
Realtime Index-Free Single Source SimRank Processing
on Web-Scale Graphs

Jieming Shi†∗, Tianyuan Jin‡∗, Renchi Yang≀, Xiaokui Xiao†, Yin Yang§

†‡School of Computing, National University of Singapore, Singapore
≀School of Computer Science and Engineering, Nanyang Technological University, Singapore

§College of Science and Engineering, Hamad Bin Khalifa University, Qatar

†{shijm, xkxiao}@nus.edu.sg, ‡tianyuan1044@gmail.com,
≀yang0461@e.ntu.edu.sg, §yyang@hbku.edu.qa

ABSTRACT

Given a graph G and a node u ∈ G, a single source Sim-
Rank query evaluates the similarity between u and every
node v ∈ G. Existing approaches to single source SimRank
computation incur either long query response time, or ex-
pensive pre-computation, which needs to be performed again
whenever the graph G changes. Consequently, to our knowl-
edge none of them is ideal for scenarios in which (i) query
processing must be done in realtime, and (ii) the underlying
graph G is massive, with frequent updates.

Motivated by this, we propose SimPush, a novel algorithm
that answers single source SimRank queries without any pre-
computation, and achieves significantly higher query speed
than even the fastest known index-based solutions. Further,
SimPush provides rigorous result quality guarantees, and its
high performance does not rely on any strong assumption
of the graph. Specifically, compared to existing methods,
SimPush employs a radically different algorithmic design
that focuses on (i) identifying a small number of nodes rele-
vant to the query, and subsequently (ii) computing statistics
and performing residue push from these nodes only.

We prove the correctness of SimPush, analyze its time
complexity, and compare its asymptotic performance with
that of existing methods. Meanwhile, we evaluate the prac-
tical performance of SimPush through extensive experiments
on 9 real datasets. The results demonstrate that SimPush

consistently outperforms all existing solutions, often by over
an order of magnitude. In particular, on a commodity ma-
chine, SimPush answers a single source SimRank query on a
web graph containing over 133 million nodes and 5.4 billion
edges in under 62 milliseconds, with 0.00035 empirical error,
while the fastest index-based competitor needs 1.18 seconds.

PVLDB Reference Format:
Jieming Shi, Tianyuan Jin, Renchi Yang, Xiaokui Xiao, Yin Yang.
Realtime Index-Free Single Source SimRank Processing on Web-
Scale Graphs. PVLDB, 13(7): 966-978, 2020.
DOI: https://doi.org/10.14778/3384345.3384347

∗Equal contribution.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 7
ISSN 21508097.
DOI: https://doi.org/10.14778/3384345.3384347

1. INTRODUCTION
SimRank is a popular similarity measure between nodes

in a graph, with numerous potential applications, e.g., in
recommendation systems [26], schema matching [25], spam
detection [2], and graph mining [13, 19, 40]. The main idea
of SimRank is that two nodes that are referenced by many
similar nodes are themselves similar to each other. For in-
stance, in a social network, two key opinion leaders who are
followed by similar fans are expected to be similar in some
way, e.g., sharing similar political positions or life experi-
ences. Formally, given a graph G and nodes u, v ∈ G, the
SimRank value s(u, v) between u and v is defined as follows:

s(u, v) =

1, if u = v
c

|I(u)|·|I(v)|
∑

u′∈I(u)

∑

v′∈I(v)

s(u′, v′), otherwise.

where I(u) and I(v) are the sets of in-neighbors of u and v,
respectively, and c ∈ [0, 1] is a decay factor commonly fixed
to a constant, e.g., c = 0.6 [21,30, 32].

This paper focuses on single-source SimRank processing,
which takes as input a node u ∈ G, and computes the Sim-
Rank s(u, v) between u and every node v ∈ G. This can be
applied, for example, in a search engine that retrieves web
pages similar to a given one, or in a social networking site
that recommends new connections to a user. We focus on
online scenarios, in which (i) query execution needs to be
done in realtime, and (ii) the underlying graph can change
frequently and unpredictably, meaning that query process-
ing must not rely on heavy pre-computions whose results
are expensive to update. For large graphs, this problem is
highly challenging, since computing SimRank values is im-
mensely expensive: its original definition, presented above,
is recursive and requires numerous iterations over the entire
graph to converge, which is clearly unscalable.

Several recent approaches, notably [12, 15, 21, 28, 30, 32],
have demonstrated promising results for single source Sim-
Rank processing, by solving the approximate version of the
problem with rigorous result quality guarantees, as elabo-
rated in Section 2. The majority of these methods, however,
require extensive pre-processing to index the input graph G;
as explained in Section 2.2, such indexes cannot be easily up-
dated when the underlying graph G changes, meaning that
these methods are not suitable for our target scenarios de-
scribed above. Specifically, the current state of the art for
offline single source SimRank is PRSim [32], which achieves
efficient query processing with a relatively lightweight in-

966

Table 1: Comparison of single-source SimRank algorithms with error tolerance ǫ and failure probability δ

Algorithm Query Time Index Size Preprocessing Time

SimPush O(m log 1
ǫ
/ǫ+ log 1

ǫδ
/ǫ2 + 1/ǫ3) - -

TSF [28] O
(

n log n
δ
/ǫ2

)

O
(

n log n
δ
/ǫ2

)

O
(

n log n
δ
/ǫ2

)

READS [12] O
(

n log n
δ
/ǫ2

)

O
(

n log n
δ
/ǫ2

)

O
(

n log n
δ
/ǫ2

)

ProbeSim [21] O
(

n log n
δ
/ǫ2

)

- -

SLING [30] O(n/ǫ) O(n/ǫ) O
(

m/ǫ+ n log n
δ
/ǫ2

)

PRSim [32]1 O
(

n log n
δ
/ǫ2

)

O(min {n/ǫ,m}) O(m/ǫ)

dex; nevertheless, it is clearly infeasible to rebuild index for
every graph update or new query, as shown in our exper-
iments in Section 5. The current best index-free solution
is ProbeSim [32], whose query efficiency is far lower than
that of PRSim. Consequently, ProbeSim yields poor response
time for large graphs, adversely affecting user experience.

This paper proposes SimPush, a novel index-free solu-
tion for approximate single source SimRank processing that
achieves significantly higher performance compared to all ex-
isting solutions (including index-based ones with heavy pre-
computation), while providing rigorous quality guarantees.
This is achieved through a novel algorithmic design that (i)
identifies a small subset of nodes in G that are most relevant
to the query, called attention nodes, and subsequently (ii)
computes important statistics and performs graph traversal
starting from attention nodes only. In particular, to ensure
ǫ-approximate result quality (defined in Section 2.1), it suf-
fices to identify O(1

ǫ
) attention nodes. Existing solutions

need to perform similar computations on a far larger set of
nodes, covering the entire graph G in the worst case.

Table 1 compares the asymptotic performance of SimPush

against several recent approaches, where n and m denote
the number of nodes and edges in G, respectively, and ǫ
and δ are parameters for the error guarantee. For sparse
graphs, m is comparable to O(n log n); hence, compared to
ProbeSim, the complexity of SimPush is lower for common
values of ǫ and δ. Further, SimPush does not involve large
hidden constant factors (e.g., as in SLING), and makes no
assumption on the data distribution of the underlying graph
G (e.g., as in PRSim, which assumes that G is a power-law
graph), as elaborated in Section 2.2.

We experimentally evaluate our method against 6 re-
cent solutions using 9 real graphs. The results demon-
strate the high practical performance of SimPush. In par-
ticular, SimPush outperforms all existing methods (both in-
dexed and index-free) in terms of query processing time, and
SimPush is usually over an order of magnitude faster than
the previous best index-free method ProbeSim, on compara-
ble result accuracy levels. Further, on UK graph with 133
million nodes and 5.4 billion edges, SimPush obtains 0.00035
empirical error within 62 milliseconds.

2. PRELIMINARIES

2.1 Problem Definition
Let G = (V,E) be a directed graph, where V is the set

of nodes with cardinality n = |V |, and E is the set of edges
with cardinality m = |E|. If the input graph is undirected,
we simply convert each undirected edge (u, v) to a pair of

1O
(

n log n
δ
/ǫ2 ·

∑

w∈V π(w)2
)

is the detailed time complex-

ity of PRSim, where
∑

w∈V π(w)2 = 1 in the worst case [32].

directed ones (u, v) and (v, u) with opposing directions. Fol-
lowing common practice in previous work [21,32], we define
the approximate single-source SimRank query as follows.
Table 2 lists frequently used notations in the paper.

Definition 1. (Approximate Single Source SimRank
Query) Given an input graph G = (V,E), a query node
u ∈ V , an absolute error threshold ǫ, a failure probability δ,
and decay factor c, an approximate single source SimRank
query returns an estimated value s̃(u, v) for the exact
SimRank s(u, v) of each node v ∈ V , such that

|s̃(u, v)− s(u, v)| ≤ ǫ (1)

holds for any v ∈ V with at least 1− δ probability.

2.2 State of the Art
SLING [30]. SimRank is well known to be linked to random
walks [10]. Earlier work on SimRank processing generally
use random walks without decay. More recent approaches
are mostly based on a variant called

√
c-walks, as follows.

Definition 2. (
√
c-Walk [30]) Given node u and decay fac-

tor c,
√
c-walk from u is a random walk that (i) has 1−√

c
probability to stop at current node, and (ii) has

√
c proba-

bility to jump to a random in-neighbor of current node.

Given two
√
c-walks from distinct nodes u and v respec-

tively, we say that these two
√
c-walks meet, if they both

reach the same node after the same number of steps, say,
the ℓ-th step. Let κ(ℓ)(u, v, w) be the probability that two√
c-walks from u and v meet at w at the ℓ-th step, and

never meet again afterwards. Ref. [30] interprets the Sim-
Rank value s(u, v) as follows:

s(u, v) =

+∞
∑

ℓ=0

∑

w∈V

κ(ℓ)(u, v, w). (2)

SLING [30] further decomposes κ(ℓ)(u, v, w) into the prod-
uct of three probabilities:

κ(ℓ)(u, v, w) = h(ℓ)(u,w) · η(w) · h(ℓ)(v, w), (3)

where h(ℓ)(u,w) denotes the probability (called hitting prob-

ability) that a
√
c-walk from node u reaches node w at the

ℓ-th step. Since the random walks starting from nodes u
and v are independent, the product h(ℓ)(u,w) · h(ℓ)(v, w)
gives the probability (called meeting probability) that these
two walks meet at node w (called the meeting node). The
correction factor η(w) (called the last-meeting probability of
node w) is the probability that the above two

√
c-walks, af-

ter meeting at w, never meet again in the future. Clearly,
this is equivalent to the probability that two independent√
c-walks starting from w never meet at any step.

967

Table 2: Frequently used notations.

