
KLL± ApproximateQuantile Sketches over Dynamic Datasets
Fuheng Zhao

UC Santa Barbara

fuheng_zhao@ucsb.edu

Sujaya Maiyya

UC Santa Barbara

sujaya_maiyya@cs.ucsb.edu

Ryan Wiener

UC Santa Barbara

ryanlwiener@ucsb.edu

Divyakant Agrawal

UC Santa Barbara

agrawal@cs.ucsb.edu

Amr El Abbadi

UC Santa Barbara

amr@cs.ucsb.edu

ABSTRACT
Recently the long standing problem of optimal construction of quan-

tile sketches was resolved by Karnin, Lang, and Liberty using the

KLL sketch (FOCS 2016). The algorithm for KLL is restricted to on-

line insert operations and no delete operations. For many real-world

applications, it is necessary to support delete operations. When the

data set is updated dynamically, i.e., when data elements are inserted

and deleted, the quantile sketch should reflect the changes. In this

paper, we propose KLL±, the first quantile approximation algorithm

to operate in the bounded deletionmodel to account for both inserts

and deletes in a given data stream. KLL
±
extends the functionality

of KLL sketches to support arbitrary updates with small space over-

head. The space bound for KLL
±
is 𝑂 (𝛼1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔(1
𝜖𝛿
)), where 𝜖

and 𝛿 are constants that determine precision and failure probabil-

ity, and 𝛼 bounds the number of deletions with respect to insert

operations. The experimental evaluation of KLL
±
highlights that

with minimal space overhead, KLL
±
achieves comparable accuracy

in quantile approximation to KLL.

PVLDB Reference Format:
Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr

El Abbadi. KLL
±
Approximate Quantile Sketches over Dynamic Datasets.

PVLDB, 14(7): 1215 - 1227, 2021.

doi:10.14778/3450980.3450990

1 INTRODUCTION
With the rise of big data in companies such as Google, Amazon,

and Facebook, managing hundreds of terabytes to petabytes of

data has become a necessity for day to day operations. To make

use of this data, it is crucial to develop a deeper understanding of

the underlying distributions of the data in real datasets. In particu-

lar, techniques such as quantile approximations, a non-parametric

representation, are widely used to characterize data distributions.

For large amounts of data, one-pass
1
algorithms are desirable, and

many well-known data sketches are based on one-pass algorithms.

For instance, the HyperLogLog [11] sketch
2
is a one-pass algorithm

for the count-distinct problem; the Bloom Filter [4] data sketch is a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.

doi:10.14778/3450980.3450990

1
Where input data is read only once.

2
The term sketch refers to the algorithm and data structures that can extract valuable

information through one pass of the data.

one-pass algorithm for the set membership problem. Several one-

pass quantile approximation algorithms [9, 12, 13, 20, 21, 27] have

been proposed to guarantee high precision with small memory

footprints. Since one-pass algorithms only read each element from

the input once, these one-pass algorithms are both useful for large

databases, and naturally applicable in the streaming data settings.

Approximate quantile problems are developed for a variety of

settings. For example, approximate quantiles are considered in the

streaming data settings [20, 21], sliding window settings [3], and

distributed settings [27]. Moreover, approximate quantile sketches

operate mainly within the insertion-only model and the turnstile
model. The insertion-only model, also referred as the cash register

model, consists of a stream of only insert operations; whereas the

turnstile model consists of a stream of insert and delete operations

such that deletes are performed on previously inserted items [28].

Quantile sketches such as the GK sketch [13] and Q-digest [27]

operate in the insertion-only model; and quantile sketches such as

Range Subset Sum [12], Dyadic Count-Min [9], and Dyadic Count

Sketch [28] operate in the turnstile model. Turnstile model quan-

tile summaries have significant usage in database and networking

applications, and are used in most Database Management Systems

(DBMSs) which monitor and maintain a variety of order statistics

such as quantiles over the contents of database relations [25]; in

value range partitioning for parallel database [26]; and in financial

services [17]. Sketches proposed for the turnstile model assume

a fixed universe in order to tolerate an arbitrary number of dele-

tions and thus incur higher space and update complexity compared

to data-driven sketch. The additional challenge of tolerating an

arbitrary amount of deletion for the turnstile model is arguably

an infeasible task for data-driven sketches which stores a subset

of items chosen from the input. Several researchers [12, 28] have

noted that if one first inserts 𝑛 elements and then deletes all but one

element, the data-driven sketch has no information about which el-

ement will survive since the data-driven sketch only keeps a subset

of items. Wang et al. [28] conjecture the impossibility of any data-

driven sketch to support the turnstile model where all elements

can be deleted. Therefore, we focus on developing a data-driven

sketch in the context of the bounded deletion model.

Recently, Jayaram et al. [19] observed that in practice many turn-

stile models only incur a fraction of deletions and thus proposed

an intermediate model, called the bounded deletions model, which

naturally lies in between the insertion-only stream model and the

turnstile model. The authors [19] use parameter 𝛼 to denote differ-

ent degrees of deletions such that at most 1 − 1

𝛼 of prior insertions

are deleted; when 𝛼 = 1 the input dataset is in the insertion-only

model. The authors [19] show significant space improvements for

1215

https://doi.org/10.14778/3450980.3450990
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450990

many fundamental streaming problems within the bounded dele-

tion model over the turnstile model, such as heavy hitters and inner

product estimation, and identify the bounded deletion model as

being particularly useful for applications such as computing differ-

ences between network traffic patterns, 𝐿0 estimation of moving

sensors (monitoring wildlife or water flow pattern), and completing

synchronization in database analytical context.

Furthermore the bounded deletion model is important for main-

taining approximate quantiles in real-world applications such as

summarizing product sales in electronic commerce platforms and

ranking in standardized testings. Many companies need accurate

quantile information to identify current status and forecast future

demands [15]. After customers purchase some products, a certain

percentage of the customers may return the product and submit

refund requests, hence the quantile summaries should reflect these

changes. However, it is highly unlikely that the majority of these

customers will return their purchases and in most cases a bounded

deletion model can be assumed. In the context of standardized

testing such as SAT, GRE, and LSAT, quantiles are seen as a more

descriptive measurement compared to the test scores, since the

difficulty of the exam varies. In these standardized testing settings,

students may request to regrade their exam only once to verify any

machine errors in scanning answers or human errors in grading

the essay. The updated grades may change the underlying score

distribution. Thus, a quantile summary with 𝛼 = 2, is sufficient to

reflect all changes even if all students require a regrade
3
. In Section

4.3, we also show how to leverage KLL
±
with 𝛼 = 2 to maintain

fixed-size sliding window quantile approximation over datasets.

In this paper, we extend the original optimal quantile sketch

KLL [20], which operates in the insertion-only model, and present

KLL
±
quantile sketch that supports bounded deletions in which the

total number of deleted items are less than a certain threshold of the

total inserted items, and the deleted items are previously inserted

into the data set. The KLL algorithm is online updatable for insert

operations, but not for delete operations. Without delete operations,

a KLL sketch cannot be maintained for a dynamic dataset that is

constantly updated as an expensive scan operation will be needed to

recompute the KLL-sketch, when deletions are applied. Our KLL
±

expands the functionality of the original KLL sketch by supporting

bounded deletions; and if the administrator of the big data, knows

a priori that deletions are not insensitively large compared to the

insertions, such as some corrections or adjustments on previously

inserted items, then KLL
±
can approximate quantiles with small

space and high accuracy. In summary, the main contributions in

this paper are: (i) Presenting the KLL
±
sketch, the first data-driven

quantile sketch that operates in the bounded deletion model; (ii)

Providing thorough mathematical proofs and analysis to guarantee

the correctness of KLL
±
sketches; (iii) Applying the KLL

±
sketches

over datasets to maintain approximate quantile estimations in the

fixed-size sliding window; (iv) Evaluating KLL
±
and comparing it

with KLL, two parallel KLL strategy, and DCS sketch [28] through

various experiments; and (v) Incorporating several optimization

strategies [18] proposed for the original KLL sketch [20], such as

implementing the algorithm with fixed memory size.

