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ABSTRACT
The typical approach for learned DBMS components is to
capture the behavior by running a representative set of quer-
ies and use the observations to train a machine learning
model. This workload-driven approach, however, has two
major downsides. First, collecting the training data can
be very expensive, since all queries need to be executed on
potentially large databases. Second, training data has to
be recollected when the workload or the database changes.
To overcome these limitations, we take a different route and
propose a new data-driven approach for learned DBMS com-
ponents which directly supports changes of the workload
and data without the need of retraining. Indeed, one may
now expect that this comes at a price of lower accuracy
since workload-driven approaches can make use of more in-
formation. However, this is not the case. The results of
our empirical evaluation demonstrate that our data-driven
approach not only provides better accuracy than state-of-
the-art learned components but also generalizes better to
unseen queries.
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1. INTRODUCTION
Motivation. Deep Neural Networks (DNNs) have not only
been shown to solve many complex problems such as im-
age classification or machine translation, but are applied in
many other domains, too. This is also the case for DBMSs,
where DNNs have successfully been used to replace exist-
ing DBMS components with learned counterparts such as
learned cost models [16, 42] as well as learned query opti-
mizers [27], or even learned indexes [17] or query scheduling
and query processing schemes [24, 39].
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The predominant approach for learned DBMS compo-
nents is that they capture the behavior of a component by
running a representative set of queries over a given database
and use the observations to train the model. For example,
for learned cost models such as [16, 42] different query plans
need to be executed to collect the training data, which cap-
tures the runtime (or cardinalities), to then learn a model
that can estimate costs for new query plans. This obser-
vation also holds for the other approaches such as learned
query optimizers or the learned query processing schemes,
which are also based on collected training data that requires
the execution of a representative workload.

A major obstacle of this workload-driven approach is that
collecting the training data is typically very expensive since
many queries need to be executed to gather enough train-
ing data. For example, approaches like [16, 42] have shown
that the runtime of hundreds of thousands of query plans
is needed for the model to provide a high accuracy. Still,
the training corpora often only cover a limited set of query
patterns to avoid even higher training costs. For example,
in [16] the training data covers only queries up to two joins
(three tables) and filter predicates with a limited number of
attributes.

Moreover, the training data collection is not a one-time
effort since the same procedure needs to be repeated over
and over if the workload changes or if the current database
is not static and the data is constantly being updated as it is
typical for OLTP. Otherwise, without collecting new train-
ing data and retraining the models for the characteristics
of the changing workload or data, the accuracies of these
models degrade with time.

Contributions. In this paper, we take a different route. In-
stead of learning a model over the workload, we propose to
learn a purely data-driven model that captures the joint
probability distribution of the data and reflects important
characteristics such as correlations across attributes but also
the data distribution of single attributes. Another impor-
tant difference to existing approaches is that our data-driven
approach supports direct updates; i.e., inserts, updates, and
deletes on the underlying database can be absorbed by the
model without the need to retrain the model.

As a result, since our model captures information of the
data it can not only be used for one particular task but
supports many different tasks ranging from query answer-
ing, over cardinality estimation to potential other more so-
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Figure 1: Overview of DeepDB .

phisticated tasks such as in-DBMS machine learning infer-
ence. One could now think that this all comes at a price
and that the accuracy of our approach must be lower since
the workload-driven approaches get more information than
a pure data-driven approach. However, as we demonstrate
in our experiments, this is not the case. Our approach actu-
ally outperforms many state-of-the-art workload-driven ap-
proaches and even generalizes better.

However, we do not argue that data-driven models are a
silver bullet to solve all possible tasks in a DBMS. Instead,
we think that data-driven models should be combined with
workload-driven models when it makes sense. For exam-
ple, a workload-driven model for a learned query optimizer
might use the cardinally estimates of our model as input fea-
tures. This combination of data-driven and workload-driven
models provides an interesting avenue for future work but is
beyond the scope of this paper.

To summarize, the main contributions of this paper are:(1)
We developed a new class of deep probabilistic models over
databases: Relational Sum Product Networks (RSPNs), that
can capture important characteristics of a database. (2) To
support different tasks, we devise a probabilistic query com-
pilation approach that translates incoming database queries
into probabilities and expectations for RSPNs. (3) We im-
plemented our data-driven approach in a prototypical DBMS
architecture, called DeepDB , and evaluated it against state-
of-the-art learned and non-learned approaches.

Outline. The remainder of the paper is organized as fol-
lows. In Section 2 we first present an overview of DeepDB
and then discuss details of our models and the query com-
pilation in Sections 3 and 4. Afterwards, we explain further
extensions of DeepDB in Section 5 before we show an exten-
sive evaluation comparing DeepDB against state-of-the art
approaches for various tasks. Finally, we iterate over related
work in Section 7 before concluding in Section 8.

2. OVERVIEW AND APPLICATIONS
Overview. As shown in Figure 1, the main idea of DeepDB
is to learn a representation of the data offline. An impor-
tant aspect of DeepDB is that we do not aim to replace the
original data with a model. Instead, a model in DeepDB
augments a database similar to indexes to speed-up queries
and to provide additional query capabilities while we can
still run standard SQL queries over the original database.

To optimally capture relevant characteristics of relational
data in DeepDB , we developed a new class of models called
Relational Sum Product Networks (RSPNs). In a nutshell,
RSPNs are a class of deep probabilistic models that cap-
ture the joint probability distribution over all attributes in

a database that can then be used at runtime to provide the
answer for different user tasks.

While RSPNs are based on Sum Product Networks (SPNs)
[35, 28], there are significant differences: (1) While SPNs
support only single tables and simple queries (i.e., no joins
and no aggregation functions), RSPNs can be built on ar-
bitrary schemata and support complex queries with multi-
way joins and different aggregations (COUNT, SUM, AVG).
Moreover, RSPNs also go beyond the idea of other recent
learned data models that need to know join paths a pri-
ori such as [25, 51] since RSPNs allow true ad-hoc joins by
combining RSPN models. (2) Another major difference is
that RSPNs support direct updates, i.e., if the underlying
database changes the RSPN can directly ingest the updates
without the need to retrain the model. (3) RSPNs also in-
clude a set of database-specific extensions such as NULL-
value handling and support for functional dependencies.

Once the RSPNs are created offline, they can be lever-
aged at runtime for a wide variety of different applications,
ranging from user-facing tasks (e.g., to provide fast approxi-
mate answers for SQL queries) to system-internal tasks (e.g.,
to provide estimates for cardinalities). In order to support
these tasks, DeepDB provides a new so called probabilis-
tic query compilation procedure that translates a given task
into evaluations of expectations and probabilities on RSPNs.
We now give a brief overview of the applications currently
supported by the query compilation engine of DeepDB .

Cardinality Estimation. The first task DeepDB supports
is cardinality estimation for a query optimizer. Cardinal-
ity estimation is needed to provide cost estimates but also
to find the correct join order during query optimization. A
particular advantage of DeepDB over existing learned ap-
proaches for cardinality estimation [16, 42] is that we do not
have to create dedicated training data, i.e. pairs of queries
and cardinalities. Instead, since RSPNs capture the charac-
teristics of the data independent of a workload, we can sup-
port arbitrary join queries without the need to train a model
for a particular workload. Moreover, RSPNs can be kept up
to date at low costs similar to traditional histogram-based
approaches, which is different from other workload-driven
learned approaches for cardinality estimation such as [16,
42] which require retraining.

