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ABSTRACT
Given an undirected graph and a number of vertex groups, the

group Steiner tree problem is to find a tree such that (i) this tree

contains at least one vertex in each vertex group; and (ii) the sum of

vertex and edge weights in this tree is minimized. Solving this prob-

lem is useful in various scenarios, ranging from social networks

to knowledge graphs. Most existing work focuses on solving this

problem in vertex-unweighted graphs, and not enough work has

been done to solve this problem in graphs with both vertex and edge

weights. Here, we develop several algorithms to address this issue.

Initially, we extend two algorithms from vertex-unweighted graphs

to vertex- and edge-weighted graphs. The first one has no approxi-

mation guarantee, but often produces good solutions in practice.

The second one has an approximation guarantee of |Γ | − 1, where

|Γ | is the number of vertex groups. Since the extended (|Γ | − 1)-

approximation algorithm is too slow when all vertex groups are

large, we develop two new (|Γ | − 1)-approximation algorithms that

overcome this weakness. Furthermore, by employing a dynamic pro-

gramming approach, we develop another (|Γ |−ℎ+1)-approximation

algorithm, where ℎ is a parameter between 2 and |Γ |. Experiments

show that, while no algorithm is the best in all cases, our algorithms

considerably outperform the state of the art in many scenarios.
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1 INTRODUCTION
Given an undirected graph𝐺 and a number of vertex groups, a group
Steiner tree is a tree in 𝐺 such that (i) this tree contains at least one
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vertex in each vertex group; and (ii) the total weight of vertices

and edges in this tree is minimized. Finding group Steiner trees is

an interesting problem that has applications in various scenarios,

including team formation in social networks (e.g., [28, 33, 43]),
information retrieval in relational databases (e.g., [11, 14, 30, 31]),
design of very-large-scale integrated circuits (e.g., [19, 24, 25, 36]),
and pathway identification in metabolic networks (e.g., [17]). Most

existing work on finding group Steiner trees (e.g., [19, 24, 25, 28,
31, 36]), however, focuses on the case where vertex weights are

omitted, i.e., only edge weights are considered when calculating the

total weight of a tree. Nevertheless, there are useful applications

that require finding group Steiner trees in graphs with both vertex

and edge weights. We describe an example as follows.

Consider a social network where vertices and edges represent ex-

perts and collaborations between experts, respectively. Each vertex

is associated with some skills and a weight value representing the

hiring cost of expert. Each edge is associated with a weight value

representing the distance between two experts. Suppose that we

are to find a team of experts for performing a task that requires a

set Γ of skills. For this purpose, we can find a group Steiner tree for

|Γ | vertex groups such that each vertex group is the set of vertices

that are associated with a specific skill in Γ. Since this tree contains
at least one vertex in each vertex group, the vertices in this tree

represent a team of experts who collectively have all the required

skills for performing the task. Since the total weight of vertices

and edges in this tree is minimized, we can strike a good trade-off

between the cost of hiring these experts and their closeness to

each other, which could affect the efficiency of their collaboration

[28, 33, 43]. We can adjust this trade-off by regulating vertex and

edge weights, depending on whether we prefer lowering the hiring

cost or reducing the distances between experts. We visualize an

example in the DBLP [2] network in Figure 1.

Some exact algorithms [14, 31] have been developed for finding

optimal group Steiner trees. The most advanced exact algorithms,

i.e., PrunedDP and PrunedDP++ in [31], rely on techniques that

only hold in vertex-unweighted scenarios (details in the supplement

[6]), and thus do not suit finding optimal group Steiner trees in

graphs with both vertex and edge weights. The other simpler exact

algorithms, i.e.,DPBF in [14] andBasic in [31], can perform this task.

However, due to the NP-hardness of the group Steiner tree problem

[25, 37], these algorithms have exponential time complexities with
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Figure 1: A snapshot of the DBLP [2] network, where green
and orange experts have the skills of Steiner trees and power
grids, respectively. The thick edge highlights a team of two
experts who collectively have these two skills. By minimiz-
ing vertex and edgeweights of experts, we can lower the cost
of hiring experts, and reduce the distances between experts.

respect to the number of vertex groups: |Γ |. As a result, even though
|Γ | is often limited in practice (e.g., in team formation scenarios

where |Γ | is the number of skills for performing a task), it is still

too slow to use these algorithms to find optimal group Steiner trees

in some cases. Therefore, it is also preferable to develop non-exact

algorithms that find sub-optimal group Steiner trees.

Most existing non-exact algorithms ignore vertex weights (e.g.,
[19, 25, 28, 36]). To the best of our knowledge, the algorithm in [8] is

the only existing non-exact algorithm that considers vertex weights.

It achieves an approximation guarantee of𝑂 (log |𝑉 | log |Γ |), where
|𝑉 | is the number of vertices. However, it has a large time complexity

of |𝑉 |𝑂̃ (𝑡𝑤 (𝐺)2)
, where 𝑂̃ (𝑥) = 𝑂 (𝑥 · polylog(𝑥)), and 𝑡𝑤 (𝐺) is the

treewidth of the input graph 𝐺 , which often ranges from dozens to

hundreds for real graphs [34]. As a consequence, the algorithm in

[8] is of theoretical interest only. Hence, there is a need for more

practical algorithms for finding group Steiner trees in graphs with

both vertex and edge weights.

To address the above issue, we make the following contributions.

• We extend a heuristic algorithm [28] from vertex-unweighted

graphs to vertex- and edge-weighted graphs (Section 3). The

extension, dubbed exENSteiner, has a time complexity of

𝑂

(
|Γ | · ( |𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |)

)
,

where |𝐸 | is the number of edges.

• Since exENSteiner has no approximation guarantee, we further

extend a (|Γ | − 1)-approximation algorithm [25]. The extension,

dubbed exIhlerA (Section 4.1), has a time complexity of

𝑂

(
|𝑔𝑚𝑖𝑛 | · ( |𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |)

)
,

where |𝑔𝑚𝑖𝑛 | is the size of the smallest vertex group.

• When |𝑔𝑚𝑖𝑛 | is large, exIhlerA is too slow to be used. To address

this issue, we propose a new (|Γ | − 1)-approximation algorithm,

dubbed FastAPP (Section 4.2), which has a time complexity of

𝑂

(
|Γ | · ( |𝐸 | + |𝑉 | log |𝑉 |)

)
.

• FastAPP does not dominate the extensions on practical solution

qualities. To attain this dominance while maintaining a high

efficiency, we propose another (|Γ |−1)-approximation algorithm,

dubbed ImprovAPP (Section 4.3). It has a time complexity of

𝑂

(
|Γ | ·

(
|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · ( |𝑉 | + log |Γ |)

))
,

which is close to𝑂 ( |Γ | · ( |𝐸 |+ |𝑉 | log |𝑉 |)) in practice (we explain
this in Section 7.3).

• In addition, by employing an exact algorithm for group Steiner

trees, i.e., DPBF in [14], we propose a (|Γ | −ℎ+1)-approximation

algorithm, dubbed PartialOPT (Section 5), where ℎ ∈ [2, |Γ |] is
a tunable parameter. The time complexity of PartialOPT is

𝑂

(
|𝑔𝑚𝑖𝑛 | ·

(
|Γ | |𝑉 | + 3

ℎ |𝑉 | + 2
ℎ ( |𝐸 | + ℎ |𝑉 | + |𝑉 | log |𝑉 |)

) )
.

To our knowledge, PartialOPT provides the tightest polynomial-

time approximation guarantee to date for finding group Steiner

trees in treewidth-unbounded graphs with both vertex and edge

weights.

• We evaluate our algorithms using real datasets (Section 7), and

show that, while no algorithm is the best in all cases, our al-

gorithms considerably outperform the state of the art in many

scenarios. In particular, (i) our algorithms scale well to |Γ |, and
thus support the exact algorithms [14, 31] that have exponential

time complexities with respect to |Γ |; and (ii) ImprovAPP has a

similar speed with FastAPP, and combines superior efficiency

and solution quality when it is too slow to find optimal solutions.

2 PROBLEM FORMULATION
We consider an undirected graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), where𝑉 is the set of

vertices, 𝐸 is the set of edges,𝑤 is a functionwhichmaps each vertex

𝑖 ∈ 𝑉 to a nonnegative value𝑤 (𝑖) that we refer to as vertex weight,
and 𝑐 is a function which maps each edge 𝑒 ∈ 𝐸 to a non-negative

value 𝑐 (𝑒) that we refer to as edge weight. We also consider a set Γ
of vertex groups such that each vertex group 𝑔 ∈ Γ is a subset of

vertices, i.e., 𝑔 ⊆ 𝑉 . Notably, vertex groups may overlap with each

other. We aim to address the following problem.

Problem 1 (Vertex- and Edge-Weighted Group Steiner Tree

[14]). Given an undirected graph 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) and a set Γ of vertex
groups, the vertex- and edge-weighted group Steiner tree problem asks
for a tree 𝐺 ′(𝑉 ′, 𝐸 ′),𝑉 ′ ⊆ 𝑉 , 𝐸 ′ ⊆ 𝐸 such that (i) 𝑔 ∩𝑉 ′ ≠ ∅ for all
𝑔 ∈ Γ (i.e., this tree contains at least one vertex in each group in Γ),
and (ii) the regulated weight of this tree, namely,

𝑐𝜆 (𝐺 ′) = (1 − 𝜆)∑𝑣∈𝑉 ′ 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸′ 𝑐 (𝑒) (1)

is minimized, where 𝜆 ∈ [0, 1] is a regulating weight.

We note that Problem 1 is NP-hard even when 𝐺 is a tree and

all vertices have zero weights [25, 37]. We refer to its special case

where all vertices have zero weights as the vertex-unweighted group
Steiner tree problem [36]. We assume that |Γ | ≥ 2, since Problem 1

is trivial when |Γ | = 1. Moreover, we assume that 𝐺 is connected.

If 𝐺 is not connected, then we can solve Problem 1 in𝐺 as follows:

first, we obtain a solution in each maximal connected component

of 𝐺 separately; and then, we evaluate all the obtained solutions,

and return the one with the minimum regulated weight.

3 AN EXTENDED HEURISTIC ALGORITHM
The ENSteiner algorithm in [28] is a heuristic algorithm for finding

vertex-unweighted group Steiner trees. It employs (i) a transfor-

mation [16] from group Steiner trees to Steiner trees in vertex-

unweighted graphs; and (ii) a 2-approximation algorithm [41] for
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finding vertex-unweighted Steiner trees. In this section, we extend

ENSteiner for finding vertex- and edge-weighted group Steiner

trees. First, in Sections 3.1 and 3.2, we extend the transformation and

the 2-approximation algorithm, respectively. Then, in Section 3.3,

we extend ENSteiner. Our extension is dubbed exENSteiner.

3.1 From group Steiner trees to Steiner trees
The Steiner tree problem in graphs with vertex and edge weights

is a special case of Problem 1 where each vertex group contains

exactly one vertex. We introduce this problem as follows.

