of Community Search over
HINs (or CSH problem). To the best of our knowledge, this paper
is the first work about CS over HINs. Given an HIN G and a query
vertex q ∈ G, our goal is to find a community, or a set of vertices,
from G containing q, in which all the vertices are with the same
type of q and they are closely related. Particularly, the community
satisfies the meta-path-based cohesiveness (i.e., its vertices are in-
tensively connected by instances of a specific meta-path). The con-
cept of meta-path has been extensively studied [62]; it is a sequence
of vertex types and edge types between two given vertex types. In
Figure 2(a), a meta-path P1, defined on authors (A) and papers (P),
describes two authors with co-authorship. In Figure 1(a), the au-
thors {a1, a2, a3, a4} form a cohesive community, in which each
pair of authors can be connected by a path instance of P1.

Table 1: Works on network community retrieval.
Network Type Community

Detection (CD)
Community
Search (CS)

Homogeneous [2, 14, 31, 39, 40, 49]
[15, 16, 26, 35, 37, 60]
[9, 23, 24, 36, 41, 42]

Heterogeneous [59, 61, 63–65, 81] CSH (This work)

Prior works. Existing works on network community retrieval
can be roughly classified into community detection (CD) and com-
munity search (CS). Some representative works are summarized in
Table 1. Generally, CD algorithms aim to identify all communi-
ties for a graph [31, 49, 63–65, 81]. These studies are not “query-
based”, i.e., they are not customized for a query request (e.g., a
user-specified query vertex). Moreover, for large graphs, they often
take a long time to detect all the communities, so they are not suit-
able for online queries. To address these issues, the query-based
CS approaches (e.g., [15, 26, 35, 60]) have been recently studied.
However, previous CS approaches mainly focus on homogeneous
networks where all the vertices are of the same type, while in HINs,
both vertices and edges are multiply typed and they carry different
semantic meanings, so it does not make sense to mix up them for
performing CS using existing approaches.

CSH problem. In this paper, we focus on searching commu-
nities in HINs, in which vertices are with a specific type (e.g.,
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Figure 2: The induced homogeneous graphs using P1 and P2.

a community of authors in the DBLP network). Conceptually, a
community is a set of vertices which are connected cohesively. To
formulate the CSH problem, we face two key questions: (1) How
to connect two vertices of the same type? (2) How to measure the
cohesiveness of a community?

For the first question, it is nontrivial to answer, since vertices of
the same type (e.g., conferences in the DBLP network) may not
be connected directly in the HIN. To connect vertices, we adopt
the well-known concept of meta-path (e.g., P1 in Figure 2(a)), or
a sequence of relations defining a composite relation between its
starting type and ending type [48, 62].

For the second question, existing CS solutions often adopt well-
known metrics, e.g., minimum degree [15, 24, 42, 60], k-truss [35,
37], and k-clique [16,78], to measure the community cohesiveness.
Among them, the minimum degree is the most common metric [26],
which ensures that each vertex is well engaged in the community,
i.e., it has at least k neighbors in the community. In this paper, we
extend this metric for HINs; that is, for each vertex v of a commu-
nity C, there are at least k other vertices, which can be connected
to v via instances of a particular meta-path P , within C. To an-
swer this query, a simple solution is to build a homogeneous graph
GP by linking pairs of vertices if there is an instance of P be-
tween them, and then run an existing CS solution (e.g., [60]). For
example, consider the HIN in Figure 1(a). Let q=a1, P=P1, and
k=3. We then can build a homogeneous graph GP1 as shown in
Figure 2(a), and get a community C1={a1, · · · , a5}.

Although the basic metric above is straightforward, it may lead
to some vertices weakly engaged in the community. Consider the
author a5, for instance, in the community C1. Although a5 has
three co-authors, a5 publishes only one paper p5, while each other
author has three papers. In other words, a5 may be a junior re-
searcher, but is included in a community of senior researchers. This
is because the edge “a5 → p5” is shared by three path instances of
P1. Moreover, this scenario could be even common for long meta-
paths. For example, let us replace P1 by P2 in the query above. We
can obtain another homogeneous graph GP2 (Figure 2(b)) and get
a community C2={a1, · · · , a6}. Notice that all the path instances
linked to a6 share edges “a6 → p6”, “p6 → t2”, and “p5 → t2”.
Clearly, if any of them is removed, a6 will be isolated, and thus it
is weakly engaged in C2. The weak engagement issue above can-
not be trivially resolved by normalizing the strength between vertex
pairs (e.g., using PathSim [62]), since it does not change the topol-
ogy of GP . In addition, as noted in [50], transforming an HIN to a
homogeneous graph may not be meaningful because it may cause
issues of high degrees and high clustering coefficients.

Recall that existing CS studies [15, 24, 41, 42, 60] require each
vertex in the community has at least k neighbors, which are linked
by different edges. This imposes strong cohesiveness since each
vertex is still engaged in the community after removing any (k–1)
edges. Inspired by this concept, we propose to use different meta-
paths to model the cohesiveness. Specifically, we introduce two
novel metrics by using edge- and vertex-disjoint paths, which re-
quire that each vertex v is connected to at least k vertices via edge-
and vertex-disjoint paths of P respectively. For example, consider

a1 a2 a3 a4

p1 p2 p3

a4 a5

p5

(a) Disjoint paths from a1 (b) Disjoint path from a5

Figure 3: Illustrating edge- and vertex-disjoint paths.

the query above (q=a1, P=P1, and k=3). By using edge-disjoint
paths, a1 can be connected to three vertices, while a5 is connected
to at most one vertex, as depicted in Figure 3 (each path is repre-
sented by a specific kind of dashed line). We then get a new com-
munity C′

1={a1, · · · , a4} for a1. Notice that C′
1 ⊆ C and a5 /∈ C′

1.
Clearly, C′

1 is more cohesive than C1 since each vertex is still en-
gaged in C′

1 after removing any two edges. Similarly, by using
vertex-disjoint paths, we can find the community C′

1 for a1.
To further illustrate this, we conduct a case study on a small

DBLP network by two queries with different cohesiveness metrics.
The results are reported in Table 2, where “Basic” denotes the met-
ric directly extended from the minimum degree metric. In the first
query, we let q be Prof. Xuemin Lin (a researcher in the database
area), and set k=5 and P=P1. The two communities contain six
researchers collaborated intensively, but the first one has several
additional authors who published just one or two papers. For the
second query, we let q be SIGMOD conference, and set k=5 and
P=P3. Clearly, by edge-disjoint metric, we can find all the six top
database conferences, while the basic metric cannot achieve this.

Main features. The CSH query has some nice features: (1) It
can find different types of communities. As shown in Table 2, it
finds communities of authors, as well as venues, by using differ-
ent meta-paths. (2) The query can be personalized. As aforemen-
tioned, different meta-paths carry different relationships. By spec-
ifying different meta-paths for a single query vertex, we can get
communities with different semantic relationships. (3) The query
can be evaluated in an online manner. As we will show later, we
have developed efficient query algorithms, allowing the community
to be generated quickly upon a query request.

Applications. Here are typical applications of the CSH query:
(1) Event planning. For instance, to hold a workshop, a researcher
can issue a CSH query with the meta-path P1 on the DBLP net-
work and hold the workshop based on the returned community. (2)
Social marketing. An e-commence platform (e.g., Alibaba) often
maintains an HIN of users and products. To boost sales figures for
a product x, advertisement messages can be sent to groups of users
with co-purchase behaviours before, where the groups can be iden-
tified by CSH queries on users who have purchased x. (3) Recom-
mendation. In a movie database (e.g., IMDB), to suggest movies
for a user u, we can find u’s community C by a CSH query with
a meta-path linking two users by a movie, and then recommend
movies based on C. (4) Biological data analysis [18, 54]. For ex-
ample, in the HIN of genes and diseases, identifying a community
of genes could reveal the hidden links in different diseases [18].

Challenges and contributions. The minimum degree metric is
also used in defining a k-core [5,57], which is the largest subgraph
of a homogeneous graph such that each vertex’s degree is at least k.
Inspired by this model, we propose three core models, namely ba-
sic, edge-disjoint, and vertex-disjoint (k, P)-cores, by incorporat-
ing a meta-path P into the k-core model respectively. Then, a CSH
query can be answered by computing a specific core containing the
query vertex. However, computing these cores is very challenging.

