
Data-Parallel Query Processing on Non-Uniform Data

Henning Funke
TU Dortmund University

henning.funke@cs.tu-dortmund.de

Jens Teubner
TU Dortmund University

jens.teubner@cs.tu-dortmund.de

ABSTRACT
Graphics processing units (GPUs) promise spectacular per-
formance advantages when used as database coprocessors.
Their massive compute capacity, however, is often ham-
pered by control flow divergence caused by non-uniform data
distributions. When data-parallel work items demand for
different amounts or types of processing, instructions execute
with lowered efficiency. Query compilation techniques—a re-
cent advance in GPU-accelerated database processing—suffer
from the problem even more, because divergence effects are
amplified during the execution of fused pipeline operators.

In this work, we identify two types of control flow diver-
gence—filter divergence and expansion divergence—that fre-
quently occur in real world workloads. We quantify the
problem for two poster cases and propose techniques to
balance these divergence effects. By balancing divergence
effects, our approach is able to restore processing efficiency
even when pipelines contain heavily skewed operations. Our
query compiler DogQC has a wider range of functionality
than other query coprocessors and achieves performance im-
provements. We observe shorter execution times for TPC-H
benchmark queries by factors up to 4.51x compared with
existing GPU query compilers and by factors up to 4.54x
compared with CPU-based systems.

PVLDB Reference Format:
Henning Funke, Jens Teubner. Data-Parallel Query Processing
on Non-Uniform Data. PVLDB, 13(6): 884-897, 2020.
DOI: https://doi.org/10.14778/3380750.3380758

1. INTRODUCTION
Data-parallelism is frequently used for efficient query pro-

cessing (e.g. SIMD, coprocessors). As means of specialization,
it is a way to overcome the power wall that limits the de-
sign of modern multiprocessors [6]. Instead of dedicating
chip resources to control flow management, data-parallel
architectures target throughput. For instance, executing
an instruction for 32 fields at a time reduces control flow
management work by 32x compared to scalar execution.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 6
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3380750.3380758

r1

s1

s2

s3

./

./

./

l1
r2

s4

./

l2
r3

l3
r4

s5

s6

s7

s8

./

./

./

./

l4

Underutilized
lanes l2 and l3

?

Efficient use of
parallelism

Figure 1: Data-parallel computation of R ./ S with
inefficient use of compute resources due to non-
uniform distribution of S.

Leveraging data-parallelism in a beneficial way can be
challenging. While uniform data can be processed naturally,
irregular data and computation patterns may compromise the
benefits. In the uniform case, it is sufficient to package data
into parallel lanes and then to run an instruction sequence.
Non-uniform data, however, cannot easily be packaged into
a fixed number of fields and the instruction sequences may
diverge. Consequently, for irregular problems, data-parallel
operations execute with lowered efficiency.

Figure 1 illustrates the problem for a database join oper-
ation. While rows r1 and r4 find three/four join partners,
there is only a single join partner for r2 and none for r3. A
naive data-parallel execution, therefore, will leave execution
lanes l2 and l3 underutilized.

In real-world problems, unfortunately, such irregularities
are the norm, rather than the exception, e.g.

Variable Length Data. The size of an attribute may
vary across different entities (e.g. strings).

Skewed Distributions. Skewed data distributions lead
to divergence during recombination tasks (e.g. joins).

Computation Divergence. As a secondary effect of
data properties, divergence may occur during computations
(e.g. hash collisions).

1.1 State of the Art
Non-uniformness can be particularly harmful to parallel

query compilation approaches. Query compilation closely
entwines sequences of operators (pipelines) into native code.

884

Query Plan

Scan

./

Lane Refill/
Push-down

Π

Γ

Generate
Code

produce

produce

produce

produce

consume

consume

consume

consume

Query Code: query.cu

pipeline_kernel(...) {
//divergent execution
... (Scan,σ)

Lane Refill/Push-down {
//balanced execution
... (Π,Γ)

}

}

Figure 2: Injecting divergence balancing into query
code generation.

Thus non-uniform effects that occur in the data-parallel exe-
cution of one operator may be amplified during the execution
of successive operators. In CPU-based systems, the problem
of data-parallelism in compiled pipelines has been addressed
by database researchers [20, 34]. A promising approach by
Lang et al. [19] refills inactive SIMD lanes with buffered
elements from previous low-activity iterations.

By contrast, in the context of data-parallel accelerators—
such as GPUs—existing systems tend to circumvent the
problem of non-uniformity at a high price. E.g., they use
string dictionaries [24, 3, 7, 13, 12], specialized joins [30],
materialization barriers [37, 13, 7], or bit-packed keys [7, 8] to
provide a uniform surrogate. The surrogate, however, usually
has limited expressivity, and query coprocessing engines
struggle to match the same range of operations supported
by their CPU counterparts.

1.2 System: DogQC
We use our query compiler DogQC to illustrate our tech-

niques to cope with non-uniformity on data parallel pro-
cessing devices. DogQC performs Just-in-Time compilation
(JIT) with standard template-based code generation [25],
which we apply to GPUs with the techniques established in
HorseQC [12]. The mechanisms to cope with non-uniformity
are orthogonal to other GPU-based query processors.

The approach is illustrated in Figure 2, which shows an
operator with Lane Refill/Push-down for divergence bal-
ancing that is placed between standard relational operators
(shown in gray). During JIT-compilation the query plan on
the left is translated to the query code on the right. For the
balancing operator, DogQC instantiates a code template that
is weaved into the code for relational processing. The mech-
anism resolves imbalances in the code of the operators with
divergence effects (outer gray box) before continuing with the
execution of succeeding operators (inner gray box). In this
way, the succeeding operators are executed with increased
processing efficiency.

By balancing divergence effects, DogQC targets efficient
query processing without assumptions about the uniformness
of workloads. This allows DogQC to achieve a larger range
of functionality and to avoid expensive preprocessing steps
that are typically used to harmonize data.

1.3 Contributions and Outline
Our work is the first to pinpoint the problem of diver-

gence in the context of GPU-accelerated database processing
(Section 2). We identify two flavors of divergence: expan-
sion divergence (Section 3) and filter divergence (Section 4).
With Push-down Parallelism (Section 3.2) and Lane Refill
(Section 4.2), we provide novel and effective mechanisms to
counter the two divergence effects. In an extensive set of
experiments (Section 5), we demonstrate how Push-down
Parallelism and Lane Refill can speed up query processing
by more than a factor of two for realistic benchmarks.

To round up this report, we discuss related work in Sec-
tion 6, and summarize in Section 7.

2. NON-UNIFORM PIPELINES
Data-parallel processing of non-uniform data encounters

the following problem: Some data elements need a different
amount or kind of processing than others. Consequently,
parallel lanes need to diverge to follow their tuples’ process-
ing path. Due to this effect, called control flow divergence,
(short: divergence) the affected lanes may idle or unmatched
execution paths are sequentialized. The advantage of data-
parallelism to reduce the amount of control flow work is
compromised.

Control flow divergence is particularly harmful in kernel-
programs1 that execute operator sequences (e.g. op1 . . . opn)
as they are typical in compiled query pipelines [12]. If the
operator opi introduces divergence, the subsequent operators
opi+1. . . opn may suffer from it as well. For example, a tuple
that is filtered out should be disregarded by the following
operators, leaving the respective lane idle throughout.

In the following, we take the TPC-H benchmark and ana-
lyze the divergence effects that occur in actual query pipelines.
We differentiate between two types of control flow divergence,
called filter divergence and expansion divergence. Their dif-
ference is based on properties of the operation they originate
from.

2.1 Lane Activity
Data-parallel processors execute instructions on multiple

lanes at a time, e.g. GPUs execute instructions in warps of 32
lanes. Starting with scan, each warp reads the attribute data
for 32 tuples into an on-chip register file [14, 27]. Each of the
warp lanes is responsible for one scanned tuple and we call
the lane active when it holds at least one tuple to pass on to
the next operator. In subsequent operators, lanes may resign
from their tuple, e.g. by applying a filter. However, warp
instructions will still compute a value for these passive lanes,
but the result is discarded. Passive lanes do not contribute
to the computation, but cause dissipation of chip resources
for register allocation and instruction execution. To achieve
a high execution efficiency, it is important to minimize the
number of passive lanes.