Problem 2 (Vertex- and Edge-Weighted Steiner Tree [27]).

Given a connected undirected graph 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡 ) and a set 𝑇𝑡 ⊆
𝑉𝑡 of vertices that we refer to as compulsory vertices, the vertex- and
edge-weighted Steiner tree problem asks for a tree 𝐺 ′

𝑡 (𝑉 ′
𝑡 , 𝐸

′
𝑡 ),𝑉 ′

𝑡 ⊆
𝑉𝑡 , 𝐸

′
𝑡 ⊆ 𝐸𝑡 such that (i) 𝑇𝑡 ⊆ 𝑉 ′

𝑡 (i.e., all compulsory vertices are in
this tree), and (ii) the weight of this tree, namely,

𝑐 (𝐺 ′
𝑡 ) =

∑
𝑣∈𝑉 ′

𝑡
𝑤𝑡 (𝑣) +

∑
𝑒∈𝐸′

𝑡
𝑐𝑡 (𝑒) (2)

is minimized.
We refer to the special case of Problem 2 where all vertex weights

are zero as the vertex-unweighted Steiner tree problem [15]. We

observe that any instance of Problem 1 can be transformed to an

equivalent instance of Problem 2, as shown as follows. We put the

proof of this transformation in the supplement [6].

Theorem 1. Let 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) be a connected undirected graph,
and Γ be a set of vertex groups. Let 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡 ) be a connected
undirected graph, and 𝑇𝑡 ⊆ 𝑉𝑡 be a set of compulsory vertices. Based
on 𝐺 and Γ, we construct 𝐺𝑡 and 𝑇𝑡 in the following way:
(1) Initialize 𝑉𝑡 = 𝑉 , 𝐸𝑡 = 𝐸, 𝑇𝑡 = ∅,𝑤𝑡 = (1 − 𝜆)𝑤 , and 𝑐𝑡 = 𝜆𝑐 .
(2) For each vertex group 𝑔 ∈ Γ, (i) add a dummy vertex 𝑣𝑔 into 𝑇𝑡

and 𝑉𝑡 , such that𝑤𝑡 (𝑣𝑔) = 0, and (ii) add dummy edges (𝑣𝑔, 𝑗)
for all 𝑗 ∈ 𝑔 into 𝐸𝑡 , such that 𝑐𝑡 (𝑣𝑔, 𝑗) = 𝑀 , and𝑀 is a constant
satisfying

𝑀 > (1 − 𝜆)∑𝑣∈𝑉 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸𝑀𝑆𝑇

𝑐 (𝑒), (3)

and 𝐸𝑀𝑆𝑇 is the set of edges in a Minimum Spanning Tree of 𝐺 .
Let Θ𝐺𝑡

be an optimal solution to the vertex- and edge-weighted
Steiner tree problem in𝐺𝑡 , and Θ𝑛𝑜𝑛

𝐺𝑡
be the non-dummy part of Θ𝐺𝑡

.
Then, there is an optimal solution to the vertex- and edge-weighted
group Steiner tree problem in 𝐺 , namely, Θ𝐺 , that has the same sets
of vertices and edges with Θ𝑛𝑜𝑛

𝐺𝑡
.

This transformation is modified from the existing method [16] of

transforming the vertex-unweighted group Steiner tree problem to

the vertex-unweighted Steiner tree problem. The difference is that

we incorporate vertex weights into this transformation. Moreover,

the value of𝑀 in the existing method is unspecified and vaguely

described as a large value. Due to this un-rigorousness, it may be

difficult to decide the usefulness of this transformation in practice,

e.g., if𝐺 contains large weights, then it is difficult to decide whether

there is a feasible𝑀 that guarantees the correctness of this trans-

formation. We address this issue by specifying the bound of𝑀 . In

practice, we can set 𝑀 as 1 + (1 − 𝜆)∑𝑣∈𝑉 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸 𝑐 (𝑒) by

traversing all vertices and edges in 𝑂 ( |𝑉 | + |𝐸 |) time.

Example. In Figure 2, 𝐺 contains five vertices 𝑣1, . . . , 𝑣5, whose

weights are {𝑤 (𝑣1), . . . ,𝑤 (𝑣5)} = {2, 1, 1, 1, 1}. Given the three ver-

tex groups, we transform 𝐺 to 𝐺𝑡 , which contains three dummy

Figure 2: An example of the transformation in Theorem 1,
where the graph on the left (resp., right) is𝐺 (resp.,𝐺𝑡 ). There
are three vertex groups: 𝑔1 = {𝑣1, 𝑣2}, 𝑔2 = {𝑣3} and 𝑔3 = {𝑣5}.

vertices: 𝑇𝑡 = {𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3}. The transformed vertex weights

are: {𝑤𝑡 (𝑣1), . . . ,𝑤𝑡 (𝑣5),𝑤𝑡 (𝑣𝑑1),𝑤𝑡 (𝑣𝑑2),𝑤𝑡 (𝑣𝑑3)} = (1 − 𝜆) ·
{2, 1, 1, 1, 1, 0, 0, 0}. In addition, we have𝑀 > 6. The red thick edges

in the figure highlight (i) the optimal solution to the vertex- and

edge-weighted group Steiner tree problem in 𝐺 , i.e., Θ𝐺 , and (ii)

the optimal solution to the vertex- and edge-weighted Steiner tree

problem in 𝐺𝑡 , i.e., Θ𝐺𝑡
.

3.2 The LANCET algorithm
The 2-approximation algorithm in [41] is designed for finding

vertex-unweighted Steiner trees. Here, we extend it to find vertex-

and edge-weighted Steiner trees. Our extension is dubbed LANCET,
i.e., the lowest weight path concatenating algorithm.

LANCET uses the concept of lowest weight paths (LWPs), which
is defined as follows. An LWP between two vertices 𝑡1 and 𝑡2 in a

graph 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) is a simple path that (i) has 𝑡1 and 𝑡2 as its two

endpoints and (ii) minimizes the total (not 𝜆-regulated) weight of

vertices and edges in this path. We can find the LWPs from a vertex

𝑠 ∈ 𝑉 to the other vertices in 𝐺 as follows. First, for each edge

(𝑢, 𝑣) ∈ 𝐸, we redefine its weight as: 𝑐 ′(𝑢, 𝑣) = 𝑐 (𝑢, 𝑣) +𝑤 (𝑢)/2 +
𝑤 (𝑣)/2. After that, we employ Dijkstra’s algorithm [13] to find the

shortest paths from 𝑠 to the other vertices for the above new edge

weights. These shortest paths are the LWPs from 𝑠 to the other

vertices for the original vertex and edge weights.

Description of LANCET. Algorithm 1 shows the pseudo code of

LANCET. The algorithm randomly selects a compulsory vertex

𝑖𝑟𝑎𝑛𝑑 ∈ 𝑇𝑡 (Line 1), and initializes the following (Line 2):

• The set of connected vertices: 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }.
• The set of unconnected compulsory vertices: 𝑉2 = 𝑇𝑡 \ 𝑖𝑟𝑎𝑛𝑑 .
• An empty tree Θ(𝑉Θ, 𝐸Θ) = ∅.
• An empty min Fibonacci heap (priority queue) [18] 𝑄 = ∅.
Then, it concatenates the LWPs between vertices in 𝑉1 and 𝑉2 as

follows (Lines 3-11). First, for every vertex 𝑖 ∈ 𝑉2, the algorithm

finds the LWPs from 𝑖 to all vertices in 𝑉𝑡 , and stores these LWPs

in a lookup table (Line 3). Then, the algorithm pushes into 𝑄 the

LWPs from the vertices in 𝑉2 to 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }, with the weights

of these LWPs as priorities (Line 4). Subsequently, the algorithm

iteratively pops out the top entry 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) in 𝑄 (Lines

5-6), and processes it in four steps (Lines 7-10):

(1) Merge 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛) into Θ.

(2) Update the set of connected vertices: 𝑉1.

(3) Update the set of unconnected compulsory vertices: 𝑉2.

(4) For each vertex 𝑖 ∈ 𝑉2 and each newly connected vertex 𝑗 , iden-

tify the LWP between 𝑖 and 𝑗 , i.e., 𝐿𝑊𝑃𝑖→𝑗 , from the lookup ta-

ble. Let 𝐿𝑊𝑃𝑖→∗ be the LWP in𝑄 that starts from 𝑖 . If 𝐿𝑊𝑃𝑖→𝑗

has a smaller weight than 𝐿𝑊𝑃𝑖→∗, then replace 𝐿𝑊𝑃𝑖→∗ with
𝐿𝑊𝑃𝑖→𝑗 in 𝑄 (Line 10). In other words, for each vertex 𝑖 ∈ 𝑉2,

𝑄 keeps track of the minimum-weight LWP from 𝑖 to 𝑉1.
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Algorithm 1 The LANCET algorithm

Input: a graph 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡 ), a set of vertices 𝑇𝑡 ⊆ 𝑉𝑡
Output: a Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Randomize 𝑖𝑟𝑎𝑛𝑑 ∈ 𝑇𝑡
2: Initialize 𝑉1 = {𝑖𝑟𝑎𝑛𝑑 }, 𝑉2 = 𝑇𝑡 \ 𝑖𝑟𝑎𝑛𝑑 , Θ = 𝑄 = ∅
3: Find and store 𝐿𝑊𝑃𝑖→𝑗 | ∀𝑖 ∈ 𝑉2,∀𝑗 ∈ 𝑉𝑡
4: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝑖→𝑖𝑟𝑎𝑛𝑑 ) | ∀𝑖 ∈ 𝑉2
5: while 𝑉2 ≠ ∅ do
6: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛))
7: Θ = Θ ∪ 𝐿𝑊𝑃𝑚𝑖𝑛 (𝑉𝑚𝑖𝑛, 𝐸𝑚𝑖𝑛)
8: 𝑉1 = 𝑉1 ∪𝑉𝑚𝑖𝑛

9: 𝑉2 = 𝑉2 \𝑉𝑚𝑖𝑛

10: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄, 𝐿𝑊𝑃𝑖→𝑉1
) | ∀𝑖 ∈ 𝑉2

11: end while
12: Return Θ(𝑉Θ, 𝐸Θ)

LANCET iterates this process until all the compulsory vertices are

connected. In the end, it returns Θ (Line 12).