For the basic (k, P)-core, the community can be computed from
the induced homogeneous graph GP . However, GP is often much
denser than traditional graphs. For example, on the DBLP dataset,
the average degree of vertices with type “A” is 3.46, but the av-
erage degree of vertices with type “A” in GP2 is 363.63, where
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Table 2: Results of a case study on a small DBLP network.
Pwrite write-1A AP1: PpubIn-1 write-1V A pubIn V

write PP3:
Basic Edge-disjoint Basic Edge-disjoint

Xuemin Lin

Jeffrey Xu Yu

Lu Qin

Ying Zhang

Wenjie Zhang

Lijun Chang

Other 13 authors

Xuemin Lin

Jeffrey Xu Yu

Lu Qin

Ying Zhang

Wenjie Zhang

Lijun Chang

SIGMOD, ICDE

PVLDB, CIKM

EDBT, DASFAA

CCS, SSP, ICC

GLOBECOM

USENIX Security

SIGMOD, ICDE

PVLDB, CIKM

EDBT, DASFAA

P2=(APTPA). Hence, this imposes great challenges for comput-
ing basic (k, P)-cores, especially when P is very long. To alleviate
this issue, we develop an advanced algorithm FastBCore, which
does not need to enumerate all the path instances.

For edge- and vertex-disjoint (k, P)-cores, the first challenge is
that they cannot be computed from GP , as it does not reveal any
information about whether path instances are disjoint or not. Thus,
we have to compute them from the HIN, which it is harder than
computing the basic (k, P)-core. The second challenge is how to
efficiently compute the maximum numbers of vertices linked by
edge- and vertex-disjoint paths respectively. The exact algorithms
of computing them are based on the max-flow algorithm, which
however is very costly, since they may take up to O(|VF | · |EF |)
time, where VF and EF denote the sets of vertices and edges in the
flow network, so it is costly for large HINs. To alleviate this issue,
we develop a linear-time approximation algorithm with theoretical
guarantee. Besides, we have developed a batch peeling strategy to
speedup the peeling process when computing the cores.

In addition, although online algorithms above are fast, they may
be inefficient when the queries are executed frequently. We further
improve the efficiency by developing a space-efficient index, which
allows the query to be completed in optimal query time cost.

We have conducted extensive experiments on five real large HINs.
The results show that the communities based on edge- and vertex-
disjoint (k, P)-cores are more cohesive than those of the basic one,
and the online query algorithms are generally fast. Meanwhile, the
basic (k, P)-core takes the least running time, while vertex-disjoint
(k, P)-core is the most time consuming one. In addition, the index-
based queries are much faster than online queries.

Outline. We formulate the CSH problem in Section 2. In Sec-
tions 3 and 4, we present online algorithms and index-based algo-
rithms. We report experimental results in Section 5. We review the
related work in Section 6 and conclude in Section 7.

2. PROBLEM DEFINITION

2.1 Preliminaries
We summarize notations frequently used in this paper in Table 3.

DEFINITION 1. HIN [38,62]. An HIN is a directed graph G=(V ,
E) with a vertex type mapping function ψ : V → A and an edge
type mapping function φ : E → R, where each vertex v ∈ V be-
longs to a vertex type ψ(v) ∈ A, and each edge e ∈ E belongs to
an edge type (also called relation) φ(e) ∈ R.

DEFINITION 2. HIN schema [38, 62]. Given an HIN G= (V ,
E) with mappings ψ : V → A and φ : E → R, its schema TG

is a directed graph defined over vertex types A and edge types (as
relations) R, i.e., TG=(A, R).

The HIN schema describes all allowable edge types between ver-
tex types, where each edge type can describe one-to-one, one-to-
many, or many-to-many relationship. Figure 1(b) shows the schema
of DBLP network, where the vertices labelled “A”, “P”, “V”, and
“T” denote author, paper, venue, and topic, respectively. Note that

Table 3: Notations and meanings.
Notation Meaning
G=(V,E) an HIN with vertex set V and edge set E

ψ(v) (φ(e)) the vertex (edge) type of a vertex v (edge e)

P a symmetric meta-path defined on the schema of G

l the length of P (equals to the #. of edges of P)

ni #. of vertices whose types match with i-th vertex in P
GP a homogeneous graph induced by a meta-path P on G

Bk (Bk,P ) a basic (k, P)-core

Ek (Ek,P ) an edge-disjoint (k, P)-core

Vk (Vk,P ) a vertex-disjoint (k, P)-core

α(v, S)
the b-degree, i.e., #. of path instances starting from the

vertex v and ending at vertices in a set S

β(v, S)
(γ(v, S))

the e-degree (v-degree), i.e., the maximum #. of edge-

disjoint(vertex-disjoint) path instances which start from

vertex v and end at vertices in a set S

if there is an edge R from vertex type A to vertex type B, the in-
verse edge R−1 naturally exists from B to A.

DEFINITION 3. Meta-path [62]. A meta-path P is a path de-
fined on an HIN schema TG=(A, R), and is denoted in the form

A1
R1−→ A2

R2−→ · · · Rl−→ Al+1, where l is the length of P , Ai ∈ A,
and Ri ∈ R (1 ≤ i ≤ l).

We also use vertex type names to denote a meta-path, i.e., P=(A1

A2 · · ·Al+1), if there exist no multiple edges between the same pair
of vertex types. We call a meta-path P ′ the reverse meta-path of
P , if P ′ is the reverse path of P in TG, and denote it by P−1. We
say P is symmetric, if it is the same with P−1. For example, the
meta-path P1 (Figure 2(a)) can be written as P1=(APA). Since its
reverse meta-path is still P1, it is a symmetric meta-path.

We call a path p=a1→a2· · ·→al+1 between vertices a1 and
al+1 a path instance of P , if ∀i, the vertex ai and edge ei=(ai,
ai+1) satisfy ψ(ai)=Ai and φ(ei)=Ri. For example, in Figure 1(a),
the path a1→p1→a2 is a path instance of P1. Here we use lower-
case letters (e.g., a1) to denote vertices in an HIN, and upper-case
letters (e.g., A) to denote vertex types. We say that a vertex u is a
P-neighbor of a vertex v, if they can be connected by an instance of
P . We say that two vertices u and v are P-connected, if there exists
a chain of vertices from u to v, such that any vertex is a P-neighbor
of its adjacent vertex in the chain.

To characterize the cohesiveness of a community, existing works
[15, 60] often use k-core [5, 26, 57]. Given a homogeneous graph
H and an integer k (k>0), the k-core is the largest subgraph of H ,
denoted by Hk, such that each vertex has a degree of k or more
within Hk. In Figure 2(a), for example, 1-core, 2-core, and 3-core
contain vertices {a1, · · · , a5}.

2.2 Problem Definition
In this paper, we aim to find a community from an HIN con-

taining a query vertex q, in which all the vertices are with the type
ψ(q), also called target type. Conceptually, vertices in the commu-
nity should connect cohesively. To connect vertices with the target
type, we adopt a symmetric meta-path P , whose starting and end-
ing types are with target type. To characterize cohesiveness, we
extend the classic k-core as (k, P)-cores by incorporating a sym-
metric meta-path P . Note that all the meta-paths mentioned later
in this paper are symmetric; for nonsymmetric meta-paths, we can
extend the core model for directed graphs [32] in a similar manner.

Let P be a meta-path linking two vertices with the target type.
Given a vertex v and a set S of vertices with target type, we de-
fine α(v, S), called basic-degree or b-degree, as the number of P-
neighbor of v within the set S. Based on the concept of b-degree,
we introduce the basic (k, P)-core model as follows.
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DEFINITION 4. Basic (k, P)-core. Given an HIN G and an
integer k, a basic (k, P)-core of G is a maximal set Bk,P of P-
connected vertices, s.t. ∀v ∈ Bk,P , α(v,Bk,P) ≥ k, where ver-
tices of Bk,P are with the type linked by P .

As aforementioned, the basic (k, P)-core may include vertices
that are weakly engaged in the core since many path instances may
share the same edges. To tackle this issue, we develop novel core
models based on the disjoint paths. Specifically, consider a vertex v
with target type and let Ψ[v] be a set of path instances of P starting
from v. We say that Ψ[v] is a set of edge-disjoint paths, if for
any two path instances p1, p2∈Ψ[v], their i-th (1≤i≤l) edges are
different and (l+1)-th vertices are different. Similarly, we say that
Ψ[v] is a set of vertex-disjoint paths, if for any two path instances
p1, p2 ∈ Ψ[v], their i-th (2≤i≤l+1) vertices are different. Note
that two edge- or vertex-disjoint paths may share the same edges or
vertices, which will be in different positions of these two paths.

A vertex is often involved in multiple sets of edge-disjoint or
vertex-disjoint paths. In this paper, we consider the maximum
set and use β(v, S) (resp., γ(v, S)) to denote the maximum num-
ber of edge-disjoint (resp., vertex-disjoint) path instances starting
from vertex v and ending at vertices in a set S. For simplicity,
we call β(v, S) (resp., γ(v, S)) e-degree (resp., v-degree) of v.
In Figure 1(a), let v=a1 and S={a1, · · · , a6}. If P=(APA), then
β(a1, S)=γ(a1, S)=3, where the maximum sets of edge- and vertex-
disjoint paths are shown in Figure 3(a). Similarly, if P= (APTPA),
then we have β(a1, S)=3 and γ(a1, S)=1.