3. EXPANSION DIVERGENCE
Expansion divergence occurs in operators such as string

comparisons and joins, where parallel lanes need to process
varying amounts of work items depending on data properties.
Expansion divergence can lower the execution-efficiency due
to divergence in the operator itself (e.g. comparisons of short
1Parallel GPU procedures, called kernels in short.

885

σ

Scan (orders)

./

Γ

TPC-H
Q10

2.9M tpl
2.3M warp its.

18.8M tpl
1.2M warp its.

37.5M tpl
1.2M warp its.

...

build
-sid

e

pipelin
e

Figure 3: Analytic benchmark query with expansion
divergence in join operator. Varying numbers of join
matches cause more warp iterations for fewer tuples.

strings finish early) and due to divergence in subsequent
operators. The latter occurs when the expansion process
creates a varying amount of new tuples, e.g. join matches.

3.1 Poster Case 1
TPC-H query 10 contains a join between the orders and

lineitem tables. Both tables are filtered, therefore optimiz-
ers may decide on orders ./ lineitem or lineitem ./ orders.
For the latter DogQC computes a hash join with lineitem
as build relation and orders as probe relation. During probe,
the tuples from orders have varying numbers of matches,
which correspond to the items in an order. Producing the
matches is a process with expansion divergence. To analyze
the execution efficiency, we execute the query with DogQC
and look at two metrics at each pipeline stage: The number
of tuples and the number of warp iterations. The number of
warp iterations indicates how many times a warp of 32 lanes
goes through an operation. If at least one element is active,
the full warp performs the iteration. However, each iteration
can process up to 32 elements.

Figure 3 illustrates the compiled pipeline2. First, a scan
of 37.5 M tuples from orders, then selection leaving 18.8 M
tuples active, and then join probe producing 2.9 M match
tuples. The scanned orders-tuples are evenly parallelized
and thus processed in 37.5 M/32 ≈ 1.2 M warp iterations.
Selection has the same number of warp iterations because
almost all warps have remaining tuples. The following join
probe produces a lower number of 2.9 M tuples but requires
a higher number of 2.3 M warp iterations. Each lane iterates
through varying match numbers and only 2.9 M/2.3 M ≈ 1.3
2Figures 3,4,6, and 7 use a lower number of 8 warp lanes for
illustration purposes. The actual hardware in this work uses
32 warp lanes.

./

Γ

1

wbuf: 0 4 0 6 0 28 3 0

a = 2

broadcast(2, tbuf, 4, sbuf)

2

wbuf: 0 0 0 6 0 28 3 0

a = 4

broadcast(4, tbuf, 6, sbuf)

3

wbuf: 0 0 0 0 0 28 3 0

a = 6

broadcast(6, tbuf, 28, sbuf)

4

wbuf: 0 0 0 0 0 0 3 0

a = 7

broadcast(7, tbuf, 3, sbuf)

wbuf: 0 0 0 0 0 0 0 0

Figure 4: Illustration of Push-down Parallelism that
expands the join matches of four warp lanes.

lanes per warp are active on average. In an ideal setting
only 2.9 M/32 ≈ 0.1 M warp iterations would be sufficient.
Expansion divergence that occurs in the join probe operator
causes a low execution efficiency.

3.2 Push-down Parallelism
Existing query compilers [20, 8, 12] parallelize over the

scanned table. Within each parallelization unit, expansion
processes are executed sequentially. For example in the join
R ./ S, where r ∈ R is part of the scanned table, all join
matches of r with S are produced by the same thread. This
causes inefficiency as lanes diverge along the distribution of
join matches. In the worst case the operators opi to opn

are executed sequentially when all tuples with matches are
processed by the same lane.

Push-down Parallelism has the ability to prevent this
effect by changing the parallelization strategy within the
pipeline. For operators with expansion properties, it pushes
parallelization down one level to the expansion process. E.g.
for joins, the parallelization level moves from parallelizing
over the scanned tuples of R to parallelizing over the join
matches with S. This is achieved with broadcast operations
that redistribute parallel work.

We describe how Push-down Parallelism redistributes work
to prevent imbalance caused by join expansion. Figure 4 illus-
trates this and we formalize the mechanism as pseudocode in
Figure 5. Before applying Push-down Parallelism, warps have
gone through the previous operators op1 to opi−1 (lines 1–5).

886

Push-down Parallelism
1 foreach warp of 32 lanes in parallel do
2 laneix ← [1, . . . , 32]
3 while more inputs do
4 t← scan 32 tuples /* op1 */
5 [...] /* op2 - opi−1 */
6 w ← number of work items

after expansion in opi

7 s← data structure state opi

8 tbuf, wbuf, sbuf ← t, w, s
9 while warp any(wbuf > 0) do

10 a← select leader(wbuf)
11 t, w, s← broadcast(a, tbuf, wbuf, sbuf)
12 for e← laneix to w by 32 do
13 process opi expansion item e
14 [...] /* opi+1 - opn */

15 if laneix = a then
16 wbuf ← 0

Figure 5: Pseudocode for a pipeline that applies
Push-down Parallelism to opi. The strategy expands
opi with another level of parallelism.

Now, opi is a hash probe that expands varying numbers of
join matches per probe. Push-down parallelism performs the
following steps. First, the number of join matches in each
lane w = [0, 4, 0, 6, 0, 28, 3, 0] is determined (line 6). Next,
the state of each lane consisting of w, the tuple t, and data
structure state s is written to local buffer variables wbuf, tbuf,
and sbuf (lines 7 and 8). Then Push-down Parallelism enters
a sequence of broadcast operations 1 to 4 (lines 9 to 16)
that finishes when no lane has remaining expansion items.
For broadcast 1 , Push-down Parallelism selects lane a = 2
with wbuf = 4 join matches as source . The broadcast takes
the values wbuf, tbuf, and sbuf and propagates them from
lane 2 to the other lanes of the warp (line 11). Thus all warp
lanes retrieve the probe-side tuple with it’s current state.
The build-side tuples are now retrieved from the hash bucket.
The join matches are processed in a loop with adjacent
hash buckets offsets for adjacent lanes (cf. lines 12 to 14).
Push-down parallelism performs one loop iteration with the
hash bucket offsets e = [0, 1, 2, 3, x, x, x, x]. During the itera-
tion the subsequent operators opi+1 to opn are executed (line
14). Now the hash probes from lane a = 2 are finished. This
is marked by updating wbuf = [0, 0, 0, 6, 0, 28, 3, 0] (lines 15
and 16). Push-down Parallelism continues with broadcast 2 ,
which starts with the selection of lane a = 4 with 6 matches
(line 10). The remaining broadcast procedure is unchanged
and finishes by updating wbuf = [0, 0, 0, 0, 0, 28, 3, 0] (lines
15 and 16). Broadcast 3 processes lane a = 6 with 28
matches. Here the larger number of matches necessitate
4 iterations of the loop in lines 12 to 14. The iterations
process 8, 8, 8, and 4 matches. The broadcast finishes by
updating wbuf = [0, 0, 0, 0, 0, 0, 3, 0] and leaves 3 matches in
lane a = 7 for broadcast 4 . The join matches are processed,
wbuf = [0, 0, 0, 0, 0, 0, 0, 0] is updated, and the loop from
line 9 exits. The pipeline starts over with fresh tuples.

Each broadcast takes the join matches from an individual
lane and spreads them out across the warp. As consequence
warps parallelize over the join matches instead of parallelizing

over the scan table. This balances expansion processes and
increases the memory efficiency for hash bucket reads. Push-
down Parallelism yields preferable coalesced memory access
patterns, which means that adjacent lanes access adjacent
memory locations [15], whereas the standard approach uses
slower sequential memory access.

3.3 Implementation
We implement Push-down Parallelism in DogQC by adding

a code generation template to the query compiler. The im-
plementation uses warp primitives via intrinsics, which allow
lanes to exchange data and to perform collaborative computa-
tions [26]. E.g. sfhl sync(..) performs lane index-based
data exchange and ballot sync(..) computes a predicate
bitmask across a warp. We describe the implementation of
lane buffering, leader selection, and broadcast operations
with these intrinsics in the following.