Example of LANCET. Consider 𝐺𝑡 in Figure 2 (details in Sec-

tion 3.1). Suppose that LANCET initializes 𝑉1 = {𝑣𝑑1} and 𝑉2 =

{𝑣𝑑2, 𝑣𝑑3}. Then, it pushes into𝑄 two paths as follows: 𝐿𝑊𝑃𝑣𝑑2→𝑣𝑑1

as {𝑣𝑑2 → 𝑣3 → 𝑣4 → 𝑣2 → 𝑣𝑑1}, and 𝐿𝑊𝑃𝑣𝑑3→𝑣𝑑1 as {𝑣𝑑3 →
𝑣5 → 𝑣4 → 𝑣2 → 𝑣𝑑1}. It concatenates 𝐿𝑊𝑃𝑣𝑑2→𝑣𝑑1 . After this con-

catenation, 𝑉1 = {𝑣𝑑2, 𝑣3, 𝑣4, 𝑣2, 𝑣𝑑1} and 𝑉2 = {𝑣𝑑3}. Subsequently,
it updates and concatenates 𝐿𝑊𝑃𝑣𝑑3→𝑉1

as {𝑣𝑑3 → 𝑣5 → 𝑣4}. After
that, 𝑉2 = ∅. LANCET returns the highlighted red tree in 𝐺𝑡 .

Approximation guarantee of LANCET. LANCET is an extension

of the 2-approximation algorithm in [41]. The main difference is

that the 2-approximation algorithm concatenates shortest paths for

finding vertex-unweighted Steiner trees, while LANCET concate-

nates lowest weight paths for finding vertex- and edge-weighted

Steiner trees. Another difference is that the ratio of 2 does not hold

for LANCET. We show the approximation guarantee of LANCET as

follows. We put the proof of this guarantee in the supplement [6].

Theorem 2. LANCET has a sharp approximation guarantee of
|𝑇𝑡 | − 1 for solving Problem 2.

Time complexity of LANCET:

𝑂

(
|𝑇𝑡 | · ( |𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)

)
.

The details of this time complexity are in the supplement [6].

3.3 The exENSteiner algorithm
Here, we present exENSteiner, which is an extension of ENSteiner
in [28]. The difference is that we replace the existing transformation

[16] and the 2-approximation algorithm [41] in ENSteiner with our

extended transformation and LANCET, respectively.
Description of exENSteiner. Algorithm 2 shows the pseudo code

of exENSteiner. The algorithm first transforms 𝐺 and Γ to 𝐺𝑡 and

𝑇𝑡 based on Theorem 1 (Line 1). Then, it employs LANCET to find

a Steiner tree in 𝐺𝑡 : Θ𝑡 (𝑉Θ𝑡
, 𝐸Θ𝑡

) (Line 2). Recall that LANCET
initially considers a random dummy vertex as connected, and then

iteratively concatenates the minimum-weight LWPs between con-

nected vertices and unconnected dummy vertices. Suppose that

the first concatenated LWP connects two dummy vertices 𝑣𝑑1 and

Algorithm 2 The exENSteiner algorithm
Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆

Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: 𝐺 (𝑉 , 𝐸,𝑤, 𝑐) & Γ → 𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ,𝑤𝑡 , 𝑐𝑡 ) & 𝑇𝑡 (Theorem 1)

2: Θ𝑡 (𝑉Θ𝑡
, 𝐸Θ𝑡

) = 𝐿𝐴𝑁𝐶𝐸𝑇 (𝐺𝑡 ,𝑇𝑡 )
3: Θ(𝑉Θ, 𝐸Θ) = Θ𝑡 \ ∪𝑔∈Γ𝑣𝑔
4: Θ = 𝑀𝑆𝑇 (Θ)

𝑣𝑑2. Since (i) dummy vertices only connect non-dummy vertices

via dummy edges; and (ii) the weight of each dummy edge is 𝑀 ,

which is larger than the (𝜆-regulated) total weight of a Minimum

Spanning Tree (MST) of𝐺 (see Equation (3)), the first concatenated

LWP contains two dummy edges, and 𝑣𝑑1 and 𝑣𝑑2 are leaves of this

LWP, and the weight of this LWP is smaller than 3𝑀 , i.e., any path

that contains more than two dummy edges has a larger weight.

Moreover, this LWP connects at least one non-dummy vertex. As

a result, each of the later concatenated LWPs contains only one

dummy edge and one (newly connected) dummy vertex, which is

a leaf, since any path that contains more than one dummy edge

would have a larger weight. Thus, all dummy vertices are leaves of

the Steiner tree found by LANCET. Based on this fact, exENSteiner
removes dummy vertices and edges from Θ𝑡 , and produces a feasi-

ble solution to the group Steiner tree problem in 𝐺 : Θ (Line 3). It

returns the MST that spans the vertices in Θ (Line 4).

Example of exENSteiner. Consider the example in Section 3.1 (i.e.,
Figure 2). First, exENSteiner transforms𝐺 and Γ to𝐺𝑡 and𝑇𝑡 . Then,

it employs LANCET to find the highlighted red tree in 𝐺𝑡 as Θ𝑡

(details in Section 3.2). It removes dummy vertices and edges from

Θ𝑡 , and gets the highlighted red tree in 𝐺 as Θ. It returns this tree.

Time complexity of exENSteiner:

𝑂

(
|Γ | · ( |𝐸 | + |𝑉 | log |𝑉 | + |Γ | log |Γ | + |Γ | |𝑉 |)

)
.

The details of this time complexity are also in the supplement [6].

4 THREE (|Γ | − 1)-APPROXIMATION
ALGORITHMS

The above exENSteiner has no approximation guarantee for finding

group Steiner trees. To address this issue, here, we develop three

(|Γ | − 1)-approximation algorithms. First, in Section 4.1, we extend

an existing algorithm that is for vertex-unweighted graphs. Our

extension is dubbed exIhlerA. Since exIhlerA is too slowwhen |𝑔𝑚𝑖𝑛 |
is large, we propose a fast algorithm, dubbed FastAPP, in Section 4.2.
FastAPP does not dominate exENSteiner or exIhlerA on practical

solution qualities. Thus, in Section 4.3, we propose an improved

algorithm, dubbed ImprovAPP, that dominates the above algorithms

on practical solution qualities, and scales well in practice.

4.1 An extended (|Γ | − 1)-approximation
algorithm

Here, we extend the (|Γ |−1)-approximation algorithm in [25], which

we refer to as IhlerA. Our extension is dubbed exIhlerA.
Description of exIhlerA. Algorithm 3 shows the pseudo code of

exIhlerA. It initializes an empty graph𝐺𝑚𝑖𝑛 , and sets 𝑐𝜆 (𝐺𝑚𝑖𝑛) = ∞
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Algorithm 3 The exIhlerA algorithm

Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆

Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Initialize 𝐺𝑚𝑖𝑛 = ∅; 𝑐𝜆 (𝐺𝑚𝑖𝑛) = ∞
2: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
4: Find 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

5: 𝐺𝑖 = ∪𝑔∈Γ\𝑔𝑚𝑖𝑛
𝐿𝑊𝑃𝜆𝑖𝑔

6: 𝐺𝑚𝑖𝑛 = min𝑐𝜆 {𝐺𝑚𝑖𝑛,𝐺𝑖 }
7: end for
8: Return Θ = 𝑀𝑆𝑇 (𝐺𝑚𝑖𝑛)

(Line 1). Then, it identifies the smallest group 𝑔𝑚𝑖𝑛 in Γ (Line 2),

and processes every vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 4-6):

(1) For every vertex group 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 , find the regulated lowest

weight path between 𝑖 and 𝑔: 𝐿𝑊𝑃𝜆𝑖𝑔 (𝑉𝜆𝑖𝑔, 𝐸𝜆𝑖𝑔), i.e., the sim-

ple path that contains 𝑖 and at least one vertex in 𝑔, and the

regulated weight of this path, namely,

𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) = (1 − 𝜆)∑𝑣∈𝑉𝜆𝑖𝑔 𝑤 (𝑣) + 𝜆
∑
𝑒∈𝐸𝜆𝑖𝑔 𝑐 (𝑒), (4)

is minimized. Such paths can be found by invoking Dijkstra’s al-

gorithm to find non-regulated lowest weight paths (see Section

3.2) in 𝐺 ′′(𝑉 , 𝐸, (1 − 𝜆)𝑤, 𝜆𝑐).
(2) Combine 𝐿𝑊𝑃𝜆𝑖𝑔 for every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 to form a graph 𝐺𝑖 .

(3) If the regulated weight of 𝐺𝑚𝑖𝑛 is larger than that of 𝐺𝑖 , then

update 𝐺𝑚𝑖𝑛 to 𝐺𝑖 .

After processing all the vertices in 𝑔𝑚𝑖𝑛 , the algorithm returns the

MST that spans the vertices in 𝐺𝑚𝑖𝑛 (Line 8).

Example of exIhlerA. We use𝐺 in Figure 2 as an example (details in

Section 3.1). Suppose that exIhlerA selects 𝑔2 = {𝑣3} as 𝑔𝑚𝑖𝑛 . Then,

Γ \ 𝑔𝑚𝑖𝑛 contains 𝑔1 and 𝑔3. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 → 𝑣4 → 𝑣2},
and 𝐿𝑊𝑃𝜆𝑣3𝑔3 is the path {𝑣3 → 𝑣4 → 𝑣5}. exIhlerA combines these

two paths as 𝐺𝑣3 , which is the highlighted red tree in 𝐺 . exIhlerA
updates 𝐺𝑚𝑖𝑛 to be this tree. It returns this tree.

Approximation guarantee of exIhlerA. The difference between
IhlerA [25] and exIhlerA is that IhlerA combines shortest paths in

Line 5 for finding vertex-unweighted group Steiner trees, while

exIhlerA combines LWPs for finding vertex- and edge-weighted

group Steiner trees. Like IhlerA, exIhlerA has a guarantee of |Γ | − 1.

The proof is in the supplement [6].

Theorem 3. exIhlerA has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of exIhlerA:

𝑂

(
|𝑔𝑚𝑖𝑛 | · ( |𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |)

)
.

First, it initializes 𝐺𝑚𝑖𝑛 in 𝑂 (1) time. It identifies 𝑔𝑚𝑖𝑛 (Line 2) at

a cost of 𝑂 ( |Γ |). For each 𝑖 ∈ 𝑔𝑚𝑖𝑛 , it finds the regulated lowest

weight path between 𝑖 and each vertex group in Γ \𝑔𝑚𝑖𝑛 (Line 4) in

𝑂 ( |𝐸 | + |𝑉 | log |𝑉 | + |Γ | |𝑉 |) time (by first using Dijkstra’s algorithm

to find the regulated LWPs from 𝑖 to all vertices, and then evaluating

the regulated LWPs from 𝑖 to each vertex in each vertex group in

Γ \ 𝑔𝑚𝑖𝑛). It combines LWPs as 𝐺𝑖 (Line 5) in 𝑂 ( |Γ | |𝑉 |) time. It

updates 𝐺𝑚𝑖𝑛 (Line 6) at a cost of 𝑂 ( |𝑉 | + |𝐸 |). After the loop, it
derives the MST (Line 8) in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |) time [35].