Notation Description
G = (V,E) Input graph G with nodes V and edges E
n,m n = |V |,m = |E|
O(v), I(v) Out-neighbors and in-neighbors of node v
dO(v), dI(v) Out-degree and in-degree of node v
c Decay factor in SimRank
ǫ, δ Maximum absolute error and failure prob-

ability in approximate SimRank
ǫh Error parameter decided by ǫ and c
Gu Source graph generated for query node u
Au Set of all attention nodes of u

A
(ℓ)
u Set of attention nodes at the ℓ-th level of

Gu, where ℓ = 1, ..., L
L Max level in Gu

w, wi, wj Attention nodes at the ℓ-th level, (ℓ+ i)-th
level, and (ℓ+j)-th level ofGu respectively,
where ℓ = 1, ..., L and i = 0, ..., L− ℓ

h(ℓ)(u,w) ℓ-step hitting probability from u to w in G

h̃(ℓ)(u,w) ℓ-step hitting probability from u to w in
Gu

ĥ(ℓ)(v, w) Approximate hitting probability from v to
w in G

γ(ℓ)(w) Last-meeting probability of attention node
w at the l-th level of Gu

r(ℓ)(w) Residue of attention node w, r(ℓ)(w) =

h(ℓ)(u,w) · γ(ℓ)(w)

κ(ℓ)(u, v, w) The probability that two
√
c-walks from u

and v meet at w at the ℓ-th step, and never
meet again afterwards.

SLING then pre-computes h(ℓ)(u,w) and η(w) with er-
ror up to ǫ, and materializes them in its index. Given a
query node u, SLING retrieves all nodes at all levels with
h(ℓ)(u,w) ≥ ǫ. Then, for each level ℓ and every node w on
the ℓ-th level, SLING retrieves η(w) and each node v with

h(ℓ)(v, w) ≥ ǫ, and estimates s(u, v) using Equation (3).
SLING incurs substantial pre-processing costs for comput-

ing h(ℓ)(u,w) and η(w), which need to be re-computed when-
ever graph G changes, as there is no clear way to efficiently
update them. Consequently, SLING is not suitable for on-
line processing. Further, although SLING achieves beautiful
asymptotic bounds as shown in Table 1, its practical per-
formance tends to be sub-par due to large hidden constant
factors. For instance, Ref. [32] points out that the index
size of SLING is over an order of magnitude larger than G
itself, which leads to high retrieal costs at query time. Our
experiments in Section 5 lead to similar conclusions.

PRSim [32]. PRSim is based on the main concepts of SLING,
and further optimizes performance, especially for power-law
graphs. PRSim builds a connection between SimRank and
personalized PageRank [11]: let π(ℓ)(u,w) be the ℓ-hop re-
verse personalized PageRank (RPPR) between u and w, we

have π(ℓ)(u,w) = h(ℓ)(u,w) · (1−√
c). PRSim uses Equation

(4) for SimRank estimation:

s(u, v) =
1

(1−√
c)2

+∞
∑

ℓ=0

∑

w∈V

π(ℓ)(u,w)·η(w)·π(ℓ)(v, w). (4)

Then, based on the assumption that the input graph G is
a power-law graph, PRSim selects a number of hub nodes,
and pre-computes their RPPR values. At query time, PRSim

estimates π(ℓ)(u,w) · η(w) by generating
√
c-walks from u

and w. If w happens to be a hub, PRSim seeks the index for
all possible π(ℓ)(v, w) for any v ∈ V ; otherwise, π(ℓ)(v, w) is
estimated online using a sampling based technique. Finally,
PRSim estimates s(u, v) based on Equation (4).

Similar to SLING, PRSim incurs considerable pre-
computation as explained above, and hence, it is not suitable
for online SimRank processing. Further, PRSim heavily re-
lies on the power-law graph assumption, both in algorithm
design and in its asymptotic complexity analysis. In partic-
ular, in the best case that the underlying graph G strictly
follows power-law, the query time complexity is sublinear
to the graph size [32]. However, this assumption is rather
strong and might be unrealistic: as reported in a recent
study [3], strict power-law graphs are rare in practice.

ProbeSim [21]. The state-of-the-art index-free method is
ProbeSim. Specifically, let W (u) and W (v) be two

√
c-walks

from nodes u and v, respectively, and f (ℓ)(u, v, w) be the
probability that W (u) and W (v) first meet at w at the ℓ-th
step. ProbeSim employs Equation (5) to estimate SimRank:

s(u, v) =

+∞
∑

ℓ=0

∑

w∈V

f (ℓ)(u, v, w). (5)

Given query node u, ProbeSim first samples a
√
c-walk

W (u) from u. For every node w at the ℓ-th step of the walk,
ProbeSim performs a probing procedure, in order to compute
the first meeting probabilities at all levels. In particular,
ProbeSim probes nodes in the order of increasing steps, so
that when probing w at the ℓ-th step of W (u), the method
excludes the nodes visited in previous probings, in order
to compute the first meeting probabilities in Equation (5).
Such inefficiency leads to long query response time, which
may put off users who wait online for query results.

Other methods. READS [12] precomputes
√
c-walks and

compresses the walks into trees. During query processing,
READS retrieves the walks originating from the query node
u, and finds all the

√
c-walks that meet with the

√
c-walks of

u. TSF [28] builds an index consisting of one-way graphs by
sampling one in-neighbor from each node’s in-coming edges.
During query processing, the one-way graphs are used to
simlulate random walks to estimate SimRank. According
to [32], PRSim subsumes both READS and TSF; further,
[32] points out that the result quality guarantee of TSF is
questionable, since (i) TSF allows two walks to meet multiple
times, leading to overestimated SimRank values and (ii) TSF
assumes that a random walk has no cycles, which may not
hold in practice. Finally, TopSim [15] is another index-free
method, which is subsumed by ProbeSim according to [21].
Meanwhile, according to [21,32], the result quality guaranee
of TopSim is problematic as the method truncates random
walks with a maximum number of steps.

3. OVERVIEW OF SIMPUSH
We overview the proposed solution SimPush in this sec-

tion, and present the detailed algorithm later in Section 4.
As mentioned before, the main idea of SimPush is to iden-
tify a small set of attention nodes, and focus computations
around these nodes only. As we show soon, the number of
attention nodes is bounded by O(1

ǫ
), and they are mostly

within the close vicinity of the query node u, meaning that
they can be efficiently identified. Meanwhile, we prove that

968

ℎ 1 𝑢𝑢,𝑤𝑤𝑎𝑎 = 0.258;ℎ 1 𝑢𝑢,𝑤𝑤𝑏𝑏 = 0.258;ℎ 1 𝑢𝑢,𝑤𝑤𝑐𝑐 = 0.258; ℎ 2 𝑢𝑢,𝑤𝑤𝑑𝑑∘ = 0.1;ℎ 2 𝑢𝑢, 𝑤𝑤𝑒𝑒 = 0.3; ℎ 2 𝑢𝑢, 𝑤𝑤𝑓𝑓∘ = 0.1; ℎ 2 𝑢𝑢, 𝑤𝑤𝑔𝑔∘ = 0.1;ℎ 3 𝑢𝑢,𝑤𝑤ℎ = 0.194;ℎ 3 𝑢𝑢,𝑤𝑤𝑝𝑝 = 0.155;ℎ 3 𝑢𝑢,𝑤𝑤𝑐𝑐∘ = 0.039;𝐴𝐴𝑢𝑢(1) = 𝑤𝑤𝑎𝑎,𝑤𝑤𝑏𝑏 ,𝑤𝑤𝑐𝑐 𝐴𝐴𝑢𝑢(2) = 𝑤𝑤𝑒𝑒 𝐴𝐴𝑢𝑢(3)= 𝑤𝑤ℎ,𝑤𝑤𝑝𝑝

𝜖𝜖ℎ = 0.12

ℎ 0 𝑤𝑤ℎ 𝑤𝑤ℎ ℎ 0 𝑤𝑤𝑝𝑝 𝑤𝑤𝑝𝑝 ℎ 0 𝑤𝑤𝑒𝑒 𝑤𝑤𝑒𝑒 ℎ 0 𝑤𝑤𝑎𝑎 𝑤𝑤𝑎𝑎 ℎ 0 𝑤𝑤𝑏𝑏 𝑤𝑤𝑏𝑏ℎ 0 𝑤𝑤𝑐𝑐 𝑤𝑤𝑐𝑐ℎ 1 𝑤𝑤𝑑𝑑 𝑤𝑤ℎ ℎ 1 𝑤𝑤𝑒𝑒 𝑤𝑤ℎ ℎ 1 𝑤𝑤𝑒𝑒 𝑤𝑤𝑝𝑝 ℎ 1 𝑤𝑤𝑓𝑓 𝑤𝑤𝑝𝑝ℎ 1 𝑤𝑤𝑎𝑎 𝑤𝑤𝑒𝑒 ℎ 2 𝑤𝑤𝑎𝑎 𝑤𝑤ℎ ℎ 2 𝑤𝑤𝑎𝑎 𝑤𝑤𝑝𝑝ℎ 1 𝑤𝑤𝑏𝑏 𝑤𝑤𝑒𝑒 ℎ 2 𝑤𝑤𝑏𝑏 𝑤𝑤ℎ ℎ 2 𝑤𝑤𝑏𝑏 𝑤𝑤𝑝𝑝ℎ 2 𝑤𝑤𝑐𝑐 𝑤𝑤𝑝𝑝

𝑤𝑤𝑑𝑑∘
𝑤𝑤𝑓𝑓∘𝑤𝑤𝑔𝑔∘ 𝑤𝑤𝑐𝑐∘𝑤𝑤𝑏𝑏𝑤𝑤𝑎𝑎

𝑤𝑤𝑐𝑐𝑢𝑢 𝑤𝑤𝑒𝑒 𝑤𝑤ℎ𝑤𝑤𝑝𝑝
0 1 2 𝐿𝐿 = 3

(a) Source graph Gu and attention sets A
(ℓ)
u : attention nodes are in black.

𝑤𝑤ℓ = 3

𝑟𝑟 3 𝑤𝑤 =ℎ 3 𝑢𝑢,𝑤𝑤 ⋅ 𝛾𝛾 3 (𝑤𝑤)𝑢𝑢 𝑣𝑣𝑐𝑐𝑣𝑣𝑏𝑏𝑣𝑣𝑎𝑎 𝑣𝑣𝑑𝑑𝑣𝑣𝑒𝑒
𝑣𝑣𝑔𝑔𝑣𝑣𝑓𝑓𝑣𝑣ℎ

3 2 1 0

(b) Reverse-Push from w

Figure 1: Running Example of SimPush

the error introduced by neglecting non-attention nodes is
negligible and bounded within the error guarantee ǫ in In-
equality (1). This design significantly reduces the computa-
tional overhead in SimPush.