Buffering Active Lanes. Lanes that receive work items
during broadcast may already have an active tuple in register.
To switch to a new work item, it is necessary to postpone
processing of that tuple. This is done by buffering active
tuples (line 8) before broadcast and leader selection. The
buffer operation is local to each lane (i.e., lanes postpone
only their own tuple). Consequently, buffering is as simple
as writing each attribute value to a local buffer variable.

Leader Selection. During leader selection (line 10),
Push-down Parallelism picks one lane as broadcast source
and provides its lane index a to the other warp lanes. This
is implemented with the following expression using only two
warp intrinsics:

// select broadcast source lane
a = __ffs(__ballot_sync(w_buf>0,ALL));

The first primitive ballot sync(...) builds a bitmask of
lanes that have remaining work items and shares it with all
lanes. The second primitive ffs(...) computes the index
of the first 1-bit of the bitmask. The lane with index a is
selected for broadcast.

Broadcast Operation. The broadcast operation (line 11)
takes the buffered data from one lane a and distributes it to
the other warp lanes. The following values are broadcasted:
the attributes of the tuple tbuf,a, the number of expansion
items wbuf,a, and the data structure state sbuf,a, e.g., the
hash bucket offset. The following code performs the broad-
cast for a tuple with two attributes and the hash bucket
offset using warp shuffle primitives.

// gather w_buf, t_buf, and s_buf from lane a
w = __shfl_sync(w_buf,a);
o_orderdate = __shfl_sync(o_orderdate_buf,a);
o_orderkey = __shfl_sync(o_orderkey_buf,a);
c_acctbal = __shfl_sync(c_acctbal_buf,a);
bucket_offs = __shfl_sync(bucket_offs_buf,a);

w

t

s

The shfl sync(...) intrinsic takes the payload as first
parameter and the source lane as second parameter. All lanes
of the warp execute the instruction and obtain data from
lane a. After the broadcast, each lane processes a distinct
expansion work item (lines 12–14). E.g., hash bucket entries
are obtained by adding the expansion index e to the base
address of the hash bucket. In this way, warps consume the
tuples from the hash bucket in coalesced iterations.

887

3.4 Planning for Push-down Parallelism
In DogQC, we select hash join operators for the applica-

tion of Push-down Parallelism based on the build attributes.
If the build is performed on other attributes than primary
keys, hash buckets can contain multiple elements per key.
We choose Push-down Parallelism to balance expansion pro-
cesses during hash probes. For primary key build attributes,
matching probes will retreive exactly one tuple. We choose
the standard hash join as there is no expansion.

A fully-fledged system will include Push-down Parallelism
in cost-based optimization as an alternative join operator.
Similar to our current implementation, cost estimates can
be based on build attribute statistics.

3.5 Usage Scenarios
Push-down Parallelism allows efficient execution of opera-

tors with expansion processes. The expansion may produce
new tuples as the join in the previous example. Alternatively,
expansions can be local and the operator passes on only one
tuple, e.g., when processing the characters of string-typed
attributes. For the latter case line 14 of the pseudocode in
Figure 5 moves behind the for-loop.

By taking the parallelization level to the same level as the
expansion process, Push-down Parallelism gives two main
benefits. First, non-uniform distributions of the number of
expansion items no longer cause expansion divergence. Sec-
ond, memory accesses that are performed during expansion
are transformed from sequential memory access to coalesced
memory access. In the following, we discuss several scenarios
for the application of Push-down Parallelism.

Joins. Joins between tables with varying key distributions
are a poster child for the application of Push-down Paral-
lelism. Existing GPU-based techniques restrict functionality
by limiting the number of join matches, join conditions, or
attributes stored in the hash table [17, 30, 32]. The re-
strictions limit divergence effects, but also lack support for
important query plan options. DogQC handles varying key
distributions, multi-predicate joins, and different payload
sizes gracefully by using Push-down Parallelism to balance
expansion work.

(Anti-) Semi Joins. Push-down Parallelism applies to
(anti-) semi-joins with multiple match candidates (e.g., for
combinations of equality and inequality predicates). The
technique helps to balance the parallel evaluation of match
candidates. However, the parallelization can prevent join
strategies from early exit once the first match is found.

String Equality. Equals operations on string datatypes
cause expansion divergence due to a varying numbers of
characters in the strings. Push-down Parallelism expands the
string characters across lanes and compares the characters in
parallel. This reduces divergence effects from varying string
lengths and increases memory efficiency by loading the string
data using coalesced access.

Graph Processing. The node degree of real world graphs
follows skewed distributions, e.g., power law [9]. Conse-
quently, parallel graph algorithms are challenged by varying
amounts of traversal work per node. Existing GPU tech-
niques address these imbalances with node partitioning [21],
edge partitioning [11], and compression [33]. Push-down
parallelism naturally applies to the problem for relational
graph representations.

Scan (lineitem)

σ

./

Π

Γ

TPC-H
Q10

150M tpl
σ = 1.0
5M warp its

50M tpl
σ = 0.33
5M warp its

2.9M tpl
σ = 0.01
1.1M warp its

2.9M tpl
σ = 0.01
1.1M warp its

bu
ild

-si
de

pip
eli

ne

profile
active
lanes

1 2 3 4 5 6 7 8 9 32
0

0.1

0.2

0.3

0.4 ·106

......

number of active lanes

w
ar

p
it

er
at

io
ns

Figure 6: Analytic benchmark query with heavy fil-
ter divergence. After the filtering join operator most
warp iterations have few active lanes.

4. FILTER DIVERGENCE
Filter divergence occurs in operators that inactivate some

of the parallel lanes, for example filters and primary key-
foreign key joins. The subsequent operations experience
a lowered execution efficiency due to lane inactivity. This
problem has been addressed by stream compaction [2] earlier;
however, existing solutions are not suitable for compiled
query pipelines because of their use of global synchronization
barriers.

4.1 Poster Case 2
TPC-H Query 10 contains two selective operations on tu-

ples from the lineitem table: a selection l returnflag = ’R’
and a sparse foreign key join with l orderkey = o orderkey.
Figure 6 illustrates a pipeline that scans lineitem and then
performs selection, join probe, projection, and aggregation.
Compared to Section 3.1, the pipeline contains an addi-
tional projection for l extendedprice * (1-l discount).
The previous plan performed the projection in the build
pipeline favoring a smaller hash table payload.

Again, we look at the number of warp iterations (cf. Sec-
tion 3.1) in each pipeline stage to analyze the effect of the
filters on execution efficiency. Starting with scan, the pipeline
parallelizes 150 M lineitem tuples evenly across lanes. This
requires 150 M/32 = 5 M warp iterations. The following filter
with σ = 0.33 is likely to leave elements active in each warp.
Consequently, the number of 5 M warp iterations remains con-

888

./

Π

m 0 0 1 0 0 0 1 0

1

tbuf

flush(m, t, tbuf, 0)

m 0 0 0 0 1 0 0 0

2

tbuf

flush(m, t, tbuf, 2)

m 1 0 1 1 0 0 0 0

3

tbuf

flush(m, t, tbuf, 3)

m̃
m 0 0 0 1 0 0 0 1

1 1 1 0 1 1 1 0

4

tbuf

refill(m̃, tbuf, t, 6)

Figure 7: Illustration of Lane Refill that postpones
processing of three low-activity iterations for full
lane activity in the fourth iteration.

stant. Subsequently, the (single match) join probe produces
2.9 M tuples that are processed in 1.1 M warp iterations. Due
to the selectivity of σ = 0.01 most lanes in the pipeline have
become inactive and the remaining tuples are spread across
warps. The histogram at the bottom of Figure 6 shows a pro-
file of this pipeline stage, illustrating how many active lanes
we measured in the 1.1 M executed warp iterations. Only
few lanes are active in each warp causing a low execution
efficiency that is carried through the subsequent projection
and aggregation operators. Ideally, both operators would be
processed with only 2.9 M/32 = 90 K warp iterations.