DEFINITION 5. Edge-disjoint (k, P)-core. Given an HIN G
and an integer k, an edge-disjoint (k, P)-core of G is a maximal
set Ek,P of P-connected vertices s.t. ∀v∈Ek,P , β(v,Ek,P)≥k,
where vertices of Ek,P are with the type linked by P .

DEFINITION 6. Vertex-disjoint (k, P)-core. Given an HIN G
and an integer k, an vertex-disjoint (k, P)-core of G is a maximal
set Vk,P of P-connected vertices s.t. ∀v∈Vk,P , γ(v,Vk,P)≥k,
where vertices of Vk,P are with the type linked by P .

In the context without ambiguity, we write Bk,P , Ek,P , and
Vk,P as Bk, Ek, and Vk, respectively. We say that a vertex v
has a core number k, if it is the largest k such that there is a corre-
sponding (k, P)-core containing v. In other words, each vertex of a
(k, P)-core must have a corresponding core number of k or more.

EXAMPLE 1. Consider Figure 1(a) and let P=(APA). For ba-
sic (k, P)-cores, Bk={a1, · · · , a5} where 1≤ k ≤ 3. For edge-
disjoint (k, P)-cores, E1= {a1, · · · , a5}, and E2=E3= {a1, a2,
a3, a4}. For vertex-disjoint (k, P)-cores, Vk=Ek where 1 ≤ k ≤
3. There is no B4, E4, or V4. We take author a5 as an example to
illustrate core numbers. Its core numbers are 3, 1, and 1, under the
basic, edge-disjoint, and vertex-disjoint core models, respectively.

Now we formally introduce the CSH problem as follows.

PROBLEM 1. Given an HIN G, a query vertex q, a symmetric
meta-path P , an integer k (k>0), and a specific (k, P)-core model,
return the corresponding (k, P)-core containing q.

In Example 1, let q=a1, P= (APA), and k=3. If we specify the
basic (k, P)-core as the community model, we get a community
B3; If the edge- and vertex-disjoint (k, P)-core is adopted, we can
get communities E3 and V3 respectively. Clearly, since any (k,
P)-core is a maximal set of P-connected vertices, the community
satisfies the properties of structural maximality and connectivity.

2.3 Properties of (k, P)-cores
Below, we show some interesting properties of (k, P)-cores.

PROPOSITION 1. Given an HIN and a meta-path P , the basic
(k, P)-cores are nested, i.e., for any Bk+1 �= ∅, there exists a Bk

such that Bk+1 ⊆ Bk. Similarly, the property holds for edge- and
vertex-disjoint (k, P)-cores.

PROOF. The proposition directly follows the observation.

PROPOSITION 2. Given an HIN and a meta-path P with l=2,
for any Ek, there exists a Vk such that Vk=Ek.

PROOF. The proposition directly follows the observation.

PROPOSITION 3. Given an HIN, a meta-path P , and an integer
k, for any two basic (k, P)-cores Bk and B′

k, if Bk ∩ B′
k �= ∅,

then Bk=B′
k. Similarly, the edge- and vertex-disjoint (k, P)-cores

have such a property.

PROOF. We prove the proposition by contradiction. Suppose
that Bk �= B′

k. Then, Bk ∪ B′
k is a larger basic (k, P)-core by

Definition 4, which contradicts the maximality of Bk and B′
k.

THEOREM 1. Given an HIN G and a meta-path P , for any Vk,
there exists an Ek and a Bk such that Vk ⊆ Ek ⊆ Bk.

PROOF. By Definition 6, ∀v ∈ Vk, it has a set of k vertex-
disjoint path instances of P . For each 2≤i≤l, since the i-th ver-
tices of these paths different, the edges connecting i-th vertices and
(i+1)-th vertices must be different. In other words, these k vertex-
disjoint paths are also edge-disjoint paths, and thus Vk ⊆ Ek.
Similarly, we have Ek ⊆ Bk. Hence, the theorem holds.

3. ONLINE QUERY ALGORITHMS
In this section, we develop efficient algorithms for the CSH prob-

lem. In particular, for each core model, we develop a basic al-
gorithm and an advanced algorithm. While basic algorithms are
straightforward, they are not as efficient as advanced algorithms, as
shown by our experiments. We summarize all the advanced algo-
rithms in Table 4, where more � means higher cohesiveness, ni

is the number of vertices with i-th vertex type in P , di,i+1 is the
maximum number of vertices with (i+1)-th vertex type that are con-
nected to a vertex with i-th vertex type in P , σ2<n1

2, and c ≤ 4.
Clearly, querying Bk takes the least time while computing Vk is

Table 4: Overview of the cohesiveness and complexity.
Core Algorithm Cohesiveness Complexity of advanced algorithm

Bk FastBCore ��� O(n1·d1,2+n1
∑l

i=1ni·di,i+1)

Ek BatchECore ���� O(σ2(n1 · d1,2+

n1 · ∑l
i=2 ni · di,i+1))

Vk BatchVCore ����� O(c · σ2(n1 · d1,2+

n1 · ∑l
i=2 ni · di,i+1))

the most time consuming one. On the other hand, Ek tends to be
more cohesive than Bk, because in Ek, each vertex is still engaged
in the community after removing any (k–1) edges. Also, Vk is
more cohesive than Ek because the edge-disjoint paths may share
the same vertices while the vertex-disjoint paths share neither an
edge nor a vertex. In summary, there is a trade-off between the
cohesiveness of results and query efficiency, i.e., a more cohesive
core takes higher time computational cost in most cases. We remark
that in certain extreme cases (e.g., the Yeast PPI network [20]), the
HIN is simply comprised by large stars and each vertex is linked
to only one or two edge- and vertex-disjoint paths, the edge- and
vertex-disjoint core models may not achieve higher cohesiveness.

Our later experiments also indicate that for moderate and large
graphs, it is better to adopt Ek or Vk because computing them

857



achieves good quality within reasonable time cost; while if the
number of vertices with the target type is very large, Bk should
be a better option as its computation is faster than others.

3.1 Algorithms for Basic (k, P)-cores
In this section, we present two query algorithm for the basic core

model, including a basic algorithm and an advanced algorithm.

3.1.1 A Basic Algorithm
A basic algorithm is to build an induced homogeneous graph GP

first and then return the connected k-core containing q from GP . In
specific, it consists of three steps: (1) collect a set S of all vertices
with target type; (2) for each vertex v ∈ S, enumerate the set Ψ[v]
of all path instances of P starting with v and add an edge between v
and each of its P-neighbors using Ψ[v]; and (3) find the connected
k-core containing q. This algorithm, however, is very costly for
long meta-paths on large HINs since in step (2), the size of Ψ[v]
could be exponentially large, i.e., O(nl), where n is the maximum
number of vertices for a vertex type in P and l is the length of P .
To speedup step (2), we propose a batch search strategy. Instead of

Algorithm 1: The algorithm: HomBCore.

Input: G, q, P , k;
Output: Bk;

1 collect the set S of vertices with the target type;
2 for each vertex v ∈ S do
3 initialize a set X={v};
4 for i ← 1 to l do
5 Y ← ∅;
6 for each vertex u ∈ X do
7 for each neighbor t of u do
8 if (u,t) matches with i-th edge of P then Y .add(t);

9 X ← Y ;

10 for each vertex u ∈ X do add an edge between v and u;

11 Bk ← compute the connected k-core containing q from GP ;
12 return Bk;

enumerating all the path instances, we decompose P into a list of
edges and find matched vertices for each of them in a batch manner.
We call the improved algorithm HomBCore, which is shown in
Algorithm 1. We first find S (line 1). Then, we initialize a set X
for each vertex v (lines 2-3), and get its P-neighbors by finding
vertices that match with each edge of P in a batch manner (lines
4-9). Finally, we compute Bk from GP (lines 10-12).

LEMMA 1. The total time cost of HomBCore is O(n1 · d1,2 +
n1

∑l
i=1ni·di,i+1) time.

PROOF. Please see appendices of the technical report [75].

3.1.2 An Advanced Algorithm
The major limitation of HomBCore is that it has to build an in-

duced homogeneous graph GP for all the vertices with the target
type. This, however, is costly and unnecessary, because (1) not
all the vertices with target type are P-connected to q; and (2) it
finds all the P-neighbors for each vertex with target type. To tackle
these two issues, we propose two labelling strategies, namely batch
search with labelling and depth-first search with labelling.