Specifically, given the input graph G and query node u,
SimPush computes the approximate single source SimRank
results for u in three stages. The first stage identifies the set
of attention nodes, denoted as Au, through a Source-Push

algorithm. Besides Au, Source-Push also returns a graph
Gu (referred to as the source graph of u) consisting of nodes
in G that are visited during the algorithm. In the second
stage, SimPush follows a similar (and yet much improved)
framework as SLING, and computes the hitting probabil-
ities between the query node u and each attention node
w ∈ Au, as well as the last-meeting probability of w. Note
that in SimPush, the computation of hitting probabilities is
restricted to attention nodes, and heavily reuses the inter-
mediate results obtained in the first stage, which drastically
reduces the computational overhead compared to existing
methods such as SLING, which precomputes hitting proba-
bilities for all nodes in a graph by following out-going edges.
Further, SimPush defines last-meeting probabilities over at-
tention nodes only, and computes the probabilities in a de-
terministic way over a small source graph generated when
computing the attention nodes (details in Section 4.1), while
previous methods such as SLING defines its last-meeting
probabilities over the whole graph, and precomputes the
probabilities by sampling numerous

√
c-walks. Finally, in

the third stage, SimPush employs a Reverse-Push approach
to complete the estimates of probabilities between the query
node u and every node v ∈ G via an attention node w ∈ Au,
yielding the final estimate of the SimRank between u and v.
In the following, we elaborate on the three stages using the
running example in Figure 1.

Discovery of attention nodes. First we clarify what
qualifies a node as an attention node of query node u.

Definition 3. (Attention Nodes on Level ℓ). Given an in-
put graph G and a query node u ∈ G, a node w is an at-
tention node of u on the ℓ-th level, if and only if hitting

probability h(ℓ)(u,w) ≥ ǫh, where ǫh = 1−√
c

3
√
c

· ǫ.

Parameter ǫh is explained in Lemma 4 towards the end of

this subsection. Let A
(ℓ)
u denote the set of attention nodes

on level ℓ, and Au be the set of all attention nodes that
appear in any level. Focusing on the attention nodes only,
we employ the interpretation of SimRank s(u, v) in Equa-
tion (2), and have the approximate s′(u, v) in Equation (6).
Lemma 1 provides the error guarantee for s′(u, v) 1.

1All proofs can be found in the appendix.

s′(u, v) =

+∞
∑

ℓ=0

∑

w∈A
(ℓ)
u

κ(ℓ)(u, v, w), (6)

Lemma 1. Given nodes u, v ∈ G, their exact SimRank

s(u, v) and estimated value s′(u, v) in Equation (6) satisfy

s(u, v)−
√
c · ǫh

1−√
c
≤ s′(u, v) ≤ s(u, v).

In the above definition of s′(u, v), we enumerate all pos-
sible levels ℓ. Next we show that this is not necessary, since
attention nodes only exist in the first few levels within close
vicinity of query node u, according to the following lemma.

Lemma 2. Given query node u, decay factor c and pa-

rameter ǫh, the number of attention nodes with respect to u

is at most
⌊ √

c
(1−√

c)·ǫh

⌋

. Meanwhile, all attention nodes exist

within L∗ =
⌊

log 1√
c

1
ǫh

⌋

steps from u.

According to Lemma 2, to discover all attention nodes,
it suffices to explore L∗ steps around the query node u.
Further, in SimPush, attention node discovery is performed
by exploring L ≤ L∗ steps from u, through the proposed
Source-Push algorithm, detailed in Section 4.1. In partic-
ular, Source-Push samples a sufficient number of random
walks to determine L, such that with high probability (ac-
cording to parameter δ), all attention nodes exist within L
steps from u. The specific value of L depends on the input
graph G. As our experiments demonstrate L is usually small
for real graphs. For instance, when ǫ = 0.02, on a billion-
edge Twitter graph, the average L is merely 2.76, and the
number of attention nodes is no more than a few hundred.

Next, to identify attention nodes, SimPush also needs to
compute the hitting probabilities from u. This is done
through a residue propagation procedure in the Source-Push
algorithm, detailed in Section 4.1. Specifically, h(0)(u, u) is
set to 1, and all other hitting probabilities are initialized
to zero. Starting from the 0-th level, Source-Push pushes
hitting probabilities of nodes from the current level to their
in-neighbors on the next level, until reaching the L-th level.
As mentioned earlier, SimPush also records the nodes and
edges traversed during the propagation in a source graph

Gu. Specifically, Gu is organized by levels (with max level
L), and there are only edges between adjacent levels, i.e.,
incoming edges from the (ℓ+1)-th level to the ℓ-th level. Gu

itself, as well as the computed hitting probabilities of atten-
tion nodes, are reused in subsequent stages of SimPush.

Figure 1(a) shows an example of the propagation pro-
cess, assuming L = 3 and ǫh = 0.12. Attention (resp. non-
attention) nodes are shown as solid circles (resp. empty cir-
cles) in the figure. Symbols with a superscript circle (e.g.,

969

w◦
d) denote non-attention nodes, which are used later in

Section 4. Specifically, the propagation starts from u and
traverses the graph in a level-wise manner, reaching nodes
wa, wb, wc on the first level, nodes wd, we, wf , wg on the sec-
ond level, and nodes wh, wp, wc on the third level, which is
the last level since L = 3. Note that a node can be visited
multiple times on different levels, e.g., wc on both the first
and third levels. In this case, it is also possible that a node
is an attention node on one level (e.g., wc on Level 1) and
non-attention node on another (e.g., wc on Level 3).

Estimation of κ(ℓ)(u, v, w). After identifying attention

nodes, SimPush needs to estimate each κ(ℓ)(u, v, w), accord-
ing to Equation (6). Existing solutions mostly estimate it
by running numerous

√
c-walks on the whole graph G, which

is costly. Instead, SimPush incorporates a novel algorithm
that mostly operates within the source graph Gu obtained
in the first phase. Gu is far smaller than G.

Specifically, the hitting probabilities from u to all atten-
tion nodes are already obtained Phase 1. Next, we focus on
the last meeting probability for a given node w. In order to
achieve high efficiency, SimPush only computes last meet-
ing probabilities for attention nodes, and limits the com-
putations within the source graph Gu. Towards this end,
SimPush defines a new last meeting probability, as follows.

Definition 4. (Last-Meeting Probability in Gu). Given
attention node w on the ℓ-th level of Gu, where ℓ = 1, . . . , L,
the last-meeting probability of w within Gu, γ

(ℓ)(w), is the
probability that two

√
c-walks from w and walking within

Gu do not meet at any attention node on the (ℓ+ i)-th level
within Gu, for 1 ≤ i ≤ L− ℓ.

We emphasize that γ(ℓ)(w) has vital differences compared
to the last-meeting probability η(w) used in SLING and

PRSim, explained in Section 2.2. First, γ(ℓ)(w) is defined
based on the attention sets and source graph Gu, instead of
the whole graph. Second, γ(ℓ)(w) does not take into account
whether or not two walks meet at any non-attention node;
the rationale here is that non-attention nodes have negli-
gible impact on the SimRank estimation of SimPush, and,
thus, can be safely ignored. Third, γ(ℓ)(w) is level-specific

and we only consider L− ℓ steps in Gu since there are only
incoming edges between consecutive levels in Gu and the
levels are bounded by L. In Section 4.2, we present an ef-
ficient residue-push technique to compute the γ(ℓ)(w) of all
attention nodes, without performing any

√
c-walk.

Based on the above notion of last meeting probability,
we design another estimate for the SimRank value s(u, v)
between the query node u and a node v ∈ G, as follows.

s+(u, v) =

L∗
∑

ℓ=1

∑

w∈A
(ℓ)
u

h(ℓ)(u,w) · γ(ℓ)(w) · h(ℓ)(v, w), (7)

where A
(ℓ)
u is the set of attention nodes at the ℓ-th level of

Gu, obtained in the first phase. Note that here the trivial
case of ℓ = 0 is not considered, and we require u 6= v.

Compared to s′(u, v) defined in Equation (6), s+(u, v)

uses an estimated κ(ℓ)(u, v, w), computed using hitting prob-
abilities and last-meeting probabilities in Gu. The following
lemma establishes the approximation bound for s+(u, v).

Table 3: Complexity of different stages in SimPush.

Stage Time Complexity

Source-Push O(m log 1
ǫ
+ log 1

ǫδ
/ǫ2)

All γ(ℓ)(w) computation O(m log 1
ǫ
/ǫ+ 1/ǫ3)

Reverse-Push O(m log 1
ǫ
)

Lemma 3. Given distinct nodes u and v, their exact Sim-

Rank value s(u, v) and estimate s+(u, v) satisfy

s(u, v)− 2
√
c · ǫh

1−√
c

≤ s+(u, v) ≤ s(u, v).

Reverse-Push. In Equation (7), it remains to clarify the

computation of h(ℓ)(v, w). Instead of estimating h(ℓ)(v, w)
independently (e.g., by simulating random walks), we pro-
pose a novel Reverse-Push algorithm, detailed in Section
4.3, which estimates h(ℓ)(u,w) · γ(ℓ)(w) · h(ℓ)(v, w) as a
whole through residue push. Specifically, SimPush regards
r(ℓ)(w) = h(ℓ)(u,w)·γ(ℓ)(w) as the initial residue of attention
node w, and keeps pushing the residue to each node v ∈ G,
following out-going edges, until ℓ steps are performed.
For example, in Figure 1(b), given a 3rd level attention

node w with residue r(3)(w), Reverse-Push propagates the
residue to the out-neighbors of w, i.e., va and vb, to ob-
tain the residues at the 2nd level, i.e., r(2)(va) and r(2)(vb).

Then, all r(2) residues are pushed to their out-neighbors to
get all r(1) residues. After that, all r(1) are pushed to get
r(0) residues. It is clear that the nodes at the 0-th level,
e.g., vg (as well as vh and vk) meets with u at w in 3 steps.

The residue r(0)(vg) estimates h(3)(u,w)·γ(3)(w)·h(3)(vg, w)

w.r.t., r(3)(w). The detailed push criteria is in Section 4.3.
Accordingly, our final SimRank estimate is

s̃(u, v) =

L∗
∑

ℓ=1

∑

w∈A
(ℓ)
u

h(ℓ)(u,w) · γ(ℓ)(w) · ĥ(ℓ)(v, w), (8)

where u and v are distinct nodes in G, A
(ℓ)
u is the ℓ-th level

attention set. Here, the hitting probability ĥ(ℓ)(v, w) from
v to w is hatted to signify that Reverse-Push introduces
additional estimation error. Note that as described above,
the estimation is over the entire product h(ℓ)(u,w) ·γ(ℓ)(w) ·
h(ℓ)(v, w) rather than the last term. Lemma 4 provides error
guarantee for s̃(u, v), and explains the value of ǫh.