4.2 Lane Refill
Selective filters or sparse foreign key joins that trigger fil-

ter divergence situations are commonplace in analytic work-
loads [4]. The Lane Refill technique is a natural match to
counter the imbalances caused by such operations. The tech-
nique we describe here resembles the mechanism proposed
by Lang et al. [19] as consume everything strategy for SIMD
processing. A similar idea was introduced by Polychroniou
et al. [31] for a sequence of Bloom-filter bitmasks.

Lane Refill introduces buffering operators that control
the lane activity during pipeline execution. The buffering
operator is designed to work with a given threshold. If the
lane activity drops below threshold there are two options:

1. There are insufficient buffered tuples. Active lanes are
buffered and the pipeline starts over with fresh tuples.

2. There are sufficient buffered tuples to reach threshold
and the tuples are reactivated in empty lanes.

Lane Refill
1 foreach warp of 32 lanes in parallel do
2 nbuf ← 0
3 tbuf ← empty
4 while more inputs do
5 t← scan 32 tuples /* op1 */
6 [...] /* op2 - opi−1 */
7 m← bitmask of active lanes
8 nactive ← popcount(m)
9 while nbuffer + nactive > T do

10 if nactive < T then
11 nbuf ← refill(m̃, t, tbuf, nbuf)
12 execute opi

13 [...] /* opi+1 - opn */
14 m← bitmask of active lanes
15 nactive ← popcount(m)
16 if nactive > 0 then
17 nbuf ← flush(m, t, tbuf, nbuf)

Figure 8: Pseudocode for a pipeline with Lane Refill
between opi−1 and opi. The control flow proceeds
with opi only for lane activities above threshold T .

This strategy ensures that the operators succeeding the buffer-
ing operator always start with a lane activity above threshold.
It is worth noting that one element buffer space for each lane
is sufficient for any given threshold.

We show the pseudocode for the technique in Figure 8 and
illustrate it in Figure 7. As an example, we assume a Lane
Refill operator with threshold 7 (out of 8 lanes) that is placed
after the sparse join of TPC-H Query 10. Figure 7 shows
four iterations 1 to 4 of the same warp receiving tuples
from the sparse join. The boxes represent active lanes
holding tuples. The first iteration receives two tuples from
the join (pseudocode lines 1–6). Activity lies below threshold
and the tuples are flushed to the buffer (lines 9 and 17). The
pipeline starts over and the Lane Refill operator receives
new tuples from the join. The following two iterations are
flushed as well because the highest possible acitivity is 6 (out
of 8) for three tuples from join plus three buffered tuples. In
iteration 4 , there are two fresh tuples and six buffered tuples.
The empty lanes are refilled (lines 10–11) and the pipeline
proceeds to the following operators with full lane activity.
In the following, we show how Lane Refill is implemented in
compiled query pipelines on GPUs.

4.3 Implementation
We implement Lane Refill in DogQC by introducing a

buffering operator with the semantics shown in pseudocode
Figure 8. The buffering operator is code generation-based,
similar to the other operators in DogQC. The main challenges
in adapting the approach by Lang et al. [19] are efficient
GPU implementations for the balancing operations flush
and refill and the application of warp parallelism.

The previous implementation of Push-down Parallelism
performed lane communication via warp shuffles. This was
possible because the only communication pattern used were
gather operations. Lane Refill, however, uses scatter oper-
ations aswell. This is unsupported by warp shuffles, and
therefore shared memory with communication via array-style
indexing is better suited here.

889

Although shared memory and shuffle registers are both
located on-chip, shared memory can perform slower when
multiple lanes access the same memory bank [23]. However,
further investigation of using warp shuffles only for the gather
communication of lane refill showed no significant benefit
over using solely shared memory.

Flush to Buffer. The flush operation is executed when
the number of active lanes is below threshold and there
are not enough buffer elements to restore sufficient activitiy.
The remaining active lanes are written to empty buffer slots.
flush takes a bitmask of active lanes m, the tuples t, the
buffer tbuf, and the buffer count nbuf as input. Then flush
computes the buffer destination dest that specifies the buffer
position for each lane to write its active tuple to. This is
done with the following code:

// warp prefix sum on active lanes
dest = __popc((m) & (pre_lanes)) + n_buf;

We look at an example with 8 lanes and lane activity m =
[0,1,0,0,1,1,0,0]. The bitmask pre lanes marks all pre-
ceding lanes, e.g. lane 4 has pre lanes = [1,1,1,0,0,0,0,0].
With the population count intrinsic popc(...), we count
the set bits on preceding lanes. This gives us an exclusive
prefix sum of the warp. With nbuf = 2 previously buffered
elements, the destinations are dest = [x,2,x,x,3,4,x,x].

Next, flush writes the tuples t from active lanes to the
buffer tbuf at their respective destinations dest. This is done
by scattering the tuple’s attributes to shared memory, e.g.

// scatter to shared memory
l_extprice_buf[dest] = l_extprice;
o_orderdate_buf[dest] = o_orderdate;

Refill from Buffer. The refill operation is executed
when the lane activity is below threshold and there are
sufficient buffered tuples to reach threshold. The operation
takes tuples from the buffer and reactivates them in passive
lanes. refill receives the bitmask of passive lanes m̃, the
tuples t, the buffer tuples tbuf, and the buffer count nbuf as
input. To always maintain dense adjacent buffer elements,
we push and pop the buffer content like a stack. To this end,
we first compute the number of remaining buffer elements
n remain based on the buffer count and the number of empty
lanes. Then we compute the buffer source index src with a
warp prefix sum, similar to flush.

// warp prefix sum on passive lanes
src = __popc((inv_m) & (pre_lanes)) + n_remain;

After computing the buffer source index src, we can refill
passive lanes from the buffer as shown below.

// gather from shared memory
if(src < n_buf) {

l_extprice = l_extprice_buf[src];
o_orderdate = o_orderdate_buf[src];

}

The code reads the attributes of buffered tuples from shared
memory locations and stores them in registers by executing
assignments to local variables. Note that we only load tuples
from the buffer for the first nbuf passive lanes to account for
the number of buffer elements.

4.4 Planning for Lane Refill
In the current version of DogQC, Lane Refill operators are

placed manually into query plans. We insert balancing oper-
ators into pipelines with heavy filter divergence if there are
multiple succeeding operators that can benefit from balanced
processing. Section 5.4 specifies the queries where Lane Refill
was applied in the context of the TPC-H benchmark.

In a fully-fledged system, optimizers will select insertion
points for Lane Refill operators based on selectivity estima-
tion. As the balancing operations can be executed with a
low overhead, the negative impact of estimation errors is
small. Optimizers that consider interesting orders, are af-
fected by order changes due to balancing. Such optimizers,
may leverage their ability to consider both plans with and
without interesting orders during optimization.

4.5 Usage Scenarios
Lane Refill restores balanced lane activity in sequences of

operators with filter divergence. The technique can be used
after an operator that leaves execution in divergent stage
(e.g. selection) before continuing with the next operator. Al-
ternatively, Lane Refill can be used in succeeding iterations
of the same operator (e.g. character comparisons in string
equality) to restore lane activity between iterations. For the
latter application, Lane Refill has the beneficial property to
preserve sequential order of the iterations. This property is
contrary to Push-down parallelism which parallelizes itera-
tions. The sequential order can be leveraged by operators,
such as regular expression matching with automata, where
each iteration is dependent on the previous iterations. In the
following we discuss several usage scenarios for Lane Refill.

Selection. Selection operators are a poster child for filter
divergence. Database systems usually perform selection push-
down to reduce workload sizes early. However, in data-
parallel pipelines, the early selection does not reduce the
workload size. Unless the full warp exits, lanes with filtered-
out tuples still allocate the same processing resources. By
filling the gaps with useful work, Lane Refill scales processing
with the workload size.

Filter Join. Sparse foreign key joins occur in both normal-
ized database workloads and in de-normalized star schema
workloads. They recombine relations with only few matches
for the join condition and filter out the majority of one of
the relations. In the TPC-H benchmark join selectivities are
usually around 0.1 and frequently go even lower [4]. Typ-
ically join filters go into effect during the join probe and
leave lanes idle that have no match. By placing Lane Refill
operators after a join probe, we can reactivate these idle
lanes and allow them to perform more useful work.