Batch search with labelling (BSL). The BSL strategy is devel-
oped for efficiently finding all the vertices that are P-connected to
q. It is based on the batch search in HomBCore, but with labelling.
For example, in Figure 1(a), let q=a1 and P=(APA). By using
BSL, we will find five authors {a1, · · · , a5}. Notice that author a6

is excluded since it is not P-connected to a1.
Detailed steps of BSL are presented in Algorithm 2 (lines 1-11).

Specifically, we first find q’s P-neighbor set using batch search.

Algorithm 2: The algorithm: FastBCore.

Input: G, q, P , k;
Output: Bk;

1 S ← ∅, X ← {q}, Q ← ∅, Ψ[ ] ← ∅;
2 while |X|>0 do
3 for i ← 1 to l do
4 Y ← ∅;
5 for each vertex v ∈ X do
6 for each neighbor u of v do
7 if (v, u) matches with i-th edge of P then
8 if (v, u) does not have a label i then
9 Y .add(u) and attach a label i to (v, u);

10 X ← Y ;

11 X ← X\S, S ← S ∪X;

12 for each vertex v ∈ S do
13 Ψ[v] ← find up to k path instances of P which start from v;
14 if |Ψ[v]|<k then Q.add(v);

15 while |Q|>0 do
16 v ← Q.poll();
17 S ← S\{v}, U ← {u|u is P-connected to v by a path in Ψ[v]};
18 for each vertex u ∈ U do
19 if v is P-connected to u by a path instance p ∈ Ψ[u] then
20 remove p from Ψ[u];
21 if |Ψ[u]|<k then
22 p′ ← find a new path instance starting from u;

23 if p′ exists then Ψ[u] ← Ψ[u] ∪ {p′};
24 else Q.add(u);

25 return a set {v|v ∈ S ∧ v is P-connected to q} found by BSL;

During this process, whenever we find an edge (v, u) matched with
i-th edge of P , if it does not have a label i, we attach it a label i
and add u to Y ; if it has a label i, we skip it directly. Note that
initially, edges do not have labels. After finding Y , we find new
vertices that are P-neighbors of vertices in Y , in the next iteration.
This process repeats until all the vertices are labelled. Clearly, each
edge is accessed in constant times as we use labelling. As a result,
finding a set S of vertices that are P-connected to q takes liner time

cost, which is bounded by O(
∑l

i=1 ni · di,i+1).
Depth-first search with labelling (DSL). Recall that by defi-

nition, a Bk only requires that each of its vertices has least k P-
neighbors. Meanwhile, as shown in existing CS studies [15, 16,
35, 60], k is often not very large. Motivated by this observation,
we propose to dynamically maintain up to k P-neighbors for each
vertex. Specifically, we first find up to k P-neighbors for each
vertex, and then iteratively remove vertices that do not satisfy the
constraint of k. Since the removal of a vertex v will remove a
P-neighbor of v’s P-neighbor vertices, so we need to incremen-
tally supply new P-neighbors for v’s P-neighbors. To find these
P-neighbors incrementally, we propose the DSL strategy.

In specific, after finding a path p using depth-first search, we
check each vertex of p and label it as “visited”, if all its neigh-
bors have been considered before. For example, consider an HIN
in Figure 4 with v=a1 and P=(APTPA). After finding paths
a1→p1→t1→p4→a2 and a1→p1→t1→p4→a3, we will label a2,
a3, and p4 as visited. These labelled vertices will not be considered
when finding the remaining paths. This ensures that each edge will
be visited constance times. Thus, for each vertex, enumerating all

its path instances takes O(d1,2 +
∑l

i=2 ni · di,i+1) time.
Based on the BSL and DSL strategies above, we propose an ad-

vanced algorithm, denoted by FastBCore, shown in Algorithm 2.
First, we use the BSL strategy to find a set S of all the vertices that
are P-connected to q (lines 1-11). Then, it finds up to k path in-
stances for each vertex and collects vertices that do not have k paths
into a queue Q (lines 12-14). Then, it iteratively removes a vertex
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Figure 4: DFS with labelling. Figure 5: Link relationships.

v from Q, checks each P-neighbor u, removes the path from u to
v, tries to find a new path starting from u and ending at a vertex
in S, and if it exists, then adds it to Ψ[u]; otherwise, adds v to Q
(lines 15-24). After the loop, each vertex in S has k P-neighbors.

Notice that since only k P-neighbors are found for each vertex,
we cannot find the maximal set of vertices that are P-connected by
using these P-neighbors. For example, in Figure 1(a), let q=a1,
k=2, and P=(APTPA). After finding two P-neighbors for each
vertex, we may get two disconnected components as shown Fig-
ure 5, where each edge denotes a path instance. To remedy this
issue, we reuse the BSL strategy to find the maximal set Bk of
vertices that are in S and P-connected to q, during which all the
vertices with the target type are restricted to be from S.

LEMMA 2. The total time cost of FastBCore is O(n1 ·d1,2+
n1

∑l
i=2 ni · di,i+1).

PROOF. Please see appendices of the technical report [75].

We remark that in practice, since the value of k is often not very
large, FastBCore performs much faster than HomBCore.

3.2 Algorithms for Edge-disjoint (k, P)-cores
Recall that Bk can be computed from the induced homogeneous

graph GP . A natural question comes: Can we obtain Ek by com-
puting k-core from GP? To get GP , a simple method is to adopt
the one in HomBCore (i.e., if a vertex u is a P-neighbor of a vertex
v, then add an edge between them). Apparently, this method does
not consider edge-disjoint paths and will result in incorrect Ek.

a1

a2 a3

a1

a2 a3
(a) An example HIN (b) Method1 (c) Method2

Figure 6: Attempts of computing Ek from homogenous graphs.

Another method is to build a homogenous graph in a greedy
manner. Specifically, it first finds a path instance p of P which
links two vertices (say u and v) in the HIN G, then removes all the
edges of p from G, and finally adds an edge between u and v. The
three steps above are repeated until there is no path instance of P .
This method, however, does not work either. Let Ψ[v] denote the
maximum set of edge-disjoint paths starting from v. The reasons
are two-fold: First, Ψ[v] may not be unique. Second, the link re-
lationship may be unsymmetric, because for a specific path linking
u and v, it may appear in Ψ[v], but not in Ψ[u]. Example 2 illus-
trates these two methods where “Method1” and “Method2” denote
them respectively. Therefore, computing Ek is more challenging
than computing Bk.

EXAMPLE 2. Figure 6(a) shows an HIN G with P=(APA).
Clearly, a1, a2, and a3 form an E1. By Method1, we get a graph
in Figure 6(b), which is a 2-core. By Method2, we first find a path
instance p=“a1→ p1→ a2”, then move edges of p, and finally add
an edge between a1 and a2. Since there is no other path instance of
p in G, we get a graph in Figure 6(c), where a3 is in 0-core. Thus,
Ek cannot be computed from these induced homogeneous graphs.

Next, we present the algorithms for computing β(v, S), which is
the e-degree of a vertex v regarding a set of vertices S with the type
ψ(q). Based on them, we propose two efficient query algorithms,
where the first one peels vertices one by one, while the second one
removes vertices in a batch manner.

3.2.1 Algorithms for Computing β(v, S)

We first introduce an exact algorithm, called Exact, based on
the max-flow algorithm. Specifically, we first build a multipartite
graph with (l+1) partitions, also called a (l+1)-partite graph, and
then get a flow network by using it. In the multipartite graph, the i-
th partition contains all the i-th vertices in path instances of P , and
the edges from vertices in the i-th partition to vertices in the (i+1)-
th partition are the i-th edges in all path instances of P . To build the
flow network, we first obtain all path instances starting from v and
ending at vertices in S. Then, we build a multipartite graph. Next,
we let v be the source vertex (which is in the first partition), and
create a sink vertex s and link each vertex of the (l+1)-th partition
to s. Finally, we add a capacity of 1 for each edge. We denote the
above flow network construction method by EBuilder.
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p1

p2

p3

a2

a3

a4

a1

p1

p2

p3
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a3

a4

s
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1

1
1

1

1
1

1

1

1
a1

p1

p2
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a2

a3

a4

a2

a4
(a) An HIN (b) Exact (c) Greedy

Figure 7: Illustrating algorithms of computing β(v, S).

Theorem 2 states that β(v, S) equals to the capacity of the max-
imum flow of F . We illustrate this in Example 3.

THEOREM 2. Given a vertex v and a flow network F=(VF ,
EF ) built by EBuilder, β(v, S) equals to the capacity of maxi-
mum flow from the source vertex to the sink vertex in F .

PROOF. Please see appendices of the technical report [75].

