
Fine-Grained Lineage for Safer Notebook Interactions

StephenMacke,
1,2

Hongpu Gong,
2

Doris Jung-Lin Lee,
2

Andrew Head,
2

Doris Xin,
2

Aditya Parameswaran
2

1
University of Illinois (UIUC)

2
University of California, Berkeley

{smacke,ruiduoray,dorislee,andrewhead,dorx,adityagp}@berkeley.edu

ABSTRACT

Computational notebooks have emerged as the platform of choice

for data science and analytical workflows, enabling rapid iteration

and exploration. By keeping intermediate program state in memory

and segmenting units of execution into so-called “cells”, notebooks

allow users to enjoy particularly tight feedback. However, as cells

are added, removed, reordered, and rerun, this hidden intermediate

state accumulates, making execution behavior difficult to reason

about, and leading to errors and lack of reproducibility. We present

nbsafety, a custom Jupyter kernel that uses runtime tracing and

static analysis to automatically manage lineage associated with cell

execution and global notebook state. nbsafety detects and pre-

vents errors that users make during unaided notebook interactions,

all while preserving the flexibility of existing notebook semantics.

We evaluate nbsafety’s ability to prevent erroneous interactions

by replaying and analyzing 666 real notebook sessions. Of these,

nbsafety identified 117 sessions with potential safety errors, and

in the remaining 549 sessions, the cells that nbsafety identified

as resolving safety issues were more than 7× more likely to be

selected by users for re-execution compared to a random baseline,

even though the users were not using nbsafety and were therefore

not influenced by its suggestions.

PVLDBReference Format:

StephenMacke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris

Xin, and Aditya Parameswaran. Fine-Grained Lineage for Safer Notebook

Interactions. PVLDB, 14(6): 1093-1101, 2021.

doi:10.14778/3447689.3447712

PVLDBArtifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/nbsafety-project/.

1 INTRODUCTION

Computational notebooks such as Jupyter [23] provide a flexible

medium for developers, scientists, and engineers to complete pro-

gramming tasks interactively. Notebooks, like simpler predecessor

read-eval-print-loops (REPLs), do not terminate after executing,

but wait for the user to give additional instructions while keeping

intermediate programming state in memory. Notebooks, however,

are distinguished from REPLs by their use of the cell as the atomic

unit of execution, allowing users to edit and re-execute previous

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

doi:10.14778/3447689.3447712

def custom_agg(series):
...

[1] [4]

agg_by_col = {'A': 'min', 'B': custom_agg} [2]

df_x_agg = df_x.agg(agg_by_col)
df_y_agg = df_y.agg(agg_by_col)

[3] [5]

Figure 1: Example sequence of notebook interactions leading to

a stale symbol usage. Symbols with timestamps ≤ 3 (resp. > 3) are

shownwith blue (resp. red) borders.

cells. This cell-based iterative execution modality is a particularly

good fit for the exploratory, ad-hoc nature of modern data science.

As a result, the IPython Notebook project [35], and its successor,

Project Jupyter [23], have both grown rapidly in popularity. With

more than 4.7 million notebooks on GitHub as of March 2019 [37],

Jupyter has been called “data scientists’ computational notebook

of choice” [30]. We focus on Jupyter here due to its popularity, but

our ideas are applicable to computational notebooks in general.

Despite the tighter feedback enjoyed by users of computational

notebooks, and, in particular, by users of Jupyter, notebooks have

a number of drawbacks when used for more interactive and ex-

ploratory analysis. Compared to conventional programming en-

vironments, interactions such as out-of-order cell execution, cell

deletion, and cell editing and re-execution can all complicate the

relationship between the code visible on screen and the resident

notebook state. Managing interactions with this hidden notebook

state is thus a burden shouldered by users, who must remember

what they have done in the past.

Illustration. Consider the sequence of notebook interactions de-

picted in Figure 1. Each rectangular box indicates a cell, the note-

book’s unit of execution. The user first defines a custom aggregation

function that, along with min, will be applied to two dataframes,

df_x and df_y, and executes it as cell [1]. Since both aggregations

will be applied to both dataframes, the user next gathers them into

a function dictionary in the second cell (executed as cell [2]). After
running the third cell, which corresponds to applying the aggre-

gates to df_x and df_y, the user realizes an error in the logic of

custom_agg and goes back to the first cell to fix the bug. They re-

execute this cell after making their update, indicated as [4]. How-
ever, they forget that the old version of custom_agg still lingers
in the agg_by_col dictionary and rerun the third cell (indicated

as [5]) without rerunning the second cell. We deem this an unsafe

execution, because the user intended for the change to agg_by_col
to be reflected in df_agg_x and df_agg_y, but it was not. Upon
inspecting the resulting dataframes df_x_agg and df_y_agg, the
user may or may not realize the error. In the best case, user may

identify the error and rerun the second cell. In the worst case, users

may be deceived into thinking that their change had no effect.

This example underscores the inherent difficulty in manually

managing notebook state, inspiring colorful criticisms such as a talk

1093

https://doi.org/10.14778/3447689.3447712
https://github.com/nbsafety-project/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447712


titled “I Don’t Like Notebooks” presented at JupyterCon 2018 [17].

In addition to the frustration that users experience when spending

valuable time debugging state-related errors, such bugs can lead

to invalid research results and hinder reproducibility.

Key Research Challenges. The goal of this paper is to develop

techniques to automatically identify and prevent potentially unsafe cell

executions, without sacrificing existing familiar notebook semantics.