Lemma 4. Given distinct nodes u and v in G, error pa-

rameter ǫ, and decay factor c, when ǫh ≤ 1−√
c

3
√
c

· ǫ, we have

s(u, v)− s̃(u, v) ≤ ǫ.

Note that in Lemma 4, the error bound is deterministic,
rather than probabilistic as in our problem definition in In-
equality (1). This is due to the fact that in Equation (8), we
enumerate up to L∗ levels instead of L levels as in the actual
algorithm, as mentioned earlier. The value of L, as well as
the probabilistic error bound of the complete SimPush solu-
tion, are deferred to the next section. Finally, Table 3 lists
the time complexity of the three stages of SimPush.

4. DETAILED SIMPUSH ALGORITHM
Algorithm 1 shows the main SimPush algorithm, consist-

ing of three stages. With ǫh set at Line 1, SimPush first

970

Algorithm 1: SimPush

Input: Graph G = (V,E), query node u, decay factor c,
error parameter ǫ, failure probability δ

Output: s̃(u, v) for each v ∈ V , w.r.t, query node u.

1 ǫh ← 1−√
c

3
√
c
· ǫ;

2 Invoke Algorithm 2 (Source-Push) to obtain attention
nodes and the source graph Gu;

3 Invoke Algorithm 3 to compute all nonzero hitting
probabilities for attention nodes in Gu;

4 for ℓ = 1 to L do

5 for each attention node w in A
(ℓ)
u do

6 Compute γ(ℓ)(w) with Algorithm 4;

7 r(ℓ)(w)← h(ℓ)(u,w) · γ(ℓ)(w);

8 Invoke Algorithm 5 (Reverse-Push) to get s̃(u, v) for each
v ∈ V ;

9 return s̃(u, v) for each v ∈ V ;

invokes Source-Push (Section 4.1) to obtain the attention
nodes and source graph Gu of u (Line 2). Then (Lines 3-7),

it computes the γ(ℓ)(w) of all attention nodes w (Section
4.2), and finally invokes Reverse-Push (Section 4.3) to com-
pute the single source SimRank values at Line 8.

4.1 SourcePush
Source-Push first samples a sufficient number of random

walks to detect the max level L from query node u, such that
with high probability, all attention nodes appear within L
steps. Then, it performs residue propagation to compute
the hitting probabilities from u, in order to identify atten-
tion nodes of u and generate source graph Gu. Algorithm 2
displays Source-Push. At Lines 1-3, Source-Push first sam-

ples
(

2·log 1
(1−√

c)ǫhδ
/ǫ2h

) √
c-walks from u, counts the vis-

its of every node v at every l-th step, H(l)(u, v), and then
identifies the max level L where there exists node v with
H(l)(u, v) ≥

(

log 1
(1−√

c)ǫhδ
/ǫ2h

)

, and L is bounded by L∗

(Lines 4-8). Then, Algorithm 2 computes the hitting prob-
abilities from u for at most L levels by propagation (Lines

9-19). Initially, at Lines 9-10, h(0)(u, u) is set to 1, all other
hitting probabilities are initialized to zero. Starting from
the 0-th level, Source-Push inserts u into frontier set F at
Line 11, and then for each node v in F at the current ℓ-th
level, it pushes and increases the (ℓ + 1)-level hitting prob-

ability of every in-neighbor v′ of v by
√
c·h(ℓ)(u,v)
dI(v)

and adds

edge from v′ to v to Gu (Lines 12-16). Then, Source-Push
moves to the (ℓ+1)-th level, and finds all the nodes to push
(Lines 17-19). The whole process continues until the L-th
level is reached or F is empty (Line 12). At Lines 20-21, all
attention nodes are identified. Lemma 5 states the accuracy
guarantees and time complexity of Algorithm 2.

Lemma 5. Algorithm 2 runs in O(m log 1
ǫ
+ log 1

ǫδ
/ǫ2)

expected time, and with probability at least 1−δ, Gu contains

all nodes w with h(ℓ)(u,w) ≥ ǫh for all levels.

Lastly, we define hitting probability within Gu, which is
an important concept used in the next stages of SimPush.

Definition 5. (Hitting probability in Gu). Given nodes
wa and wb in Gu, the hitting probability from wa to wb at
the i-th step in Gu, is the probability that a

√
c-walk from

wa and walking in Gu, visits wb at the i-th step, where i ≥ 0.

Algorithm 2: Source-Push

Input: Graph G, query u, decay factor c, parameter ǫh
Output: Source graph Gu and attention node sets A

(ℓ)
u

for ℓ = 1, ..., L.
1 H(l)(u, v)← 0, for v ∈ V and l = 1, 2, ...;

2 for i = 1, ...,
(

2·log 1
(1−√

c)ǫhδ
/ǫ2h

)

do

3 Generate a
√
c-walk from u and for every visited

node v at the l-th step, H(l)(u, v)← H(l)(u, v) + 1;

4 L← 0;

5 for every nonzero H(l)(u, v) do

6 if l > L and H(l)(u, v) ≥ log 1
(1−√

c)ǫhδ
/ǫ2h then

7 L← l;

8 L← min(L,L∗);
9 h(ℓ)(u, v)← 0 for ℓ = 1, ..., L and each v ∈ V ;

10 ℓ← 0; h(0)(u, u)← 1;
11 Frontier set F ← {u};
12 while F 6= ∅ and ℓ < L do
13 for each v ∈ F do
14 for each node v′ ∈ I(v) do

15 h(ℓ+1)(u, v′)← h(ℓ+1)(u, v′) +
√
c·h(ℓ)(u,v)
dI(v)

;

16 Insert v to the ℓ-th level and v′ to the
(ℓ+ 1)-th level of Gu, and add edge from v′

to v in Gu;

17 F ← ∅; ℓ← ℓ+ 1;

18 for each node v with h(ℓ)(u, v) > 0 do
19 F ← F ∪ {v};

20 for ℓ = 1, ..., L do

21 Insert w in Gu with h(ℓ)(u,w) ≥ ǫh into A
(ℓ)
u ;

Hereafter, we use h̃(ℓ)(∗, ∗) to denote the hitting prob-

abilities in Gu, and use h(ℓ)(∗, ∗) to represent the hitting

probabilities in G. For query node u, every h(ℓ)(u,w) com-
puted by Source-Push over G can be reproduced by pushing
u over Gu, i.e., h̃

(ℓ)(u,w) is the same as h(ℓ)(u,w). For the
ease of presentation, in the following sections, we denote w,
wi, and wj as nodes at the ℓ-th, (ℓ + i)-th, (ℓ + j)-th lev-
els of Gu respectively, and w,wi, wj are attention nodes by
default, unless otherwise specified.

4.2 LastMeeting Correction within Gu

As mentioned, given query u with attention sets A
(ℓ)
u ,

SimPush computes last-meeting probability γ(ℓ)(w) for each

w ∈ A
(ℓ)
u in the source graph Gu (Definition 4). Utilizing

Gu, we design a method that computes γ(ℓ)(w) for all at-
tention nodes in Gu without generating any

√
c-walks, in

O(m log 1
ǫ
/ǫ+ 1/ǫ3) time. We first clarify the formula to

compute γ(ℓ)(w), and then present the detailed algorithms.

Formula to compute γ(ℓ)(w). Given attention nodes
w and wi, we define the i-step first-meeting probability
ρ(i)(w,wi) in Gu as follows.

Definition 6. (First-meeting probability in Gu). Given
attention nodes w and wi at the ℓ-th and (ℓ + i)-th levels
of Gu respectively, where ℓ = 1, ..., L and 0 < i ≤ L −
ℓ, ρ(i)(w,wi) is the probability that two

√
c-walks from w

walking in Gu first meet at attention node wi.

Note that in Definition 6, it is allowed that the two walks
first meet at some non-attention node in Gu, before meeting

971

wa we

wh
𝑤𝑤𝑑𝑑∘

wp

ℎ 0 𝑤𝑤ℎ 𝑤𝑤ℎ ℎ 0 𝑤𝑤𝑝𝑝 𝑤𝑤𝑝𝑝 ℎ 0 𝑤𝑤𝑒𝑒 𝑤𝑤𝑒𝑒 ℎ 0 𝑤𝑤𝑎𝑎 𝑤𝑤𝑎𝑎 ℎ 0 𝑤𝑤𝑏𝑏 𝑤𝑤𝑏𝑏ℎ 0 𝑤𝑤𝑐𝑐 𝑤𝑤𝑐𝑐ℎ 1 𝑤𝑤𝑑𝑑 𝑤𝑤ℎ ℎ 1 𝑤𝑤𝑒𝑒 𝑤𝑤ℎ ℎ 1 𝑤𝑤𝑒𝑒 𝑤𝑤𝑝𝑝 ℎ 1 𝑤𝑤𝑓𝑓 𝑤𝑤𝑝𝑝ℎ 1 𝑤𝑤𝑎𝑎 𝑤𝑤𝑒𝑒 ℎ 2 𝑤𝑤𝑎𝑎 𝑤𝑤ℎ ℎ 2 𝑤𝑤𝑎𝑎 𝑤𝑤𝑝𝑝ℎ 1 𝑤𝑤𝑏𝑏 𝑤𝑤𝑒𝑒 ℎ 2 𝑤𝑤𝑏𝑏 𝑤𝑤ℎ ℎ 2 𝑤𝑤𝑏𝑏 𝑤𝑤𝑝𝑝ℎ 2 𝑤𝑤𝑐𝑐 𝑤𝑤𝑝𝑝

�ℎ 1 𝑤𝑤𝑎𝑎, 𝑤𝑤𝑒𝑒 = 0.387�ℎ 1 𝑤𝑤𝑑𝑑∘ , 𝑤𝑤ℎ = 0.775; �ℎ 1 𝑤𝑤𝑒𝑒 , 𝑤𝑤ℎ = 0.387;�ℎ 2 𝑤𝑤𝑎𝑎, 𝑤𝑤ℎ = 0.45

Figure 2: Hitting probabilities in a subgraph of Gu

in Figure 1(a). 𝑤𝑤𝑗𝑗𝑤𝑤
𝑤𝑤𝑗𝑗 ℓ 𝑗𝑗 𝑇𝑇𝑢𝑢
𝜌𝜌 𝑗𝑗 𝑤𝑤,𝑤𝑤𝑗𝑗 ⋅ �ℎ 𝑖𝑖−𝑗𝑗 𝑤𝑤𝑗𝑗 ,𝑤𝑤𝑖𝑖 2

𝑤𝑤𝑖𝑖
Figure 3: Non-first-meeting probability from atten-
tion nodes w to wi via wj.

at wi. In this section, when we say that two walks first meet,
it means that the two walks first meet at an attention node
in Gu. According to Definitions 4 and 6, we have

γ(ℓ)(w) = 1−
L−ℓ
∑

i=1

∑

wi∈A
(ℓ+i)
u

ρ(i)(w,wi), (9)

where A
(ℓ+i)
u is the (ℓ + i)-th level attention set and ℓ ≤

L. Now, the problem reduces to computing ρ(i)(w,wi) in
Gu. This requires the hitting probabilities between attention
nodes within Gu (Definition 5), to be clarified soon.