EXAMPLE 3. In Figure 7(a), let v=a1, P= (APA), and S={a1,
a2,a3,a4}. The flow network of a1 is depicted in Figure 7(b). The
capacity of the maximum flow is 3, so β(v, S)=3.

By Theorem 2, we can use any existing max-flow algorithm to
compute β(v, S). In the literature, there are two well-known meth-
ods, namely Ford–Fulkerson method [12] and Orlin’s method [51],
where the former one is the most classic method and the latter one
is the most recent method. Their time complexities are O(f · |EF |)
and O(|VF | · |EF |) respectively, where f is the capacity of max-
imum flow in the flow network F=(VF , EF ). In our case, since
β(v, S) is at most |S|, we have f=β(v, S)≤|S|<|VF |. Thus, the
Ford–Fulkerson method is faster than the Orlin’s method on our
flow network, and we adopt it to compute β(v, S). The Ford–
Fulkerson method computes the maximum flow by finding all the
augmenting paths, where an augmenting path is a directed path star-
ing from the source vertex and ending at the sink vertex.

The major limitation of Exact is its high computational cost,
especially when β(v, S) is very large. To improve efficiency, we
propose an approximation algorithm, denoted by Greedy, as it
works in a greedy and incremental manner. Specifically, given a
vertex v, it first uses DFS to find a path instance p of P , which
starts with v and ends at a vertex v′∈S, and then removes all edges
of p and v′ from G. There two steps are repeated until there is not
any path instance starting from v. Lemma 3 states that Greedy
theoretically guarantees that the number of returned edge-disjoint

path instances is at least
β(v,S)

l
. We illustrate it by Example 4.
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LEMMA 3. Given an HIN, a vertex v, and a set S of vertices
with target type, Greedy achieves an approximation ratio of 1

l
.

PROOF. Let Ψ[v] be a maximal set of edge-disjoint path in-
stances, which start with v and end at vertices in S. For any path
instance p identified by Greedy, its edges appear in at most l path
instances of Ψ[v]. This implies that after removing edges of p, it
takes away at most l path instances from Ψ[v]. Hence, Greedy

can find at least
β(v,S)

l
path instances and the lemma holds.

EXAMPLE 4. Reconsider Example 3, where β(a1, S)=3. Us-
ing Greedy, we may only find two path instances, i.e., a1→p1→a2

and a1→p2→a4 marked in dashed lines in Figure 7(c). Thus, the
actual approximation ratio is 2

3
, which is larger than 1

l
= 1

2
.

Since after finding a path instance all its edges are removed, the
time cost of Greedy is linear to the size of the sub-HIN, which
is induced by all the path instances starting with v. As a result,
its time complexity could be bounded by O(|EF |), where |EF |
is the number of edges in the flow network F=(VF , EF ) built by
EBuilder. As discussed above, Exact has a time complexity

of O(f · |EF |), where f could be up to
|EF |

l
in the worst case.

Therefore, Greedy runs much faster than Exact.
Recall that the Ford–Fulkerson method [12] computes the max-

imum flow by iteratively finding augmenting paths. In our flow
network, by concatenating each edge-disjoint path p with the sink
vertex s, we can obtain an augmenting path from the source vertex
to the sink vertex. Thus, to compute the exact β(v, S), we can first
run Greedy to get a set of edge-disjoint path instances, then mark
them as augmenting paths, and finally find remaining augmenting
paths using Exact. Note that an augmenting path is not necessary
to correspond to a specific path instance of P .

3.2.2 A Lazy Peeling-Based Algorithm
Inspired by the peeling paradigm of k-core computation [5], we

propose an algorithm of computing Ek by iteratively removing ver-
tices whose β(v, S) values are less than k, where initially S con-
tains all the vertices with the target type. After removing a vertex v,
we need to decrease β(u, S), where u is a P-neighbor of v. How-
ever, the step of decreasing β(u, S) is non-trivial, because it may
remain unchanged. For example, consider the HIN in Figure 6(a)
with v=a1 and S={a1, a2, a3}. Initially, we have β(a1, S)=1. Af-
ter removing a2 or a3, we still have β(a1, S)=1. To tackle this
issue, a naive method is to recompute β(u, S) for each P-neighbor
u of v by Exact. This, however, is very costly since the number
of P-neighbors is large and running Exact is also expensive. To
alleviate this issue, we propose a lazy peeling strategy to postpone
running Exact as late as possible, by relying on a key observation
— after removing v, β(u, S) decreases by at most 1.

Specifically, initially for each vertex v ∈ S, we compute an
approximate β(v, S) using Greedy. Then, we maintain a queue
for keeping vertices whose current β(v, S) values are less than k.
Whenever we dequeue a vertex v, we compute the exact value of
β(v, S) using Exact. After that, if β(v, S)<k, we remove it and
decrease β(u, S) by 1 for each P-neighbor u directly. If the up-
dated β(u, S)<k, we add it into the queue. In other words, we
do not update β(u, S) precisely, but maintain a lower bound of
β(v, S). This will postpone running Exact until β(u, S)<k.

Based on discussions above, we develop an algorithm, denoted
by LazyECore, shown in Algorithm 3. First, by Theorem 1, since
Ek ⊆ Bk, it computes Bk (line 1). Then, it initializes a queue Q
and an array b[ ] for keeping β(v, S) (line 2). Next, it computes
β(v, S) using Greedy for each vertex v ∈ S and collects v if
β(v, S)<k (lines 3-5). In the loop (lines 6-18), it removes vertices
one by one. Specifically, it first dequeues a vertex v. If b[v]< k

l
,

v can be removed directly by Corollary 1 (lines 9-10); otherwise,

Algorithm 3: The algorithm: LazyECore.

Input: G, q, P , k;
Output: Ek;

1 S ← run FastBCore to obtain the set Bk;
2 Q ← ∅, b[ ] ← ∅;
3 for each vertex v ∈ S do
4 b[v] ←Greedy(v, S);
5 if b[v]<k then Q.add(v);

6 while |Q|>0 do
7 v ← Q.poll();
8 η ←false; � a variable indicating whether to delete v

9 if b[v]< k
l

then
10 η ← true;

11 else
12 b[v] ←Exact(v, S);
13 if b[v]<k then η ← true;

14 if η is true then
15 S ← S\{v}, U ← {u|u ∈ S and u is a P-neighbor of v};
16 for each vertex u ∈ U do
17 b[u] ← b[u]− 1; � decrease by 1 directly
18 if b[u]<k then Q.add(u);

19 return a set {v|v ∈ S ∧ v is P-connected to q} found by BSL;

it invokes Exact (lines 11-13). If v can be deleted, it updates S,
decreases β(u, S) by 1 for each P-neighbor u, and adds u into Q
if b[u]<k (lines 14-18). Finally, it returns Ek (line 19).

COROLLARY 1. Given an HIN, a vertex v, and a set S of ver-
tices with target type, if Greedy cannot find up to k

l
path in-

stances, then we have β(v, S)<k.

PROOF. The conclusion directly follows Lemma 3.

LEMMA 4. LazyECore completes in O(σ1(n1 · d1,2 + n1 ·
∑l

i=2 ni · di,i+1)) time, where σ1 (σ1<n1
2) is the total times of

invoking Exact.

PROOF. Please see appendices of the technical report [75].

3.2.3 A Batch Peeling-Based Algorithm
In this section, we develop another algorithm, which borrows the

idea of FastBCore and removes vertices whose core numbers are
less than k in a batch manner. We denote it by BatchECore.
Recall that FastBCore sequentially removes vertices that are not
in Bk, during which we maintain a set of k path instances for each
vertex dynamically. Since Greedy is able to find edge-disjoint
path instances incrementally, we can also dynamically maintain a
set of k edge-disjoint paths for each vertex.

Besides, instead of peeling vertices one by one, we propose a
batch peeling strategy. Specifically, whenever we find a set of
vertices that are not in Ek, we remove all its vertices and update
the values of β(v, S) for their P-neighbors in a collective manner.
Compared to peeling one by one, it saves much computational cost,
since Exact is invoked frequently for vertices whose β(v, S) val-
ues are close to k. Note that the batch peeling cannot be used in
LazyECore, since it cannot determine whether to remove a ver-
tex until Exact is invoked. For HomBCore, the batch peeling
cannot improve efficiency either, because after removing a vertex
v, it enumerates v’s P-neighbors and supplies new path instances
if needed, so we do not use batch peeling in HomBCore.

Algorithm 4 presents BatchECore. First, it collects all the
vertices that are P-connected to q by BSL, and initializes a set T
and an array Ψ[ ] (lines 1-2). Then, for each vertex v∈S, it finds a
set Ψ[v] of up to k edge-disjoint paths by Greedy (lines 3-4). By
Corollary 1, if |Ψ[v]|< k

l
, it puts v in T as it can be removed (lines

5-6); if |Ψ[v]|<k, it invokes Exact and puts it into T if it can be
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Algorithm 4: The algorithm: BatchECore.