3
https://collegereadiness.collegeboard.org/sat/scores/verifying-scores

This paper is structured as follows: Section 2 discusses back-

ground information of quantile sketches, and gives an overview

of previous algorithms. Section 3 introduces the KLL
±
quantile

sketch for datasets with an incoming input stream in the bounded

deletion model, and along with the proposed algorithm for com-

paction referred to as Conditional Compaction algorithm. Section 4

analyzes the space complexity of our sketch, and demonstrates a

potential use case of KLL
±
to maintain fixed-size sliding window

quantile approximation over datasets. Section 5 presents the exper-

iment results of an evaluation conducted using synthetic and real

world datasets and compares KLL
±
with the state of the art KLL

sketch (insertion-only) [20] and DCS sketch (turnstile) [28]. Finally,

Section 6 summarizes our contributions and concludes this work.

2 BACKGROUND
Given a multiset of 𝑛 elements 𝑆 = {𝑠1, ..., 𝑠𝑛}, the rank of an ele-

ment 𝑠𝑖 ∈ 𝑆 is the number of elements in 𝑆 that are less than or

equal to 𝑠𝑖 , and 𝑅(𝑠𝑖) is the function specific to a set S that takes as

input an element 𝑠𝑖 and returns its rank. The quantile of an element

𝑠𝑖 ∈ 𝑆 is defined as 𝑅(𝑠𝑖)/𝑛. Equivalently, the 𝜙-quantile of set S,
𝑄 (𝜙) returns the element 𝑠𝑖 such that 𝑄 (𝑅(𝑠𝑖)/𝑛) = 𝑠𝑖 . Typically,

quantile is represented as a fraction 𝜙 ∈ (0, 1]. The relationship
between the rank and quantile of an element can be represented as:

𝑅(𝑠𝑖) = 𝜙 · 𝑛, where 𝜙 is a non-zero fraction less than or equal to

one and 𝑛 is the number of elements in the dataset. Equivalently, 𝜙

elements are less than or equal to 𝑠𝑖 and (1 − 𝜙) × 𝑛 elements are

greater than 𝑠𝑖 . The most familiar quantile value is 𝜙 = 0.5 which

is referred to as the median of the dataset.

2.1 Deterministic and Randomized algorithms
Computing the true median value for large data sets, is memory

intensive. Munro and Paterson [24] proved that to find the true me-

dian of a set of size 𝑛 with 𝑝 sequential passes of the input requires

at least Ω(𝑛1/𝑝) memory. Thus, to determine the true median using

a one-pass algorithm requires memory linear to the size of the set.

With limited memory and for large data sets, calculating the exact

quantiles is infeasible. An alternate and more practical approach

to the problem is to approximate the quantiles, represented as 𝜖

approximation 𝜙 quantile, where 𝜖 is the precision value.

The deterministic 𝜖 approximation 𝜙 quantile algorithms take

as input a quantile query 𝜙 and a precision value 𝜖 and output an

answer 𝑥 such that 𝑥 ’s quantile is in the range [𝜙 − 𝜖, 𝜙 + 𝜖]. An
alternative approach proposes a family of randomized algorithms

where the output answer 𝑥 is within the [𝜙 − 𝜖, 𝜙 + 𝜖] range with a

high probability [18, 20, 21]. These algorithms provide guarantees

by bounding the failure probability to at most 𝛿 such that the user

has 1 − 𝛿 confidence that the sketch’s output is 𝜖 approximation.

2.2 Quantile Sketch: Insertion-only Model
Greenwald and Khanna [13] developed the GK sketch that tracks

a sorted subset of elements in the input data stream such that

these elements provide lower and upper bounds for each quantile

individually instead of maintaining a single bound over all quantiles.

The GK sketch is deterministic and requires𝑂 (1/𝜖 log (𝜖𝑁)) space
in the worst case. It is conjectured [2], however, that the GK sketch

is not fully mergeable – the property of merging two sketches on

1216

Sketch Space Update Time Randomization Model Framework

GK Sketch [13] 𝑂 (1𝜖 𝑙𝑜𝑔(𝜖𝑛)) 𝑂 (𝑙𝑜𝑔 1

𝜖 + 𝑙𝑜𝑔𝑙𝑜𝑔(𝜖𝑛)) Deterministic Insertion-Only Data-Driven

Q-digest [27] 𝑂 (1𝜖 𝑙𝑜𝑔𝑈) 𝑂 (𝑙𝑜𝑔 1

𝜖 + 𝑙𝑜𝑔𝑙𝑜𝑔𝑈) Deterministic Insertion-Only Universe-Driven

MRL99 [22] 𝑂 (1𝜖 𝑙𝑜𝑔
2 (1𝜖)) 𝑂 (𝑙𝑜𝑔(1𝜖)) Randomized Insertion-Only Data-Driven

Mergeable KLL [20] 𝑂 (1𝜖 𝑙𝑜𝑔
2𝑙𝑜𝑔(1𝜖)) 𝑂 (1𝜖) Randomized Insertion-Only Data-Driven

𝑂 (𝑙𝑜𝑔(1𝜖))[18]
RSS [12] 𝑂 (1

𝜖2
𝑙𝑜𝑔2𝑈𝑙𝑜𝑔

𝑙𝑜𝑔𝑈
𝜖) 𝑂 (1

𝜖2
𝑙𝑜𝑔2𝑈𝑙𝑜𝑔

𝑙𝑜𝑔𝑈
𝜖) Randomized Turnstile Universe-Driven

DCM [9] 𝑂 (1𝜖 𝑙𝑜𝑔
2𝑈𝑙𝑜𝑔

𝑙𝑜𝑔𝑈
𝜖) 𝑂 (𝑙𝑜𝑔𝑈𝑙𝑜𝑔 𝑙𝑜𝑔𝑈𝜖) Randomized Turnstile Universe-Driven

DCS [28] 𝑂 (1𝜖 𝑙𝑜𝑔
1.5𝑈𝑙𝑜𝑔1.5

𝑙𝑜𝑔𝑈
𝜖) 𝑂 (𝑙𝑜𝑔𝑈𝑙𝑜𝑔(𝑙𝑜𝑔𝑈𝜖)) Randomized Turnstile Universe-Driven

Mergeable KLL
± 𝑂 (𝛼1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔 1

𝜖) 𝑂 (𝛼1.5

𝜖) Randomized Bounded Data-Driven

s.t. 𝐷 ≤ (1 − 1/𝛼)𝐼 𝑂 (𝑙𝑜𝑔(𝛼1.5

𝜖))[18] Deletions

Table 1: Comparison between different quantile sketches

two different datasets is to create one combined or merged sketch

that can then be used for quantile computation over the union of

the two datasets. Mergeability allows users to compute sketches

over multiple data partitions independently and to combine them

in parallel to compute the summaries. The merged sketch should

be as accurate as a single sketch over the entire data set. This is

a crucial requirement in distributed settings, where data is often

stored distributedly across different machines. Creating sketches

independently and then merging them avoids the communication

costs and large latency of transferring large amounts of data to

a central repository. Furthermore, this also makes the quantile

computation highly scalable in the context of very large datasets.

Karnin et al. [20] extended the GK sketch and presented the

KLL sketch, an asymptotically optimal but non-mergeable sketch

with 𝑂 (1/𝜖 log log (1/𝛿𝜖)) space. Karnin et al. also presented a

mergeable KLL sketch with 𝑂 (1/𝜖 log
2
log (1/𝛿𝜖)) space bounds.