String Pattern Matching. Database systems support
string pattern matching with LIKE-predicates and regular
expression (regexp) predicates. Most GPU-based systems,
however, have very limited pattern matching capabilities,
likely because of divergence effects [1, 7, 8, 12, 13]. Still there
is existing work on GPU-based pattern matching. There is
work on NFA-based regexp matchers [40], which parallelize
over the states of the automaton. Albeit this parallelization
strategy collides with per-tuple parallelization of GPU query
engines. Other work on DFA-based matchers [35] uses per-
string parallelism, which appears more suitable for query
engines. During pattern matching, however, non-matching

890

strings reach rejecting states of the DFA early. Lane Refill
can be used to reactivate those lanes with new tuples to make
string pattern matching efficient. The property of Lane Refill
to preserve sequential order is essential for following state
transitions through DFAs.

Index Traversal. Index traversals are used to find tuples
that match predicates. The hierarchical index structure is
traversed from coarse-grained ranges to more fine-grained
ranges to localize matching tuples. For regions with sparse
population, traversal paths are often shorter than for densely
populated regions. This leads to filter divergence during
concurrent traversals. While B-Trees have relatively uniform
path lengths, other index structures, e.g., for geospatial
data [18], show more variation. To support such datatypes
efficiently on GPUs, Lane Refill can be used to address these
divergence effects during traversal.

5. EVALUATION
In this section, we evaluate the proposed techniques. We

first evaluate the effect of Push-down Parallelism for ex-
pansion divergence. Then we evaluate the effect of applying
Lane Refill to filter divergence. Next, we contrast Push-down
Parallelism and Lane Refill when being applied to the same
operation. Finally, we evaluate the overall performance of
the divergence-optimized system against other state-of-the-
art systems on CPU and GPU. In all experiments except
for end-to-end performance (Figure 19) the execution times
refer to GPU-resident data.

Query Processor. We evaluate the presented approach
in the GPU-based query compiler DogQC3. DogQC follows
an orthogonal approach to other GPU query processors. In-
stead of tuning operator-implementations for efficient GPU
utilization, DogQC constructs pipelines from relatively sim-
ple operators and then applies tuning on the pipeline level.
This two-step approach makes it more feasible to achieve
both functionality and performance.

In the evaluation we use two versions of DogQC. The
first version executes queries after the first step, which can
cause heavy divergence during query processing. We call this
version DogQC naive. The second version DogQC opt
executes queries after the second step, which adds divergence
balancing to increase processing efficiency on the GPU.

System. As experimentation platform, we use an NVidia
RTX2080 GPU with 46 Streaming Multiprocessors (SMs) and
8 GB GPU Memory. We use Cuda 10.0 and nvcc V10.0.130
for JIT-compilation in all experiments but Figure 19, which
uses clang++9.0 to compile Cuda code. When not indi-
cated differently, we use grid configurations of 80 warps per
Streaming Multiprocessor (117,760 threads). This choice is
due to sufficiently large grid sizes showing only small per-
formance variations (cf. Figure 16). The GPU is placed in
a workstation-class host system with 32 GB main-memory,
operating an Intel Core i7-9800X CPU with Ubuntu 18.04
as operating system.

5.1 Effect of Push-down Parallelism
We first evaluate the benefit of Push-down Parallelism for

expansion divergence. We execute a query that scans two
3The source code of DogQC is available at
https://github.com/henning1/dogqc
http://dbis.cs.tu-dortmund.de

pk-fk pk-8-fk pk-32-fk pk-zipf-fk pk-4zipf-fk
0

200

400

600

ex
ec

ut
io

n
ti

m
e

m
s naive (full scan)

Push-down (full scan)

naive (post proj.)

Push-down (post proj.)

Figure 9: Divergence balancing for hash join with
different build distributions. Push-down achieves ro-
bustness against skew and improves performance.

relations and joins them with different join key distributions.
We use a synthetic dataset where one relation has a dense pri-
mary key distribution and the other has one of the following
key distributions:

pk-fk Uniform distribution of foreign keys.
pk-8-fk Each foreign key occurs 8 times.

pk-32-fk Each foreign key occurs 32 times.

pk-zipf-fk Foreign keys sampled from Zipfian
distribution with z = 0.75 and n = 107.

pk-4zipf-fk Foreign keys sampled from four Zipfian
distributions with z = 0.75 and n = 107.

We generate join workloads for each of the distributions with
100 M build tuples and also 100 M result tuples. The first
three workloads have an even number of 1 to 32 join matches
per probe. Probes for pk-fk have exactly one match, probes
for pk-8-fk have 8 matches, and 32 for pk-32-fk. With even
match numbers we expect performance differences mainly
due to the access method to hash buckets. The latter two
workloads are non-uniform and the number of matches follows
Zipfian distributions. The heaviest skew is for pk-zipf-fk with
one probe matching the most frequent key 452 K times. For
pk-4zipf-fk, the four frequent keys that occur 112 K times.

We show the results in Figure 9. The Figure reports
execution times of the probe pipeline with the naive approach
and with Push-down Parallelism for two different projection
strategies. Full scan reads all attributes into registers during
scan. Post-proj performs tuple-id based post projection.

We observe that Push-down Parallelism reduces execution
times for all examined workloads by factors up to 4.2x. We
discuss two effects that explain these improvements. The
first effect is better load balance across threads, which be-
comes visible when comparing pk-zipf-fk to pk-4zipf-fk. The
workloads have different levels of skew that affect the exe-
cution times of naive. Push-down parallelism achieves even
execution times for both distributions.

The second effect is due to memory access patterns. Al-
though the probes for pk-32-fk and pk-8-fk do not provoke
load imbalance, the execution times improve. We attribute
this to coalesced memory access, which means that adjacent
lanes access adjacent memory locations in the hash buckets.
This pattern is preferable on GPUs [15]. With Push-down
Parallelism probes perform coalesced memory access with 8
or 32 lanes when executing pk-8-fk and pk-32-fk.

While we did not expect to observe an improvement for
pk-fk, Push-down Parallelism reduces the execution times

891

0 3 9 27
0

0.5

1

1.5

number operators

ex
ec

ut
io

n
ti

m
e

s naive
Push-down

Figure 10: Varying
numbers of operators af-
ter expansion.

0

10

20

30

40

ex
ec

ut
io

n
ti

m
e

m
s

Figure 11: Poster
Case 1 with Push-
down parallelism.

by 4%. We explain this with an increased efficiency when
handling hash collisions.

Looking at the two projection strategies, we observe that
Push-down Parallelism provides benefits for both. Push-
down parallelism improves by factors up to 2.7x for post-proj
and by factors up to 4.2x for full scan. We attribute the
higher benefit for full scan to the way Push-Down Parallelism
channels tuple data to lanes with new join tuples. For post-
proj only the tuple-id communicated via warp shuffles and
other attributes are read from memory.

Varying Numbers of Operators. We evaluate the
effect of varying the workload size that follows expansion
divergence. This allows us to assess the impact of processing
in divergent or in consolidated state. We append different
numbers of projection operators to the pk-4zipf-fk workload
and execute with the naive approach and with Push-down
Parallism. We use configurations up to 27 operators to
evaluate settings with high compute intensity. Figure 10
shows the experiment results.

Push-down parallelism improves throughput by factors
that increase with the number of operators up to 10.3x.
Further investigation showed that increasing the number
of operators even further does not lead to higher factors.
We attribute this effect to the compute load becoming the
dominant part of the workload. The magnitude of the factor
appears to be distribution dependent.

Poster Case 1. In Section 3.1, we discussed a query
pipeline from TPC-H Query 10 with expansion divergence.
Here we evaluate the effect of applying Push-down Paral-
lelism in this pipeline to counter expansion divergence. We
measure the execution time of the pipeline for a benchmark
database with scale factor 25. We use a pipeline with the
naive approach that has heavy expansion divergence in the
join and we compare it to a pipeline that applies Push-down
Parallelism in the join operator to counter expansion diver-
gence. Figure 11 shows the experiment results. The naive
approach has an execution time of 26.4 ms. Adding Push-
Down Parallelism to the join operator of the pipeline reduces
the execution time by a factor of 1.9x to 13.8 ms.