Input: G, q, P , k;
Output: Ek;

1 S ← find vertices that are P-connected to q by BSL;
2 T ← ∅, Ψ[ ] ← ∅;
3 for each vertex v ∈ S do
4 Ψ[v] ← find up to k edge-disjoint path instances by Greedy;

5 if |Ψ[v]|< k
l

then
6 T .add(v);

7 else if |Ψ[v]|<k then
8 Ψ[v] ←Exact(v, S, Ψ[v]);
9 if |Ψ[v]|<k then T .add(v);

10 while |T |>0 do
11 T ′ ← ∅; � a set keeping vertices to be removed in next iteration
12 U←{u|u ∈ S\T and u is a P-neighbor of v where v ∈ T};
13 for each vertex u ∈ U do
14 for each path p ∈ Ψ[u] do
15 if p has an ending vertex in T then Ψ[u] ← Ψ[u]\{p};

16 supply new path instances using Greedy until |Ψ[u]|=k;
17 if |Ψ[u]|<k then
18 Ψ[u] ←Exact(v, S, Ψ[u]);
19 if |Ψ[u]|<k then T ′.add(u);

20 S ← S\T , T ← T ′;
21 return a set {v|v ∈ S ∧ v is P-connected to q} found by BSL;

removed (lines 7-9). Next, in the loop (lines 10-20), it removes all
the vertices in T , supplies new path instances for their P-neighbors
if needed, and finds a new set T ′ of vertices that can be removed in
the next iteration. The batch peeling is repeated until no vertex can
be removed. Finally, it returns Ek (line 21).

LEMMA 5. BatchECore completes in O(σ2(n1 · d1,2 + n1 ·∑l
i=2 ni · di,i+1)) time, where σ2 (σ2<n1

2) is the total times of
invoking Exact.

PROOF. Please see appendices of the technical report [75].

3.3 Algorithms for Vertex-disjoint (k, P)-cores
In this section, we focus on computing Vk. Similar to Ek,

we cannot compute Vk directly from the induced homogeneous
graphs, so we have to iteratively remove vertices that do not have
sufficient vertex-disjoint paths. In the following, we first discuss
how to compute γ(v, S), and then show that the algorithms of com-
puting Ek can be easily adapted for computing Vk.

To compute γ(v, S), we extend the exact algorithm Exact and
approximation algorithm Greedy. For Exact, we build a new
flow network by slightly modifying the flow network in Exact. In
specific, after building a flow network F=(VF , EF ) by EBuilder,
for each intermediate vertex g ∈ F between source and sink ver-
tices, we split it as two vertices, say g+ and g−, such that the in-
edges of g are connected to g+, g− is connected to the out-edges
of g, and g+ is connected to g− where its capacity is set to 1. We
denote this flow network construction method by VBuilder. It is
easy to observe that γ(v, S) equals to the capacity of the maximum
flow in the modified network. We illustrate this by Example 5.

EXAMPLE 5. Reconsider Example 3, where the flow network
built by EBuilder is in Figure 7(b). By VBuilder, we can get
a new flow network shown in Figure 8 and have γ(a1, S)=3.

Recall that Greedy iteratively finds path instances of P and
after finding a path instance p, it removes all the edges of p. To
compute γ(v, S), we can follow the same steps, but replace the
step of removing all the edges as removing all the vertices. Clearly,
the adapted algorithm still achieves an approximation ratio of 1

l
.

Figure 8: A new flow network built for computing γ(v, S).

To compute Vk, we extend LazyECore and BatchECore
by simply replacing the step of computing β(v, S) as computing
γ(v, S) using the algorithms above. We denote the extended algo-
rithms by LazyVCore and BatchVCore respectively. It is easy
to see that their time complexities are at most c (c ≤ 4) times larger
than those of LazyECore and BatchECore respectively, since
the flow networks built by VBuilder are at most twice larger than
those of EBuilder and Exact takes O(|EF |2/l) time.

4. INDEX-BASED ALGORITHMS
Although online algorithms above are fast, they may be ineffi-

cient when the queries are executed frequently. We further improve
the efficiency by developing a novel space-efficient index, which
allows the query to be completed in optimal query time cost. It re-
lies on two key observations: First, the meta-paths frequently used
in practice are often with limited lengths [48,58,62,64], since long
meta-paths result in weak relationships [62]. Second, not all the
meta-paths are meaningful. For example, by the schema of DBLP,
we may obtain a meta-path P=(V PV ), but in practice a paper often
can only be published in a single venue, so there are few or on path
instances of P . Since the number of meaningful meta-paths is often
limited, we can pre-compute their cores and organize them into a
compact structure, called CoreIndex. Note that these meta-paths
can be obtained from domain experts or discovery algorithms [48].
In the following, we first give an overview of CoreIndex and
then present the index construction algorithm.

4.1 Index Overview
Given a set Λ of meta-paths and a specific core model, a simple

method of building the index is to precompute and keep all the (k,
P)-cores offline. However, it is very costly due to its high space

cost, i.e., O(
∑|Λ|

i=1 ti
2), where ti is the number of vertices with

the type linked by Pi. To alleviate this issue, we propose a space-
efficient index structure, called CoreIndex. It organizes all the
cores in a graph by carefully considering the nested relationship
and P-connected relationship, where the former one means that
for any (k+1, P)-core, there exists a (k, P)-core containing it by
Proposition 1, and latter one means that for a specific pair of k and
P , multiple (k, P)-cores that are not P-connected may exist.

Now we illustrate how CoreIndex organizes all the cores for
a meta-path P . Let S be the set of vertices with target type. We
build a compressed labelled undirected graph HP such that:
• for each node 1 v ∈ HP , it corresponds to a vertex v′ ∈ S;
• for each node v ∈ HP , it has an associated value τ(v), which
denotes the core number of its corresponding vertex v′ ∈ S;
• for each pair of nodes u, v ∈ HP , if τ(u) ≥ τ(v), then there is
only one path of nodes linking them in HP , where the associated
value of each node in the path is at least τ(v).

Clearly, each connected component of HP can be considered as
a tree structure, so it takes linear space for a meta-path, and the
overall index is space efficient as stated by Lemma 6. To answer
a CSH query, we can simply find a set C of nodes, which are con-
nected with q by nodes with core numbers of k or more, which
takes the optimal time cost, i.e., O(|C|). Example 6 illustrates this.

1We use “node” to mean “node of CoreIndex” in this paper.
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Figure 9: Illustrating the CoreIndex.

LEMMA 6. Given an HIN G=(V , E) and a set Λ of meta-
paths, CoreIndex takes O(

∑|Λ|
i=1 ti) space, where ti is the total

number of vertices with the type linked by Pi.
PROOF. The lemma directly follows the observation.

EXAMPLE 6. Consider the basic (k, P)-core. Suppose the in-
duced homogeneous graph GP for vertices with the target type is
depicted in Figure 9(a). Then, we can build HP as shown in Fig-
ure 9(b). Let q=a1 and k=2. We obtain a community {a1, · · · , a5}.

4.2 Index Construction
To build CoreIndex, we create a graph HP for each meta-path

P∈Λ and then concatenate the adjacency list of HP . Algorithm 5
presents the steps. We first compute the core number of each vertex,
also called core decomposition, and get a list of vertices (which are
sorted in descending order of core numbers ) (lines 3-4). Then, for
each vertex v′, we create a node v. After that, we find a set U of P-
neighbors of v′, and for each vertex u′ of U , if there is no path from
node v to node u, we create an edge (v, u) (lines 4-9). Note that to
check connectivity between nodes, we use the standard union-find
data structure [1, 13], where MAKESET creates a node, FIND finds
the root of a node, and UNION makes two nodes have the same root.

The index construction method above relies on a key step of core
decomposition (line 3). To do this, we extend online algorithms
in Section 3. For a specific meta-path P under a core model, we
incrementally compute all the (k, P)-cores, where k increases from
0 to its maximum value. Note that once we have computed all the
(k, P)-cores, we compute (k+1, P)-cores from these (k, P)-cores
by exploiting their nested relationships. Detailed pseudocodes are
presented in the technical report [75].

Algorithm 5: Index construction algorithm.