The core building block for the KLL quantile sketch is called the

compactor, first introduced in [21]. KLL can be seen as an array of𝐻

compactors as depicted in Figure 1. One of the main contributions

by Karnin et al. [20] is to obtain the optimal sketch size by having

different capacity compactors at different heights and exponentially

decreasing the capacity of compactors at lower heights.

Figure 1: An illustration of a set of compactors. As the height
decreases from H to 1, the capacity of the compactor de-
creases from 𝑘 to 𝑐𝐻−1𝑘 . 𝑘 is a constant given by the user,
and 𝑐 is a constant between 0.5 and 1.

When a 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ]’s size reaches its capacity, i.e.,𝑘ℎ = 𝑐ℎ , the

compactor performs a compaction process, in which it pushes 𝑘ℎ/2
elements from 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] to 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ + 1]. Hence, these
𝑘ℎ/2 elements update their weight to 2 ·𝑤ℎ , i.e., 2

ℎ
. The compaction

process introduces error since each compaction pushes only half of

the elements to the next level. For example, consider a compaction

of two elements A, B with weight𝑤ℎ = 1 in which rank(A)=1 and

rank(B)=2. A compaction pushes either A or B, and the compacted

element’s weight becomes𝑤ℎ+1 = 2. If element A is chosen then the

sketch loses the information about element B and believes element

A appeared twice, hence rank(A)=2 and rank(B)=2 in which case

we introduced +1 (+𝑤𝐻) error for rank A. If element B is chosen

then the sketch loses the information about element A and believes

element B appeared twice, hence rank(A)=0 and rank(B)=2 in which

case we introduced -1 (−𝑤𝐻) error for rank A. In both cases, we

introduce no error for rank B. Therefore the rank estimation before

and after a compaction process differs by at most𝑤ℎ as shown in

Figure 2. Agarwal et al. [2] suggested that by removing the odd or

even indexed elements with equal probability, the expected error

becomes zero. This ensures that the total error is bounded by 𝛿 for

𝑂 (1/𝜖) quantiles.
In summary, Karnin et al. [20] (i) exponentially decrease the com-

pactor capacity; (ii) replace compactors of capacity 2 with a sampler,

which randomly selects one element from 2
𝑤𝐻−log1/𝑐 𝑘

elements;

(iii) keep the size of the top𝑂 (log log 1/𝛿) compactors fixed (similar

to the MRL sketch [21]); (iv) replace the top 𝑂 (log log 1/𝛿) com-

pactors with a GK sketch [13]. Recently, Ivkin et al. [18] extended

the theoretical development of Karnin et al. [20] to achieve practical

improvements for implementing KLL sketches. In summary the

contributions are: (i) Implementing the algorithm with memory

limit parameter, denoted by 𝑘 , as opposed to 𝛿 (failure probability)

and 𝜖 (precision) parameters; (ii) extending the functionality to han-

dle weighted data streams; and (iii) various optimization strategies

to reduce memory footprint and update time. These optimization

strategies are orthogonal to our work, and in the technical report [1]

we show how to integrate our work with the Sweep Compactor

[18] to improve the worst case update time.

1217

Figure 2:𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] reaches its capacity of 6 and performs
a compaction. If the odd indexed terms are chosen then the
compaction contributes +𝑤ℎ error to R(1), R(3), and R(5). If
the even indexed terms are chosen then the compaction con-
tributes −𝑤ℎ error to R(1), R(3), and R(5). In both cases the
compaction contributes no error to R(2), R(4), and R(6).

2.3 Quantile Sketch: Turnstile Model
In the turnstile model, the input data stream consists of both inser-

tions and deletions and a deletion cannot delete an element that

does not exist. This is also known as the strict definition for the

turnstile model. Gilbert et al. [12] were the first to propose quantile

sketches for the turnstile model and introduced quantile sketches to

support both insertions and deletions in database management sys-

tems (DBMSs). The authors [12] presented the novel Random Subset

Sums (RSS) sketch, which breaks down the universe𝑈 into dyadic

intervals and maintains the frequency estimations of elements for

each layer, using total space of 𝑂 (1
𝜖2

log
2𝑈 log

log𝑈
𝜖), with update

time 𝑂 (1
𝜖2
𝑙𝑜𝑔2𝑈𝑙𝑜𝑔(𝑙𝑜𝑔𝑈𝜖)). The dyadic structure decomposes the

universe into log𝑈 layers such that in each 𝑖 layer the universe is

partitioned into 𝑈 /2𝑖 intervals of size 2𝑖 . The top most layer repre-

sents the interval: [1,𝑈], the second top most layer represents two

intervals: [1,𝑈 /2], [𝑈 /2 + 1,𝑈], the third top most layer represents

four intervals: [1,𝑈 /4], [𝑈 /4+1,𝑈 /2], [𝑈 /2+1, 3𝑈 /4], [3𝑈 /4+1,𝑈]
and so on until the bottom layer representing all the elements in

𝑈 . Thus, to find the rank estimate of an element 𝑥 ∈ 𝑈 , we can

decompose the interval [1, 𝑥] into log𝑥 number of disjoint dyadic

intervals, and query each of these intervals to the frequency esti-

mation sketch of their corresponding layers and then sum all the

estimations to obtain the rank estimation.

Later Cormode et al. [9] proposed the DCM (Dyadic Count Min)

sketch with overall space𝑂 (1𝜖 log
2𝑈 log (log𝑈𝜖))) and update time

𝑂 (log𝑈 log (log𝑈𝜖)). DCM sketch replaced the frequency estima-

tion sketch in each layer with a Count Min Sketch, in which Count

Min sketch uses small space to output the frequency estimation

of each element with an additive factor of 𝜖 in high probability.

Recently, Wang et al. [28] proposed DCS (Dyadic Count Sketch)

sketch which replaced the Count Min sketch with Count sketch [6].

Count sketch is similar to Count Min sketch as it has small space

overhead to output frequency estimation for each element with an

additive factor of 𝜖 in high probability. While Count Min sketch’s

estimation is biased toward overestimation, Count sketch gives an

unbiased frequency estimation by reporting the median. Wang et

al. [28] point out that the property of unbiased frequency estima-

tion from the Count sketch is appealing to the quantile problem.

Estimations, by sketches for each dyadic layers, may give positive

errors or negative errors, and these errors may cancel out each

other. Thus, DCS sketches further improve the space bound to

𝑂 (1𝜖 log
1.5𝑈 log

1.5 (log𝑈𝜖))) with the same update time complexity

as DCM sketches.

These three sketches (RSS, DCM, DCS) guarantee that deleting

a previously inserted element has no impact on the space or ac-

curacy of the sketch. In fact, Gilbert et al. [12] compared the RSS

sketch with 2-parallel GK sketches (one for insertions and one for

deletions), and found that when deletions are relatively small, the

simple 2-parallel GK sketches exceed the accuracy of RSS by two or-

ders of magnitude. When the number of deletions are significantly

large, RSS is more accurate than the 2-parallel GK sketches.

During the past three decades of research, various quantile sum-

maries have been developed through a variety of models and frame-

works. In Table 1, we compare the difference and similarity among

several different sketches. Quantile sketches algorithms can be

categorized by data-driven or universe-driven framework [8]. Al-

gorithms in the data-driven framework keep a subset of items

appeared in the stream and maintain their statistics. On the other

hand, algorithms in the universe-driven framework maintain at-

tributes over the universe, and have update time and space bounds

depend on the universe size𝑈 . For instance, Shrivastava et al. [27]

proposed a novel quantile sketch for the insertion-only model and

universe-driven framework with 𝑂 (1𝜖 log𝑈) space. Our algorithm
uses the bounded deletion model and data-driven framework, more

precisely the comparison framework
4
. The benefit for sketches in

the data-driven framework is that these sketches make no assump-

tions on the universe size, hence can handle dataset with attributes

involving variable-length strings while their space and update time

are independent from the universe size; Recent surveys by Wang

et al. [28], Greenwald et al. [14], Chen et al. [7], and Cormode et

al. [10] provide comprehensive background on quantile sketches.