We encounter a number of challenges toward this end:

1. Automatically detecting unsafe interactions. To detect unsafe inter-

actions due to symbol staleness issues, it becomes clear that static

analysis on its own is not enough. A static approach must neces-

sarily be overly conservative when gathering lineage metadata /

inferring dependencies, as it must consider all branches of control

flow. On the other hand, some amount of static analysis is necessary

so that users can be warned before they execute an unsafe cell (as

opposed to during cell execution, by which time the damage may

already be done); finding the right balance is nontrivial.

2. Automatically resolving unsafe behavior with suggested fixes. In ad-

dition to detecting potentially unsafe interactions, we should ideally

also identify which cells to run in order to resolve staleness issues.

A simpler approach may be to automatically rerun cells when a

potential staleness issue is detected (as in Dataflow notebooks [24]),

but in a flexible notebook environment, there could potentially be

more than one cell whose re-executions would all resolve a partic-

ular staleness issue; identifying these to present them as options to

the user requires a significant amount of nontrivial static analysis.

3. Maintaining interactive levels of performance. We must address

the aforementioned challenges without introducing unacceptable

latencies or memory usage. First, we must ensure that any lineage

metadata we introduce does not grow too large in size. Second,

efficiently identifying cells that resolve staleness issues is also non-

trivial. Suppose we are able to detect cells with staleness issues,

and we have detected such issues in cell cs . We can check whether

prepending some cell cr (and thereby executing cr first before cs )
would fix the staleness issue (by, e.g., detecting whether the merged

cell cr ⊕cs has staleness issues), but we show in Section 5.2 that a di-

rect implementation of this idea scales quadratically in the number

of cells in the notebook.

Despite previous attempts to address these challenges and to facil-

itate safer interactions with global notebook state [1, 24, 38], to our

knowledge, nbsafety is the first to do so while preserving existing

notebook semantics. For example, Dataflow notebooks [24] require

users to explicitly annotate cells with their dependencies, and force

the re-execution of cells whose dependencies have changed. Node-

book [38] and the Datalore kernel [1] attempt to enforce a temporal

ordering of variable definitions in the order that cells appear, again

forcing users to compromise on flexibility. In the design space of

computational notebooks [25], Dataflow notebooks observe reac-

tive execution order, while Nodebook and Datalore’s kernel ob-

serve forced in-order execution. However, a solution that preserves

any-order execution semantics, while simultaneously helping users

avoid errors that are only made possible due to such flexibility, has

heretofore evaded development.

Contributions. To address these challenges, we develop nbsafety,

a custom Jupyter kernel and frontend for automatically detecting

unsafe interactions and alerting users, all while maintaining in-

teractive levels of performance and preserving existing notebook

semantics. After a single installation command [27], users of both

Submit cell
execution

Compute symbol
lineage during execution

For each cell:
Perform liveness and
initialized variable analysis

Highlight cells

➊ Runtime tracer➋ Static checker

➌ Frontend

Figure 2: nbsafetyworkflowwith architectural components.

JupyterLab and traditional Jupyter notebooks can opt to use the

nbsafety kernel as a drop-in replacement for Jupyter’s built-in

Python 3 kernel. nbsafety introduces two key innovations to ad-

dress the challenges outlined above:

1. Efficient and accurate detection of staleness issues in cells via novel

jointdynamicandstaticanalysis.Thenbsafety kernel combines run-

time tracing with static analysis in order to detect and prevent note-

book interactions that are unsafe due to staleness issues of the form

seen in Figure 1. The tracer (§3) instruments each program state-

ment so that program variable definitions are annotated with parent

dependencies and cell execution timestamps. This metadata is then

used by a runtime state-aware static checker (§4) that combines said

metadata with static program analysis techniques to determine

whether any staleness issues are present prior to the start of cell ex-

ecution. This allows nbsafety to present users with cell highlights

(§5) that warn them about cells that are unsafe to execute due to stal-

eness issues before they try executing such cells, thus preserving de-

sirable atomicity of cell executions present in traditional notebooks.

2. Efficient resolution of staleness issues. Beyond simply detecting stal-

eness issues, we also show how to detect cells whose re-execution

would resolve such staleness issues — but doing so efficiently re-

quired us to leverage a lesser-known analysis technique called ini-

tialized variable analysis (§4) tailored to this use case. We show how

initialized analysis brings staleness resolution complexity down

from time quadratic in the number of cells in the notebook to linear,

crucial for large notebooks.

We validate our design choices for nbsafety by replaying and an-

alyzing of a corpus of 666 execution logs of real notebook sessions,

scraped from GitHub (§6). In doing so, nbsafety identified that 117

sessions had potential safety errors, and upon sampling these for

manual inspection, we found several with particularly egregious

examples of confusion and wasted effort by real users that would

have been saved with nbsafety. After analyzing the 549 remaining

sessions, we found that cells suggested by nbsafety as resolving

staleness issues were strongly favored by users for re-execution—

more than 7× more likely to be selected compared to random cells,

even though these user interactions were originally performedwith-

out nbsafety and therefore were not influenced by its suggestions.

Overall, our empirical study indicates that nbsafety can reduce

cognitive overhead associated with manual maintenance of global

notebook state under any-order execution semantics, and in doing

so, allows users to focus their efforts more on exploratory data anal-

ysis, and less on avoiding and fixing state-related notebook bugs.

Our free and open source code is available publicly onGitHub [27].

2 ARCHITECTUREOVERVIEW

In this section, we give an overview of nbsafety’s components

and how they integrate into the notebook workflow.

1094
