Approximate Query Processing (AQP). The second task
we currently support in DeepDB is AQP. AQP aims to pro-
vide approximate answers to support faster query response
times on large datasets. The basic idea of how a query on a
single table is executed inside DeepDB is simple: for exam-
ple, an aggregate query AVG(X) with a where condition C
is equal to the conditional expectation E(X | C) which can
be approximated with RSPNs. In DeepDB , we implement
a more general AQP procedure that leverages the fact that
RSPNs can support joins of multiple tables. A major differ-
ence to other learned approaches for AQP such as [25, 44] is
again that DeepDB supports ad-hoc queries and is thus not
limited to the query types covered by the training set.

Other Applications. While the applications above show
the potential of DeepDB , we believe DeepDB is not lim-
ited to those applications. For example, machine learning
inference tasks such as regression and classification can be
answered by RSPNs. However, discussing these opportuni-
ties in detail is beyond the scope of this paper.
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c id c age c region
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c age c region

80 EU
70 EU
60 ASIA
20 EU
... ...

... ...
20 ASIA
25 EU
30 ASIA
70 ASIA

(b) Learning with Row/Col-
umn Clustering

+

x x

EU ASIA 20 100

P(cregion, cage)

0.3 0.7

EUASIA 20 100

(c) Resulting SPN

+

x x

EUASIA 20 100

15%

EUASIA 20 100

80%

12%

20%

2%

5%
0.3 0.7

10%

(d) Probability of European
Customers younger than 30

Figure 2: Customer Table and corresponding SPN.

3. LEARNING A DEEP DATA MODEL
In this section, we introduce Relational Sum Product Net-

works (RSPNs), which we use to learn a representation of
a database and, in turn, to answer queries using our query
engine explained in the next section. We first review Sum
Product Networks (SPNs) and then introduce RSPNs. Af-
terwards, we describe how an ensemble of RSPNs can be
created to encode a given database multiple tables.

3.1 Sum Product Networks
Sum-Product Networks (SPNs) [35] learn the joint prob-

ability distribution P (X1, X2, . . . , Xn) of the variables X1,
X2, . . . , Xn in the dataset. They are an appealing choice be-
cause probabilities for arbitrary conditions can be computed
very efficiently. We will later make use of these probabilities
for our applications like AQP and cardinality estimation.

For the sake of simplicity, we restrict our attention to
Tree-SPNs, i.e., trees with sum and product nodes as in-
ternal nodes and leaves. Intuitively, sum nodes split the
population (i.e., the rows of dataset) into clusters and prod-
uct nodes split independent variables of a population (i.e.,
the columns of a dataset). Leaf nodes represent a single
attribute and approximate in the present paper the distri-
bution of that attribute either using histograms for discrete
domains or piecewise linear functions for continuous do-
mains [29]. For instance, in Figure 2c, an SPN was learned
over the variables region and age of the corresponding cus-
tomer table in Figure 2a. The top sum node splits the data
into two groups: The left group contains 30% of the pop-
ulation, which is dominated by older European customers
(corresponding to the first rows of the table), and the right
group contains 70% of the population with younger Asian
customers (corresponding to the last rows of the table). In
both groups, region and age are independent and thus split
by a product node each. The leaf nodes determine the prob-
ability distributions of the variables region and age for every
group.

Learning SPNs [10, 29] works by recursively splitting the
data in different clusters of rows (introducing a sum node)

or clusters of independent columns (introducing a product
node). For the clustering of rows, a standard algorithm such
as KMeans can be used or the data can be split according
to a random hyperplane. To make no strong assumptions
about the underlying distribution, Randomized Dependency
Coefficients (RDC) are used for testing independence of dif-
ferent columns [23]. Moreover, independence between all
columns is assumed as soon as the number of rows in a clus-
ter falls below a threshold nmin. As stated in [35, 28], SPNs
in general have polynomial size and allow inference in linear
time w.r.t. the number of nodes. However, for the configu-
rations we use in our experiments, we can even bound the
size of the SPNs to linear complexity w.r.t. the number of
columns in a dataset since we set nmin = ns/100 (i.e. rel-
ative to the sample size), which turned out to be a robust
configuration.

With an SPN at hand, one can compute probabilities for
conditions on arbitrary columns. Intuitively, the conditions
are first evaluated on every relevant leaf. Afterwards, the
SPN is evaluated bottom up. For instance in Figure 2d, to
estimate how many customers are from Europe and younger
than 30, we compute the probability of European customers
in the corresponding blue region leaf nodes (80% and 10%)
and the probability of a customer being younger than 30
(15% and 20%) in the green age leaf nodes. These probabil-
ities are then multiplied at the product node level above, re-
sulting in probabilities of 12% and 2%, respectively. Finally,
at the root level (sum node), we have to consider the weights
of the clusters, which leads to 12% · 0.3 + 2% · 0.7 = 5%.
Multiplied by the number of rows in the table, we get an
approximation of 50 European customers who are younger
than 30.

3.2 Relational Sum-Product Networks
One important issue with SPNs is that they can only

capture the data of single tables but they also lack other
important features needed for DeepDB . To alleviate these
problems, we now introduce RSPNs.

Extended Inference Algorithms. The first and most im-
portant extension is that for many queries such as AVG and
SUM expectations are required (e.g., to answer a SQL ag-
gregate query which computes an average over a column).
In order to answer these queries, RSPNs allows computing
expectations over the variables on the leaves to answer those
aggregates. To additionally apply a filter predicate, we still
compute probabilities on the leaves for the filter attribute
and propagate both values up in the tree. At product nodes,
we multiply the expectations and probabilities coming from
child nodes whereas on sum nodes the weighted average is
computed. In Figure 3, we show an example how the average
age of European customers is computed. The ratio of both
terms yields the correct conditional expectation. A related
problem is that SPNs do not provide confidence intervals.
We also developed corresponding extensions on SPNs in Sec-
tion 5.1.

Database-specifics. Finally, SPNs lack support for impor-
tant database specifics: (1) First, SPNs do not provide
mechanisms for handling NULL values. Hence, we devel-
oped an extension where NULL values are represented as
a dedicated value for both discrete and continuous columns
at the leaves during learning. Furthermore, when comput-
ing conditional probabilities and expectations, NULL val-
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Figure 3: Process of computing E(c age | c region=’EU’).

ues must be handled according to the three-valued logic of
SQL. (2) Second, SPNs aim to generalize the data distribu-
tion and thus approximate the leaf distribution, abstracting
away specifics of the dataset to generalize. For instance,
in the leaf nodes for the age in Figure 2c, a piecewise lin-
ear function would be used to approximate the distribution
[29]. Instead, we want to represent the data as accurate as
possible. Hence, for continuous values, we store each indi-
vidual value and its frequency. If the number of distinct
values exceeds a given limit, we also use binning for contin-
uous domains. (3) Third, functional dependencies between
non-key attributes A → B are not well captured by SPNs.
We could simply ignore these and learn the RSPN with both
attributes A and B, but this often leads to large SPNs since
the data would be split into many small clusters (to achieve
independence of A and B). Hence, we allow users to de-
fine functional dependencies along with a table schema. If
a functional dependency A → B is defined, we store the
mapping from values of A to values of B in a separate dic-
tionary of the RSPN and omit the column B when learning
the RSPN. At runtime, queries with filter predicates for B
are translated to queries with filter predicates for A.

Updatability. Finally, a last important extensions of RS-
PNs over SPNs is the direct updatability of the model. If the
underlying database tables are updated, the model might
become inaccurate. For instance, if we insert more young
European customers in the table in Figure 2a, the proba-
bility computed in Figure 2d is too low and thus the RSPN
needs to be updated. As described before, an RSPN consists
of product and sum nodes, as well as leaf nodes, which rep-
resent probability distributions for individual variables. The
key-idea to support direct updates of an existing RSPN is to
traverse the RSPN tree top-down and update the value dis-
tribution of the weights of the sum-nodes during this traver-
sal. For instance, the weight of a sum node for a subtree of
younger European customers could be increased to account
for updates. Finally, the distributions in the leaf-nodes are
adjusted. The detailed algorithm of how to directly update
RSPNs is discussed in Section 5.2.