3 KLL± QUANTILE SKETCH
The challenges for supporting arbitrary number of delete operations

in the turnstile model motivated researchers [9, 12, 28] to explore

universe-driven algorithms which necessitate the sketch size and

update time to be dependent on the size of the universe, which can

be quite large. Our main goal is to extend data-driven algorithms to

the bounded deletion model where the input consists of 𝐼 insertions

and at most (1 − 1/𝛼) × 𝐼 deletions. We propose the KLL
±
Quantile

Sketch, a generalization of the KLL sketch to maintain quantile

information in the bounded deletion model using as small of a

memory footprint as possible.

3.1 Basic Structure
Similar to MRL [21] and KLL [20], KLL

±
can be seen as an array

of 𝐻 compactors where 𝐻 denote the total height. Each compactor

is identified by its height, denoted as 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ]. The topmost

compactor and the bottom compactor have height 𝐻 and 1, respec-

tively. Each 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] has a limited capacity 𝑐ℎ = 𝑐𝐻−ℎ𝑘 where

4
Only comparisons are applied on elements.

1218

𝑘 is the capacity of 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [𝐻]. Each 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] contains 𝑘ℎ
elements such that 𝑘ℎ < 𝑐ℎ and each element in 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] has
weight𝑤ℎ = 2

ℎ−1
. Once a compactor is full, 𝑘ℎ = 𝑐ℎ , the compactor

will go thorough a compaction to free spaces for new elements.

3.2 Differentiating Inserts & Deletes
In the insertion-only model, the incoming data stream consists

only insertions. To extend this model to contain both insert and

delete operations, we first differentiate between insert and delete
operations by using one additional bit (representing the sign) with

the data value. We assume that deletions are negative numbers

with negative weights and insertions are positive numbers with

positive weights.Let function 𝑠𝑖𝑔𝑛(𝑖𝑡𝑒𝑚) return 1 for insertions and

return -1 for deletions. The weight of an item is defined based on

the sign function and the height of the compactor. For any element

in 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ]: 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖𝑡𝑒𝑚) = 𝑠𝑖𝑔𝑛(𝑖𝑡𝑒𝑚) ∗ 2ℎ−1. Hence, the
deleted items are recorded with negative weights and inserted

items with positive weights.

3.3 Conditional Compaction
Once a compactor is full, i.e, 𝑘ℎ = 𝑐ℎ , the compactor needs to be

compacted to free space for new incoming elements. The pres-

ence of inserted and deleted elements requires a new compaction

algorithm. This section presents a novel compaction algorithm,

Conditional Compaction, described in Algorithm 1. In the condi-

tional compaction algorithm we assume that the capacity of the

input compactor is even. If the capacity of the compactor is odd

then the first or the last element is randomly kept to ensure that an

even sized number of elements are compacted.

Before compacting each compactor[h], the elements inside the

compactor[h] are sorted (the sorting order does not matter), line 1

of Algorithm 1, After sorting, Conditional Compaction Algorithm

follows the following compaction process:

Discard(−ei, ei): For every element −𝑒𝑖 , if there is a matching 𝑒𝑖 ,

then 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (−𝑒𝑖 , 𝑒𝑖). This is because an insert 𝑒𝑖 and a delete 𝑒𝑖
operation cancel each other and any such matching pairs of in-

serts and deletes are discarded in the compaction process. Since

the compactor is sorted
5
, a classical two-pointer technique

6
, can

be used to find all matching pairs of ⟨𝑑𝑒𝑙𝑒𝑡𝑒 (𝑒𝑖), 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑖)⟩. If such
pairs exist then 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 (−𝑒𝑖 , 𝑒𝑖) results in the removal of matched

pairs which in turn creates free space in the compactor and hence

the algorithm skips the rest of the compaction process. A crucial

property of compaction is to push elements to the compactor at the

next level. Since in this case a compactor will not push any elements

to the compactor at the next level, this is not a full compaction.

Push(ei, ei+1): If no ⟨𝑑𝑒𝑙𝑒𝑡𝑒 (𝑒𝑖), 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑖)⟩ pairs are found and dis-
carded, then the algorithm performs the push operation. For every

pair of adjacent elements, 𝑒𝑖 and 𝑒𝑖+1 with the same sign (i.e., they

are both inserts or deletes) at level ℎ, the algorithm decides on a

random offset (line 6) whether the first or the second element of the

5
If compactor is not sorted, we need to keep a map while scanning the compactor to

find all matching pairs.

6
Put one pointer at beginning and one at the end, increments or decrements the

pointers to find all matching pairs in a single scan.

pair is pushed to the next level, 𝐶 [ℎ + 1].

Keep(ei, ei+1): If the pair of adjacent elements, 𝑒𝑖 and 𝑒𝑖+1, have
different signs (i.e., 𝑒𝑖 is deleted and 𝑒𝑖+1 is inserted), then both

elements are retained in the compactor at level ℎ. Note that there

will be at most one such mismatched pair with different signs.

The rationale for keeping adjacent elements with different signs

is based on the following observation. Assume in compactor[h]

there is a ⟨𝑑𝑒𝑙𝑒𝑡𝑒 (𝐵), 𝑖𝑛𝑠𝑒𝑟𝑡 (𝐴)⟩ pair. This information implies that

the input contains𝑤ℎ insertions and at least one of these insertions

is element A, and also𝑤ℎ deletions and at least one of these dele-

tions is element B. If we randomly push either insert A or delete B

into compactor[h+1] which contains elements with weight of 2𝑤ℎ ,

then the sketch not only lost the information about𝑤ℎ deletions

or𝑤ℎ insertions respectively, but also introduce false information

on the total number of insertions and deletions.

Algorithm 1: Conditional Compaction in KLL
±

1 𝑠𝑜𝑟𝑡 (𝐶 [ℎ]);
2 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 = 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 ((−𝑥, 𝑥) pairs ∈ 𝐶 [ℎ]);
3 if 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 then
4 // No compaction needed

5 𝑟𝑒𝑡𝑢𝑟𝑛;

6 offset = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1);
7 for 𝑖 = 0; 𝑖 < 𝐶 [ℎ] .𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 = 𝑖 + 2 do
8 if 𝑠𝑖𝑔𝑛(𝐶 [ℎ] [𝑖]) == 𝑠𝑖𝑔𝑛(𝐶 [ℎ] [𝑖 + 1]) then
9 𝑝𝑢𝑠ℎ(𝐶 [ℎ] [𝑖 + offset]) to C[h+1];

10 else
11 𝑘𝑒𝑒𝑝 (𝐶 [ℎ] [𝑖],𝐶 [ℎ] [𝑖 + 1]) in TEMP ;
12 end
13 𝐶 [ℎ] .𝑐𝑙𝑒𝑎𝑟 ();
14 𝐶 [ℎ] ← TEMP ;
15 𝑟𝑒𝑡𝑢𝑟𝑛;

Two main distinctions that arise in the compaction process of

KLL
±
are: (i) discarding matching pairs to free space before the push

operations, and (ii) changing the minimum capacity of a compactor

to at least three (from two in KLL). The first modification reduces

the number of push operations by removing matched pairs which

cancel each other. Later, we prove that discard operations do not

introduce error and push operations can introduce at most𝑤ℎ error.