Input: G, Λ, a core model Γ;
Output: The CoreIndex Υ;

1 Υ ← ∅;
2 for each meta-path P ∈ Λ do
3 list ← perform core decomposition for P under the model Γ;
4 for i ← |list| to 1 do
5 let v′ be list[i], create a node v for v′, invoke MAKESET(v);

6 U←{u′|u′ is a P-neighbor of v′, and τ(u)≥τ(v)};

7 for each vertex u′ ∈ U do
8 r(v) ← FIND(v), r(u) ←FIND(u);
9 if r(v) �= r(u) then UNION(v, u), create an edge (v, u);

10 merge the adjacency list of the graph HP into Υ;

11 return Υ;

LEMMA 7. Given a set Λ of meta-paths and a core model, Al-
gorithm 5 takes O(

∑|Λ|
i=1(Δi+ ti ·di ·α(ti)) time, where Δi is the

cost of core decomposition for Pi, ti is the number of vertices with
the type linked by Pi, di is the maximum number of P-neighbors
for vertices with i-th vertex type, and α(ti) is the inverse Acker-
mann function (less than 5 for all practical values of ti).

PROOF. Given a meta-path Pi, invoking each of FIND, UNION,
and MAKESET functions takes at most O(α(ti)) time [1]. For each
pair of Pi-connected vertices, we only invoke FIND and UNION

constant times, so it takes O(ti ·di ·α(ti)) and Lemma 7 holds.

5. EXPERIMENTS
We now present the experimental results. Section 5.1 discusses

the setup. We discuss the results in Sections 5.2 and 5.3.

5.1 Setup
Table 5: Datasets used in our experiments.

Dataset Vertices Edges Vertex
types

Edge
types

Meta-
paths

Foursquare 43,199 405,476 5 4 20
DBLP 682,819 1,951,209 4 3 12
IMDB 4,467,806 7,597,591 4 3 12

DBpedia 5,900,558 17,961,887 413 637 1,000
Freebase 14,420,276 53,306,405 55 389 1,000

Datasets. We use five real datasets: Foursquare 2, DBLP 3,
IMDB 4, DBpedia 5, and Freebase 6. Their statistics such as the
numbers of vertices, edges, vertex types, and edge types are re-
ported in Table 5. The first three datasets are with simple star-
schemas (the schemas of Foursquare and IMDB are shown in ap-
pendices of the technical report [75]), while the rest two datasets
are with rich schemas. Foursquare contains check-in records in US,
which has five types of vertices (venues, cities, venue categories,
users, and dates). DBLP includes publication records in computer
science areas, and the vertex types are authors, papers, venues, and
topics. IMDB contains the movie rating records since 2000, and it
has four types of vertices (actors, directors, writers, and movies).
DBpedia contains the data extracted from wikipedia infoboxes us-
ing the mapping-based extraction (object properties only). Free-
base contains all the entities and relations in the music domain.

Queries. For each dataset, we collect a set of meta-paths and its
size is reported in Table 5. Note that in line with existing works
[38, 62], we focus on meta-paths with lengths at most four. For the
first three datasets, we collect all the possible meta-paths; for the
rest two datasets, we use the top-1000 meta-paths with the highest
frequencies. We generate 200 queries for each dataset. To generate
a query, we randomly select a meta-path and then select a vertex
with core number of 6 or more, which ensures that there is a mean-
ingful community containing the query vertex, similar to previous
studies [24]. By default, we set the value of k to 6. In the results
reported in the following, each data point is the average result for
these 200 queries. We implement all the algorithms in Java, and run
experiments on a machine having an Intel(R) Xeon(R) 3.40GHz
CPU and 32GB of memory, with Ubuntu installed.

5.2 Effectiveness Evaluation

5.2.1 Core Analysis
To analyze the three kinds of proposed (k, P)-cores, we examine

the size distribution of (k, P)-cores, where k ranges from 0 to its
maximum value. Due to the space limitation, we only show results
of two meta-paths, i.e., P2 and P3 (see Figure 2 and Table 2), on
the DBLP network in Figure 10, where each data point (x, y) means
that the corresponding (x, P)-core has y vertices.

From Figure 10, we see that the size distributions of Bk are dif-
ferent from those of Ek and Vk, while the size distributions of Ek

and Vk are very similar. The reason is that the disjoint core models
impose stronger cohesiveness constraints on path instances, making
the e-degrees and v-degrees smaller than b-degrees. Meanwhile,
for P2, the maximum core number of Bk is over 6 times larger

2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
3http://dblp.uni-trier.de/xml/
4https://www.imdb.com/interfaces/
5https://wiki.dbpedia.org/Datasets
6http://freebase-easy.cs.uni-freiburg.de/dump/
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Figure 10: Core size distributions.

than those of Ek and Vk, while for P3, their maximum core num-
bers tend to be much closer. This is because for P2, although each
author has a high b-degree, her e-degree and v-degree are small
due to the limited number of research topics; for P3, the number of
venues is smaller than the numbers of paper and authors, and each
paper is often published in a single venue, making the differences
between b-degrees and e-degrees small.

5.2.2 Community Quality Analysis
We analyze the quality of communities from following aspects:

1 Examination of Bk. We first analyze the e-degree and v-degree
distributions of vertices in communities of Bk. Specifically, for
each dataset, we run the 200 CS queries using FastBCore (k=6),
and for each community, we count the percentages of vertices,
whose e-degrees and v-degrees are 1, 2, . . . , 20 respectively. Due
to the space limitation, we only report the average percentage val-
ues on two datasets in Figures 11(a)-(b). Clearly, the percentages
of vertices whose e-degrees and v-degrees are 1 and 2 are very
high. For example, the percentage of vertices with e-degrees of
1 on IMDB is over 30%. Thus, although each community member
is P-connected to at least k other members, it is weakly engaged
in the community, because it can be isolated from the community
after removing only one edge. Moreover, the total percentages of
vertices whose e-degrees and v-degrees are less than 6 are over 44%
on all datasets. In contrast, the communities of Ek and Vk do not
suffer from such issues, so they achieve stronger cohesiveness.
2 Closeness of communities. To measure the closeness of commu-
nities, a commonly-used metric is the diameter [37], or the largest
shortest distance between any pair of vertices in the subgraph of the
community. To adapt it for communities in HINs, we redefine the
“distance” as path-constrained distance, i.e., P-distance; that is, the
P-distance between two vertices linked by an instance of the meta-
path P is 1. The average diameters for communities of each core
model are depicted in Figure 12. Clearly, the communities of Ek

and Vk have smaller diameters than those of Bk on all the datasets,
which means that their vertices tend to have closer relationships.
3 Density of link relationships. Conventionally, the density of a
graph is defined as the number of edges over the number of vertices
[74, 76]. To adapt it for communities in HINs, we redefine it as
the number of vertex pairs that are P-connected over the number
of vertices (here, all the vertices are with the target type). The
average densities for communities of each core model are depicted
in Figure 13. We observe that the communities based on the basic
(k, P)-core have the lowest densities, while communities of vertex-
disjoint core models have the highest densities. Thus, vertices in Ek

and Vk tend to be more densely connected to each other.
4 Similarity of community members. We have measured the sim-
ilarity of community members by PathSim [62]. Specifically, we
first find communities of Bk, Ek, and Vk, and then compute the
PathSim value for each pair of vertices in these communities. Fig-
ure 14 shows the average PathSim values on three datasets. Clearly,
communities of Ek and Vk achieve higher similarity values than
those of Bk, so their members are more similar to each other.
5 F1-scores. In line with existing CS studies [35, 36], we test
CSH queries on a small DBLP dataset (denoted by S-DBLP) with

Table 6: F1-score values on S-DBLP dataset.
k

P2=(APTPA) P3=(V PAPV )
Bk Ek Vk Bk Ek Vk

3 0.542 0.544 0.544 0.474 0.474 0.474
4 0.542 0.544 0.544 0.474 0.474 0.533
5 0.542 0.543 0.543 0.554 1.0 1.0

ground-truth communities. Specifically, we build S-DBLP by us-
ing publications of major conferences in four research areas (i.e.,
database, security, graphics, and communications) in 2015 and 2016,
with 500 authors, 15 conferences, 7909 papers, and 496 topics. We
classify authors and conferences into four communities according
to the areas they belong to, respectively. After that, for each au-
thor and conference, we query its communities using the three core
models with meta-paths P2 and P3 (see Section 1) respectively, and
then compute the average F1-score values [35], which is reported
in Table 6. For both meta-paths, we observe that Vk achieves the
highest F1-score values while Bk has the smallest F1-score values.
Thus, Vk and Ek can better find the ground-truth communities.
6 A Case Study. We perform two CSH queries using Bk and Ek

on S-DBLP. In the first query, q=Prof. Xuemin Lin (a researcher
in the area of graph database), P=(APA), and k=5. As shown in
Table 2, the two communities contain six researchers who collabo-
rated intensively, but the first one has 13 additional authors. With
an in-depth investigation, we find that these authors were Ph.D.
students and master students, and they co-authored only one or two
papers with others. In the second query, q=SIGMOD conference,
P=(V PAPV ), and k=5. From Table 2, we see that the commu-
nity of Bk contains six conferences in database area and five con-
ferences in security areas, while the community of Ek only consists
of conferences in the database area, which are highly related to the
query conference. Therefore, we conclude that in terms of commu-
nity cohesiveness, Ek is more cohesive than Bk.