5.2 Effect of Lane Refill
We evaluate Lane Refill to counter filter divergence. The

workload is a query that scans the TPC-H tables lineitem
and part. The lineitem relation is filtered on l quantity
with varying selectivities, and then joined with part and
aggregated. For Lane Refill, we place a balancing operator
after the filter to restore lane activity. GPUs typically over-
subscribe the number of warps to the number of streaming
multiprocessors (SMs). This ability allows GPUs to hide

0 0.2 0.4 0.6 0.8 1
0

200

400

selectivity

ex
ec

ut
io

n
ti

m
e

m
s

naive
Lane Refill

Figure 12: Effect of Lane Refill on filter divergence
workload with one warp per SM. Execution times
scale with the workload size when using Lane Refill.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

selectivity
ex

ec
ut

io
n

ti
m

e
m

s

naive 4 warps
LR 4 warps

naive 8 warps
LR 8 warps

Figure 13: Effect of Lane Refill on filter divergence
workload with multiple warps per SM. Lane Refill
improves run-times for configurations with high de-
grees of warp-parallelism.

divergence effects to some extent. To understand the way
Lane Refill works, we first suppress effects from oversubscrip-
tion by using only one warp per SM . After that we perform
another experiment with multiple warps per SM.

One Warp per SM. Figure 12 shows the results of the
experiment with one warp per SM. If we set the filter to
leave all tuples in the result (selectivity 1.0), we observe an
execution time of 423 ms for the naive approach. The query
becomes faster as we make the filter predicate more restrictive.
For the naive strategy, that benefit is small, however: setting
the selectivity to 0.4 improves performance by only 19%
(343 ms). Only for very selective predicates, execution time
noticeably drops, as shown in the graph for selectivity 0.1
(226 ms). This is because the naive approach can only benefit
from filtering when full warps become inactive, but not if
only subsets of the 32 lanes get filtered out.

Lane Refill, by contrast, benefits from restrictive predi-
cates more directly and to a stronger extent. As we see in
Figure 12, Lane Refill shows the desired linear scaling. For
selectivity 0.1, execution time drops by 81% compared to
a selectivity of 1.0. Compared to naive execution, this is a
2.8-fold improvement. Only for high selectivities (0.9 and
1.0) the balancing work introduces a small overhead up to
2%. We conclude that Lane Refill successfully prevents the
GPU from working on inactive lanes and thus improves the
processing efficiency.

Multiple Warps per SM. Figure 13 shows results for
the same experiment, but we let the system overcommit
and assign 4 and 8 warps to each SM. With 46 SMs on the
RTX2080 GPU, this corresponds to 5,888 and 11,776 threads.

892

0 3 9 27
0

0.2

0.4

0.6

0.8

number operators

ex
ec

ut
io

n
ti

m
e

s naive
Lane Refill

Figure 14: Varying num-
bers of operators that
follow a filter.

0

20

40

60

80

ex
ec

ut
io

n
ti

m
e

m
s

Figure 15: Apply-
ing Lane Refill in
Poster Case 2.

As expected, overcommitting can hide some of the divergence
effect that we saw in the previous experiment. Still, Lane
Refill can better utilize the available resources, resulting in an
performance advantage of 2.6x for the 4-warp configuration
(70 ms vs. 27 ms) and 2.2x for the 8-warp configuration (40 ms
vs. 18 ms). The balancing work causes a small overhead for
high selecitivities up to 3.5%.

Varying Numbers of Operators. We evaluate the ef-
fect of varying the workload size that follows filter divergence.
This allows us to assess the impact of processing in divergent
or in consolidated state. We use a filter divergence workload
and append low to high intensity compute loads by adding up
to 27 projection operators. The workload scans 1.5 B tuples
from the TPC-H table lineitem and filters on l quantity
> 45 with selectivity 0.1. Figure 10 shows the experiment
results.

For increasing numbers of operators the execution times of
the naive approach go from 51 ms up to 799 ms. Lane Refill
reduces the execution times to at most 91 ms (27 operators).
We observe factors of improvement up to 8.8x, which corre-
sponds to the lane utilization being raised from 0.1 (after the
filter) close to 1.0 (after balancing). Further investigation
of workloads with selectivity 0.2 support this explanation
showing no better improvements than 5x. We suspected to
observe a performance penalty caused by the lane refill com-
putation for the data point with 0 operators. We attribute
the absence of this to the high scan volume, which leaves
compute resources available while servicing memory loads.

Poster Case 2. In Section 4.1 we presented a query
pipeline from TPC-H Query 10 with filter divergence. Here
we evaluate the effect of applying Lane Refill in this pipeline.
We measure the execution time of the pipeline for a bench-
mark database with scale factor 25. We use the naive ap-
proach with filter divergence originating from the selection
operator and from the sparse join operator. Then we com-
pare the performance to a pipeline that adds a Lane Refill
operator after the sparse join. Figure 15 shows the experi-
ment results. The pipeline with the naive approach has an
execution time of 53.4 ms. Adding the Lane Refill operator
reduces the execution time of the pipeline by 1.2x to 44.5 ms.

5.3 Push-down Parallelism vs. Lane Refill
In this experiment, we apply Push-down Parallelism and

Lane Refill to the same divergence problem. This allows
us to determine whether each technique is best-suited for
its respective divergence domain or if one technique may
work for most cases. Expansion divergence can be viewed as
filter divergence that occurs in steps of the same operation.
E.g., when iterating through join matches, lanes with fewer

1 2 4 8 16 32 64 128
0

20

40

60

80

100

warps / SM

ex
ec

ut
io

n
ti

m
e

m
s

naive
Lane Refill

pipeline flush

Push-down

Figure 16: Push-down vs. Lane Refill when joining
a Zipfian distribution. Push-down Parallelism is ef-
fective while Lane Refill suffers from pipeline flush.

expansion items act like filtered-out lanes in the current
iteration. For the experiment, we use the workload pk-zipf-
fk from Section 5.1, which joins a dense primary key with
a Zipf-distributed foreign key. We use the naive approach,
Lane Refill, and Push-down Parallelism for the join.

Observations. Figure 16 shows the results of the experi-
ment. The figure shows execution times for different numbers
of warps per Streaming Multiprocessor. The execution times
for Lane Refill are split into regular work and pipeline flush.
Pipeline flush represents work that is performed when all
tuples are already scanned and only one remaining lane is ac-
tive. We observe that Lane Refill can not improve over naive
with regard to the best performing warp/SM configuration.
For 1 warp/SM Lane Refill performs better than naive, but
for larger warp/SM configurations, Lane Refill suffers from
growing amounts of flush work. To achieve high performance,
GPUs need many warps in flight. Therefore it is likely that
heavy hitting tuples are isolated in warps. This prevents
Lane Refill from performing effective balancing operations.
Push-down Parallelism does not run into this problem be-
cause its balancing approach is effective, even when one tuple
per warp is remaining. Push-down Parallelism improves over
naive by 3.3x for the workload.

5.4 Overall Performance
This section evaluates the benefit of the proposed tech-

niques when applied in an overall system. We analyze the
impact on data imports, the additional resource demand, and
the query performance for realistic workloads. We compare
DogQC against two other systems: OmniSci [28], which uses
GPU-based query compilation and MonetDB [5], which uses
operator-at-a-time processing on CPUs. The experiments
were performed with OmniSci 4.8.1 and MonetDB 11.33.3.

The analysis of query performance splits into two parts to
address effects of divergence optimizations and end-to-end
performance separately. The workloads for both parts are the
TPC-H benchmark queries on a scale factor 25 GB database.

Import Cost of Dictionary Encoding. The approach
used by DogQC works directly on variable length string data
instead of building string dictionaries. This saves the cost
of building string dictionaries during import. We quantify
the cost with an experiment that uses OmniSci’s parallel
importer. We import a sequence of 100 M numeric values
with 9 digits. One time the data is interpreted as INTEGER
and another time the data is interpreted as VARCHAR(10).