The second modification changes the minimal capacity of a ca-

pacitor to three. This modification is necessary because if the min-

imum capacity of a compactor is two and these elements neither

have the same operation nor are a matched pair, then the Condi-

tional Compaction would retain both elements in the compactor;

and hence the compactor remains full even after the compaction

process. Increasing the minimum capacity of a compactor to three

guarantees a reduction in size after a compaction, when the com-

pactor becomes full. If the compactor contains matched pairs, then

the discarded operation can be applied to free space. If there is no

matched pair, then a full compactor with capacity three can have

four possible cases in the compaction process, as shown in Table 2.

Table 2 also describes the compaction strategy for each of these

1219

Table 2: Compaction for a full compactor of size 3 consisting
of sorted elements 𝑒1, 𝑒2, and 𝑒3 and no matched pair.

3 Inserts 50%: push(𝑒1 or 𝑒2) and keep(𝑒3)

+ + + 50%: keep(𝑒1) and push(𝑒2 or 𝑒3)

2 Inserts and 1 Delete keep(𝑒1) and push(𝑒2 or 𝑒3)

− + +
1 Insert and 2 Deletes push(𝑒1 or 𝑒2) and keep(𝑒3)

− − +
3 Deletes 50%: push(𝑒1 or 𝑒2) and keep(𝑒3)

− − − 50%: keep(𝑒1) and push(𝑒2 or 𝑒3)

cases, assuming elements are in the sorted order and no matching

pairs. When the compactor is full, one element out of two elements

with the same operations is randomly chosen and pushed to the

next level, and the element not been pushed is removed.

3.4 Estimating Ranks and Quantiles
The Output Operation in Algorithm 2, summarizes the current

snapshot of the sketch. It uses all the compactors inside the sketch

to obtain the quantile information. First, the total weight of the

sketch is calculated by summing the weights of all elements, where

ℎ is the height of the compactor and 𝑘ℎ is the number of elements

in compactor[h] (line 9): 𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 =
∑︁𝐻
ℎ=1

∑︁𝑘ℎ
𝑖=1

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒ℎ,𝑖)
Second, a map ItemWeightSortedMap of < 𝑖𝑡𝑒𝑚, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 > pairs

is created to contain the final aggregate weights of each element in

the sketch. For each element, the aggregatedweights is calculated by

incrementing or decrementing the corresponding weights, based on

the height of the compactor in which the element was encountered,

and whether the corresponding operation was an insert or a delete.

Third, since 𝐼𝑡𝑒𝑚𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝑀𝑎𝑝 is sorted in ascending order

by item, map 𝑅𝑒𝑠𝑢𝑙𝑡 calculates the estimated rank of each item by

summing through all weights of items whose values are less than

or equal to itself. To transform the rank of an item into the quantile

of an item, the rank information is divided by the total weight.

The output operation returns a map that contains the quantile

information for each item in the sketch. To estimate the rank of item,

𝑥 , that is not in the output, we can use the rank of the largest element

that is less than 𝑥 as the estimation. For items with estimate rank

less than zero or larger than the total weight, we treat their rank

as zero or as the total weight since all deleted items are previously

inserted and hence all ranks should be with in [0, TotalWeight].

3.5 An Illustrative Example
Assume a KLL

±
sketch with 𝑘 = 6, 𝑐 = 2

3
, the topmost compactor

has capacity 6 i.e, 𝑘 , and the second topmost compactor has capacity

4 i.e, 𝑐𝑘 . Items 1 through 8 are inserted and then items 7, 3, 2, and 1

are deleted. After the deletions, the multiset is left with {4,5,6,8} and

their respective ranks are R(4)=1, R(5)=2, R(6)=3, R(8)=4. As illus-

trated in in Figure 3, the sketch needs to be compacted three times.

Assume the first compaction has offset of 1; the second compaction

has offset of 0; the third compaction again has offset of 1. The first

conditional compaction occurs after item 6 is inserted, and pushes

the 2, 4, and 6 from compactor[1] to compactor[2]. Compactor[2]

maintains full capacity of 6, while the capacity of compactor[1]

Algorithm 2: Output Operation in KLL
±

1 Result = map();

2 // A map sorted in ascending Item Order

3 ItemWeightSortedMap = OrderedMap< 𝑖𝑡𝑒𝑚,𝑤𝑒𝑖𝑔ℎ𝑡𝑠 >;

4 TotalWeight = 0;

5 for all compactor[h] in Sketch do
6 for item in compactor[h] do
7 weight = sign(item) 2

ℎ−1
;

8 ItemWeightSortedMap[(abs(item)] += weight;

9 TotalWeight += weight;

10 end
11 end
12 PrevW = 0;

13 //traverse ItemWeightSortedMap in ascending order;

14 for < 𝑖𝑡𝑒𝑚,𝑤𝑒𝑖𝑔ℎ𝑡𝑠 > in ItemWeightSortedMap do
15 Result[item] = (weights+PrevW)/TotalWeight;

16 PrevW += weights;

17 end
18 //result contains the quantile info for each item.

19 return Result;

Figure 3: Items from 1 to 8 are inserted and then items 7,3,2,1
are deleted. The resulting dataset is {4,5,6,8}; KLL± estimate
R(4) = 1, R(5) = 1, R(6) = 3, R(8) = 4.

is now reduced to 4. The second conditional compaction occurs

after elements 7, 8, -7 and -3 are added. This compaction finds a

matching pair of -7 and 7 and hence discards the pair, leaving com-

pactor[1] with -3 and 8. The third conditional compaction occurs

after elements -2 and -1 are added. This compaction pushes -2 to

compactor[2], and -1 and 8 are both kept in compactor[1] since they

have different signs. Based on the current sketch, the original data

set are now represented as {-1, 4, 4, 6, 6, 8}. Finally, to estimate ranks,

KLL
±
computes the weight of all ⟨𝑎𝑏𝑠 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡),𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡)⟩

pairs. Then sort based on the element’s value: (1, -1), (2, 0), (4, 2), (6,

2), (8, 1), and compute their corresponding ranks: R(1) = R(2) = 0,

R(4) = 1, R(6) = 3, and R(8) = 4. To report R(5), we use the rank
of largest element that is less than 5, i.e. R(5) = R(4) = 1, differs

1220

from true 𝑅(5) by 1. As a result, the output of the sketch in term of

rank is: R(4) = R(5) = 1, R(6) = 3, R(8) = 4.

3.6 Error in Compaction
This section discusses the error introduced by Conditional Com-

paction. Essentially, the algorithm introduces errors when pushing

one out of two elements and does not introduce any error when dis-

cardingmatched elements or when retaining a pair of non-matching

elements. Consider the Push(𝑒1,𝑒2) operation in 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] with
weight𝑤ℎ : at random, either 𝑒1 or 𝑒2 is pushed into 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ+1]
with weight 𝑤ℎ+1. Pushing elements to higher weight results in

+𝑤ℎ , 0, or -𝑤ℎ error. By removing the odd or even items with equal

probability, the expected error becomes zero [2].

Lemma 1. Hoeffding’s Inequality. Let 𝑋1, · · · , 𝑋𝑛 be independent
random variables such that −𝑤𝑖 ≤ 𝑋𝑖 ≤ 𝑤𝑖 and the expected value
E(𝑋𝑖) = 0 for 𝑖 = 1, 2, . . . , 𝑛. Then for any 𝑡 > 0 we have:

𝑃𝑟 [|
𝑛∑︂
𝑖=1

𝑋𝑖 | > 𝑡] ≤ 2𝑒𝑥𝑝 (− 𝑡2

2

∑︁𝑛
1
𝑤2

𝑖

)

In Condition Compaction, Algorithm 1 discards matched pairs of

inserted and deleted elements. We need to establish that this does

not impact the overall error and make sure the expected error in one

compaction is still zero in order to apply Hoeffding’s inequality [16]

to bound the total errors. Proof of Proposition 1 is presented in the

extended technical report[1]

Proposition 1. Discarding matched inserted and deleted elements
within a compactor at level ℎ during a compaction cycle does not
introduce any error to the sketch’s total error.