3.3 Learning Ensembles of RSPNs
In order to support ad-hoc join queries one could naively

learn a single RSPN per table as we discuss in Section 4.
However, in this case potential correlations between tables
might be lost and lead to inaccurate approximations. For
learning an ensemble of RSPNs for a given database with
multiple tables, we thus take into account if tables of a
schema are correlated.

In the following, we describe our procedure that con-
structs a so called base ensemble for a given database scheme.
In this procedure, for every foreign key→primary key rela-
tionship we learn an RSPN over the corresponding full outer
join of two tables if there is a correlation between attributes

of these two tables. Otherwise, RSPNs for the single ta-
bles will be learned. For instance, if the schema consists
of a Customer and an Order table as shown in Figure 4,
we could either learn two independent RSPNs (one for each
table) or a joint RSPN (over the full outer join).

In order to test independence of two tables and thus to
decide if one or two RSPNs are more appropriate, we check
for every pair of attributes from these tables if they can be
considered independent or not. In order to enable an effi-
cient computation, this test can be done on a small random
sample. As a correlation measure that does not make major
distributional assumptions, we compute RDC values [23] be-
tween two attributes, which are also used in the SPN learn-
ing algorithm [29]. If the maximum pairwise RDC value be-
tween all attributes of two tables exceeds a threshold (where
we use the standard thresholds of SPNs), we assume that
two tables are correlated and learn an RSPN over the join.

In the base ensemble only correlations between two ta-
bles are captured. While in our experiments, we see that
this already leads to highly accurate answers, there might
also be correlations not only between directly neighboring
tables. Learning these correlations helps to further improve
the accuracy of queries that span more than two tables. For
instance, if there was an additional Product table that can
be joined with the Orders table and the product prize is cor-
related with the customers region, this would not be taken
into account in the base ensemble. In Section 5.3, we thus
extend our basic procedure for ensemble creation to take
dependencies among multiple tables into account.

4. QUERY COMPILATION
The main challenge of probabilistic query compilation is

to translate an incoming query into an inference procedure
against an ensemble of RSPNs. The class of SQL queries
that DeepDB currently supports are of the form:

QD: SELECT AGG

FROM T1 JOIN T2 ON . . . JOIN Tn ON . . .
WHERE Ti.a OP LITERAL AND/OR . . .
(GROUP BY . . .);

where AGG is one of the aggregations COUNT, SUM, or AVG over
a numerical attribute, the joins are acyclic equi-joins and the
filter in the WHERE clause are either a conjunction of filters
or a disjunction. While conjunctions are supported natively
by RSPNs, disjunctions are realized using the principle of
inclusion and exclusion. In the filters, OP is one of the oper-
ators <,>,=, <=,>=,IN. Finally, there is an optional GROUP
BY clause on one or several attributes.

Most importantly, in DeepDB the queries are supported
ad-hoc, i.e. an RSPN ensemble is learned once and then
arbitrary queries of the above form can be answered us-
ing our probabilistic query compilation procedure. In the
following, we first describe how this procedure works for
COUNT queries without grouping which is sufficient for car-
dinality estimation. We then show the extensions to support
a broader set of aggregate queries for AQP including other
aggregates (AVG and SUM) as well as grouping.

4.1 Simple COUNT Queries
In this section, we explain how we can translate COUNT

queries with and without filter predicates over single tables
or over joins of multiple tables using inner joins (equi-joins).
These types of queries can be used already for cardinality
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(b) Ensemble with Full Outer Join

Figure 4: Two RSPN Ensembles for the same Schema. Additional (blue) columns are also learned by the RSPNs.

estimation but also cover some cases of aggregate queries for
AQP. For answering the simple COUNT queries, we distin-
guish three cases of how queries can be mapped to RSPNs:
(1) an RSPN exists that exactly matches the tables of the
query, (2) the RSPN is larger and covers more tables, and
(3) we need to combine multiple RSPNs since there is no
single RSPN that contains all tables of the query.

Case 1: Exact matching RSPN available. The simplest
case is a single table COUNT query with (or without) a
filter predicate. If an RSPN is available for this table and N
denotes the number of rows in the table, the result is simply
N · P (C). For instance, the query

Q1: SELECT COUNT (*) FROM CUSTOMER C

WHERE c_region=’EU’;

can be answered with the CUSTOMER RSPN in Figure 4a.
The result is |C| · E(1c region=’EU’) = 3 · 2

3
= 2. Note that 1C

denotes the random variable being one if the condition C is
fulfilled and thus E(1C) = P (C). While a conjunction in a
filter predicates is directly supported, a disjunction could be
realized using the inclusion-exclusion principle.

A natural extension for COUNT queries over joins could
be to learn an RSPN for the underlying join and use the
formula |J |·P (C) where the size of the joined tables without
applying a filter predicate is |J |. For instance, the query

Q2: SELECT COUNT (*) FROM CUSTOMER C

NATURAL JOIN ORDER O

WHERE c_region=’EU’ AND

o_channel=’ONLINE ’;

could be represented as |C ./ O| · P (o channel=’ONLINE’ ∩
c region=’EU’) which is 4 · 1

4
= 1.

However, joint RSPNs over multiple tables are learned
over the full outer join. By using full outer joins we pre-
serve all tuples of the original tables and not only those that
have one or more join partner in the corresponding table(s).
This way we are able for example to answer also single ta-
ble queries from a joint RSPN, as we will see in Case 2.
The additional NULL tuples that result from a full outer
join must be taken into account when answering an inner
join query. For instance, the second customer in Figure 4b
does not have any orders and thus should not be counted
for query Q2. To make it explicit which tuples have no join
partner and thus would not be in the result of an inner join,
we add an additional column NT for every table such as in
the ensemble in Figure 4b. This column is also learned by
the RSPN and can be used as an additional filter column to
eliminate tuples that do not have a join partner for the join
query given. Hence, the complete translation of query Q2

for the RSPN learned over the full outer join in Figure 4b

is |C d|><|d O| ·P (o channel=’ONLINE’∩ c region=’EU’∩NO =
1 ∩NC = 1) = 5 · 1

5
= 1.

Case 2: Larger RSPN available. The second case is that
we have to use an RSPN that was created on a set of joined
tables, however, the query only needs a subset of those ta-
bles. For example, let us assume that the query Q1 asking
for European customers is approximated using an RSPN
learned over a full outer join of customers and orders such
as the one in Figure 4b. The problem here is that customers
with multiple orders would appear several times in the join
and thus be counted multiple times. For instance, the ratio
of European customers in the full outer join is 3/5 though
two out of three customers in the dataset are European.

To address this issue, for each foreign key relationship
S ← P between tables P and S we add a column FS←P

to table S denoting how many corresponding join partners
a tuple has. We call these tuple factors and later use them
as correction factor. For instance, in the customer table
in Figure 4a for the first customer the tuple factor is two
since there are two tuples in the order table for this cus-
tomer. It is important to note that tuple factors have to be
computed only once per pair of tables that can be joined
via a foreign key. In DeepDB , we do this when the RSPNs
for a given database are created and our update procedure
changes those values as well. Tuple factors are included as
additional column and learned by the RSPNs just as usual
columns. When used in a join, we denote them as F ′S←P .
Since we are working with outer joins, the value of F ′ is at
least 1.