Algorithm 4 The FastAPP algorithm

Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆

Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
2: Find and store 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑖 ∈ 𝑉 ,𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

3: Initialize 𝑖𝑚𝑖𝑛 = ∅; 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) = ∞
4: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
5: if 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) > max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛} then
6: 𝑖𝑚𝑖𝑛 = 𝑖

7: 𝑐𝑜𝑠𝑡 (𝑖𝑚𝑖𝑛) = max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛}
8: end if
9: end for
10: 𝐺𝑚𝑖𝑛 = ∪𝑔∈Γ\𝑔𝑚𝑖𝑛

𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔

11: Return Θ = 𝑀𝑆𝑇 (𝐺𝑚𝑖𝑛)

4.2 A fast (|Γ | − 1)-approximation algorithm
The above exIhlerA is too slow to be implemented when |𝑔𝑚𝑖𝑛 | is
large. To address this issue, here, we propose FastAPP, which uses

a different approximation approach from exIhlerA.
First, recall that the regulated lowest weight path between a ver-

tex 𝑖 and a vertex group 𝑔, namely, 𝐿𝑊𝑃𝜆𝑖𝑔 (𝑉𝜆𝑖𝑔, 𝐸𝜆𝑖𝑔), is a simple

path that contains 𝑖 and at least one vertex in 𝑔, and the regulated

weight of this path (see Equation (4)) is minimized. We observe that

the regulated lowest weight paths between 𝑔 and every vertex can

be found in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |) time via the following two steps.

First, add a dummy vertex 𝑣𝑔 into 𝑉 , such that𝑤 (𝑣𝑔) = 0, and add

dummy edges (𝑣𝑔, 𝑗) for all 𝑗 ∈ 𝑔 into 𝐸, such that 𝑐 (𝑣𝑔, 𝑗) = 0.

Second, use Dijkstra’s algorithm to find the non-regulated lowest

weight paths (see Section 3.2) between 𝑣𝑔 and the other vertices

in 𝐺 ′′(𝑉 , 𝐸, (1 − 𝜆)𝑤, 𝜆𝑐). These paths correspond to the regulated

lowest weight paths between 𝑔 and every vertex in 𝐺 .

Unlike exIhlerA that employs Dijkstra’s algorithm |𝑔𝑚𝑖𝑛 | times,

we can employ Dijkstra’s algorithm |Γ | − 1 times to find 𝐿𝑊𝑃𝜆𝑖𝑔
between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 for achieving the

guarantee of |Γ | − 1. However, this change is not enough for com-

pletely removing |𝑔𝑚𝑖𝑛 | from the time complexity of exIhlerA, due
to the cost of𝑂 ( |𝑔𝑚𝑖𝑛 | · |Γ | |𝑉 |) for building𝐺𝑖 in Line 5 of exIhlerA.
FastAPP completely removes |𝑔𝑚𝑖𝑛 | from its time complexity by

using a different approximation approach from exIhlerA and the

previous work [25]. In particular, FastAPP does not build𝐺𝑖 when

enumerating 𝑖 ∈ 𝑔𝑚𝑖𝑛 . Instead, it finds 𝑖 ∈ 𝑔𝑚𝑖𝑛 that minimizes the

maximum regulated weight of the regulated lowest weight paths

between 𝑖 and each vertex group in Γ \ 𝑔𝑚𝑖𝑛 .

Description of FastAPP. Algorithm 4 shows the pseudo code of

FastAPP. First, it finds 𝑔𝑚𝑖𝑛 in Γ (Line 1). Then, it finds and stores

𝐿𝑊𝑃𝜆𝑖𝑔 (as well as 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔)) between every vertex 𝑖 ∈ 𝑉 and

every vertex group 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line 2). It initializes a vertex 𝑖𝑚𝑖𝑛 ,

and considers the cost of 𝑖𝑚𝑖𝑛 as infinity (Line 3). It processes every

vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 5-8). If the cost of 𝑖𝑚𝑖𝑛 is larger

than the maximum regulated weight of 𝐿𝑊𝑃𝜆𝑖𝑔 for all 𝑔 ∈ Γ \𝑔𝑚𝑖𝑛

(Line 5), then it updates 𝑖𝑚𝑖𝑛 to 𝑖 (Line 6), and updates the cost of

𝑖𝑚𝑖𝑛 to this maximum weight (Line 7). After the loop, it combines

𝐿𝑊𝑃𝜆𝑖𝑚𝑖𝑛𝑔 for every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 to form a graph 𝐺𝑚𝑖𝑛 (Line 10).

It returns the MST that spans the vertices in 𝐺𝑚𝑖𝑛 (Line 11).
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Example of FastAPP. Consider 𝐺 in Figure 2 (details in Section

3.1). Suppose that FastAPP selects 𝑔2 as 𝑔𝑚𝑖𝑛 . It processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 → 𝑣4 → 𝑣2}, and 𝐿𝑊𝑃𝜆𝑣3𝑔3
is the path {𝑣3 → 𝑣4 → 𝑣5}. Suppose that 𝜆 ≠ 0. Then, it calcu-

lates max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣3𝑔) | ∀𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛} as 𝑐𝜆 (𝐿𝑊𝑃𝜆𝑣3𝑔3 ), and up-

dates 𝑖𝑚𝑖𝑛 to 𝑣3. It builds𝐺𝑚𝑖𝑛 by merging 𝐿𝑊𝑃𝜆𝑣3𝑔1 and 𝐿𝑊𝑃𝜆𝑣3𝑔3 ,

which induces the highlighted red tree in 𝐺 . It returns this tree.

Approximation guarantee of FastAPP. Like exIhlerA, FastAPP
has a guarantee of |Γ | − 1. The proof is in the supplement [6].

Theorem 4. FastAPP has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of FastAPP:

𝑂

(
|Γ | · ( |𝐸 | + |𝑉 | log |𝑉 |)

)
.

First, the algorithm finds 𝑔𝑚𝑖𝑛 (Line 1) at a cost of 𝑂 ( |Γ |). Then,
it finds and stores the regulated lowest weight paths (Line 2) in

𝑂 ( |Γ | ( |𝐸 | + |𝑉 | log |𝑉 |)) time. It initializes 𝑖𝑚𝑖𝑛 (Line 3) in 𝑂 (1)
time. Subsequently, it conducts a loop with |𝑔𝑚𝑖𝑛 | iterations (Line
4). In each iteration, it finds max{𝑐𝜆 (𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ \𝑔𝑚𝑖𝑛} from
the pre-stored information in Line 2 in 𝑂 ( |Γ |) time. As a result,

the time complexity of updating 𝑖𝑚𝑖𝑛 (Lines 5-8) is 𝑂 ( |Γ |). Since
|𝑔𝑚𝑖𝑛 | ≤ |𝑉 |, it conducts the above loop in 𝑂 ( |Γ | |𝑉 |) time. After

the loop, it builds 𝐺𝑚𝑖𝑛 (Line 10) in 𝑂 ( |Γ | |𝑉 |) time. Then, it finds

and returns an MST (Line 11) in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |) time.

4.3 An improved (|Γ | − 1)-approximation
algorithm

The above FastAPP does not dominate the extended algorithms on

practical solution qualities. Here, we develop ImprovAPP, which
dominates the above algorithms on practical solution qualities,

while having a high efficiency in practice. The main difference

between ImprovAPP and the above two (|Γ | − 1)-approximation

algorithms is that, when processing each 𝑖 ∈ 𝑔𝑚𝑖𝑛 , ImprovAPP
constructs a feasible solution tree by concatenating lowest weight

paths in a similar way with LANCET.
Description of ImprovAPP. Algorithm 5 shows the pseudo code

of ImprovAPP. First, it finds 𝑔𝑚𝑖𝑛 in Γ (Line 1). Then, it finds and

stores 𝐿𝑊𝑃𝜆𝑖𝑔 between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line

2). It initializes an empty tree Θ𝑚𝑖𝑛 , and considers 𝑐𝜆 (Θ𝑚𝑖𝑛) = ∞
(Line 3). It processes every 𝑖 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 5-14).

It produces a feasible solution tree through a concatenation pro-

cess similar to LANCET (Lines 5-13). In particular, it initializes (Line

5) the set of connected vertices: 𝑉𝑐 = {𝑖}; the set of unconnected
vertex groups: Γ𝑢𝑐 = Γ \ 𝑔𝑚𝑖𝑛 ; an empty tree Θ𝑖 ; and an empty

min Fibonacci heap𝑄 . It pushes into𝑄 the regulated lowest weight

paths between each unconnected vertex group and 𝑖 , with the reg-

ulated weights of these paths as priorities (Line 6). It iteratively

pops out the top entry 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 in𝑄 (Lines 7-8), and processes

𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 as follows (Lines 9-12). It merges 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 into

Θ𝑖 (Line 9), and updates 𝑉𝑐 and Γ𝑢𝑐 (Lines 10-11). For every newly

connected vertex 𝑗 and every unconnected vertex group 𝑔 ∈ Γ𝑢𝑐 , it
identifies 𝐿𝑊𝑃𝜆𝑗𝑔 . Let 𝐿𝑊𝑃∗𝑔 be the path in 𝑄 that connects 𝑔. If

the regulated weight of 𝐿𝑊𝑃𝜆𝑗𝑔 is smaller than that of 𝐿𝑊𝑃∗𝑔 , then
it updates 𝐿𝑊𝑃∗𝑔 to 𝐿𝑊𝑃𝜆𝑗𝑔 in 𝑄 (Line 12). It iterates this process

until Γ𝑢𝑐 is empty. Then, Θ𝑖 becomes a feasible solution tree. It

Algorithm 5 The ImprovAPP algorithm

Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆

Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
2: Find and store 𝐿𝑊𝑃𝜆𝑖𝑔 | ∀𝑖 ∈ 𝑉 ,𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛

3: Initialize Θ𝑚𝑖𝑛 = ∅; 𝑐𝜆 (Θ𝑚𝑖𝑛) = ∞
4: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
5: Initialize 𝑉𝑐 = {𝑖}, Γ𝑢𝑐 = Γ \ 𝑔𝑚𝑖𝑛 , Θ𝑖 = 𝑄 = ∅
6: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝜆𝑖𝑔) | ∀𝑔 ∈ Γ𝑢𝑐
7: while Γ𝑢𝑐 ≠ ∅ do
8: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 (𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 , 𝐸𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 ))
9: Θ𝑖 = Θ𝑖 ∪ 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 (𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 , 𝐸𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 )
10: 𝑉𝑐 = 𝑉𝑐 ∪𝑉𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝
11: Γ𝑢𝑐 = Γ𝑢𝑐 \ 𝑔𝑡𝑜𝑝
12: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑄, 𝐿𝑊𝑃∗𝑔) | ∀𝑔 ∈ Γ𝑢𝑐
13: end while
14: Θ𝑚𝑖𝑛 = min𝑐𝜆 {Θ𝑚𝑖𝑛,Θ𝑖 }
15: end for
16: Θ𝑚𝑖𝑛 = 𝑀𝑆𝑇 (Θ𝑚𝑖𝑛)
17: Initialize 𝑄𝑚𝑎𝑥 = ∅
18: for each non-unique-group leaf 𝑣 of Θ𝑚𝑖𝑛 do
19: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣)
20: end for
21: while 𝑄𝑚𝑎𝑥 ≠ ∅ do
22: 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣𝑡𝑜𝑝 )
23: if 𝑣𝑡𝑜𝑝 is a non-unique-group leaf then
24: Θ𝑚𝑖𝑛 = Θ𝑚𝑖𝑛 \ (𝑣𝑡𝑜𝑝 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 )
25: if 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 is a non-unique-group leaf then
26: 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄𝑚𝑎𝑥 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 )
27: end if
28: end if
29: end while
30: Return Θ = Θ𝑚𝑖𝑛

uses Θ𝑖 to update Θ𝑚𝑖𝑛 (Line 14). After enumerating all vertices in

𝑔𝑚𝑖𝑛 , Θ𝑚𝑖𝑛 becomes a feasible solution tree. It is not guaranteed

that Θ𝑚𝑖𝑛 is an MST that spans the vertices in Θ𝑚𝑖𝑛 (we provide

an example in the supplement [6]). Thus, it updates Θ𝑚𝑖𝑛 to be an

MST that spans the vertices in Θ𝑚𝑖𝑛 (Line 16). It proceeds to refine

Θ𝑚𝑖𝑛 (Lines 17-29) as follows.