In addition, we have developed a baseline for finding commu-
nities with both high cohesiveness and high similarity. For the
cohesiveness, it uses Bk and for similarity, it maximizes the Path-
Sim [62] values for the vertex pairs that are P-connected within the
community. However, our experiments show that the communities
of Ek and Vk achieve higher quality than its communities. For
details, please refer to the appendices of the technical report [75].

5.3 Efficiency Evaluation
1 Online algorithms. The efficiency results of online algorithms
by varying k are reported in Figure 15. As shown in Figures 15(a)-
15(e), FastBCore is consistently faster than HomBCore, since
for each vertex with the target type, HomBCore finds all its P-
neighbors, while FastBCore only finds a small number of them.
Meanwhile, as k becomes larger, the running time of FastBCore
increases since a larger k means finding more P-neighbors. The
running time of HomBCore remains almost stable since the main
overhead comes from building the homogeneous graph.

From Figures 15(f)-15(j), we see that BatchECore is consis-
tently faster than LazyECore. This is because the total times of
invoking Exact in BatchECore is often much smaller than that
in LazyECore, i.e., σ2<σ1. For example, on Foursquare, σ1 is
averagely over an order of magnitude larger than σ2. Meanwhile,
as the value of k grows, BatchECore’s running time increases
slightly while LazyECore’s running time decreases slightly. This
is because as k becomes larger, BatchECore needs to find more
path instances for vertices with the target type, while LazyVECore
also has to find more path instances, but less cost on running Exact
of computing β(v, S), making the overall time become smaller.
Similarly, for Vk, we can observe such trends.

In addition, it is easy to observe that querying Bk takes the least
time cost while computing Vk is the most time consuming one.
The main reason is that computing k vertex-disjoint paths is more
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Figure 15: Efficiency results of online query algorithms.
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Figure 16: Scalability test for online query algorithms.

Figure 17: Efficiency of core decomposition. Figure 18: Efficiency of index construction.
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expensive than finding k paths that do not need to satisfy such a
constraint.
2 Scalability test. For each dataset, we randomly select 20%, 40%,
60%, 80%, and 100% vertices and obtain five subgraphs induced by
these vertices respectively. Then, we run online CSH queries using
the advanced algorithm for each core model, and report the effi-
ciency results in Figure 16. We can see that generally, they scale
well with the number of vertices. Moreover, their performance
trends are similar to those discussed before.
3 Core decomposition. As discussed in Section 4.2, each online
query algorithm can be extended for core decomposition. How-
ever, for the basic core model, both FastBCore and HomBCore
need to find all P-neighbors of each vertex with target type, but
FastBCore needs extra cost to maintain k P-neighbors dynami-
cally, so HomBCore is a better option and we skip FastBCore.

For each dataset, we perform core decomposition using these
five algorithms and report the average time cost of core decompo-
sition for each meta-path in Figure 17. Clearly, decomposing Bk

takes the least time cost since its core model is simpler than others.
BatchECore is consistently faster than LazyBCore for decom-
posing Ek, and similarly BatchVCore is faster than LazyVCore.
Another interesting observation is that on almost all the datasets,
Vk can be decomposed more efficiently than Ek (using their faster
algorithms, i.e., BatchECore and BatchVCore). This is mainly
because both of them decompose cores incrementally from k=0,
but the maximum core number of Vk is smaller than that of Ek, so
BatchVCore takes less time cost on core decomposition.
4 Index construction. To build CoreIndex, we use the faster
core decomposition algorithms for the three core models, namely
HomBCore, BatchECore, and BatchVCore. For each dataset,
we consider all the meta-paths in Table 5, and report the efficiency
results in Figure 18. Generally, the time cost of index construc-
tion is in line with that of core decomposition; that is, building
CoreIndex for Bk takes the least time cost, and the time cost of
Vk is less than that of Ek. The reason is that given the core num-
ber of each vertex, building the compressed graph of CoreIndex
takes almost linear time cost, as discussed in Section 4.2.
5 Index-based queries. Figure 19 shows the efficiency results of
index-based queries. Clearly, the index-based query algorithms are
around 3 to 5 orders of magnitude faster than online query algo-
rithms, because they take optimal query time cost. Besides, query-
ing Vk is the fastest, and querying Ek is faster than querying Bk,
since |Vk|≤|Ek|≤|Vk| by Theorem 1.

6. RELATED WORK
The research on graphs has received much attention [17, 26, 29,

30,43,45–47,52,53,55,67,72], and the problems of network com-
munity retrieval can generally be classified into community detec-
tion (CD) and community search (CS).

Community detection (CD). Earlier solutions [31, 49] employ
link-based analysis to detect these communities. However, they
mainly focus on homogeneous graphs. Some recent works [58, 59,
61, 63–65, 81] focus on generating clusters/communities in HINs.
They can generally be classified into two groups according to ver-
tex types in the communities. The first group [8,59,61,65] focuses
on detecting clusters, each of which contains objects with multiple
types. The second group [63,64,81] aims to generate clusters of ob-
jects with a specific type. In [63], Sun et al. proposed an algorithm
to generate clusters of a specific type of objects; in [64], a user-
guided algorithm is developed to cluster objects of a target type;
in [81], a social influence-based clustering algorithm is presented.
Our work is more related to the second group as we find commu-
nities where vertices are of the same type. The main differences
between this group and ours are three-fold. First, its solutions are

generally costly, as they often detect all the communities from an
entire HIN. Second, it is not clear how to adapt them for personal-
ized CS. Third, the communities are difficult to interpret since there
are various kinds of relationships among objects in the community.

Community search (CS). CS aims to query densely connected
subgraphs containing a specific vertex in an “online” manner [15,
16, 26, 35, 37, 42, 60]. To measure the structure cohesiveness of
a community, people often use some metrics [26], and the mini-
mum degree metric is the most frequently used one; it requires that
each vertex’s degree is at least k within the community, which is
also used in k-core [5, 6, 28, 57]. For example, in [60], Sozio et
al. proposed to find the connected k-core containing the query ver-
tex as the community; in [15], Cui et al. developed an efficient
local search algorithm. Besides, some works [10, 21–25, 27, 41,
42, 68] also use the minimum degree metric to search communi-
ties from attributed graphs, where vertices are associated with at-
tributes such as keywords [24] and locations [27, 71, 73]. Another
group of CS works is based on the k-truss model [11, 80]. For ex-
ample, in [35, 37], the k-truss-based community search is studied;
in [9, 36], Huang et al. and Chen et al. studied CS using k-truss
on attributed graphs. In addition, other well-known cohesiveness
metrics, including k-clique [16, 78] and k-edge connected com-
ponent [7, 33, 34], have also been used for CS. A comprehensive
survey can be found in [26]. However, all these works focus on
homogeneous graphs, and it is not clear how to adapt them for CS
over HINs, calling for new solutions of CS over HINs. To the best
of our knowledge, this paper is the first work of CS over HINs.

Disjoint paths. The disjoint paths have been widely used in
graph clustering. In [3,56], a graph clustering algorithm was devel-
oped, which first computes the numbers of vertex- or edge-disjoint
paths between pairs of vertices which are used to measure the simi-
larities between vertex pairs, and then clusters the graph using these
similarity values. In [66], another clustering algorithm is devel-
oped based on the concepts of k-component and k-block, which are
the maximal subgraphs such that each pair of vertices among these
subgraphs is joined by at least k edge- and vertex-disjoint paths,
respectively. In [79], Zhang et al. developed a clustering algo-
rithm which measures the similarity between vertices using disjoint
paths. In [19], the authors partitioned a graph into edge-disjoint cy-
cles and paths. However, all these works focus on homogeneous
graphs, so they cannot be directly used for CS over HINs.

7. CONCLUSION
In this paper, we study the CSH problem, which aims to search

a community for a query vertex in an HIN. To model the cohesive-
ness of a community with vertices of the same type, we adopt the
well-known concept of meta-path and propose three kinds of core
models by incorporating the meta-path. For each core model, we
develop efficient online query algorithms. Moreover, we develop a
compact index structure to further boost the query efficiency. Our
experimental results show that the proposed solutions are effective
and efficient for searching communities over large HINs.

In the future, we will try to use other cohesiveness metrics (e.g.,
k-truss [35, 36, 77] and k-clique [4]) for CS on HINs and bipartite
graphs [44, 69, 70]. We will also study how to search communities
with vertices of multiple types (e.g., a community contains both
authors and topics in the DBLP network).
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