893

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3.0
6.0
9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.0

0.2

0.4

0.6

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

TPC-H query

ex
ec

ut
io

n
ti

m
e

s
OmniSci

GPU
CPU

DogQC naive
processing

DogQC opt
processing

Figure 17: Execution times of DogQC for TPC-H benchmark queries (scale factor 25). The divergence
optimizations improve query performance.

Registers SMEM Instruction
per thread per block footprint

Expansion naive 19 0 KB 2.36 KB
Expansion Push-down 29 0 KB 5.23 KB

Filter naive 36 0 KB 1.52 KB
Filter Lane Refill 33 1 KB 5.89 KB

Available capacity 255 64 KB 16 KB (L0)

Figure 18: Resource Consumption.

While the string-based import takes 16.16 s, the numeric
import takes only 2.98 s. Importing the data with the use
of a dictionary takes 5.4x longer. The shorter import times
without dictionary encoding make a strong case for the
processing approach of DogQC with variable length strings.

Resource Consumption. We analyze the additional
demand for resources of the GPU cores when using divergence
balancing. This allows us to assess whether the addition of
divergence balancing to query pipelines causes bottlenecks
during query execution. We profile the use of shared memory
(SMEM), registers per thread, and the instruction footprint
for the experiments from Sections 5.1 and 5.2. Figure 18
shows the results along with the available capacity.

Overall, we observe a low resource consumption. The high-
est relative demand with divergence balancing is 5.89 KB of
the 16 KB L0-level instruction cache. The L0-level, however,
is backed by three larger cache-levels [16]. We conclude that
the balancing techniques have a low resource demand and
there are sufficient open resources for complex queries.

Divergence Optimizations. We analyze the effect of
applying divergence optimizations when processing realistic
query workloads on the GPU. To this end, we analyze the
execution times of the GPU systems DogQC and OmniSci.
We use DogQC naive and for DogQC opt we add the
following divergence optimizations: We replaced all join
operator that do hash builds on non-primary key attributes
with Push-down Parallelism join operators. Additionally we
added eight Lane Refill balancing operators to the query
plans; One to each of the Queries 4, 5, 7, 10, 15, 17, 19, and
20. We show the experiment results in Figure 17.

OmniSci was only able to execute 13 out of 22 queries.
The execution times are split into GPU work and CPU work
and range from 11 ms to 8599 ms. The highest time on GPU
is 604 ms and 8542 ms on CPU. For nine of the supported
queries, the CPU execution takes the majority of process-
ing time. DogQC performs all processing on the GPU and
was able to execute all TPC-H queries. DogQC naive has
execution times between 7 ms and 532 ms and DogQC opt
has execution times between 7 ms and 327 ms. Divergence

optimizations reduced execution times by more than 5% for
10 out of 22 queries. The highest factors of improvement
are 2.0x (Query 19) and 1.6x (Query 16). DogQC currently
adds divergence balancing into query plans after optimiza-
tion (cf. Sections 3.4 and 4.4). A future divergence-aware
optimizer may find plans with a higher benefit.

In comparison of OmniSci and DogQC, we observe that
OmniSci frequently falls back to slower CPU processing.
This causes significantly higher execution times. DogQC’s
processing times were faster than OmniSci’s by factors up to
68x for DogQC naive and by factors up to 86x DogQC
opt for the divergence-optimized version. This shows that
a fallback strategy for functionality that may be considered
unsuitable for GPUs is disadvantageous. DogQC shows that
it is preferable to include operations into compiled pipelines
even when they cause heavy divergence. The highest benefit
is achieved with additional divergence balancing.

End-to-End Performance. We evaluate the end-to-end
performance of DogQC in comparison with MonetDB and
OmniSci. OmniSci and DogQC are JIT compilation-based
GPU systems. Therefore their end-to-end performance is
affected by two additional factors that are orthogonal to di-
vergence optimizations: The data transfer time between main
memory and GPU, and the JIT-compilation time to generate
machine code. Systems that keep the entire database in
GPU memory only transfer the query results. DogQC is
compatible with this mode of operation, but uses sequential
input data transfers here. Asynchronous techniques that
pipeline data transfers and processing [39, 12] can further
reduce the transfer cost.

MonetDB runs on a two-socket server with Intel Xeon
E5-2695 v2 CPUs and 256 GB main memory and the GPU
hardware platform remains unchanged. For DogQC, we use
the version DogQC opt.

The experiment results are shown in Figure 19. MonetDB’s
end-to-end execution times range from 142 ms up to 7464 ms.
DogQC’s end-to-end execution times range from 1188 ms to
3705 ms and were shorter than MonetDB’s for 12 out of 22
queries. DogQC is faster only for longer running queries,
where the lowered processing times outweigh the cost of data
transfers and compilation. OmniSci was able to execute only
13 out of 22 queries. The end-to-end execution times range
from 56 ms up to 8662 ms. The previous experiment showed
that DogQC has lower processing times than OmniSci for
all but one TPC-H query. End-to-end execution, however,
is shorter for 8 of the 13 queries with OmniSci. The mea-
surement shows that this effect is due to JIT compilation

894

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.0

3.0

6.0

9.0

TPC-H query

ex
ec

ut
io

n
ti

m
e

s

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

MonetDB
Process

OmniSci
Compile
Transfer
Process

DogQC
Compile
Transfer
Process

Figure 19: End-to-end performance for TPC-H benchmark queries with MonetDB (CPU) and OmniSci
(GPU), and DogQC (GPU).

times. The current version of DogQC is not optimized for
low compilation times and generates high-level Cuda code.
Extending DogQC with a low-level code generator, such as
LLVM, would reduce JIT-compilation times. The highest
factors of improvement, that we observe in this experiment
are 4.54x over MonetDB and 4.51x over OmniSci.

5.5 Usage Scenario: String Pattern Matching
In this paper, we proposed several usage scenarios for

the presented divergence balancing techniques. To study
their applicability, we exemplarily evaluate one of them.
The workload is the test for a prefix of 50 characters in a

1% 32%
0

50

100

150

match rate

ex
ec

ut
io

n
ti

m
e

m
s naive

opt

Figure 20: Balanc-
ing prefix tests.

dataset with titles of computer
science articles. The dataset
stems from DBLP4 and was
scaled up by 5x. Matching pre-
fixes were scattered into random
positions. We use two datasets
with match rates of 1% and 32%,
each has 21.5 M entries and an av-
erage title length of 76 characters.
We process the workload with one
warp per SM and each warp lane
is responsible for one title at a
time. We apply Lane Refill to re-
activate lanes with rejected titles.

The results of the experiment are shown in Figure 20. The
workload with 1% matches has lower run-times than the
workload with 32% matches. For lower match rates many
strings are rejected early reducing the overall processing
volume. We observe that divergence optimizations improve
the performance of string prefix tests. For the 1% workload
Lane Refill improves performance by 2.5x from 38 ms down
to 15 ms. For the 32% workload the improvement is 1.7x
from 102 ms down to 59 ms.

6. MORE RELATED WORK
In this section, we relate our approach to work that was not

mentioned in one of the other sections. First we discuss work
in the database context that uses the GPU feature dynamic
parallelism to balance the use of parallel resources. Second
we discuss other related GPU query processing techniques.

Dynamic Parallelism. Dynamic parallelism is a fea-
ture that allows GPUs to start new kernels from within a
kernel [26]. The number of threads for the inner kernels
can be chosen dynamically. Rui et al. [32] apply dynamic
4https://dblp.org

parallelism for sort-merge joins. Wang et al. [36] evaluate
the feature for joins based on binary search and for regular
expression matching. Liu et al. [22] propose the implemen-
tation of a MapReduce framework for GPUs with dynamic
parallelism. Similar to Push-down Parallelism, dynamic par-
allelism adapts parallel resources to the characteristics of
sub-problems. The main advantage of the approach is pro-
grammability. The downside, however, are costs for context
switching. Chen et al. report overheads of up to 21x [10].