The refinement of Θ𝑚𝑖𝑛 is based on the concept of unique-group
leaves. To explain, observe that in an optimal solution, every leaf

is contained by one or more groups, one of which must be unique
in the sense that this leaf does not share this group with any other

vertex in the optimal solution. Otherwise, we could remove this leaf

from the optimal solution to obtain another feasible solution with

a smaller weight. In a solution, we refer to a leaf with at least one

unique group as a unique-group leaf of this solution. Meanwhile, it is

not guaranteed that all leaves ofΘ𝑚𝑖𝑛 are such unique-group leaves

(we provide an example in the supplement [6]). Motivated by this,

ImprovAPP removes non-unique-group leaves fromΘ𝑚𝑖𝑛 as follows

(Lines 17-29). First, it initializes amax Fibonacci heap [18]𝑄𝑚𝑎𝑥 = ∅
(Line 17). For each non-unique-group leaf 𝑣 ofΘ𝑚𝑖𝑛 , it pushes 𝑣 into

𝑄𝑚𝑎𝑥 with a priority of (1 − 𝜆)𝑤 (𝑣) + 𝜆𝑐 (𝑣, 𝑣𝑎𝑑 𝑗 ) (Line 19), where
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𝑣𝑎𝑑 𝑗 is the adjacent vertex of 𝑣 inΘ𝑚𝑖𝑛 . Then, it iteratively pops the

top entry 𝑣𝑡𝑜𝑝 from𝑄𝑚𝑎𝑥 (Lines 21-22), and checks whether 𝑣𝑡𝑜𝑝 is

a non-unique-group leaf (because a non-unique-group leaf in𝑄𝑚𝑎𝑥

could become a unique-group leaf after other leaves are removed

from Θ𝑚𝑖𝑛 in preceding iterations). If 𝑣𝑡𝑜𝑝 is a non-unique-group

leaf (Line 23), it removes the edge (𝑣𝑡𝑜𝑝 , 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 ) from Θ𝑚𝑖𝑛 (Line

24), where 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 is the adjacent vertex of 𝑣𝑡𝑜𝑝 in Θ𝑚𝑖𝑛 . After

this removal, 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 may become a non-unique-group leaf. In this

case, ImprovAPP pushes 𝑣𝑡𝑜𝑝𝑎𝑑 𝑗 into𝑄𝑚𝑎𝑥 (Line 26). This iteration

process ends when 𝑄𝑚𝑎𝑥 becomes empty. After this refinement, it

returns Θ𝑚𝑖𝑛 (Line 30).

Example of ImprovAPP. Consider𝐺 in Figure 2 (details in Section

3.1). If ImprovAPP selects 𝑔2 as 𝑔𝑚𝑖𝑛 , then it processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. It initializes Θ𝑣3 as empty. 𝐿𝑊𝑃𝜆𝑣3𝑔1 is the path {𝑣3 →
𝑣4 → 𝑣2}, and 𝐿𝑊𝑃𝜆𝑣3𝑔3 is the path {𝑣3 → 𝑣4 → 𝑣5}. It pushes
these two paths into 𝑄 . It merges 𝐿𝑊𝑃𝜆𝑣3𝑔1 into Θ𝑣3 . Then, it up-

dates 𝐿𝑊𝑃∗𝑔3 in𝑄 as the path {𝑣4 → 𝑣5}, and merges this path into

Θ𝑣3 . The resulting Θ𝑣3 is the highlighted red tree in 𝐺 . It updates

Θ𝑚𝑖𝑛 to be this tree. It returns this tree.

Approximation guarantee of ImprovAPP. ImprovAPP keeps the

guarantee of |Γ | − 1. We put the proof in the supplement [6].

Theorem 5. ImprovAPP has a sharp approximation guarantee of
|Γ | − 1 for solving Problem 1.

Time complexity of ImprovAPP:

𝑂

(
|Γ | ·

(
|𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · ( |𝑉 | + log |Γ |)

))
.

First, it finds 𝑔𝑚𝑖𝑛 (Line 1) at a cost of 𝑂 ( |Γ |). Then, it finds
𝐿𝑊𝑃𝜆𝑖𝑔 between every 𝑖 ∈ 𝑉 and every 𝑔 ∈ Γ \ 𝑔𝑚𝑖𝑛 (Line 2) in

𝑂 ( |Γ | ( |𝐸 |+|𝑉 | log |𝑉 |)) time. It initializesΘ𝑚𝑖𝑛 (Line 3) in𝑂 (1) time.

It conducts a for loop with |𝑔𝑚𝑖𝑛 | iterations (Line 4). In each itera-

tion, it does the initialization (Line 5) in𝑂 ( |Γ |) time. It takes𝑂 ( |Γ |)
time to push the lowest weight paths into 𝑄 (Line 6). Then, it con-

catenates lowest weight paths using a while loop with 𝑂 ( |Γ |) itera-
tions (Lines 7-13) as follows. It pops out 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 in𝑂 (log |Γ |)
time (Line 8). It merges 𝐿𝑊𝑃𝜆𝑣𝑡𝑜𝑝𝑔𝑡𝑜𝑝 into Θ𝑖 and updates 𝑉𝑐 and

Γ𝑢𝑐 (Lines 9-11), which takes𝑂 ( |𝑉 | + |Γ |) time throughout the while

loop. Since the cost of decreasing the key of an element in a min

Fibonacci heap is𝑂 (1), updating the lowest weight paths in𝑄 (Line

12) takes𝑂 ( |Γ | |𝑉 |) time throughout the while loop. It updatesΘ𝑚𝑖𝑛

usingΘ𝑖 (Line 14) in𝑂 ( |𝑉 |) time. After enumerating every 𝑖 ∈ 𝑔𝑚𝑖𝑛 ,

it identifies the MST (Line 16) in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |) time [35].

Then, it refines Θ𝑚𝑖𝑛 (Lines 17-29). We use a hash to record, for

each vertex 𝑣 in Θ𝑚𝑖𝑛 , the groups in Γ that 𝑣 belongs to. In addition,

we use a hash to record the number of vertices in Θ𝑚𝑖𝑛 that is

in each group. The construction of these hashes takes 𝑂 ( |Γ | |𝑉 |)
time. Since it takes 𝑂 ( |Γ |) time to check whether a leaf is a non-

unique-group leaf (by examining the number of vertices in Θ𝑚𝑖𝑛

that are in each group that this leaf belongs to), ImprovAPP pushes

non-unique-group leaves into𝑄𝑚𝑎𝑥 (Lines 18-20) in𝑂 ( |Γ | |𝑉 |) time.

Then, the removal of each non-unique-group leaf from Θ𝑚𝑖𝑛 (Lines

22-28) takes𝑂 ( |Γ | + log |𝑉 |) time. The reason is as follows. Popping

the top entry from 𝑄𝑚𝑎𝑥 (Line 22) takes 𝑂 (log |𝑉 |) time. Checking

whether 𝑣𝑡𝑜𝑝 is a non-unique-group leaf (Line 23) incurs 𝑂 ( |Γ |)
cost. If 𝑣𝑡𝑜𝑝 is a non-unique-group leaf, it takes𝑂 (1) time to remove

𝑣𝑡𝑜𝑝 from Θ𝑚𝑖𝑛 (Line 24). After that, it takes𝑂 ( |Γ |) time to check if

the neighbor of 𝑣𝑡𝑜𝑝 in Θ𝑚𝑖𝑛 is a non-unique-group leaf (Line 25),

Algorithm 6 The PartialOPT algorithm

Input: a graph𝐺 (𝑉 , 𝐸,𝑤, 𝑐), a set of vertex groups Γ, a regulating
weight 𝜆, a tunable parameter ℎ ∈ [2, |Γ |]
Output: a group Steiner tree: Θ(𝑉Θ, 𝐸Θ)
1: Initialize Θ = ∅; 𝑐𝜆 (Θ) = ∞
2: Find the smallest vertex group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 do
4: Let Γ1 be a set of vertex groups that contains {𝑖} and the

first ℎ − 1 vertex groups in Γ \ 𝑔𝑚𝑖𝑛 ;

let Γ2 be another set of vertex groups that contains {𝑖} and
the last |Γ | − ℎ vertex groups in Γ \ 𝑔𝑚𝑖𝑛

5: Θℎ
𝑖
= 𝐷𝑃𝐵𝐹 (𝐺, Γ1, 𝜆)

6: if Γ2 = {{𝑖}} then
7: Θ

|Γ |
𝑖

= {𝑖}
8: else
9: Θ

|Γ |
𝑖

= 𝑒𝑥𝐼ℎ𝑙𝑒𝑟𝐴(𝐺, Γ2, 𝜆)
10: end if
11: 𝐺𝑖 = Θℎ

𝑖
∪ Θ

|Γ |
𝑖

12: Θ𝑖 = 𝑀𝑆𝑇 (𝐺𝑖 )
13: Execute Lines 17-29 in ImprovAPP to refine Θ𝑖

14: Θ = min𝑐𝜆 {Θ,Θ𝑖 }
15: end for
16: Return Θ

and if it is, then ImprovAPP inserts it into 𝑄𝑚𝑎𝑥 (Line 26) in 𝑂 (1)
time. Thus, the total cost of Lines 17-29 is 𝑂 ( |Γ | |𝑉 | + |𝑉 | log |𝑉 |).