The Conditional Compaction algorithm has three main compo-

nents that can potentially introduce error: (i) Push(𝑒𝑖 or 𝑒𝑖+1), (ii)
Keep(𝑒𝑖 and 𝑒𝑖+1), and (iii) Discard(-𝑒𝑖 and 𝑒𝑖). Pushing one of two

elements from compactor[h] introduces +𝑤ℎ , 0, -𝑤ℎ error; keeping

elements in their own compactor introduces no error; discarding

the matched pairs of inserted and deleted elements introduces no

error (proved in Proposition 1). Thus we can assert the expected

error is still 0 when pushing even or odd index terms with equal

probability, and we can apply Hoeffding’s inequality to bound the

probability of total error exceeding 𝜖 · (𝐼 −𝐷), where 𝜖 is the desired
precision and 𝐼 − 𝐷 is the size of the dataset after the deletions.

To show that the KLL
±
sketch ensures that the probability of

the total error exceeding 𝜖 · (𝐼 − 𝐷) is less than a small constant

probability, 𝛿 . Let random variable 𝑋𝑖,ℎ denote the error introduced

by the 𝑖𝑡ℎ compaction in 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ] and let𝑚ℎ be the number

of compactions that occurred at compactor[h]. Note 𝑋𝑖,ℎ can be 1,

0, or -1. Therefore, the total error is computed as:

𝐸𝑟𝑟 =

𝐻∑︂
ℎ=1

𝑚ℎ∑︂
𝑖=1

𝑤ℎ𝑋𝑖,ℎ (1)

Since we know that 𝐸 (𝑋𝑖 , ℎ) = 0 by keeping even and odd terms

with equal probability, Hoeffding’s inequality can be applied:

𝑃 (|𝐸𝑟𝑟 | > 𝜖 (𝐼 − 𝐷)) ≤ 2𝑒𝑥𝑝 (− 𝜖2 (𝐼 − 𝐷)2

2

∑︁𝐻
ℎ=1

∑︁𝑚ℎ

𝑖=1
𝑤2

ℎ

) ≤ 𝛿

Where 𝛿 is a small constant probability. 𝛿 denotes the maximum

failure probability; hence, when 𝛿 is small, the algorithm has high

confidence for success.

3.7 Space Bound
In this section, we analyze the space bound and approximation

guarantees for KLL
±
with an array of 𝐻 compactors. The minimum

capacity of compactors is three to handle both insert and delete

operations. To guarantee any compactor will have capacity greater

than or equal to three, a compactor at height ℎ has capacity of

𝑚𝑎𝑥 (
⌊︂
𝑐𝐻−ℎ𝑘

⌋︂
, 3). Hence, as the total height 𝐻 increases, there will

be a stack of bottom compactors with capacity three. In particular,

for compactors with small ℎ such that

⌊︂
𝑐𝐻−ℎ𝑘

⌋︂
≤ 3,the compactors

will have capacity of three.

Figure 4: 𝐻 ′ denotes the height of the bottom compactors
with size 3, and 𝐻 is the height at the highest level.

Assume the KLL
±
sketch has 𝑘 ≥ 4 and 𝑐 ∈ (0.5, 1) with 𝑐ℎ =

𝑚𝑎𝑥 (
⌊︂
𝑐𝐻−ℎ𝑘

⌋︂
, 3), and the incoming data have 𝐼 insertions and 𝐷

deletions such that 𝐷 ≤ (1 − 1/𝛼)𝐼 . Let 𝑟 = 𝐷
𝐼
be the rate of

deletions such that 𝑟 ≤ (1− 1

𝛼) ensuring that the incoming updates

have bounded deletions compared to insertions. 𝐻 is the height of

the compactor at the highest level; 𝐻 ′ is the height of the bottom
compactors with capacity three (see Figure 4) such that 𝐻 ′ ≤ 𝐻 − 1.

Because each compactor will undergo compaction when it be-

comes full, every compactor of capacity three contains at most two

items, and hence the total weight of these bottom compactors is:

𝑊𝑏𝑜𝑡𝑡𝑜𝑚 ≤
𝐻 ′∑︂
ℎ=1

2𝑤ℎ =

𝐻 ′∑︂
ℎ=1

2
ℎ ≤ 2

𝐻 ′+1

The total weights of the top compactors is:

𝑊𝑡𝑜𝑝 ≤
𝐻∑︂

ℎ=𝐻 ′+1
(𝑘ℎ − 1)𝑤ℎ ≤ (𝑘 − 1)2𝐻

Combining the total weights of the bottom 𝐻 ′ and top 𝐻 − 𝐻 ′

compactors results in an upper bound on the number of items in

the dataset: 𝐼 − 𝐷 ≤ 2
𝐻 ′+1 + (𝑘 − 1)2𝐻 ≤ 𝑘2𝐻 . We can then bound

the total number of items:

𝑛 = 𝐼 + 𝐷 = (1 + 𝑟)𝐼 ≤ 𝑘2𝐻
1 + 𝑟
1 − 𝑟 (2)

1221

Since topmost 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [𝐻] exists, it implies that 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [𝐻 −
1] has been compacted. Thus ,𝑛 ≥ 𝑐𝐻−1𝑤𝐻−1 ≥ 𝑐𝑘2𝐻−2 = 𝑘2𝐻 (𝑐/4).
By moving 𝐻 to the left hand side and 𝑛 to the right hand side:

𝐻 ≤ 𝑙𝑜𝑔2 (4𝑛/𝑐𝑘) = 𝑙𝑜𝑔2 (𝑛/𝑐𝑘) + 2

The keep and discard operation introduce no error as shown in

Proposition 1, and only the push operation will introduce at most

±𝑤ℎ error. Also, because the conditional compaction Algorithm 1

will perform no compaction if there are any discard operations,

the push operations are performed on compactor[h] that contains

𝑘ℎ = 𝑐ℎ elements. Then let𝑚ℎ denote the number of compactions

occurred for compactor at heightℎ, and the total error introduced in

the sketch is upper bounded by the number of compactions: 𝐸𝑟𝑟 =∑︁𝐻
ℎ=1

∑︁𝑚ℎ

𝑖=1
𝑤ℎ𝑋𝑖,ℎ where 𝑋𝑖,ℎ is a random variable denote the error

introduced by the 𝑖𝑡ℎ compaction in which 𝐸 (𝑋𝑖,ℎ) = 0 and |𝑋𝑖,ℎ | ≤
1, shown in Equation 1. We can bound the number of compactions,

𝑚ℎ , at height h, where each compaction is performed on 𝑘ℎ = 𝑐ℎ
elements with weight 𝑤ℎ as𝑚ℎ ≤ 𝑛

𝑐ℎ𝑤ℎ
≤ 2𝑛

𝑘2𝐻
(2/𝑐)𝐻−ℎ and by

substituting in Equation 2,𝑚ℎ ≤ 2
1+𝑟
1−𝑟 (2/𝑐)

𝐻−ℎ
. Note in this upper

bound, we did not consider discard operations; discard operations

only reduce the number of compactions. We now apply Hoeffding’s

inequality to bound the probability for compactors to introduce

more than 𝜖 · (𝐼 − 𝐷) error:

𝑃 (|𝐸𝑟𝑟 | > 𝜖 (𝐼 − 𝐷)) ≤ 2𝑒𝑥𝑝 (− 𝜖2 (𝐼 − 𝐷)2

2

∑︁𝐻
ℎ=1

∑︁𝑚ℎ

𝑖=1
𝑤2

ℎ

) ≤ 𝛿

The denominator can be expanded to

∑︁𝐻
ℎ=1

∑︁𝑚ℎ

𝑖=1
𝑤2

ℎ
=
∑︁𝐻
ℎ=1

𝑚ℎ𝑤
2

ℎ

≤ 1+𝑟
1−𝑟

16𝑛2

𝑐 (2𝑐−1)𝑘2
, where 𝑟 = 𝐷

𝐼
≤ (1 − 1/𝛼). Let 𝐶 =

𝑐 (2𝑐−1)
32

,

𝑃 (|𝐸𝑟𝑟 | > 𝜖 (1 − 𝑟
1 + 𝑟 𝑛)) ≤ 2𝑒𝑥𝑝 (−(1 − 𝑟

1 + 𝑟)
3𝐶𝜖2𝑘2) (3)

Since 0 ≤ 𝑟 ≤ (1 − 1

𝛼), 1 + 𝑟 ≤ 2 − 1

𝛼 , 1 − 𝑟 ≥ 1

𝛼 , and hence

1−𝑟
1+𝑟 ≥

1

2𝛼−1 . Setting 𝑘 = (2𝛼 − 1)1.5/(𝜖
√
𝐶)

√︁
ln(2/𝛿) suffices to

bound the failure probability by 𝛿 , and the total space used is:

𝐻∑︂
ℎ=1

𝑐ℎ ≤ 3𝐻 + 𝑘
𝐻∑︂
ℎ=1

𝑐𝐻−ℎ = 𝑂 (𝑘 + 𝑙𝑜𝑔(𝑛/𝑘)) (4)

Theorem 1. In the bounded deletion model 𝐷 ≤ (1 − 1/𝛼)𝐼 , there
exists a data sketch that computes an 𝜖 approximation for the rank
of a single item with probability 1 − 𝛿 whose space complexity is
𝑂 (𝛼1.5

𝜖

√︁
𝑙𝑜𝑔(1/𝛿) + 𝑙𝑜𝑔(𝜖𝑛

𝛼1.5)).

In order to have 𝜖 approximations for all items, the failure proba-

bility need to be decreased into 𝜖𝛿 , bounding the failure probability

for approximating a set of 𝑂 (1/𝜖) items. Thus, to solve all quantile

approximation, the space complexity becomes:

𝑂 (𝛼
1.5

𝜖

√︁
𝑙𝑜𝑔(1/𝜖𝛿) + 𝑙𝑜𝑔(𝜖𝑛

𝛼1.5
)

Note that the space complexity includes 𝑙𝑜𝑔(𝜖𝑛) term and this is

due to the stack of compactors with size 3. We can further reduce

the space complexity by replacing the bottom compactors with

samplers as discussed in the next section.

4 SAMPLER AND MERGEABILITY
In this section, we describe how to incorporate the sampler from

the original KLL [20] to further reduce the space bound while still

maintaining full mergeability. We also discuss the merge operation

between two KLL
±
sketches to construct a combined sketch over

the union of the underlying datasets, and, in the end, propose a

new algorithm that leverages KLL
±
sketches to maintain quantile

approximations in fixed-size sliding window.

4.1 Sampler-based Bottom Compactors
From the Conditional Compaction Algorithm, when a bottom com-

pactor is full, an inserted item or a deleted item is randomly cho-

sen out of two insertions or two deletions. This is equivalent to

replacing the bottom 𝐻 ′ compactors with two samplers (one for
insertions and one for deletions) to simulate the bottom compactors

and consume O(1) space. Karnin et al. [20] introduced the merge-

able sampler and prove the correctness of the sampling schema.The

sampler has an associated height ℎ, and ℎ increases over more and

more inputs. The sampler outputs an item with weight 2
ℎ
as input

to the compactor of level ℎ + 1. Therefore, the sketch only contains

compactors with heights greater than 𝐻 ′ (from 𝐻 ′ + 1 to 𝐻).

More precisely [20], the sampler has an associated height ℎ and

stores one item with weight at most 2
ℎ−1

. An update is processed

as follows: Let𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 be the weight of the internal item stored

in the sampler and𝑤𝑛𝑒𝑤 be the weight of the newly arriving item.

This 𝑤𝑛𝑒𝑤 is 1 for items from the input; However, when merg-

ing two sketches (as in Section 4.2),𝑤𝑛𝑒𝑤 may represent the item

weight from another sampler. If𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +𝑤𝑛𝑒𝑤 < 2
ℎ
, the sampler

stores the new item with probability𝑤𝑛𝑒𝑤/(𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +𝑤𝑛𝑒𝑤). If
𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑤𝑛𝑒𝑤 = 2

ℎ
, the sampler pushes the stored item into

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜𝑟 [ℎ+1] and resets𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 to zero. If𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +𝑤𝑛𝑒𝑤 >

2
ℎ
, the sampler pushes the item that has larger weight with probabil-

ity𝑚𝑎𝑥 (𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ,𝑤𝑛𝑒𝑤)/2ℎ ; the sampler also updates the stored

item to the item that has smaller weight and resets 𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 to

𝑚𝑖𝑛(𝑤𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ,𝑤𝑛𝑒𝑤). The last case is necessary to support merge

operations. For a sampler at height ℎ, this approach takes an in-

put of𝑊 items where 2
ℎ−1 <𝑊 ≤ 2

ℎ
. With probability𝑊 /2ℎ , it

pushes one of the observed items chosen at random and otherwise

pushes nothing. Lemma 2 in [20] establishes that the sampler’s

push operation introduces an unbiased error of 2
ℎ𝑌ℎ,𝑖 where 𝑌ℎ,𝑖 is

a random variable with 𝐸 (𝑌ℎ,𝑖) = 0 and |𝑌ℎ,𝑖 | ≤ 1.

In KLL
±
, the bottom compactors of capacity 3 are replaced by

two samplers, one for insertions and one for deletions. The insert

and delete samplers share the same height thus ensuring that when

an item is output to the compactor, the item will have the same

weight independent of whether it is an insertion or a deletion. Since

there are total I insertions and D deletions, as the shared samplers’

height increase the insert sampler at height ℎ at most pushes
𝐼
2
ℎ

elements of weight 2
ℎ
to the first compactor and similarly the

delete sampler of height ℎ at most pushes
𝐷
2
ℎ elements of weight

2
ℎ
to the first compactor. Hence there are at most

𝑛
2
ℎ elements

pushed for sampler height ℎ. The total errors introduced are the

sum of all the errors produced by the push operations from both

of these two samplers. Given the probability of the samplers total

error exceeding 𝜖 (𝐼 − 𝐷) should be less than or equal to 𝛿 , setting

1222

𝑘 = (2𝛼 − 1)1.5/𝜖
√︁
𝑙𝑜𝑔(1/𝜖𝛿) is sufficient. The proof is presented

in the extended technical report [1].

Theorem 2. In the bounded deletion model, there exists a data
sketch that computes an 𝜖 approximation for the rank of a single item
with probability 1−𝛿 whose space complexity is𝑂 (𝛼1.5/𝜖

√︁
𝑙𝑜𝑔(1/𝜖𝛿)).

The total sketch size becomes

∑︁𝐻
ℎ=𝐻 ′ 𝑐ℎ =

∑︁𝐻
ℎ=𝐻 ′ 𝑐

𝐻−ℎ𝑘 ≤
𝑘
1−𝑐 = 𝑂 (𝑘), 𝑐 ∈ (0.5, 1), and 𝑂 (𝑘) = 𝑂 (𝛼1.5/𝜖

√︁
𝑙𝑜𝑔(1/𝛿)). More-

over, fixing the capacity of the top 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔(1/𝛿)) compactors to

𝑘 as in KLL[20] can be applied to reduce the KLL
±
sketch size to

𝑂 (𝛼1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔 1

𝜖) and still remain mergeable. In KLL
±
with input

size of 𝐼 + 𝐷 , the probability of total error in rank estimation ex-

ceeding 𝜖 (𝐼 − 𝐷) should be less than or equal to 𝛿 . The proof is

presented in the extended technical report [1]. Lastly, Karnin et

al. [20] suggest to replace the top compactors by the GK sketch

to obtain an asymptotically optimal space bound while sacrific-

ing mergeability. However, since the GK sketch does not support

deletes, this optimization is not applicable in KLL
±
.