We can now express the query counting European cus-
tomers as |C d|><|d O| ·E(1/F ′C←O · 1c region=’EU’ · NC) which re-

sults in 5 · 1/2+1/2+1
5

= 2. First, this query both includes
the first customer (who has no orders) because the RSPN
was learned on the full outer join. Second, the query also
takes into account that the second and third customer have
two orders each by normalizing them with their tuple factor
F ′C←O. In general, we can define the procedure to compile
a query requiring only a part of an RSPN as follows:

Theorem 1. Let Q be a COUNT query with a filter pred-
icate C which only queries a subset of the tables of a full
outer join J. Let F ′(Q, J) denote the product of all tuple
factors that cause result tuples of Q to appear multiple times
in J. The result of the query is equal to:

|J | · E

(
1

F ′(Q, J)
· 1C ·

∏
T∈Q

NT

)
For an easier notation, we write the required factors of query
Q as F(Q). The expectation E(F(Q)) of theorem 1 can be
computed with an RSPN because all columns are learned.
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Case 3: Combination of multiple RSPNs. As the last
case, we handle a COUNT query that needs to span over mul-
tiple RSPNs. We first handle the case of two RSPNs and
extend the procedure to n RSPNs later. In this case, the
query can be split into two subqueries QL and QR, one for
each RSPN. There can also be an overlap between QL and
QR which we denote as QO (i.e., a join over the shared com-
mon tables). The idea is first to estimate the result of QL

using the first RSPN. We then multiply this result by the
ratio of tuples in QR vs. tuples in the overlap QO. Intu-
itively, this expresses how much the missing tables not in
QL increase the COUNT value of the query result.

For instance, there is a separate RSPN available for the
Customer and the Order table in Figure 4a. The query Q2,
as shown before, would be split into two queries QL and QR,
one against the RSPN built over the Customer table and the
other one over the RSPN for the Order table. QO is empty
in this case. The query result of Q2 can thus be expressed
using all these sub-queries as:

|C| · E(1c region=’EU’ · FC←O)︸ ︷︷ ︸
QL

·E(1o channel=’ONLINE’)︸ ︷︷ ︸
QR

which results in 3 · 2+0
3
· 2
4

= 1. The intuition of this query is
that the left-hand side that uses QL computes the orders of
European customers while the right-hand side computes the
fraction of orders that are ordered online out of all orders.

We now handle the more general case that the overlap
is not empty and that there is a foreign key relationship
S ← T between a table S in QO (and QL) and a table T in
QR (but not in QL). In this case, we exploit the tuple factor
FS←T in the left RSPN. We now do not just estimate the
result of QL but of QL joined with the table T. Of course
this increases the overlap which we now denote as Q′O. As a
general formula for this case, we obtain Theorem 2:

Theorem 2. Let the filter predicates and tuple factors of
QL \ QO and QR \ QO be conditionally independent given
the filter predicates of QO. Let S ← T be the foreign key
relationship between a table S in QL and a table T in QR

that we want to join. The result of Q is equal to

|JL| · E (F(QL) · FS←T ) · E (F(QR))

E (F(Q′O))
.

Independence across RSPNs is often given since our en-
semble creation procedure preferably learns RSPNs over cor-
related tables as discussed in Section 3.

Alternatively, we can start the execution with QR. In our
example query Q2 where QR is the query over the orders
table, we can remove the corresponding tuple factor FC←O

from the left expectation. However, we then need to normal-
ize QL by the tuple factors to correctly compute the fraction
of customers who come from Europe. To that end, the query
Q2 can alternatively be computed using:

|O| · E(1o channel=’ONLINE’) ·
E (1c region=’EU’ · FC←O | FC←O)

E ( FC←O | FC←O > 0)

Execution Strategy. If multiple RSPNs are required to an-
swer a query, we have several possible execution strategies.
Our goal should be to handle as many correlations between
filter predicates as possible because predicates across RSPNs
are considered independent. For instance, assume we have
both the Customer, Order and Customer-Order RSPNs of

Figure 4 in our ensemble, and a join of customers and or-
ders would have filter predicates on c region, c age and
o channel. In this case, we would prefer the Customer-Order
RSPN because it can handle all pairwise correlations be-
tween filter columns (c region-c age, c region-o channel,
c age-c channel). Hence, at runtime we greedily use the
RSPN that currently handles the filter predicates with the
highest sum of pairwise RDC values. We also experimented
with strategies enumerating several probabilistic query com-
pilations and using the median of their predictions. How-
ever, this was not superior to our RDC-based strategy. More-
over, the RDC values have already been computed to decide
which RSPNs to learn. Hence, at runtime this strategy is
very compute-efficient.

The final aspect is how to handle joins spanning over more
than two RSPNs. To support this, we can apply Theorem 2
several times.

4.2 Other Aggregate Queries
So far, we only looked into COUNT queries without group-

by statements. In the following, we first discuss how we ex-
tend our query compilation to also support AVG and SUM
queries before we finally explain group-by statements as well
as outer joins.

AVG Queries. We again start with the case that we have
an RSPN that exactly matches the tables of a query and
later discuss the other cases. For this case, queries with AVG

aggregates can be expressed as conditional expectations. For
instance, the query

Q3: SELECT AVG(c_age) FROM CUSTOMER C

WHERE c_region=’EU’;

can be formulated as |C| · E(c age | c region=’EU’) with
the ensemble in Figure 4a.

However, for the case that an RSPNs spans more tables
than required, we cannot directly use this conditional ex-
pectation because otherwise customers with several orders
would be weighted higher. Again, normalization by the tu-
ple factors is required. For instance, if the RSPN spans
customers and orders as in Figure 4b for query Q3 we use

E
(

c age

F′C←O
| c region=’EU’

)
E
(

1
F′C←O

| c region=’EU’
) =

20/2 + 20/2 + 50

1/2 + 1/2 + 1
= 35.

In general, if an average query for the attribute A should
be computed for a join query Q with filter predicates C
on an RSPN on a full outer join J , we use the following
expectation to answer the average query:

E
(

A

F ′(Q, J)
| C
)
/E
(

1

F ′(Q, J)
| C
)
.

The last case is where the query needs more than one
RSPN to answer the query. In this case, we only use one
RSPN that contains A and ignore some of the filter predi-
cates that are not in the RSPN. As long as A is independent
of these attributes, the result is correct. Otherwise, this is
just an approximation. For selecting which RSPN should be
used, we again prefer RSPNs handling stronger correlations
between A and P quantified by the RDC values. The RCDs
can also be used to detect cases where the approximation
would ignore strong correlations with the missing attributes
in P .
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SUM Queries. For handling SUM queries we run two queries:
one for the COUNT and AVG queries. Multiplying them yields
the correct result for the SUM query.

Group-by Queries. Finally, a group by query can be han-
dled also by several individual queries with additional filter
predicates for every group. This means that for n groups
we have to compute n times more expectations than for the
corresponding query without grouping. In our experimental
evaluation, we show that this does not cause performance
issues in practice if we compute the query on the model.

Outer Joins. Query compilation can be easily extended to
support outer joins as well (left/right/full). The idea is that
we only filter out tuples that have no join partner for all
inner joins (case 1 and 2 in Section 4.1) but not for outer
joins (depending on the semantics of the outer join). More-
over, in case 3, the tuple factors F with value zero have
to be handled as value one to support the semantics of the
corresponding outer join.

5. DEEPDB EXTENSIONS
We now describe important extensions of our basic frame-

work presented before.

5.1 Support for Confidence Intervals
Especially for AQP confidence intervals are important.

However, SPNs do not provide those. After the probabilis-
tic query compilation the query is expressed as a product of
expectations. We first describe how to estimate the uncer-
tainty for each of those factors and eventually how a confi-
dence interval for the final estimate can be derived.

First, we split up expectations as a product of probabili-
ties and conditional expectations. For instance, the expec-
tation E(X ·1C) would be turned into E(X | C) ·P (C). This
allows us to treat all probabilities for filter predicates C as

a single binomial variable with probability p =
∏

P (Ci)

and the amount of training data of the RSPN as nsamples .