When i = 1, ρ(1)(w,w1) is nonzero only if attention
node w1 is an in-neighbor of w in Gu (obviously w1 is
at the (ℓ + 1)-th level of Gu). Given the 1-step hitting

probability h̃(1)(w,w1), the probability of two independent√
c-walks from w walking in Gu and meeting at w1 is

h̃(1)(w,w1)
2. Further, since there is only one step from w to

w1, ρ
(1)(w,w1) is exactly h̃(1)(w,w1)

2, i.e.,

∀w1 ∈ A(ℓ+1)
u , ρ(1)(w,w1) = h̃(1)(w,w1)

2, (10)

where A
(ℓ+1)
u is the (ℓ+1)-th level attention set. For exam-

ple, in Figure 2, ρ(1)(wa, we) = h̃(1)(wa, ve)
2 = 0.150.

When 2 ≤ i ≤ L − ℓ, we compute ρ(i)(w,wi) by utiliz-

ing ρ(j)(w,wj) of the attention nodes wj between w and wi

in Gu, where 1 ≤ j ≤ i − 1. Suppose that two
√
c-walks

from w walking in Gu first meet at wj and then meet at
wi. The non-first-meeting probability from w to wi via wj is

ρ(j)(w,wj)·h̃(i−j)(wj , wi)
2. Figure 3 illustrates this concept,

where first-meeting probability ρ(j)(w,wj) is represented by

two dashed lines, and meeting probability h̃(i−j)(wj , wi)
2 is

represented by one dashed line. Therefore, ρ(i)(w,wi) equals

the meeting probability from w to wi, i.e., h̃
(i)(w,wi)

2, sub-
tracted by all the non-first-meeting probabilities from w to
wi via any attention node wj between w and wi, i.e.,

ρ(i)(w,wi) = h̃(i)(w,wi)
2

−
i−1
∑

j=1

∑

wj∈A
(ℓ+j)
u

ρ(j)(w,wj) · h̃(i−j)(wj , wi)
2,

(11)

where i = 2, ..., L − ℓ. For example, in Figure 2,
ρ(2)(wa, wh) = h(2)(wa, wh)

2−ρ(1)(wa, we) ·h(1)(we, wh)
2 =

0.452 − 0.15 · 0.3872 = 0.18. w◦
d is not considered since it is

a non-attention node.

Hitting probabilities between attention nodes in Gu.
Now we focus on computing hitting probabilities in Gu.

Algorithm 3: Hitting probabilities in Gu

Input: Source graph Gu

Output: All nonzero hitting probabilities between
attention nodes in Gu

1 for ℓ = L, ..., 2 do
2 for each attention node w at the ℓ-th level of Gu do

3 h̃(0)(w,w)← 1;

4 for each node w′ at the ℓ-th level of Gu do

5 for each nonzero h̃(i)(w′, wi) do
6 for each w′

a ∈ OT (w′) at (ℓ− 1)-th level do

7 h̃(i+1)(w′
a, wi)←

h̃(i+1)(w′
a, wi) +

√
c

dI(w′
a)
· h̃(i)(w′, wi)

8 return

Given nodes w and wi (here w can be a non-attention node),

h̃(i)(w,wi) is computed by aggregating the hitting probabili-

ties h̃(i−1)(w′, wi) from w’s in-neighbors w′ to wi, as follows.

h̃(i)(w,wi) =

√
c

dTI (w)

∑

w′∈IT (w)

h̃(i−1)(w′, wi), (12)

where IT (w) is the set of in-neighbors of w in Gu and dTI (w)
is the indegree of w in Gu, and i ≥ 1. For example, in Figure

2, h̃(2)(wa, wh) =
√
c

2
·
(

h̃(1)(w◦
d, wh) + h̃(1)(we, wh)

)

= 0.45.

Note that (i) in Equation (12), w′ can be a non-attention
node if it has nonzero hitting probabilities to attention nodes
in Gu, e.g., h̃

(1)(w◦
d, wh) in the example; (ii) if node w has

nonempty IT (w) in Gu, IT (w) is the same as I(w) in G.

Algorithms. Next we present two algorithms: Algorithm
3 that computes the hitting probabilities between attention
nodes within Gu using Equation (12), and Algorithm 4 that

computes γ(ℓ)(w) using Equations (9), (10), and (11).
In Algorithm 3, all hitting probabilities are initialized to

zero. Starting from ℓ = L to 2, for each attention node
w, we first set h̃(0)(w,w) to 1 at Lines 2-3 (i.e., the hitting
probability to itself is 1). Then from Lines 4 to 7, for every
node w′ at the ℓ-th level (including non-attention nodes), if

it has nonzero hitting probabilities h̃(i)(w′, wi) to any atten-
tion node wi at the (ℓ+ i)-th level for i = 0, ..., L− ℓ, each

of the probabilities h̃(i)(w′, wi) is aggregated to every out-
neighbor w′

a of w′ in Gu, where w
′
a is at the (ℓ−1)-th level of

Gu and can be a non-attention node. Apparently, from the
perspective of w′

a, we are aggregating its in-neighbors’ hit-
ting probabilities to itself, i.e., Equation (12). Finally, only
the hitting probabilities between attention nodes in Gu are
returned and used by Algorithm 4 for computing γ(ℓ)(w).

Algorithm 4 computes γ(ℓ)(w) for attention node w at

the ℓ-th level of Gu. At Line 1, γ(ℓ)(w) is initialized to

1. At Lines 2-4, when i = 1, all nonzero ρ(1)(w,w1) are
computed according to Equation (10), and are subtracted

from γ(ℓ)(w), based on Equation (9). Then all first-meeting

probabilities ρ(i) for 2 ≤ i ≤ ∆l are computed level by level
from Lines 5 to 11, using Equation (11). Specifically, every

ρ(i)(w,wi) is initialized as h̃(i)(w,wi)
2 at Lines 6-7 and is

subtracted by all non-first meeting probabilities from w to
wi via wj at Lines 8-11. Whenever the first-meeting prob-

abilities ρ(i)(w,wi) for attention nodes wi ∈ A
(ℓ+i)
u are ob-

972

Algorithm 4: Last-Meeting Probability

Input: Source graph Gu; attention node w ∈ A
(ℓ)
u ;

Output: Last-meeting probability γ(ℓ)(w) in Gu

1 γ(ℓ)(w)← 1; ∆l← L− ℓ;

2 for each attention node w1 with nonzero h̃(1)(w,w1) do

3 ρ(1)(w,w1)← h̃(1)(w,w1)2;

4 γ(ℓ)(w)← γ(ℓ)(w)−∑

w1∈A
(ℓ+1)
u

ρ(1)(w,w1);

5 for i = 2 to ∆l do

6 for each attention node wi with h̃(i)(w,wi) > 0 do

7 ρ(i)(w,wi)← h̃(i)(w,wi)
2;

8 for j = 1 to i− 1 do

9 for each nonzero ρ(j)(w,wj) of each attention
node wj at the (ℓ+ j)-th level of Gu do

10 for each nonzero h̃(i−j)(wj , wi) do

11 ρ(i)(w,wi)←
ρ(i)(w,wi)−ρ(j)(w,wj) · h̃(i−j)(wj , wi)

2;

12 γ(ℓ)(w)← γ(ℓ)(w)−∑

wi∈A
(ℓ+i)
u

ρ(i)(w,wi);

13 return γ(ℓ)(w);

tained, they are subtracted from γ(ℓ)(w) at Line 12, accord-

ing to Equation (9). Finally, γ(ℓ)(w) is returned. Lemma 6
presents the time complexity of Algorithm 3, Algorithm 4,
and the second stage of SimPush as a whole.

Lemma 6. Algorithm 3 runs in O(m log 1
ǫ
/ǫ) time, and

Algorithm 4 runs in O(1/ǫ2) for a single γ(ℓ)(w), and there

are O(1/ǫ) attention nodes. Therefore, the overall time com-

plexity for last-meeting computation is O(m log 1
ǫ
/ǫ+ 1/ǫ3).

4.3 ReversePush
Given w in A

(ℓ)
u with its γ(ℓ)(w) obtained, we regard

r(ℓ)(w) = h(ℓ)(u,w) · γ(ℓ)(w) as the residue of w. Aiming

to estimate h(ℓ)(u,w) ·γ(ℓ)(w) · ĥ(ℓ)(v, w) as a whole, we pro-
pose Reverse-Push that propagates the residue over graph
G, following the out-going edges of every encountered node.

In this section, we call the (ℓ−1)-th level as the next level
of the ℓ-th level. At current ℓ-th level, by pushing initial
residue r(ℓ)(w) to the out-neighbors v of w in G, nodes v

accumulate residue r(ℓ−1)(v) at the (ℓ − 1)-th level. Then,
Reverse-Push goes to the next level to push. After ℓ iter-
ations, we have many nonzero r(0)(v). Then r(0)(v) esti-

mates h(ℓ)(u,w) · γ(ℓ)(w) · ĥ(ℓ)(v, w) with respect to r(ℓ)(w),

and thus, r(0)(v) is added to s̃(u, v). Figure 1(b) shows an
example that is already explained in Section 3. Further,
instead of independently push for each attention node, we
combine the push of the residues that are aggregated at the
same node at the same level. For example, given node w
with r(3)(w) at the 3-rd level of Gu and w′ with r(2)(w′) at

the 2-nd level, after pushing r(3)(w) to the out-neighbors v

of w in G, we obtain many r(2)(v). If w′ happens to be an
out-neighbor of w, the residue that it gets from w and the
residue of itself r(2)(w′) are combined and pushed together.