5 A (|Γ | − ℎ + 1)-APPROXIMATION
ALGORITHM

Here, we present PartialOPT, which achieves a guarantee of |Γ |−ℎ+
1, where ℎ ∈ [2, |Γ |] is a tunable parameter. The main idea behind

PartialOPT is similar to the idea of the (|Γ | − ℎ + 1)-approximation

algorithm in [25] for solving the vertex-unweighted group Steiner

tree problem. The idea is: when enumerating every vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 ,

find a tree to connect 𝑖 withℎ−1 vertex groups in Γ\𝑔𝑚𝑖𝑛 optimally,

and find another tree to connect 𝑖 with the other |Γ |−ℎ vertex groups
in Γ \𝑔𝑚𝑖𝑛 sub-optimally using a (|Γ | −1)-approximation algorithm,

and then combines these two trees as a solution.

However, the (|Γ | − ℎ + 1)-approximation algorithm in [25] has

a large time complexity of 𝑂 (3ℎ · |𝑉 |ℎ+3), and is too slow to be

used. The reason is that, when finding a tree to connect 𝑖 with

ℎ − 1 vertex groups optimally, it enumerates𝑂 ( |𝑉 |ℎ−1) sets of ℎ − 1

vertices such that every set covers the ℎ − 1 vertex groups, and for

every set, it uses an exact Steiner tree algorithm in [15] to find the

minimum-weight tree that connects 𝑖 with this set of vertices.

In comparison, PartialOPT has a smaller time complexity, since

PartialOPT employs an exact group Steiner tree algorithm in [14]

to connect 𝑖 with ℎ − 1 vertex groups optimally.

Description of PartialOPT. Algorithm 6 shows the pseudo code of

PartialOPT. It first initializes an empty tree Θ, and sets 𝑐𝜆 (Θ) = ∞
(Line 1). Then, it identifies 𝑔𝑚𝑖𝑛 ∈ Γ (Line 2), and processes each

vertex 𝑖 in 𝑔𝑚𝑖𝑛 (Lines 4-14) in seven steps:

(1) Construct a set Γ1 of vertex groups that contains {𝑖} and the

firstℎ−1 vertex groups in Γ\𝑔𝑚𝑖𝑛 , and a set Γ2 of vertex groups
that contains {𝑖} and the last |Γ | − ℎ vertex groups in Γ \ 𝑔𝑚𝑖𝑛 .
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(2) InvokeDPBF [14] to derive an optimal solutionΘℎ
𝑖
to the group

Steiner tree problem with Γ1 being the set of vertex groups.

(3) If Γ2 = {{𝑖}}, then let Θ
|Γ |
𝑖

= {𝑖}. Otherwise, execute exIhlerA
to compute Θ

|Γ |
𝑖

with Γ2 being the set of vertex groups. The rea-
son why we use exIhlerA, but not FastAPP or ImprovAPP, here
is that exIhlerA incurs a smaller time complexity here. In par-

ticular, since Γ2 contains {𝑖}, exIhlerA incurs a time complexity

of 𝑂 (( |Γ | − ℎ) |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |) here.
(4) Merge Θℎ

𝑖
and Θ

|Γ |
𝑖

to form a graph 𝐺𝑖 .

(5) Derive the MST, Θ𝑖 , that spans the vertices in 𝐺𝑖 .

(6) Refine Θ𝑖 using Lines 17-29 in ImprovAPP.
(7) If Θ𝑖 has a smaller regulated weight than Θ, then let Θ = Θ𝑖 .

After the enumeration, PartialOPT returns Θ.

Example of PartialOPT. Take 𝐺 in Figure 2 as an example. Let

ℎ = 2. If PartialOPT selects 𝑔2 as 𝑔𝑚𝑖𝑛 , then it processes 𝑣3 ∈ 𝑔𝑚𝑖𝑛

as follows. First, it builds Γ1 = {{𝑣3}, 𝑔1} and Γ2 = {{𝑣3}, 𝑔3}. It uses
DPBF to find Θℎ

𝑣3
= {(𝑣3, 𝑣4), (𝑣4, 𝑣2)}. Then, it uses exIhlerA to find

Θ
|Γ |
𝑣3 = {(𝑣3, 𝑣4), (𝑣4, 𝑣5)}. It merges Θℎ

𝑣3
and Θ

|Γ |
𝑣3 as 𝐺𝑣3 , which is

the highlighted red tree in 𝐺 . It returns this tree.

Approximation guarantee of PartialOPT. PartialOPT has the

following guarantee. The proof is in the supplement [6].

Theorem 6. PartialOPT has a sharp approximation guarantee of
|Γ | − ℎ + 1 for solving Problem 1.

Time complexity of PartialOPT:

𝑂

(
|𝑔𝑚𝑖𝑛 | ·

(
|Γ | |𝑉 | + 3

ℎ |𝑉 | + 2
ℎ ( |𝐸 | + ℎ |𝑉 | + |𝑉 | log |𝑉 |)

) )
.

The details of this time complexity are in the supplement [6].

6 RELATEDWORK
Group Steiner tree algorithms. Reich and Widmayer [36] first

study the vertex-unweighted group Steiner tree problem. Several

algorithms have been developed for solving this problem since then

(e.g., [14, 19, 24, 25, 28, 31]), in which ENSteiner [28] and IhlerA
[25] (i.e., the (|Γ | − 1)-approximation algorithm in [25]) are two

state-of-the-art scalable non-exact algorithms. The reason is that

the other algorithms either achieve tight (often poly-logarithmic)

approximation guarantees at the cost of large time complexities

(e.g., [19, 24]), or find optimal solutions via dynamic programming

approaches (e.g., [14, 31]). Ding et al. [14] further study the vertex-

and edge-weighted group Steiner tree problem. Their DPBF algo-
rithm can solve this problem to optimality. Recently, Li et al. [31]
develop some powerful pruning techniques to enhance the effi-

ciency of DPBF for solving the vertex-unweighted group Steiner

tree problem. Their Basic algorithm can solve the vertex- and edge-

weighted group Steiner tree problem to optimality as well. More

recently, Chalermsook et al. [8] study a special case of this problem

where (i) a root vertex in the optimal solution tree is known; and (ii)

all edge weights are zero. They point out that some recursive greedy

algorithms [9, 10, 24] lead to new algorithms that can achieve an

approximation guarantee of𝑂 (log2 |Γ |) for solving this special case.
Since these algorithms cannot achieve guarantees in polynomial

time, they further propose an algorithm that achieves a guarantee of

𝑂 (log |𝑉 | log |Γ |) in polynomial time when the treewidth of graph

is bounded. We can apply this algorithm to non-rooted graphs with

both vertex and edge weights by (i) enumerating all vertices as pos-

sible root vertices; and (ii) dividing every edge into two new edges

with a new vertex in the middle, and then giving new vertices the

weights of divided edges, while setting the weights of new edges

to zero. However, it is too slow to use this algorithm. Specifically,

this algorithm has a large time complexity of |𝑉 |𝑂̃ (𝑡𝑤 (𝐺)2)
, where

𝑂̃ (𝑥) = 𝑂 (𝑥 · polylog(𝑥)), and 𝑡𝑤 (𝐺) is the treewidth of the in-

put graph 𝐺 , which often ranges from dozens to hundreds for real

graphs [34]. This motivates us to develop more practical algorithms

for finding vertex- and edge-weighted group Steiner trees.

Vertex- and edge-weighted Steiner tree algorithms. Klein and

Ravi [27] propose the first approximation algorithm for solving

the vertex- and edge-weighted Steiner tree problem. Their algo-

rithm has an approximation guarantee of 2 ln |𝑇𝑡 |. Guha and Khuller
[20] later improve Klein and Ravi’s algorithm, and their improve-

ment has an approximation guarantee of (1.35 + 𝜀) ln |𝑇𝑡 |, for any
constant 𝜀 > 0. Guha and Khuller point out that both Klein and

Ravi’s algorithm and their improvement are too slow to be imple-

mented in practice, since both algorithms repeatedly find a tree

that minimizes the ratio of the weight of this tree to the number of

compulsory vertices that this tree connects. Consequently, Guha

and Khuller [20] further propose an algorithm that has an approxi-

mation guarantee of 1.6103 ln |𝑇𝑡 |. This algorithm, which we refer

to as GKA, is a state-of-the-art algorithm for solving the vertex-

and edge-weighted Steiner tree problem, given that the more recent

work focuses on solving this problem in special graphs, such as

unit disk graphs [45], planar graphs [12], and graphs with compul-

sory leaf vertices [40]. We observe that, even though this algorithm

is faster than the other ones, it still does not scale well to large

graphs. Specifically, it requires finding the lowest weight paths

between all pairs of vertices, which induces a time complexity of

𝑂 ( |𝑉𝑡 | · ( |𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)). This motivates us to develop LANCET.

7 EXPERIMENTS
In this section, we conduct experiments on a computer with two

Intel Xeon Gold 6240 processors and 395 GB RAM
1
.

7.1 Datasets
We use three real datasets: Toronto, DBLP andMovieLens.
Toronto.We collect this dataset from the City of Toronto’s Open

Data Portal [5]. We use it to build the Toronto graph, where each
vertex represents a road junction, and each edge represents a road

segment. Each vertex is associated with the types of nearby facilities

(e.g., schools) and a value representing the nearby traffic count in

January 2020. Each edge is associated with a value representing

the length of the corresponding road segment. There are 46,073

vertices, 68,353 edges, and 35 types of facilities in total.

We use the nearby traffic count associated with vertex 𝑣 as the

weight of 𝑣 , and the road length associated with edge 𝑒 as the weight

of 𝑒 . We normalize all vertex and edge weights to the range of [0, 1].
We consider each vertex group in Γ as the set of vertices that are

associated with a specific type of facilities. In this case, finding a

group Steiner tree could be useful for property search, e.g., for a
user who wants to move to a region with low traffic noise and close

to a library, a tennis court, and a school.

1Our codes and datasets are at https://github.com/YahuiSun/GroupSteinerTree
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DBLP. It is the DBLP-Citation-network V12 dataset at the AMiner

website [1, 44].We use it to build theDBLP graph, where each vertex
represents an expert, and each edge between two vertices indicates

that the two corresponding experts have co-authored publication(s).

Each expert is associated with the number of citations that he or

she gets, and a set of research topics that his or her publications

are on. We refer to each topic as a skill. There are 2,497,782 vertices,
12,786,329 edges, and 127,726 research topics in total.

For vertex 𝑣 that represents an expert with 𝑥 citations, we use

ln(𝑥 + 1) as the weight of 𝑣 , and treat this weight as the hiring cost

of the expert. For each edge 𝑒 connecting two vertices 𝑢 and 𝑣 , we

follow previous work [39] and set the weight of 𝑒 as the pairwise

Jaccard distance 𝑐 (𝑒) = 1 − |𝑉𝑢∩𝑉𝑣 |
|𝑉𝑢∪𝑉𝑣 | , where 𝑉𝑢 and 𝑉𝑣 are the sets

of vertices adjacent to 𝑢 and 𝑣 , respectively. Such edge weights

represent distances between experts in the team formation scenario

[28, 32]. We normalize all vertex and edge weights to the range of

[0, 1]. We consider each vertex group in Γ as the set of vertices that

are associated with a specific skill. Then, finding a group Steiner

tree could help form a team of experts to perform a task.