Hence, the variance is
√
nsamplesp(1− p). For the condi-

tional expectations, we use the Koenig-Huygens formula
V(X | C) = E(X2 | C)− E(X | C)2. Note that also squared
factors can be computed with RSPNs since the square can
be pushed down to the leaf nodes. We now have a variance
for each factor in the result.

For the combination we need two simplifying assumptions:
(i) the estimates for the expectations and probabilities are
independent, and (ii) the resulting estimate is normally dis-
tributed. In our experimental evaluation, we show that de-
spite these assumptions our confidence intervals match those
of typical sample-based approaches.

We can now approximate the variance of the product using
the independence assumption by recursively applying the
standard equation for the product of independent random
variables: V(XY ) = V(X)V(Y )+V(X)E(Y )2+V(Y )E(X)2.
Since we know the variance of the entire probabilistic query
compilation and we assume that this estimate is normally
distributed we can provide confidence intervals.

5.2 Support for Updates
The intuition of our update algorithm is to regard RSPNs

as indexes. Similar to these, insertions and deletions only
affect subtrees and can be performed recursively. Hence,
the updated tuples recursively traverse the tree and passed

weights of sum nodes and the leaf distributions are adapted.
Our approach supports insert and delete operations, where
an update-operation is mapped to a pair of delete and insert
operations.

Algorithm 1 Incremental Update

1: procedure update tuple(node, tuple)
2: if leaf-node then
3: update leaf distribution(node, tuple)
4: else if sum-node then
5: nearest child← get nearest cluster(node, tuple)
6: adapt weights(node, nearest child)
7: update tuple(nearest child, tuple)
8: else if product-node then
9: for child in child nodes do
10: tuple proj ← project to child scope(tuple)
11: update tuple(child, tuple proj)

The update algorithm is depicted in Algorithm 1. Since
it is recursive, we have to handle sum, product and leaf
nodes. At sum nodes (line 4) we have to identify to which
child node the inserted (deleted) tuple belongs to determine
which weight has to be increased (decreased). Since children
of sum nodes represent row clusters found by KMeans dur-
ing learning [29], we can compute the closest cluster center
(line 5), increase (decrease) its weight (line 6) and propa-
gate the tuple to this subtree (line 7). In contrast, product
nodes (line 8) split the set of columns. Hence, we do not
propagate the tuple to one of the children but split it and
propagate each tuple fragment to the corresponding child
node (lines 9-11). Arriving at a leaf node, only a single
column of the tuple is remaining. We now update the leaf
distribution according to the column value (line 2).

This approach does not change the structure of the RSPN,
but only adapts the weights and the histogram values. If
there are new dependencies as a result of inserts they are
not represented in the RSPN. As we show in Section 6.1 on
a real-word dataset, this typically does not happen, even for
high incremental learning rates of 40%. Nevertheless, in case
of new dependencies the RSPNs have to be rebuilt. This is
solved by checking the database cyclically for changed de-
pendencies by calculating the pairwise RDC values as ex-
plained in Section 5.3 on column splits of product nodes.
If changes are detected in the dependencies, the affected
RSPNs are regenerated. As for traditional indexes, this can
be done in the background.

5.3 Ensemble Optimization
As mentioned before, we create an ensemble of RSPNs for

a given database. The base ensemble contains either RSPNs
for single tables or they span over two tables connected by a
foreign key relationship if they are correlated. Correlations
occurring over more than two tables are ignored so far since
they lead to larger models and higher training times. In
the following, we thus discuss an extension of our ensemble
creation procedure that allows a user to specify a training
budget (in terms of time or space) and DeepDB selects the
additional larger RSPNs that should be created.

To quantify the correlations between tables, as mentioned
already before, we compute the pairwise RDC values for ev-
ery pair of attributes in the schema. For every pair of tables,
we define the maximum RDC value between two columns
maxc∈Ti,c′∈Tj

rdc(c, c′) as the dependency value. The de-
pendency value indicates which tables should appear in the
same RSPN and which not. For every RSPN the goal is to
achieve a high mean of these pairwise maximal RDC values.
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This ensures that only tables with high pairwise correlation
are merged in an RSPN.

The limiting factor (i.e., the constraint) for the additional
RSPN ensemble selection should be the budget (i.e., ex-
tra time compared to the base ensemble) we allow for the
learning of additional RSPNs. For the optimization pro-
cedure, we define the maximum learning costs as a fac-
tor B relative to the learning costs of the base ensemble
CBase . Hence, a budget factor B = 0 means that only the
base ensemble would be created. For higher budget fac-
tors B > 0, additional RSPNs over more tables are learned
in addition. If we assume that an RSPN r among the
set of all possible unique RSPNs R has a cost C(r), then
we could formulate the optimization problem as a mini-
mization of

∑
r∈E {maxc∈Ti,c′∈Tj

rdc(c, c′) | Ti, Tj ∈ r} sub-
ject to

∑
r∈E C(r) ≤ B · CBase .

However, estimating the real cost C(r) (i.e., time) to build
an RSPN r is hard and thus we can not directly solve the op-
timization procedure. Instead, we estimate the relative cost
to select the RSPN r that has the highest mean RDC value
and the lowest relative creation cost. To model the relative
creation cost, we assume that the costs grow quadratic with
the number of columns cols(r) since the RDC values are
created pairwise and linear in the number of rows rows(r).
Consequently, we pick the RSPN r with highest mean RDC
and lowest cost which is cols(r)2 · rows(r) as long as the
maximum training time is not exceeded.

6. EXPERIMENTAL EVALUATION
In this Section, we show that DeepDB outperforms state-

of-the-art systems for both cardinality estimation and AQP.
The RSPNs we used in all experiment were implemented in
Python as extensions of SPFlow [30]. As hyperparameters,
we used an RDC threshold of 0.3 and a minimum instance
slice of 1% of the input data, which determines the granular-
ity of clustering. Moreover, we used a budget factor of 0.5,
i.e. the training of the larger RSPNs takes approximately
50% more training time than the base ensemble. We de-
termined these hyperparameters using a grid-search, which
gave us the best results across different datasets.

6.1 Experiment 1: Cardinality Estimation
Workload and Setup. As in [16, 19], we use the JOB-
light benchmark as workload for all approaches (DeepDB
and baselines). The benchmark uses the real-world IMDb
database and defines 70 queries. Furthermore, we addition-
ally defined a synthetic query set of 200 queries were joins
from three to six tables and one to five filter predicates ap-
pear uniformly on the IMDb dataset. We use this query
set to compare the generalization capabilities of the learned
approaches.

As baselines, we used the following learned and tradi-
tional approaches: First we trained a Multi-Set Convolu-
tional Network (MCSN) [16] as a learned baseline. MCSNs
are specialized deep neural networks using the join paths,
tables and filter predicates as inputs. As representative of
a synopsis-based technique, we implemented an approach
based on wavelets [5]. The main idea of [5] is that one
wavelet is built per table. Moreover, query operators (e.g.,
joins) can be executed directly on the wavelet representa-
tion. We have chosen this approach because it is similar
to DeepDB since the tables that are joined by queries do

Table 1: Estimation Errors for the JOB-light Benchmark

median 90th 95th max

DeepDB 1.34 2.50 3.16 39.63
DeepDB (Storage Opt.) 1.32 4.14 5.74 72.00
Perfect Selectivities 2.08 9 11 33
MCSN 3.22 65 143 717
Wavelets 7.64 9839 15332 564549
Postgres 6.84 162 817 3477
IBJS 1.67 72 333 6949
Random Sampling 5.05 73 10371 49187

not have to be known beforehand. We also implemented
an approach called Perfect Selectivities. In this approach,
we use an oracle that returns the true cardinalities for sin-
gle tables. This approach can be seen as the best case for
any synopsis-based approach that supports ad-hoc queries
by combining “perfect” synopsis on single tables. Finally,
we use the standard cardinality estimation of Postgres 11.5
as well as online random sampling and Index-Based Join
Sampling (IBJS) [20] as a non-learned baselines. Similar to
DeepDB , IBJS considers potential correlations across tables
when sampling. For DeepDB , we use the hyper-parameters
discussed before and a sample size of 10M samples for con-
structing RSPNs if not noted otherwise.