Algorithm 5 shows the pseudo code of Reverse-Push,
which returns the estimated single source SimRank values.
At Line 1, SimRank values s̃(u, v) are initialized to zeros for
v ∈ V . At Line 2, the initial residue of each attention node w
is r(ℓ)(w), and the residues of all other nodes at all levels are
zeros by default. Starting from level ℓ′ = L to 1, for every

Algorithm 5: Reverse-Push

Input: Residues r(ℓ)(w) of all attention nodes
Output: s̃(u, v) for v ∈ V

1 s̃(u, v)← 0 for v ∈ V ;

2 r(ℓ
′)(v)← 0, for ℓ′ = 1, ..., L and v ∈ V , except the initial

residues r(ℓ)(w) of all attention nodes w;
3 for ℓ′ = L, ..., 1 do

4 for each v′ with
√
c · r(ℓ′)(v′) ≥ ǫh do

5 for each v ∈ O(v′) do
6 if ℓ′ − 1 > 0 then

7 r(ℓ
′−1)(v)← r(ℓ

′−1)(v) +
√

c·r(ℓ
′)(v′)

dI(v)
;

8 else

9 s̃(u, v)← s̃(u, v) +
√

c·r(ℓ
′)(v′)

dI(v)

10 s̃(u, u)← 1;
11 return s̃(u, v) for v ∈ V ;

node v′ with residue r(ℓ
′)(v′) that satisfies

√
c ·r(ℓ′)(v′) ≥ ǫh,

we propagate its residue to its out-neighbors v (Lines 3-5).

If ℓ′ > 1, residue r(ℓ
′−1)(v) is increased by

√
c·r(ℓ

′)(v′)
dI(v)

, where

dI(v) is the indegree of v in G (Lines 6-7); if ℓ′ is 1, which

means v is at the 0-th level, s̃(u, v) is increased by
√
c·r(ℓ

′)(v′)
dI(v)

at Line 9. Finally, s̃(u, u) is set to 1 and all SimRank values
s̃(u, v) for all v ∈ V are returned at Lines 10-11. The time
complexity of Algorithm 5 is presented in Lemma 7.

Lemma 7. Algorithm 5 runs in O(m log 1
ǫ
) time.

4.4 Correctness and Complexity Analysis
Theorems 1 and 2 present SimPush’s accuracy guarantee

and time complexity, respectively.

Theorem 1. Given graph G, query node u, error param-

eter ǫ, and failure probability δ, Algorithm 1 returns an esti-

mated SimRank value s̃(u, v) that satisfies s(u, v)− s̃(u, v) ≤
ǫ for each node v in G, with at least 1− δ probability, where

s(u, v) is the exact SimRank value between u and v.

Theorem 2. In expectation, Algorithm 1 runs in

O(m log 1
ǫ
/ǫ+ log 1

ǫδ
/ǫ2 + 1/ǫ3) time.

5. EXPERIMENTS
We evaluate SimPush against the state of the art. All

experiments are conducted on a Linux server with an Intel
Xeon 2.60GHz CPU and 376GB RAM. All methods are in
C++ and compiled by g++ 7.4 with -O3 optimization.

5.1 Experimental Settings
Methods. SimPush is compared with six methods:
PRSim [32], READS [12], TopSim [15], SLING [30],
ProbeSim [21], and TSF [28]. ProbeSim and TopSim are
index-free; PRSim, READS, TSF, SLING are index-based.

Datasets and query sets. We use 9 real-world graphs to
evaluate SimPush and the competitors. The largest graph,
ClueWeb, contains 1.68 billion nodes and 7.94 billion edges.
The statistics of the graphs are shown in Table 4. There
are 5 large graphs with billions of edges: ClueWeb, UK,
Friendster, Twitter, and IT-2004, and 4 smaller graphs with

973

TopSimTopSim SLINGSLINGTSFTSF ProbeSimProbeSim READSREADSSimPushSimPush PRSimPRSim

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

query time (s)

(a) In-2004 (b) DBLP (c) Pokec (d) LiveJournal

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-1

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

AvgError@50

query time (s)

(e) IT-2004 (f) Twitter (g) Friendster (h) UK
Figure 4: Average error vs. Query time

Table 4: Datasets used in the experiments.

Name n m Type

In-2004 1,382,908 16,539,643 directed

DBLP 5,425,963 17,298,032 undirected

Pokec 1,632,803 30,622,564 directed

LiveJournal 4,847,571 68,475,391 directed

IT-2004 41,291,594 1,135,718,909 directed

Twitter 41,652,230 1,468,364,884 directed

Friendster 65,608,366 3,612,134,270 undirected

UK 133,633,040 5,475,109,924 directed

ClueWeb 1,684,868,322 7,939,635,651 directed

million edges: In-2004, DBLP, Pokec, and LiveJournal. All
datasets are available at [4,16,27]. For each dataset, we gen-
erate 100 queries by selecting nodes uniformly at random.

Parameters. Following [21, 30, 32], we set the decay fac-
tor c to 0.6, and fix the failure probability δ = 0.0001.
For SimPush, we vary ǫ in {0.05, 0.02, 0.01, 0.005, 0.002}.
We set the parameters of all competitors following the set-
tings in [32]. In particular, PRSim has two parameters: ǫa,
the absolute error threshold, and j0, the number of hub
nodes. We vary ǫa in {0.5, 0.1, 0.05, 0.01, 0.005}, and set
j0 to

√
n by default [32]. We evaluate the static version

of READS, which is the fastest among the three algorithms
proposed in [12]. READS has two parameters: r, the num-
ber of

√
c-walks generated for each node in preprocessing

stage, and t, the maximum depth of the
√
c-walks. We

vary (r, t) in {(10, 2), (50, 5), (100, 10), (500, 10), (1000, 20)}.
TopSim has four parameters: T , the depth of random walks;
1/h, the minimal degree threshold to identify a high de-
gree node; η, the similarity threshold for trimming a ran-
dom walk; H, the number of random walks to be ex-
panded at each level. We fix H and η to their default
values, i.e., 100 and 0.001, respectively. We vary (T, 1/h)
in {(1, 10), (3, 100), (3, 1000), (3, 10000), (4, 10000)}. SLING

has a parameter ǫa, which denotes the upper bound on the
absolute error. We vary ǫa in {0.5, 0.1, 0.05, 0.01, 0.005}.
ProbeSim also has an absolute error threshold ǫa, which we
vary in {0.5, 0.1, 0.05, 0.01, 0.005}. TSF has two parame-
ters Rg and Rq, which are the number of one-way graphs
stored in the index and the times each one-way graph reused

during query processing, respectively. We vary (Rg, Rq) in
{(10, 2), (100, 20), (200, 30), (300, 40), (600, 80)}. Note that
every method is evaluated on its respective five parame-
ter settings listed above; for each method, from its first to
last parameter settings, it generates increasingly accurate
results, with higher running time and memory usage.

Ground truth. We get ground truth for the queries of
all datasets by adopting the methods in [21, 32]. For small
graphs, we directly apply Monte Carlo [5] to estimate Sim-
Rank for each query u and each v in G with an absolute er-
ror less than 0.000001 and confidence over 99.999%, which is
then used as the ground truth for s(u, v). For large graphs,
we adopt the pooling method [21, 32] to generate ground
truth. Given query node u, we run each single-source algo-
rithm, merge the top-k nodes of each algorithm, remove the
duplicates, and put them into a pool. For each node v in
the pool, we obtain the ground truth of s(u, v) by Monte
Carlo. The ground truth top-k node set Vk is then the set
of k nodes with highest SimRank values from the pool.

Metrics. We adopt two metrics for accuracy evaluation,
i.e., AvgError@k and Precision@k [32]. We also evaluate
the peak memory usage. AvgError@k is the average abso-
lute error for approximating s(u, vi) for each node vi in the
ground truth top-k nodes Vk. For each node vi in Vk, let
ŝ(u, vi) be the estimation of s(u, vi), AvgError@k is:

AvgError@k = 1
k

∑

1≤i≤k |ŝ(u, vi)− s(u, vi)|.

Precision@k evaluates the ability to return the top-k nodes
for a query in terms of ground truth top-k node set Vk.
Suppose that V ′

k = {v′1, · · · , v′k} is the top-k nodes returned
by the algorithm to be evaluated. Precision@k is defined as

Precision@k = |Vk ∩ V ′
k |/k.

Peak memory usage. We enquiry Linux system resource files
for rusage.ru maxrss, to get the peak memory usage of all
methods over all datasets under all parameter settings.

5.2 Experimental Results
We evaluate the tradeoff between average error and query

time, the tradeoff between average precision and query time,

974

TopSimTopSim SLINGSLINGTSFTSF ProbeSimProbeSim READSREADSSimPushSimPush PRSimPRSim

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.75 0.8 0.85 0.9 0.95

Precision@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

(a) In-2004 (b) DBLP (c) Pokec (d) LiveJournal

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

10
-1

10
0

10
1

10
2

10
3

0.3 0.5 0.7 1

Precision@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

0.8 0.85 0.9 0.95 1

Precision@50

query time (s)

(e) IT-2004 (f) Twitter (g) Friendster (h) UK

Figure 5: Precision vs. query time.

and the tradeoff between average error and peak memory us-
age for all methods over all graphs. We exclude a parameter
of a method if it runs out of memory, or cannot finish pre-
processing within 24 hours, or cannot finish a query in 1000
seconds. Given the query set of each graph, for each param-
eter setting of each method, we report the averages of query
time, AvgError@50, Precision@50, and peak memory usage.
Note that the preprocessing time of the index-based meth-
ods are not reported since our method SimPush is index-free.

Average error and query time. Figure 4 reports the
tradeoff between AvgError@50 and query time of all meth-
ods over the first eight graphs in Table 4 (results on ClueWeb
are reported separately later on). x-axis is AvgError@50

and y-axis is query time in second(s); both are in log-
scale. For each method, the plot contains a curve with 5
points, which corresponds to results for its 5 settings (from
right to left) described earlier. SimPush is superior over
all methods by achieving lower error with less query time,
and consistently outperforms existing solutions, especially
on large graphs, no matter whether the competitor is index-
free (e.g., ProbeSim) or index-based (e.g., PRSim). To reach
the same level of empirical error, SimPush is much faster
than the competitors, often by over an order of magnitude.
On graph UK, in Figure 4(h), to achieve 3.5× 10−4 AvgEr-

ror@50, SimPush uses 0.062 seconds, while the index-based
state-of-the-art PRSim needs 1.18 seconds, and the index-
free ProbeSim uses 1.9 seconds and only achieves 9 × 10−4

error. In Figure 4(f) for Twitter, which is known as a hard
graph for SimRank computation due to its locally dense
structure as analyzed in the paper of PRSim [32], SimPush

also outperforms PRSim by a significant gap. To achieve
1.4 × 10−4 error, PRSim requires 2.7 hours of precomputa-
tion and 9.1 seconds for query processing, while our online
method SimPush only needs 1.5 seconds in total to achieve
the same level of error. For ProbeSim, it needs 725 seconds
to achieve such error on Twitter. As aforementioned, the
max level L of Gu is usually small for real-world graphs.
For instance, when ǫ = 0.02, on Twitter, L is just 2.76 on
average, and on DBLP, L is 9.0. This indicates that the
attention nodes that can largely contribute to the SimRank
values are truly in the vicinity of query nodes. The number

of attention nodes is usually in dozens or hundreds. There-
fore, SimPush that first finds the attention nodes and then
focuses on such nodes for estimation, is rather efficient. On
the graphs in Figures 4(a)-(d), SimPush also exceeds all com-
petitors by a large gap. SLING, READS, TSF, and TopSim,
are all inferior to SimPush over all these graphs.