Pipelined GPU Query Processing. This work targets
GPU query engines that implement pipelining via just-in-
time compilation. In related work other means of pipelining
have been proposed, such as in-cache processing [29] and ker-
nel fusion [37]. Other related work that performs pipelining
via just-in-time compilation [8, 38] may be susceptible to the
presented divergence optimizations.

7. SUMMARY
In this research, we put the processing capabilities of data-

parallel coprocessors for non-uniform database workloads to
the test. DogQC introduces techniques, that allow us to
gracefully align parallel processing units with work items,
even when problems are heavily skewed. The evaluation
analyzes different filter and join scenarios with distinct work-
load imbalances. We observe that the techniques Lane Refill
and Push-down Parallelism are able to increase processing
efficiency for these non-uniform workloads.

Existing query coprocessors typically avoid imbalances by
working on a uniform surrogate (e.g. dictionary keys, ma-
terialization barriers). This has led to the perception, that
GPUs have limited capabilities of processing irregular prob-
lems. DogQC conversely avoids the overhead of maintaining
such additional data-structures and instead restores balance
during non-uniform processing. This approach achieves a big-
ger functionality range and better performance than other
query coprocessing engines. This is shown by support of
the full set of TPC-H benchmark queries with best-in-class
performance.

8. ACKNOWLEDGEMENTS
We would like to thank Florian Lüdiger for the experi-

mental work on string pattern matching and the anonymous
reviewers for their helpful comments and suggestions.

This work was supported by the DFG, Collaborative Re-
search Center SFB 876, A2, and DFG Priority Program “Scal-
able Data Management for Future Hardware” (TE111/2-1).

895

9. REFERENCES
[1] P. Bakkum and S. Chakradhar. Efficient data

management for GPU databases. High Performance
Computing on Graphics Processing Units, 2012.

[2] M. Billeter, O. Olsson, and U. Assarsson. Efficient
stream compaction on wide SIMD many-core
architectures. In Proceedings of the conference on high
performance graphics 2009, pages 159–166. ACM, 2009.

[3] C. Binnig, S. Hildenbrand, and F. Färber.
Dictionary-based order-preserving string compression
for main memory column stores. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of data, pages 283–296. ACM, 2009.

[4] P. Boncz, T. Neumann, and O. Erling. TPC-H
analyzed: Hidden messages and lessons learned from an
influential benchmark. In Technology Conference on
Performance Evaluation and Benchmarking, pages
61–76. Springer, 2013.

[5] P. A. Boncz, S. Manegold, M. L. Kersten, et al.
Database architecture optimized for the new bottleneck:
Memory access. In VLDB, pages 54–65, 1999.

[6] S. Borkar and A. A. Chien. The Future of
Microprocessors. Communications of the ACM,
54(5):67–77, May 2011.

[7] S. Breß, H. Funke, and J. Teubner. Robust query
processing in co-processor-accelerated databases. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1891–1906. ACM, 2016.

[8] S. Breß, B. Köcher, H. Funke, S. Zeuch, T. Rabl, and
V. Markl. Generating custom code for efficient query
execution on heterogeneous processors. VLDB Journal,
27(6):797–822, 2018.

[9] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer networks,
33(1-6):309–320, 2000.

[10] G. Chen and X. Shen. Free launch: optimizing GPU
dynamic kernel launches through thread reuse. In
Proceedings of the 48th International Symposium on
Microarchitecture, pages 407–419. ACM, 2015.

[11] A. Davidson, S. Baxter, M. Garland, and J. D. Owens.
Work-efficient parallel GPU methods for single-source
shortest paths. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages
349–359. IEEE, 2014.

[12] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner.
Pipelined Query Processing in Coprocessor
Environments. In Proceedings of the 2018 International
Conference on Management of Data, pages 1603–1618.
ACM, 2018.

[13] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720, 2013.

[14] Intel Corporation. Accelerating x265 with Intel
Advanced Vector Extensions 512 (Intel AVX-512).
2018.

[15] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting
memory access patterns to improve memory
performance in data-parallel architectures. IEEE
Transactions on Parallel and Distributed Systems,
22(1):105–118, 2010.

[16] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza.
Dissecting the NVidia Turing T4 GPU via
Microbenchmarking. arXiv preprint arXiv:1903.07486,
2019.

[17] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk.
GPU join processing revisited. In Proceedings of the
Eighth International Workshop on Data Management
on New Hardware, pages 55–62. ACM, 2012.

[18] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz,
T. Neumann, and A. Kemper. Approximate geospatial
joins with precision guarantees. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE),
pages 1360–1363. IEEE, 2018.

[19] H. Lang, A. Kipf, L. Passing, P. Boncz, T. Neumann,
and A. Kemper. Make the most out of your SIMD
investments: counter control flow divergence in
compiled query pipelines. In Proceedings of the 14th
International Workshop on Data Management on New
Hardware, page 5. ACM, 2018.

[20] V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 743–754.
ACM, 2014.

[21] H. Liu and H. H. Huang. Enterprise: breadth-first
graph traversal on GPUs. In SC’15: Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2015.

[22] L. Liu, Y. Zhang, M. Liu, C. Wang, and J. Wang.
A-MapCG: an adaptive MapReduce framework for
GPUs. In 2017 International Conference on
Networking, Architecture, and Storage (NAS), pages
1–8. IEEE, 2017.

[23] X. Mei and X. Chu. Dissecting GPU memory hierarchy
through microbenchmarking. IEEE Transactions on
Parallel and Distributed Systems, 28(1):72–86, 2016.

[24] I. Müller, C. Ratsch, F. Faerber, et al. Adaptive String
Dictionary Compression in In-Memory Column-Store
Database Systems. In EDBT, pages 283–294, 2014.

[25] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. PVLDB, 4(9):539–550, 2011.

[26] NVidia Corporation. NVidia Kepler GPU Architecture.
2012.

[27] NVidia Corporation. NVidia Turing GPU Architecture.
2018.

[28] OmniSci Incorporated. OmniSciDB.
https://www.omnisci.com/, 2019.

[29] J. Paul, J. He, and B. He. GPL: A GPU-based
pipelined query processing engine. In Proceedings of the
2016 International Conference on Management of Data,
pages 1935–1950. ACM, 2016.

[30] H. Pirk, S. Manegold, M. L. Kersten, et al. Accelerating
Foreign-Key Joins using Asymmetric Memory
Channels. In ADMS@VLDB, pages 27–35, 2011.

[31] O. Polychroniou and K. A. Ross. Vectorized Bloom
filters for advanced SIMD processors. In Proceedings of
the Tenth International Workshop on Data
Management on New Hardware, page 6. ACM, 2014.

[32] R. Rui and Y.-C. Tu. Fast Equi-Join Algorithms on
GPUs: Design and Implementation. In Proceedings of

896

the 29th International Conference on Scientific and
Statistical Database Management, page 17. ACM, 2017.

[33] M. Sha, Y. Li, and K.-L. Tan. GPU-based Graph
Traversal on Compressed Graphs. In Proceedings of the
2019 International Conference on Management of Data,
pages 775–792. ACM, 2019.

[34] J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query execution. In
Proceedings of the Seventh International Workshop on
Data Management on New Hardware, pages 33–40.
ACM, 2011.

[35] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular expression
matching on graphics hardware for intrusion detection.
In International Workshop on Recent Advances in
Intrusion Detection, pages 265–283. Springer, 2009.

[36] J. Wang and S. Yalamanchili. Characterization and
analysis of dynamic parallelism in unstructured GPU
applications. In 2014 IEEE International Symposium
on Workload Characterization (IISWC), pages 51–60.

IEEE, 2014.
[37] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili.

Kernel weaver: Automatically fusing database
primitives for efficient GPU computation. In 2012 45th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 107–118. IEEE, 2012.

[38] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter,
M. Garland, and S. Yalamanchili. Red fox: An
execution environment for relational query processing
on gpus. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and
Optimization, page 44. ACM, 2014.

[39] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of
processing data warehousing queries on GPU devices.
PVLDB, 6(10):817–828, 2013.

[40] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng,
and Q. Dong. GPU-based NFA implementation for
memory efficient high speed regular expression
matching. In ACM SIGPLAN Notices, volume 47,
pages 129–140. ACM, 2012.

897