Training Time and Storage Overhead. In contrast to
other learned approaches for cardinality estimation [16, 42],
no dedicated training data is required for DeepDB . Instead,
we just learn a representation of the data. The training
of the base ensemble takes 48 minutes. The creation time
includes the data preparation time to sample and compute
the tuple factors as introduced in Section 4.1. In contrast,
for the MCSN [16] approach, 100k queries need to be exe-
cuted to collect cardinalities resulting in 34 hours of training
data preparation time (when using Postgres). Moreover, the
training of the neural network takes only about 15 minutes
on a Nvidia V100 GPU. As we can see, our training time
is much lower since we do not need to collect any training
data for the workload. Another advantage is that we do not
have to re-run the queries once the database is modified.
Instead, we provide an efficient algorithm to update RSPNs
in DeepDB as discussed in Section 3.2.

Another dimension is the storage footprint needed for the
different approaches. While the sampling-based approaches,
i.e., IBJS and random sampling, do not incur a storage over-
head, their limiting factor is the number of samples which
is determined by the latency. All other approaches require
only a few KB to MB of storage for the IMDb database of
the JOB-light benchmark (which uses 3.7 GB disk space).
The storage overhead of DeepDB is 28.9MB vs. 2.6 MB
for MSCN and just 60kB for Postgres that uses histograms
with just 100 buckets by default (however with the lowest
accuracy as we show next). For the wavelet approach we
used 20k wavelet coefficients to allow as much storage as
the standard version of DeepDB requires. In addition, we
also created a storage-optimized version of DeepDB , which
has a similar storage footprint as MCSNs by reducing the
number of samples. In contrast to DeepDB , allowing a larger
storage overhead for MSCNs by for instance adding hidden
layers does not improve the performance since we already
use the optimized hyperparameters of [16]. As we show next,
the storage-optimized version of DeepDB can provide accu-
racies that are still significantly better than all other base-
lines including MCSN. Furthermore, while there has been
a line of research optimizing the storage footprint of DNNs
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Figure 5: Mean Estimation Errors for Synthetic Data.

there are no comparable approaches for SPNs. We believe
that future research will reduce the storage requirements for
DeepDB even further. However, we think that even a few
MB of storage for an entire database of several GB is still
acceptable for more accurate cardinality estimates.

Estimation Quality. The prediction quality of cardinality
estimators is usually evaluated using the q-error, which is
the factor by which an estimate differs from the real execu-
tion join size. For example, if the real result size of a join
is 100, the estimates of 10 or 1k tuples both have a q-error
of 10. Using the ratio instead of an absolute or quadratic
error captures the intuition that for making optimization
decisions only relative differences matter. In Table 1, we de-
pict the median, 90-th and 95-th percentile and max q-errors
for the JOB-light benchmark of our approach compared to
the other baselines. We additionally provide the q-errors for
a storage-optimized version of DeepDB , which relies only
on a base ensemble and 100k samples per RSPN. As we
can see, both DeepDB and the storage-optimized version
outperform the best competitors often by orders of magni-
tude. While IBJS provides a low q-error in the median, the
advantage of learned MCSNs is that they outperform tra-
ditional approaches by orders of magnitude for the higher
percentiles and are thus more robust. DeepDB not only
outperforms IBJS in the median, but provides additional
robustness having a 95-th percentile for the q-errors of 3.16
vs. 143 (MCSN). The q-errors of both Postgres and random
sampling are significantly larger both for the medians and
the higher percentiles. Finally, wavelets have the highest er-
ror since they suffer from the curse of dimensionality (as we
show later in Figure 12). While Perfect Selectivities which is
based on an oracle provides errors better than wavelets it is
still worse than DeepDB since it does not take correlations
across tables into account.

Synthetic Data. In order to further investigate the trade-
offs of the different approaches, we implemented a synthetic
data generator for the IMDb schema (such that we can then
run the JOB-light benchmark). First, we generated data
with uniform distributions without any correlations. Sec-
ond, we varied the characteristics that make cardinality es-
timation hard in reality; i.e., we used skewed distributions
and correlations between different columns. We then used
the same approaches as before to provide cardinality esti-
mates for the original 70 JOB-light queries and report the
mean q-errors of queries not having a cardinality of zero be-
cause otherwise the q-error is not defined. Figure 5 shows
the mean q-errors (log-scale) for varying degrees of skew
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Figure 6: Median q-errors (logarithmic Scale) for different
Join Sizes (4,5,6) and Number of Filter Predicates (1-5).

(upper plot) and varying degrees of correlation (lower plot).
We can see that DeepDB and the storage optimized version
can both outperform all other baselines. While on unifor-
m/independent data, DeepDB provides no significant ad-
vantage even over simple techniques such as random sam-
pling or Postgres (as expected), DeepDB outperforms the
other baselines for higher degrees of skew/correlation. For
higher degrees of skew/correlation, the approaches based on
sampling (random sampling, IBJS) as well as Postgres all de-
grade significantly. Compared to those approaches, MSCN
can handle skew/correlation much better but still degrades
which we attribute again to the coverage of the training
queries. Finally, wavelets again provide the lowest accuracy
on all configurations since they suffer from the curse of di-
mensionality similar to the real-world data in Figure 1.

Generalization Capabilities. Especially for learned ap-
proaches, the question of generalization is important, i.e.,
how well the models perform on previously unseen queries.
For instance, by default the MCSN approach is only trained
with queries up to three joins because otherwise the train-
ing data generation would be too expensive [16]. Similarly
in our approach, in the ensemble only few RSPNs with large
joins occur because otherwise the training would also be too
expensive. However, both approaches support cardinality
estimates for unseen queries.

To compare both learned approaches, we randomly gen-
erated queries for joins with four to six tables and one to
five selection predicates for the IMDb dataset. In Figure 6,
we plot the resulting median q-errors for both learned ap-
proaches: DeepDB and MCSN [16]. The median q-errors
of DeepDB are orders of magnitude lower for larger joins.
Additionally, we can observe that, for the MCSN approach,
the estimates tend to become less accurate for queries with
fewer selection predicates. One possible explanation is that
more tuples qualify for such queries and thus higher car-
dinalities have to be estimated. However, since there are
at most three tables joined in the training data such higher
cardinality values are most likely not predicted. Thus, using
RSPNs leads to superior generalization capabilities.

Updates. In this experiment, we show the update capabili-
ties of RSPNs. The easy and efficient updateability is a clear
advantage of DeepDB compared to deep-learning based ap-
proaches for cardinality estimation [16, 42]. To show the
effects of updates on the accuracy, we first learn the base
RSPN ensemble on a certain share of the full IMDb dataset
and then use the remaining tuples to update the database.

To ensure a realistic setup, we split the IMDb dataset
based on the production year (i.e., newer movies are in-
serted later). As depicted in Table 2 the q-errors do not
change significantly for updated RSPNs even if the update
fraction increases; i.e., if we split on earlier production years.
For building the RSPNs, we use zero as the budget factor
to demonstrate that even a base RSPN ensemble provides
good estimates after updates. This is also the reason why
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Table 2: Estimation Errors for JOB-light after Updates.