Average precision and query time. Figure 5 reports the
tradeoff between Precision@50 and query time of all meth-
ods over the first eight graphs (the evaluation on ClueWeb is
presented later). x-axis is Precision@50, and y-axis is query
time in seconds (s) and is in log-scale. For each method, the
plot contains a curve with 5 points corresponding to its 5 pa-
rameter settings (from left to right). The overall observation
is that SimPush provides the best precision and query time
tradeoff in most settings, especially on large graphs. On the
large graphs in Figures 5(e)-(h), to achieve the same level
of precision, SimPush is much faster than all competitors.
For instance, on UK in Figure 5(h), SimPush achieves 96%
precision in 0.062s, while both ProbeSim and PRSim requires
0.6s to achieve 96% precision. The performance gap between
SimPush and the competitors remains for varying parame-
ters. As analyzed, SimPush focuses computation only on the
attention nodes of query u, and only explores the vicinity
of u to estimate SimRank values, which is highly efficient.
For small graphs in Figures 5(a)-(d), to achieve the same
level of precision, e.g., above 96%, TSF, TopSim, READS,
and SLING, are consistently outperformed by SimPush.

Average error and peak memory usage. Figure 6
shows the peak memory usage of all methods. The mem-
ory usage includes the size of the input graphs, the indices
(if any), and any other structures required by the methods.
The x-axis is AvgError@50 and is in log-scale, and the y-
axis is the peak memory usage in GigaBytes (GB). For each
method, the plot contains a curve with 5 points correspond-
ing to its 5 parameter settings, from right to left. We find
that (i) the peak memory usage of SimPush is lower than
all competitors over all datasets under almost all settings;
(ii) the peak memory usage of SimPush is insensitive to ǫ.
The reason is that when decreasing ǫ, the size of Gu and
the number of attention nodes increase slowly, and thus,

975

TopSimTopSim SLINGSLINGTSFTSF ProbeSimProbeSim READSREADSSimPushSimPush PRSimPRSim

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

AvgError@50

peak memory size (GB)

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

(a) In-2004 (b) DBLP (c) Pokec (d) LiveJournal

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

10
1

10
2

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

10
1

10
2

10
-5

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

10
1

10
2

10
-4

10
-3

10
-2

10
-1

AvgError@50

peak memory size (GB)

(e) IT-2004 (f) Twitter (g) Friendster (h) UK

Figure 6: Average error vs. peak memory usage.

SimPush can maintain relatively stable peak memory usage.
For instance, in Figure 6(h) for UK graph, SimPush requires
48 to 49 GB memory, while ProbeSim needs about 54 GB
and PRSim needs 54 to 74 GB. Methods SLING, READS, TSF
require much more memory and are sensitive to parameters.

Results on Billion-Node ClueWeb. Figure 7 reports the
evaluation results on the ClubWeb dataset. TSF, TopSim,
READS, and SLING are not reported since their memory re-
quirements exceed that of our server (376GB). Figure 7(a)
reports the tradeoff between AvgError@50 and query time.
SimPush significantly outperforms PRSim and ProbeSim, of-
ten by orders of magnitude. Similarly, in Figure 7(b),
SimPush achieves far more favorable tradeoff between Pre-

cision@50 and query time. For instance, to achieve 99.8%
precision, SimPush takes 0.01s, while PRSim needs 1s and
ProbeSim uses 0.122s. Figure 7(c) shows the tradeoff be-
tween peak memory usage and accuracy. SimPush uses
about 147 GB memory, whereas PRSim and ProbeSim each
consumes more than 250 GB memory.

6. RELATED WORK
We review existing work for SimRank computation, ex-

cluding SLING [30], ProbeSim [21], READS [12], TSF [28],
TopSim [15] and PRSim [32], discussed in Section 2.2.

Power method [10] is the first for all-pair SimRank com-
putation and it computes SimRank values of all node pairs
in the input graph G by the matrix formulation in [14]:

S = (cP⊤SP) ∨ I, (13)

where S is an n× n matrix such that S[i, j] is the SimRank
value between the i-th and j-th nodes, ∨ is the element-
wise maximum operator, P and I are the transition matrix
and identity matrix of the input graph G. Power method
starts with S = I, and then updates S iteratively based on
Equation (13), until all elements in S converge. Subsequent
studies [22, 31, 36, 38] improve the Power method in terms
of efficiency or accuracy. However, all these methods incur
O(n2) space overhead, which is prohibitively expensive for
web-scale graphs. It is not straightforward to directly apply
these methods for single-source SimRank queries. There
are studies [7, 8, 14, 17, 33–35] that attempt to address the

inefficiency issue caused by the operator ∨ in Equation (13),
via an alternative formula for SimRank:

S = cP⊤SP+ (1− c) · I. (14)

However, as pointed out by [14], the SimRank computed by
Equation (14) are rather different from the correct values.

An early work [6] proposes a Monte Carlo approach to
approximate SimRank by sampling conventional random
walks. An index structure is also proposed to store ran-
dom walks. However, the index incurs tremendous space
and preprocessing overheads, which makes the Monte Carlo
method inapplicable on sizable graphs [14, 30]. Maehara
et al. [23] propose an index structure for top-k SimRank
queries, relying on heuristic assumptions about graphs, and
thus, does not provide worst-case error guarantee [21, 32].
A distributed version of the Monte Carlo approach is pro-
posed by Li et al. [18], and the distributed method can scale
to a billion-node graph at the significant cost of compu-
tation resources; the distributed environment is a different
setting that is orthogonal to our study. There are also stud-
ies [1, 5, 20, 37, 39] on variants of SimRank, and SimRank
similarity join [24, 29, 40]. However, these solutions are in-
applicable for single-source SimRank queries.

7. CONCLUSION
We propose SimPush, an index-free algorithm that an-

swers single source SimRank queries with rigorous guaran-
tees, and the method is significantly faster than even the
fastest known index-based solutions, often by over an order
of magnitude, which is confirmed by our extensive evalua-
tion on real-world web-scale graphs. In the future, we plan
to study SimRank queries with relative error guarantees,
batch processing, as well as computation on new hardware.

8. ACKNOWLEDGMENTS
This work is supported by the National University of Sin-

gapore under SUG grant R-252-000-686-133. This publica-
tion was made possible by NPRP grant #NPRP10-0208-
170408 from the Qatar National Research Fund (a member
of Qatar Foundation). The findings herein reflect the work,
and are solely the responsibility, of the authors.

976

TopSimTopSim SLINGSLINGTSFTSF ProbeSimProbeSim READSREADSSimPushSimPush PRSimPRSim

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

AvgError@50

query time (s)

10
-3

10
-2

10
-1

10
0

10
1

0.9 0.95 1

Precision@50

query time (s)

10
2

10
3

10
-4

10
-3

10
-2

AvgError@50

peak memory size (GB)

(a) (b) (c)

Figure 7: Evaluation on Billion-Node Clueweb

APPENDIX

Lemma 8.
∑

i Xi = N and for all i, Xi ∈ (0, ǫh).
∑

i Yi = M , M ∈ (0, 1) and for all i, Yi > 0. Then
∑

i XiYi ≤ ǫhM .

PROOF:
∑

i XiYi ≤ maxi Xi ·
∑

i Yi ≤ ǫhM
Proof of Lemma 1. Obviously, s′(u, v) ≤ s(u, v) holds.

Now we prove s(u, v) −
√
c·ǫh

1−√
c
≤ s′(u, v). Let G

(ℓ)
v be the

set of all nodes at ℓ-th level of Gv. Gv is source graph of v
by pushing L∗ levels from v. Sum

∑

w∈G
(ℓ)
v

h(ℓ)(v, w) =
√
c
ℓ
. The error of non-attention nodes at ℓ-th level:

∑

w∈G
(ℓ)
u \A(ℓ)

u
h(ℓ)(v, w) ≤ √

c
ℓ
. For w ∈ G

(ℓ)
u \A(ℓ)

u , we have

h(ℓ)(u,w) ≤ ǫh. Apply Lemma 8 and η(w) ≤ 1, we have
∑

w∈G
(ℓ)
u \A(ℓ)

u
h(ℓ)(v, w)h(ℓ)(u,w)η(w) ≤ ǫh

√
c
ℓ
. Summing

the error of all levels,
∑

ℓ=1 ǫh
√
c
ℓ ≤

√
cǫh

1−√
c
. From Eq. (3),

∑

ℓ=1

∑

w∈A
(ℓ)
v

κ(ℓ)(u, v, w) =
∑

ℓ=1

∑

w∈A
(ℓ)
v

h(ℓ)(u,w) ·
η(w) · h(ℓ)(v, w). Thus, s(u, v)−

√
c·ǫh

1−√
c
≤ s′(u, v).

Proof of Lemma 2. At level ℓ,
∑

w∈G
(ℓ)
u

h(ℓ)(u,w) =
√
c
ℓ
.

Hence, at level ℓ, there exists at most ⌊
√
cℓ

ǫh
⌋ attention nodes,

and for ℓ > L∗, w ∈ Gℓ
u, h

(ℓ)(u,w) ≤ ǫh. Therefore, the size

of attention set Au is at most
∑

ℓ=1⌊
√

cℓ

ǫh
⌋ ≤ ⌊

√
c

(1−√
c)·ǫh

⌋.
Proof of Lemma 3. f (ℓ)(u, v, w) is the ℓ-th step
first meeting probability at w, and we can write s(u, v)

as s(u, v) =
∑∞

ℓ=1

∑

w∈V f (ℓ)(u, v, w). Given A
(ℓ)
u , let

s1(u, v) =
∑L∗

ℓ=1

∑

w∈A
(ℓ)
u

f (ℓ)(u, v, w), and s2(u, v) =
∑∞

ℓ=1

∑

w/∈A
(ℓ)
u

f (ℓ)(u, v, w). Obviously, s(u, v) = s1(u, v) +

s2(u, v). We want to prove s+(u, v) ≥ s1(u, v)−s2(u, v) and

s2(u, v) ≤ ǫh
√
c

1−√
c
. From Eq. (9),

s+(u, v) =
∑L∗

ℓ=1

∑

w∈A
(ℓ)
u

h(ℓ)(u,w)h(ℓ)(v, w)

× (1−
∑(L∗−ℓ)

i=1

∑

wi∈A
(ℓ+i)
u

ρ(i)(w,wi))

=
∑L∗

ℓ=1

∑

w∈A
(ℓ)
u

[h(ℓ)(u,w)h(ℓ)(v, w)

−
ℓ−1
∑

ℓ′=1

∑

wa∈A
(ℓ′)
u

h(ℓ′)(u,wa)h
(ℓ′)(v, wa)ρ

(ℓ−ℓ′)(wa, w)]

(15)
f (ℓ)(u, v, w) = h(ℓ)(u,w)h(ℓ)(v, w) −

∑

ℓ′:ℓ′<ℓ

∑

w′∈G
(ℓ′)
u

f (ℓ′)(u, v, w′)h(ℓ′)(w′, w)2

Here we only consider w′ ∈ A
(ℓ′)
u , i.e., f̂ (ℓ)(u, v, w) =

h(ℓ)(u,w)h(ℓ)(v, w)−
∑

ℓ′<ℓ

∑

w′∈A
(ℓ′)
u

f (ℓ′)(u, v, w′)h(ℓ′)(w′, w)2

(16)

Consider the probability that two
√
c-walks from u and

v, first meet at attention node w′ then meet at atten-
tion node w. Given two events: (i) two

√
c-walks from

u and v respectively, first meet at some attention node,
then meet at w, and (ii) these two walks meet at atten-
tion node wa, then two walks from wa first meet at w,
the two events hold one-to-one correspondence. The prob-
ability of the first event corresponds to the last line of
Eq. (16) and the latter event event corresponds to the last

line Eq. (15). Let ŝ1(u, v) =
∑L∗

ℓ=1

∑

w∈A
(ℓ)
u

f̂ (ℓ)(u, v, w).