MovieLens. It is the MovieLens 25M dataset at the GroupLens

website [3]. We use it to build the MovieLens graph, where each
vertex represents a movie. Each movie is associated with the genres

(e.g., comedy) that this movie belongs to and a number of rating

stars (1 to 5) that this movie gets from MovieLens users [4]. There

is an edge between two vertices if there are users who give both

corresponding movies 5 stars, which indicates that people who like

one of these two movies may also like the other one. There are

62,423 vertices, 35,323,774 edges, and 19 genres in total.

For vertex 𝑣 representing a movie that has an average star of 𝑥 ,

we use 5 − 𝑥 as the weight of 𝑣 , i.e., a small vertex weight indicates

that a movie is highly rated. For edge 𝑒 that connects two movies 𝑣

and𝑢, if there are𝑦 users who give both movies 5 stars, then we use

1

𝑦 as the weight of 𝑒 , i.e., a small edge weight indicates that people

are likely to like both movies at the same time. We normalize all

vertex and edge weights to the range of [0, 1]. We consider each

vertex group in Γ as the set of vertices that are associated with a

specific genre. Then, finding a group Steiner tree could be useful

for recommending movies that are related to some certain genres.

7.2 Experiment settings
Algorithms. Except the proposed algorithms, we also implement

six state-of-the-art algorithms as follows.

• GKA [20]: a (1.6103 ln |𝑇𝑡 |)-approximation algorithm for finding

vertex- and edge-weighted Steiner trees. The main idea of GKA
is to greedily merge spiders (i.e., trees having at most one vertex

of degree more than two) that contain compulsory vertices.

• DPBF [14]: a dynamic programming algorithm that finds opti-

mal vertex- and edge-weighted group Steiner trees and is widely

used for information retrieval in databases (e.g., [23, 29, 30]).
The main idea of DPBF is to build an optimal group Steiner tree

for covering |Γ | vertex groups by dynamically merging optimal

group Steiner trees for covering parts of these vertex groups.

• Basic [31]: another dynamic programming algorithm that can

find optimal vertex- and edge-weighted group Steiner trees. The

main idea of Basic is to first use the dynamically constructed

trees in DPBF to build feasible solutions as upper bounds of the

optimal solution, and then use these upper bounds to prune un-

profitable ones of the dynamically constructed trees. Basic can
progressively find sub-optimal solutions with quality guaran-

tees before finding optimal solutions.We utilize this progressive

nature, and let Basic return the first found solution such that

the regulated weight of this solution is guaranteed to be not

larger than 𝑟 times the optimal regulated weight, where 𝑟 ≥ 1

is a parameter. When 𝑟 = 1, Basic returns the optimal solution.

When 𝑟 > 1, Basic may not return the optimal solution.

• Basic+: an improvement of Basic. In particular, Basic+ uses the

one-label lower bound in [31] to enhance the pruning process of

Basic. Basic+ can also progressively find sub-optimal solutions

with quality guarantees before finding optimal ones. We also

use 𝑟 to decide the returned solution of Basic+.
• ENSteiner [28] and IhlerA [25]: the vertex-unweighted versions

of exENSteiner and exIhlerA, respectively.
Note that, we omit the algorithm in [8] since it incurs prohibitive

computational costs, as we have discussed in Section 6. Furthermore,

we observe that the PrunedDP and PrunedDP++ algorithms in [31]

improve DPBF for finding vertex-unweighted group Steiner trees.

In the supplement [6], we show that these two algorithms rely on

techniques that do not hold in graphs with vertex weights. Thus,

we do not implement these two algorithms here.

Parameters.We vary five parameters as follows.

• |𝑉 |: the number of vertices. We extract |𝑉 | vertices (and the

edges between these vertices) from the input data. In particular,

we first randomly select a vertex 𝑣 , and then perform a breadth

first search starting from 𝑣 and extract the first |𝑉 | vertices
encountered. Since the DBLP and MovieLens graphs are not
connected, the breadth first search starting from 𝑣 may not

encounter |𝑉 | vertices. In this case, we performmultiple breadth

first searches in the above way, until |𝑉 | vertices are extracted.
• |Γ |: the number of vertex groups. For Toronto (resp., DBLP
and MovieLens), a candidate vertex group is the set of vertices

that are associated with a specific facility type (resp., skill and
genre). We select |Γ | candidate vertex groups via two different

approaches as follows. First, the uniform approach: we select |Γ |
candidate vertex groups uniformly at random. Second, the non-
uniform approach: the probability of selecting candidate vertex

group 𝑔 is
|𝑔 |∑

𝑔𝑥 ∈Γ𝑐𝑎𝑛 |𝑔𝑥 |
, where Γ𝑐𝑎𝑛 is the set of all candidate

vertex groups. That is to say, the probability of selecting 𝑔 is

in proportion to the size of 𝑔. This corresponds to the fact that

more common resources are often more frequently used (e.g.,
there are more machine learning researchers than Steiner tree

researchers, and there are also more tasks that require the skill

of machine learning than Steiner tree). Since the DBLP and

MovieLens graphs are not connected, there could be no feasible
solution for some Γ. We regenerate Γ when such a case occurs.

• 𝜆: the regulating constant between vertex and edge weights.

• 𝑟 : the parameter of Basic and Basic+ (details are above).

• ℎ: the parameter of PartialOPT.

Metrics. We evaluate three metrics as follows.

• 𝑐𝜆 (𝐺 ′): the objective value of Problem 1.

• 𝑐 (𝐺 ′
𝑡 ): the objective value of Problem 2.

• 𝑡 : the running time of algorithms.
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7.3 Experiment results
We visualize the experiment results in Figures 3-8. For each set of

parameters, we randomly generate 100 instances, and visualize the

average metric values for comparison.

The effectiveness of our extensions. exENSteiner and exIhlerA
extend the existing ENSteiner and IhlerA, respectively. We compare

these algorithms in Figure 3, where vertex groups are selected via

the uniform approach, and the parameter settings are: for Toronto,
|𝑉 | = 46073, |Γ | = 8, 𝜆 = 0.33; for DBLP, |𝑉 | = 2497782, |Γ | = 6,

𝜆 = 0.33; for MovieLens, |𝑉 | = 2423, |Γ | = 6, 𝜆 = 0.33. We ob-

serve that exENSteiner and exIhlerA produce better solutions than

ENSteiner and IhlerA, respectively (particularly for Toronto). The
reason is that exENSteiner and exIhlerA consider both vertex and

edge weights, while ENSteiner and IhlerA ignore vertex weights.

Note that, exENSteiner and exIhlerA are slightly slower than EN-
Steiner and IhlerA, respectively, since it is slightly slower to com-

pute lowest weight paths than to compute shortest paths, due to

the calculation of vertex weights. Nevertheless, it is reasonable to

conclude that exENSteiner and exIhlerA have similar speeds with

ENSteiner and IhlerA, respectively. Thus, exENSteiner and exIhlerA
are more effective than ENSteiner and IhlerA for finding vertex-

and edge-weighted group Steiner trees. Due to this reason, we do

not use ENSteiner and IhlerA in the following main experiments.

The main experiment results. We present the main experiment

results in Figures 4 and 5, where vertex groups are selected via the

uniform and non-uniform approaches, respectively. We report the

average |𝑔𝑚𝑖𝑛 | in these experiments in Figure 6. Note that, |𝑔𝑚𝑖𝑛 |
is larger when vertex groups are selected non-uniformly.

Evaluating exact algorithms.We use three exact algorithms: Basic,
Basic+ and DPBF. We observe that Basic+ is often faster than DPBF
for finding optimal solutions (e.g., Figures 4a-4c). In comparison,

Basic often has a similar speed with DPBF (e.g., Figure 4c). The
difference between Basic and Basic+ is that Basic+ uses the one-

label lower bound in [31] to enhance Basic. The above observation
shows the effectiveness of this lower bound. Nevertheless, DPBF
can be faster than Basic and Basic+ in some cases (e.g., when 𝜆 = 0

in Figures 4g, 5g, 5i). The reason is that Basic and Basic+ find

the lowest weight paths between vertices and vertex groups, and

construct feasible solutions progressively, while DPBF does not

find these paths or construct these feasible solutions.

Basic, Basic+ and DPBF are often faster when vertex groups are

selected non-uniformly. For example, these algorithms are faster in

Figure 5d than in Figure 4d. The reason is as follows. Let 𝑇 (𝑣, Γ′)
be the minimum-weight tree that roots at vertex 𝑣 ∈ 𝑉 and covers

all vertex groups in Γ′ ⊆ Γ. These algorithms enumerate 𝑇 (𝑣, Γ′)
for different pairs of 𝑣 and Γ′, in an increasing order of the weight

of 𝑇 (𝑣, Γ′), until an optimal solution is found. The sizes of non-

uniformly selected vertex groups are often larger, which means

that the optimal solution is often smaller and has a smaller weight,

and as a result these algorithms often find optimal solutions after

enumerating a smaller number of trees. Due to this reason, it is too

slow to use these algorithms when |𝑉 | is large in Figure 4b, where

vertex groups are selected uniformly. Similarly, we do not use these

algorithms to find optimal solutions in Figures 4e, 4h and 4k.

We note that Basic, Basic+ and DPBF do not scale well to |Γ |
(see Figures 4d, 4f, 5d-5f), since these algorithms have exponential

Figure 3: The effectiveness of our extensions.

time complexities with respect to |Γ |. As a result, in cases where

|Γ | is not small, it is often too slow to find optimal solutions, and

thus required to accept sub-optimal solutions.

Different from DPBF, Basic and Basic+ can find sub-optimal

solutions with quality guarantees progressively. We let Basic and
Basic+ return solutions with the guarantee of 𝑟 . We vary 𝑟 in Figures

4j-4l and 5j-5l. When 𝑟 = |Γ | − 1, Basic and Basic+ achieve the

same guarantee with ImprovAPP. Nevertheless, the solutions of
Basic and Basic+ are often worse than the solutions of ImprovAPP
when 𝑟 = |Γ | − 1 (e.g., Figures 4j, 4l, and 5j-5l). In particular, when

𝑟 = |Γ | −1 = 5 in Figure 5k, the solution weights of Basic and Basic+
are twice that of ImprovAPP, which means that the solutions of

Basic and Basic+ are considerably worse than that of ImprovAPP.
The reason is as follows. Based on the enumerated 𝑇 (𝑣, Γ′), Basic
and Basic+ construct a feasible solution by directly merging lowest

weight paths between 𝑣 and every vertex group in Γ\Γ′ into𝑇 (𝑣, Γ′).
This direct merging process often induces larger solution weights

than a greedy merging process like that in ImprovAPP, i.e., greedily
and iteratively merging lowest weight paths between connected

vertices and unconnected vertex groups.