Temporal < 2019 < 2011 < 2009 < 2004 < 1991
Split (0%) (4.7%) (9.3%) (19.7%) (40.1%)

Median 1.22 1.28 1.31 1.34 1.41
90th 3.45 3.17 3.23 3.60 4.06
95th 4.77 4.30 3.83 4.07 4.35

105 107

Samples per RSPN (Base Ensemble)

2.0

2.2

2.4

q-
er

ro
r

1000

2000

T
ra

in
in

g
ti

m
e

(s
)q-error

Training time

0 1 2 3
Ensemble Learning Budget

1.85

1.90

q-
er

ro
r

5000

10000

T
ra

in
in

g
ti

m
e

(s
)q-error

Training time

Figure 7: Q-errors and Training Time (in s) for varying
Budget Factors and Sample Sizes.

the estimation errors slightly deviate from Table 1. Our re-
sults in Table 2 show that with a higher fraction of updates,
the accuracy drops only slightly. The reason is that the
structure of the RSPN tree is not changed by updates, but
only the parameters of the RSPNs which might not be the
optimal structure anymore if the data distributions/correla-
tions change due to the updates. In case the accuracy drops
beyond a threshold, DeepDB can still decide to recreate the
RSPN offline based on the new data.

Parameter Exploration. Finally, in the last experiment,
we explore the tradeoff between ensemble training time and
prediction quality of DeepDB . We first vary the budget fac-
tor used in the ensemble selection between zero (i.e. learning
only the base ensemble with one RSPN per join of two ta-
bles) and B=3 (i.e. the training of the larger RSPNs takes
approximately three times longer than the base ensemble)
while using 107 samples per RSPN. We then use the result-
ing ensemble to evaluate 200 queries with three to six tables
and one to five selection predicates. The resulting median q-
errors are shown in Figure 7. For higher budget factors the
means are improving but already saturate at B = 0.5. This
is because there are no strong correlations in larger joins
that have not already been captured in the base ensemble.

Moreover, we evaluate the effect of the sampling to reduce
the training time. In this experiment we vary the sample size
from 1000 to 10 million. We observe that while the training
time increases, the higher we choose this parameter, the
prediction quality improves (from 2.5 to 1.9 in the median).
In summary, the training time can be significantly reduced
if slight compromises in prediction quality are acceptable.
When minimization of training time is the more important
objective we can also fall back and only learn RSPNs for all
single tables and no joins at all. This reduces the ensemble
training time to just five minutes. However, even this cheap
strategy is still competitive. For JOB-light this ensemble
has a median q-error of 1.98, a 90-th percentile of 5.32, a
95-th percentile of 8.54 and a maximum q-error of 186.53.
Setting this in perspective to the baselines, this ensemble
still outperforms state of the art for the higher percentiles
and only Index Based Join Sampling is slightly superior in
the median. This again proves the robustness of RSPNs.

Latencies. The estimation latencies for cardinalities using
DeepDB are currently in the order of µs to ms which suffices
for complex join queries that often run for multiple seconds
on larger datasets. If more complex predicates spanning
over several columns are used or more tables are involved in
the join the latencies increase. In Figure 8 we investigate
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Figure 8: Latencies of DeepDB for different Join Sizes
(4,5,6) and Number of Filter Attributes (1-5).

this effect in more detail. We report both the latency re-
quired for the RSPN inference and the total time including
the overhead of translating the queries to expectations and
probabilities using our probabilistic query compilation pro-
cedure. The RSPN inference is efficient because C++ code
is compiled automatically for the trained RSPNs similar to
[40]. As we see, while the latencies increase for more com-
plex predicates and joins, they are still around 3ms in the
worst case and in the range of µs for easier queries. In fu-
ture, we plan to optimize not just RSPN inference but also
the overhead of query translation to bring the total latency
even closer to only the RSPN inference.

6.2 Experiment 2: AQP
Workload and Setup. We evaluated the approaches on
both a synthetic dataset and a real-world dataset. As syn-
thetic dataset, we used the Star Schema Benchmark (SSB)
[32] with a scale factor of 500 with the standard queries (de-
noted by S1.1-S4.3). As the real-world dataset, we used the
Flights dataset [1] with queries ranging from selectivities be-
tween 5% an 0.01% covering a variety of group by attributes,
AVG, SUM and COUNT queries (denoted by F1.1-F5.2). To scale
the dataset up to 1 billion records we used IDEBench [9].

As baselines we used VerdictDB [33], Wander Join/XDB
[21] and the Postgres TABLESAMPLE command (using random
samples). VerdictDB is a middleware that can be used with
any database system. It creates a stratified and a uniform
sample for the fact tables to provide approximate queries.
For VerdictDB, we used the default sample size (1% of the
full dataset) for the Flights dataset. For the SSB bench-
mark, this led to high query latencies and we thus decided
to choose a sample size such that the query processing time
was two seconds on average. Wander Join is a join sampling
algorithm leveraging secondary indexes to generate join sam-
ples quickly. We set the time bound also to two seconds
for a fair comparison and only evaluated this algorithm for
datasets with joins. To this end, we created all secondary
indexes for joins and predicates. For TABLESAMPLE we chose
a sample size such that the queries take two seconds on av-
erage. For DeepDB , we use a sample size of 10M samples
for the Flights dataset and 1M samples for the SSB dataset
to construct RSPNs.

Training Time and Storage Overhead. The training took
just 17 minutes for the SSB dataset and 3 minutes for the
Flights dataset. The shorter training times compared to the
IMDb dataset are due to fewer cross-table correlations and
hence fewer large RSPN models in the ensemble. For Ver-
dictDB, uniform and stratified samples have to be created
from the dataset. This took 10 hours for the flights dataset
and 6 days for the SSB benchmark using the standard setup
of VerdictDB.For wander join, secondary indexes had to be
created also requiring several hours for the SSB dataset.

For the Flights dataset the model size of DeepDB is 2.2
MB (vs. 11.4 MB for VerdictDB) and for the SSB dataset
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Figure 9: Average Relative Error and Latencies for the
Flights dataset.
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Figure 10: Average Relative Error for SSB dataset. Note
the logarithmic Scale for the Errors.

DeepDB requires 34.4 MB (vs. 30.7 MB for VerdictDB).
In contrast to DeepDB and VerdictDB, XDB and Postgres
TABLESAMPLE compute samples online and thus do not have
any additional (offline) storage overhead.

Accuracy and Latency. For AQP two dimensions are of
interest: the quality of the approximation and the runtime
of queries. For reporting the quality of the approximation

we use the relative error which is defined as
|atrue−apredicted |

atrue

where atrue and apredicted are the true and predicted aggre-
gate function, respectively. If the query is a group by query,
several aggregates have to be computed. In this case, the
relative error is averaged over all groups.

For the Flights dataset, as shown in Figure 9 we can ob-
serve that DeepDB always has the lowest average relative
error. This is often the case for queries with lower se-
lectivities where sample-based approaches have few tuples
that satisfy the selection predicates and thus the approxi-
mations are very inaccurate. In contrast, DeepDB does not
rely on samples but models the data distribution and lever-
ages the learned representation to provide estimates. For
instance, for query 11 with a selectivity of 0.5% VerdictDB
and the TABLESAMPLE strategy have an average relative error
of 15.6% and 13.6%, respectively. In contrast, the average
relative error of DeepDB is just 2.6%.

Moreover, the latencies for both TABLESAMPLE and Ver-
dictDB are between one and two seconds on average. In
contrast, DeepDB does not rely on sampling but on evalu-
ating the RSPNs. This is significantly faster resulting in a
maximum latency of 31ms. This even holds true for queries
with several groups where more expectations have to be
computed (at least one additional per different group).