Thus, s+(u, v) = ŝ1(u, v). s1(u, v)− ŝ1(u, v) is the probabil-
ity that two

√
c walks first meet at non-attention node, then

meet at attention node. Thus, s1(u, v)− ŝ1(u, v) ≤ s2(u, v).
Now we prove s2(u, v) ≤ (ǫh

√
c)/(1 − √

c). Based on

Lemma 8, s2(u, v) =
∑

ℓ=1

∑

w∈G
(ℓ)
u \A(ℓ)

u
f (ℓ)(u, v, w) ≤

∑

ℓ=1

∑

w∈G
(ℓ)
u \A(ℓ)

u
h(ℓ)(v, w)h(ℓ)(u,w) ≤

√
c·ǫh

1−√
c
, Thus,

s(u, v) ≥ s+(u, v) ≥ ŝ1(u, v) ≥ s1(u, v)−s2(u, v) ≥ s(u, v)−
2s2(u, v) ≥ s(u, v)− 2

√
cǫh

1−√
c
.

Proof of Lemma 4. In Algorithm 5, consider the lose of
Simrank at level ℓ. Similar to prove Lemma 1, the lose at

level ℓ ≤ ǫh · √c
ℓ
. Summing up all levels, the total loss is

≤ ǫh·√c
1−√

c
. Thus s(u, v)− s̃(u, v) ≤ 3ǫh

√
c

1−√
c
≤ ǫ.

Proof of Lemma 5. We push O(L∗) = O(log 1
ǫ
) lev-

els and each level needs O(m) times, and thus the to-

tal time is O(m log 1
ǫ
). Let ĥ(ℓ)(u,w) be the Monte

Carlo estimation of h(ℓ)(u,w). From Hoeffding bound [9],

Pr(ĥ(ℓ)(u,w) ≥ h(ℓ)(u,w) − ǫh/2) ≥ 1 − exp[−2(ǫh/2)
2 ·

2 log 1
(1−√

c)ǫhδ
/ǫ2h] ≥ 1− (1−√

c)ǫhδ. Since attention nodes

are at most ⌊
√
c

(1−√
c)·ǫh

⌋, applying union bound, with proba-

bility at least 1−δ, Gu contains all nodes u with h(ℓ)(u,w) ≥
ǫh, for all ℓ. The expected time of MC is O(log 1

ǫδ
/ǫ2).

Proof of Lemma 6. Algorithm 3 costs O(m) per level
of Gu. Node w has O(1/ǫ) hitting probabilities from w.
Thus the complexity of one level is O(m/ǫ). There are
O(log 1

ǫ
) levels. Total complexity is O(m log 1

ǫ
/ǫ). Let

Zi be the number of nodes in Gu at level i. For all
w1 ∈ G

(ℓ+1)
u , the cost of all ρ(1)(w,w1) is O(Zl+1). For

all w2 ∈ G
(ℓ+2)
u , from Eq. (9), the cost of all ρ(2)(w,w2) is

O(Zℓ+1Zℓ+2). Similarly, we can compute all wi ∈ G
(ℓ+i)
u

for all i > 0 in O(Zℓ+1 +
∑

i=1

∑

j=1 Zℓ+iZℓ+i+j) time.

Zℓ+1+
∑

i=1

∑

j=1 Zℓ+iZℓ+i+j ≤ (
∑

i=1 Zi)
2 and

∑

i=1 Zi ≤
O(1/ǫ), then O(Zℓ+1 +

∑

i=1

∑

j=1 Zℓ+iZℓ+i+j) ≤ O(1/ǫ2).

Thus the cost of computing γ(ℓ)(w) for all attention nodes
O(1

ǫ3
). The total complexity is max{m log ǫ

ǫ
, 1
ǫ3
}.

Proof of Lemma 7. Algorithm 5 costs O(m) per level and
have O(log 1

ǫ
) levels. The total cost is O(m log 1

ǫ
).

Proof of Theorems 1 & 2. Given Lemma 3, 4, 5, Theo-
rem 1 follows. Given Lemma 5, 6, 7, Theorem 2 follows.

977

9. REFERENCES
[1] I. Antonellis, H. Garcia-Molina, and C. Chang.

Simrank++: query rewriting through link analysis of
the click graph. PVLDB, 1(1):408–421, 2008.

[2] A. A. Benczúr, K. Csalogány, and T. Sarlós.
Link-based similarity search to fight web spam. In
AIRWEB, pages 9–16, 2006.

[3] A. D. Broido and A. Clauset. Scale-free networks are
rare. Nature Communications, 10(1017), 2019.

[4] U. degli studi di Milano.
http://law.di.unimi.it/datasets.php, 2004.

[5] D. Fogaras and B. Rácz. Scaling link-based similarity
search. In WWW, pages 641–650, 2005.

[6] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós.
Towards scaling fully personalized pagerank:
Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3):333–358, 2005.

[7] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and
M. Onizuka. Efficient search algorithm for simrank. In
ICDE, pages 589–600, 2013.

[8] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank
computation on large graphs with iterative
aggregation. In SIGKDD, pages 543–552, 2010.

[9] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American

statistical association, 58(301):13–30, 1963.

[10] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In SIGKDD, pages
538–543, 2002.

[11] G. Jeh and J. Widom. Scaling personalized web
search. In WWW, pages 271–279, 2003.

[12] M. Jiang, A. W. Fu, R. C. Wong, and K. Wang.
READS: A random walk approach for efficient and
accurate dynamic simrank. PVLDB, 10(9):937–948,
2017.

[13] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In SIGKDD, pages 922–930,
2011.

[14] M. Kusumoto, T. Maehara, and K. Kawarabayashi.
Scalable similarity search for simrank. In SIGMOD,
pages 325–336, 2014.

[15] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k
structural similarity search. In ICDE, pages 774–785,
2012.

[16] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, 2014.

[17] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and
T. Wu. Fast computation of simrank for static and
dynamic information networks. In EDBT, pages
465–476, 2010.

[18] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and
J. C. S. Lui. Walking in the cloud: Parallel simrank at
scale. PVLDB, 9(1):24–35, 2015.

[19] D. Liben-Nowell and J. M. Kleinberg. The
link-prediction problem for social networks. JASIST,
58(7):1019–1031, 2007.

[20] Z. Lin, M. R. Lyu, and I. King. Matchsim: a novel
similarity measure based on maximum neighborhood
matching. Knowl. Inf. Syst., 32(1):141–166, 2012.

[21] Y. Liu, B. Zheng, X. He, Z. Wei, X. Xiao, K. Zheng,
and J. Lu. Probesim: Scalable single-source and top-k

simrank computations on dynamic graphs. PVLDB,
11(1):14–26, 2017.

[22] D. Lizorkin, P. Velikhov, M. N. Grinev, and
D. Turdakov. Accuracy estimate and optimization
techniques for simrank computation. PVLDB,
1(1):422–433, 2008.

[23] T. Maehara, M. Kusumoto, and K. Kawarabayashi.
Efficient simrank computation via linearization.
CoRR, abs/1411.7228, 2014.

[24] T. Maehara, M. Kusumoto, and K. Kawarabayashi.
Scalable simrank join algorithm. In ICDE, pages
603–614, 2015.

[25] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE, pages
117–128, 2002.

[26] P. Nguyen, P. Tomeo, T. D. Noia, and E. D. Sciascio.
An evaluation of simrank and personalized pagerank
to build a recommender system for the web of data. In
WWW, pages 1477–1482, 2015.

[27] R. A. Rossi and N. K. Ahmed. The network data
repository with interactive graph analytics and
visualization. In AAAI, 2015.

[28] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An
efficient similarity search framework for simrank over
large dynamic graphs. PVLDB, 8(8):838–849, 2015.

[29] W. Tao, M. Yu, and G. Li. Efficient top-k simrank
based similarity join. PVLDB, 8(3):317–328, 2014.

[30] B. Tian and X. Xiao. Sling: a near-optimal index
structure for simrank. In SIGMOD, pages 1859–1874,
2016.

[31] Y. Wang, X. Lian, and L. Chen. Efficient simrank
tracking in dynamic graphs. In ICDE, page 545, 2018.

[32] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, and
J. Wen. Prsim: Sublinear time simrank computation
on large power-law graphs. In SIGMOD, pages
1042–1059, 2019.

[33] W. Yu, X. Lin, and W. Zhang. Fast incremental
simrank on link-evolving graphs. In ICDE, pages
304–315, 2014.

[34] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More
is simpler: Effectively and efficiently assessing
node-pair similarities based on hyperlinks. PVLDB,
7(1):13–24, 2013.

[35] W. Yu and J. A. McCann. Efficient partial-pairs
simrank search for large networks. PVLDB,
8(5):569–580, 2015.

[36] W. Yu and J. A. McCann. Gauging correct relative
rankings for similarity search. In CIKM, pages
1791–1794, 2015.

[37] W. Yu and J. A. McCann. High quality graph-based
similarity search. In SIGIR, pages 83–92, 2015.

[38] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le. A
space and time efficient algorithm for simrank
computation. World Wide Web, 15(3):327–353, 2012.

[39] P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive
structural similarity measure over information
networks. In CIKM, pages 553–562, 2009.

[40] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao.
Efficient simrank based similarity join over large
graphs. PVLDB, 6(7):493–504, 2013.

978