Moreover, Basic and Basic+ are often slower than ImprovAPP
when 𝑟 = |Γ | − 1 (e.g., Figures 4j-4k and 5j-5k). Particularly, when

𝑟 = |Γ | − 1 = 7 in Figure 4j, Basic and Basic+ are an order of magni-

tude slower than ImprovAPP. The reason is that Basic and Basic+
enumerate 𝑇 (𝑣, Γ′), and achieve a guarantee of 𝑟 if the weight of

the best found solution is not larger than 𝑟 times the weight of the

enumerated 𝑇 (𝑣, Γ′). Basic and Basic+ have an exponential time

complexity with respect to |Γ | even when 𝑟 = |Γ | − 1. In compar-

ison, ImprovAPP does not enumerate 𝑇 (𝑣, Γ′) for achieving the

guarantee of |Γ | − 1, and has a polynomial time complexity.

Note that, Basic or Basic+ cannot considerably outperform Im-
provAPP on either efficiency or practical solution quality, while

there are multiple scenarios where ImprovAPP considerably outper-

forms Basic and Basic+ on efficiency or practical solution quality (as

described above). Thus, Basic and Basic+ often do not have superior
efficiency or solution quality for finding sub-optimal solutions. As

a result, it may be preferable to use non-exact algorithms in many

cases. We evaluate non-exact algorithms as follows.

Evaluating non-exact algorithms. First, we observe that PartialOPT
is often slow (e.g., Figure 4b), since it employs DPBF |𝑔𝑚𝑖𝑛 | times

for connecting ℎ vertex groups optimally. Thus, we do not use

PartialOPT in the full DBLP and MovieLens graphs. Moreover, it is

too slow to use exIhlerA when |𝑔𝑚𝑖𝑛 | is large (e.g., Figure 5b), since
it employs Dijkstra’s algorithm |𝑔𝑚𝑖𝑛 | times. For this reason, 𝑡 of

exIhlerA decreases with |Γ | (e.g., Figure 4e), since |𝑔𝑚𝑖𝑛 | decreases
with |Γ | (see Figure 6). Hence, exIhlerA is only useful when |𝑔𝑚𝑖𝑛 | is
small. In comparison, exENSteiner, FastAPP and ImprovAPP can be

used when |𝑔𝑚𝑖𝑛 | is large, since these algorithms employ Dijkstra’s

algorithm |Γ | − 1 times.
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(a) Toronto ( |Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (b) DBLP ( |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (c) MovieLens ( |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(d) Toronto ( |𝑉 | = 46073; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (e) DBLP ( |𝑉 | = 2497782; 𝜆 = 0.33; 𝑟 = 1) (f)MovieLens ( |𝑉 | = 62423; 𝜆 = 0.33; 𝑟 = 1)

(g) Toronto ( |𝑉 | = 46073; |Γ | = 8; 𝑟 = 1; ℎ = 3) (h) DBLP ( |𝑉 | = 2497782; |Γ | = 6; 𝑟 = 1) (i)MovieLens ( |𝑉 | = 62423; |Γ | = 6; 𝑟 = 1)

(j) Toronto ( |𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; ℎ = 3) (k) DBLP ( |𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33) (l) MovieLens ( |𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33)
Figure 4: The main experiment results in which vertex groups are selected via the uniform approach.

(a) Toronto ( |Γ | = 8; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (b) DBLP ( |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (c) MovieLens ( |Γ | = 6; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3)

(d) Toronto ( |𝑉 | = 46073; 𝜆 = 0.33; 𝑟 = 1; ℎ = 3) (e) DBLP ( |𝑉 | = 2497782; 𝜆 = 0.33; 𝑟 = 1) (f)MovieLens ( |𝑉 | = 62423; 𝜆 = 0.33; 𝑟 = 1)

(g) Toronto ( |𝑉 | = 46073; |Γ | = 8; 𝑟 = 1; ℎ = 3) (h) DBLP ( |𝑉 | = 2497782; |Γ | = 6; 𝑟 = 1) (i)MovieLens ( |𝑉 | = 62423; |Γ | = 6; 𝑟 = 1)

(j) Toronto ( |𝑉 | = 46073; |Γ | = 8; 𝜆 = 0.33; ℎ = 3) (k) DBLP ( |𝑉 | = 2497782; |Γ | = 6; 𝜆 = 0.33) (l) MovieLens ( |𝑉 | = 62423; |Γ | = 6; 𝜆 = 0.33)
Figure 5: The main experiment results in which vertex groups are selected via the non-uniform approach.
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Figure 6: The average |𝑔𝑚𝑖𝑛 | in the main experiment results.

Notably, exENSteiner can produce high-quality solutions similar

to those of ImprovAPP in some cases (e.g., Figure 4b). However,

exENSteiner has no approximation guarantee, and produces bad so-

lutions in some other cases (e.g., Figure 5b). In comparison, FastAPP
and ImprovAPP have the approximation guarantee of |Γ | − 1. Since

FastAPP and ImprovAPP can achieve the guarantee of |Γ | − 1 when

|𝑔𝑚𝑖𝑛 | is large (while exIhlerA and IhlerA cannot), FastAPP and

ImprovAPP advance the existing work on the efficiency of approxi-

mating group Steiner trees.

Furthermore, ImprovAPP dominates exENSteiner, exIhlerA and

FastAPP on solution qualities. A solution refinement process is used

in ImprovAPP, i.e., Lines 17-29 in ImprovAPP. In the supplement

[6], we show that the above dominance still holds after using this

process to refine the solutions of exENSteiner, exIhlerA and FastAPP.
Notably, ImprovAPP has a similar speed with FastAPP, although the
time complexity of ImprovAPP is𝑂 ( |Γ | · ( |𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | ·
( |𝑉 | + log |Γ |))), while the time complexity of FastAPP is 𝑂 ( |Γ | ·
( |𝐸 | + |𝑉 | log |𝑉 |)). The reason is as follows. When enumerating

vertex 𝑖 ∈ 𝑔𝑚𝑖𝑛 , ImprovAPP constructs a feasible solution tree Θ𝑖

by greedily concatenating lowest weight paths. Suppose that the

average number of vertices in Θ𝑖 is 𝑑 . Then, the time complexity of

ImprovAPP can be seen as 𝑂 ( |Γ | · ( |𝐸 | + |𝑉 | log |𝑉 | + |𝑔𝑚𝑖𝑛 | · (𝑑 +
log |Γ |))). In practice, 𝑑 is often small, i.e., the greedily constructed

solution tree is often small. As a result, the cost of ImprovAPP is

close to 𝑂 ( |Γ | · ( |𝐸 | + |𝑉 | log |𝑉 |)) in practice.

Unlike |𝑔𝑚𝑖𝑛 |, we generally have a limited |Γ | in practice. For

example, in team formation scenarios, |Γ | is the number of skills for

performing a task (e.g., [28, 33, 43]), and in region or keyword search
scenarios, |Γ | is the number of facility types or keywords that users

enter (e.g., [11, 14, 30, 31]). Therefore, it is reasonable to consider
that ImprovAPP has a high efficiency in practice. We summarize the

above experiment results and conclude that ImprovAPP combines

superior efficiency and solution quality when it is too slow to find

optimal solutions.

The trade-off in PartialOPT. PartialOPT can trade approximation

guarantees with time complexities by varying ℎ. We vary ℎ in

Figure 7, where the Toronto data is used, vertex groups are selected
uniformly, |𝑉 | = 46073, |Γ | = 6, 𝜆 = 0.33. We observe that 𝑐𝜆 (𝐺 ′)
of PartialOPT decreases with ℎ, since it connects ℎ vertex groups

optimally. Nevertheless, 𝑡 of PartialOPT increases exponentially

with ℎ, since its time complexity grows exponentially with ℎ. As

a result, PartialOPT is mainly of theoretical interest, since, to our

knowledge, it achieves the tightest polynomial-time approximation

guarantee to date for solving the group Steiner tree problem in

treewidth-unbounded graphs with both vertex and edge weights.

Figure 7: The experiment
results of varying ℎ.

Figure 8: Finding vertex- and
edge-weighted Steiner trees.

The efficiency of LANCET. GKA is a state-of-the-art algorithm

for solving the vertex- and edge-weighted Steiner tree problem.

We compare LANCET with GKA for solving this problem in the

transformed graph 𝐺𝑡 (see Theorem 1) in Figure 8, where the

Toronto data is used, vertex groups are selected uniformly, 𝜆 = 0.33,

|Γ | = |𝑇𝑡 | = 6, and 𝑐 (𝐺 ′
𝑡 ) −𝑀 · |𝑇𝑡 | is the non-dummy part of the

𝑐 (𝐺 ′
𝑡 ) value of LANCET or GKA (since each solution contains |𝑇𝑡 |

dummy edges, and the weight of each dummy edge is𝑀). We ob-

serve that GKA produces similar solutions with LANCET. However,
GKA does not scale well to large graphs, while LANCET scales well

to large graphs. The reason is that GKA requires finding the lowest

weight paths between every pair of vertices, which induces a time

complexity of 𝑂 ( |𝑉𝑡 | · ( |𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)), while LANCET has a

time complexity of𝑂 ( |𝑇𝑡 | · ( |𝐸𝑡 | + |𝑉𝑡 | log |𝑉𝑡 |)). Since the other ex-
isting algorithms have even weaker scalabilities than GKA (details

in Section 6), LANCET advances the existing work on the efficiency

of approximating vertex- and edge-weighted Steiner trees.

8 CONCLUSIONS AND FUTUREWORK
Few algorithms have been developed for finding vertex- and edge-

weighted group Steiner trees. Here, we develop several algorithms

to address this issue. First, we extend a heuristic algorithm and a

(|Γ | − 1)-approximation algorithm from vertex-unweighted graphs

to vertex- and edge-weighted graphs. Since the extended (|Γ | − 1)-

approximation algorithm does not scale well to |𝑔𝑚𝑖𝑛 |, we develop
two new (|Γ |−1)-approximation algorithms that scale well to |𝑔𝑚𝑖𝑛 |.
We also propose a (|Γ |−ℎ+1)-approximation algorithm. Experiments

show that, while no algorithm is the best in all cases, our algorithms

considerably outperform the state of the art in many scenarios.

Finding group Steiner trees helps retrieve information in rela-

tional databases (e.g., [7, 11, 14, 30, 31]). In such applications, the

databases may be modeled as directed graphs, and the task is to

find a group Steiner tree with a root vertex (i.e., there are directed
paths from the root vertex to the other vertices in this tree; e.g., [7]).
We can modify exIhlerA, FastAPP and ImprovAPP to obtain a guar-

antee of |Γ | − 1 for finding this tree, since the methods of merging

minimum-weight paths between vertices and vertex groups in these

algorithms suit directed graphs. We can also modify PartialOPT to

obtain a guarantee of |Γ | −ℎ + 1, since the incorporated DPBF suits
directed graphs. This flexibility shows that it may be possible to

use our methods to retrieve information from various graphs, such

as social networks [21, 22, 38] and knowledge graphs [26, 42].
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