The higher accuracies of DeepDB are even more severe
for the SSB benchmark. The queries have even lower selec-
tivities between 3.42% and 0.0075% for queries 1 to 12 and
0.00007% for the very last query. This results in very in-
accurate predictions of the sample-based approaches. Here,
the average relative errors are orders of magnitude lower for
DeepDB always being less than 6%. In contrast, VerdictDB,
Wander Join and the TABLESAMPLE approach often have av-
erage relative errors larger than 100%. Moreover, for some
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Figure 11: True and predicted relative length of the Con-
fidence Intervals.
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Figure 12: Microbenchmarks for non ad-hoc Approaches.

queries no estimate can be given at all because no samples
are drawn that satisfy the filter predicates. However, while
the other approaches take two seconds to provide an esti-
mate, DeepDB requires no more than 293ms in the worst
case. In general latencies are lower for queries with fewer
groups because less expectations have to be computed.

Confidence Intervals. In this experiment, we evaluate how
accurate the confidence intervals predicted by DeepDB are.
To this end, we measure the relative confidence interval

length defined as:
apredicted−alower

apredicted
, where apredicted is the pre-

diction and alower is the lower bound of the confidence in-
terval. This relative confidence interval length is compared
to the confidence interval of a sample-based approach. For
this we draw 10 million samples (as many samples as our
models use for learning in this experiment) and compute
estimates for the average, count and sum aggregates. We
then compute the confidence intervals of these estimates us-
ing standard statistical methods. The resulting confidence
interval lengths can be seen as ground truth and are com-
pared to the confidence intervals of our system in Figure 11.
Note that we excluded queries where less than 10 samples
fulfilled the filter predicates. In these cases the estimation
of a standard deviation has itself a too high variance.

In all cases, the confidence intervals of DeepDB are very
good approximations of the true confidence intervals. The
only exception is query F5.2 for the Flights dataset which is
a difference of two SUM aggregates. In this case, assumption
(i) of Section 5.1 does not hold: the probabilities and expec-
tation estimates cannot be considered independent. This is
the case because both SUM aggregates contain correlated at-
tributes and thus the confidence intervals are overestimated.
However, note that in the special case of the difference of
two sum aggregates the AQP estimates are still very precise
as shown in Figure 9 for the same query F5.2. Such cases
can easily be identified and only occur when arithmetic ex-
pressions of several aggregates should be estimated.

Non ad-hoc Approaches. We now compare the accuracy
of DeepDB against approaches that either require a priori
information about the workload or can make use of it to pro-
vide better accuracies. The results of DeepDB and the other
approaches on the Flights dataset are shown in Figure 13.
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Figure 13: Relative Error for DeepDB vs. Approaches
with a priori Knowledge.

First, we compared DeepDB to the wavelet approach [5]
that we used before. As discussed, this approach does not
require a priori information but a priori knowledge can be
used to optimize wavelets since they do not scale to a large
number of dimensions. Thus, if the required column com-
binations of all queries are known beforehand, we can con-
struct optimal (minimal-sized) wavelets on a per-query ba-
sis. However, as shown in Figure 13, even when using a
priori information for wavelets, DeepDB still outperforms
them. We investigated this effect further and found that
the accuracy of wavelets significantly drops even for a small
number of dimensions as shown in Figure 12 (right).

Second, we also compared DeepDB to other approaches
that require a priori information: (1) stratified sampling
as used in BlinkDB [2] which mitigates effects of skew and
(2) a recent learned AQP approach called DBEst [25]. It
is important to note that different from DeepDB these ap-
proaches cannot answer ad-hoc queries with column com-
binations not covered in the a priori information which is
possible in DeepDB by combining multiple RSPNs using
our probabilistic query compilation approach as discussed in
Section 4. In the following, we discuss the results if a priori
information for all queries on the Flights dataset is available.
As shown in Figure 13 for these queries, stratified sampling
can provide accuracies comparable to DeepDB . However, in-
terestingly if a query has highly selective filter conditions on
one of the stratification columns (as in query F5.2 or F4.2),
DeepDB is still superior. Moreover, while for DBEst the
accuracies are also comparable to DeepDB we noticed that
for some queries it takes up to 20s to provide an answer.
We investigated this effect closer in Figure 12 (left) finding
that the latency is exponential w.r.t. the number of filter
conditions on numeric columns. This is inevitable since the
approach relies on an integration over the domains of nu-
meric columns.

7. RELATED WORK
Learned Cardinality Estimation. The problem of selec-
tivity estimation for single tables is a special case of cardinal-
ity estimation. There is a large body of work applying differ-
ent ML approaches including probabilistic graphical models
[45, 12, 11], neural networks [18, 22] and deep learning den-
sity models [14] to this problem. Recently, Dutt et al. [8]
suggested using lightweight tree-based models in combina-
tion with log-transformed labels. The first works applying
ML to cardinality estimation including joins used simple re-
gression models [3, 26]. More recently, Deep Learning was
specifically proposed to solve cardinality estimation end-to-
end [16, 42]. Woltmann et al. [48] also separate the prob-
lem of cardinality estimation on a large schema by learning
models similar to [16] for certain schema sub-parts. How-
ever, two models for schema sub-parts cannot be combined
to provide estimates for a larger join. Other techniques ex-
ploit learned models for overlapping subgraph templates for

recurring cloud workloads [49]. All these models need a
workload to be executed and used as training data which is
different from our data-driven approach.

Learned AQP. Early work [38] suggests to approximate
OLAP cubes by mixture models based on clusters in the
data. Though greatly reducing the required storage, the ap-
proximation errors are relatively high. FunctionDB [43] con-
structs piecewise linear functions as approximation. In con-
trast to DeepDB , only continuous variables are supported.
DBEst [25] builds models for popular queries. However,
in contrast to DeepDB slight variations of those popular
queries and no ad-hoc queries are supported. Park et al.
suggested Database Learning [34] which builds a model from
query results that is leveraged to provide approximate re-
sults for future queries. In contrast, DeepDB is data-driven
and does not require past query results. Moreover, special-
ized generative models were suggested to draw samples for
AQP [44]. However, this technique does not work for joins.

Probabilistic Databases. Similar to our work, probabilis-
tic databases have used graphical models to represent joint
probability distributions [47, 15, 36, 37] to overcome the
tuple-independence assumption that early approaches relied
on [6, 31, 41]. For instance, Markov Logic Networks (MLNs)
were used to explicitly specify correlations in probabilistic
databases [15, 13]. In contrast to DeepDB , correlations need
to be manually specified and are not learned. Moreover,
Rekatsinas et al. [36] instead use factor graphs to model cor-
relations in probabilistic databases and construct annotated
arithmetic circuits (AACs) which also encode a probability
distribution with sum and product nodes similar to SPNs.
Different from DeepDB , additional representations (lineage-
AACs) have to be constructed on a per-query basis whereas
RSPNs are data-driven and thus workload-independent. Fi-
nally, related to the idea of computing a data-driven model
is generally the field of knowledge compilation where an ex-
pensive offline phase creates a representation for instance
for evaluating Boolean formulas [7, 46, 4]. However, non
of these approaches targets the complexity of SQL queries
supported in DeepDB .

8. CONCLUSION AND FUTURE WORK
In this work we have proposed DeepDB which is a data-

driven approach for learned database components. We have
shown that our approach is general and can be used to
support various tasks including cardinality estimation and
approximate query processing. We believe our data-driven
learning approach can also be used for other DBMS compo-
nents. For instance, it has already been shown that column
correlations can be exploited to improve indexing [50]. In
addition, SPNs naturally provide a notion of correlated clus-
ters that can also be used for suggesting using interesting
patterns in data exploration.
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