4.2 Mergeability
KLL

±
sketches with the same deletion upper bound 𝛼 are fully

mergeable, and the merge operation is described in Algorithm 3.

The mergeability of KLL
±
sketches is desirable for distributed set-

tings. The samplers in Section 4.1 are designed to support merge

operations by supporting weighted updates. To merge two sketches

< 𝑆𝐴, 𝑆𝐵 >, first combine the samplers from both sketches. As-

sume 𝑆𝐴’s samplers have height ℎ𝐴 and 𝑆𝐵 ’s samplers have height

ℎ𝐵 such that ℎ𝐴 ≥ ℎ𝐵 . 𝑆𝐵 feeds its stored insert and delete items

from its insert and delete samplers, respectively, with their internal

weights into 𝑆𝐴’s samplers, and then all compactors with height

less than or equal to ℎ𝐴 in 𝑆𝐵 feed their items into the appropriate

sampler in 𝑆𝐴 with proper weights, calculated using their height

(𝑤ℎ = 2
ℎ−1

). Compactors with height larger than ℎ𝐴 are appended

to the same height compactors in 𝑆𝐴 . Lastly, each compactor that

contains elements more than its capacity is compacted and the new

maximal 𝐻 is computed after all compactions are completed i.e.,

using the combined length of these two sketches.

4.3 Fixed-Size Sliding Window
We consider a potential use-case for KLL

±
sketch to maintain 𝜖-

approximate quantiles in a fixed-size sliding window over append

only datasets, e.g., transaction logs. In the fixed-size sliding window,

the window boundary synchronously shifts over the data, and the

sketch reports the quantile information for the most recent𝑤 items.

In the fixed-size sliding window, the input items are insertions, and

the expired elements (elements except the recent𝑤 items) need to

be deleted. Since the KLL
±
sketch only tolerates bounded deletions,

it cannot directly support such a sliding window setting as the ratio

between deletions and insertions will eventually approach to one.

However, we observe that by partitioning the input data into three
overlapping blocks, we can ensure the deletions are bounded for

each block. The three blocks or data partitions are termed as active,
under-construction, and backup sketches as shown in Figure 5. Each

block can be represented by one KLL
±
sketch.

Initially all sketches contain no elements. When the active sketch

has inserted
𝑤
2

elements, new incoming elements are inserted

Algorithm 3:Merge Two KLL
±
Sketches

1 if 𝑆𝐴 .SamplerHeight < 𝑆𝐵 .SamplerHeight then
2 swap(𝑆𝐴 , 𝑆𝐵)

3 𝑆𝐴,𝐼𝑛𝑠𝑒𝑟𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑟 .update(𝑆𝐵,𝐼𝑛𝑠𝑒𝑟𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑟);

4 𝑆𝐴,𝐷𝑒𝑙𝑒𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑟 .update(𝑆𝐵,𝐷𝑒𝑙𝑒𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑟);

5 for all compactor[h] in 𝑆𝐵 do
6 if h ≤ 𝑆𝐴 .SamplerHeight then
7 for item in compactor[h] do
8 if insert(item) then
9 𝑆𝐴,𝐼𝑛𝑠𝑒𝑟𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑟 .update(item, 2

ℎ−1
);

10 if delete(item) then
11 𝑆𝐴,𝐷𝑒𝑙𝑒𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑟 .update(item, 2

ℎ−1
);

12 end
13 else
14 𝑆𝐴 .compactor[h].concatenate(compactor[h]);

15 end
16 𝑆𝐴 .compaction();

17 return 𝑆𝐴;

Figure 5: Grey blocks are expired sketches; yellow block is
the current active sketch; blue block is the current under-
construction sketch; green block is the current backup
sketch.

into both the active sketch and backup sketch. Once the active

sketch contains 𝑤 elements and the backup sketch contains
𝑤
2

elements, incoming elements are inserted into the backup and

under-construction sketches and the outdated (oldest) elements

are deleted from the active sketch. When the backup sketch has

𝑤 elements, the active sketch, with
𝑤
2
deletions, becomes expired.

The backup sketch now becomes the new active sketch and the

under-construction sketch becomes the new backup sketch. Delet-

ing the expired (previously active) sketch saves space, the freed

space is used to construct the new under-construction sketch.

At any point in time, the quantile information is reported of

the most recent 𝑤 elements by merging the active and under-

construction sketches, i.e, the yellow and blue blocks shown in

Figure 5. Also note that, since deletions only arrive when the sketch

has already inserted𝑤 items, all sketches will have a deletions to

insertions ratio of 𝑟 = 𝑑
𝑤 , and because a sketch expires after at most

𝑤
2
deletions, i.e, 𝑑 ≤ 𝑤

2
, 𝑟 ≤ 0.5𝑤

𝑤 ≤ 1

2
and hence setting 𝛼 = 2 is

1223

sufficient to ensure that 𝑟 ≤ 1

2
. In fact, the 𝛼 can also be changed

to other values; however, the number of backup sketches will also

change accordingly. Thus, we have demonstrated a randomized al-

gorithm to maintain quantile summary in fixed-size sliding window

with three 𝑂 (𝛼1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔 1

𝜖) sketches and 𝛼 = 2.

5 EXPERIMENTS
This section experimentally evaluates KLL

±
for datasets that ex-

perience an input data stream that consists of both insertions and

bounded deletions of elements. KLL
±
is the first quantile sketch

algorithm to operate in the bounded deletion model and the ex-

periments aim to identify the overhead incurred in accounting for

bounded deletes compared to other sketches:

• KLL: Since KLL is insertion-only, the input stream only in-

serts those elements that are left after all the deletions.

• Two-Parallel KLL: Two independent KLL sketches: one

for insertions and one for deletions; then aggregate their

estimations to approximate quantiles.

• DCS7: A universe-driven sketch that assumes a bounded

universe to tolerate an arbitrary number of deletions.

5.1 Experimental Setup
We set 𝑐 = 2

3
for all experiments, and implemented KLL

±
by en-

hancing the Python 3.7.6 code-base of the KLL sketch algorithm

presented in [18, 20]. The changes incorporated in our implementa-

tion are: (i) the minimum capacity of a compactor is increased to 3;

(ii) bottom compactors of capacity 3 are replaced by 2 samplers, one

for insertions and one for deletions; and (iii) the compaction algo-

rithm is modified to implement our new Conditional Compaction

algorithm. Themetric for accuracymeasurement is the Kolmogorov-

Smirnov divergence [5], themaximum deviation among all quantile

queries, a measurement widely used to perform comparisons be-

tween CDFs with different distributions [18]. For each experiment,

the maximum errors are averaged over 5 independent runs.

5.2 Data Sets
The experimental evaluation is conducted using both synthetic and

real world data sets consisting of items that are inserted and deleted.

For the synthetic data, we consider three different distributions:

• UniformDistribution: The insertions are randomly gener-

ated from a discrete uniform distribution, and the deletions

are uniformly chosen from the insertions.

• Zipf Distribution: The elements drawn from bounded uni-

verse and the frequencies of elements follow the Zipf Law

[29], inwhich the frequency of elementwith rank𝑅: 𝑓 (𝑅, 𝑠) =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑅𝑠 where 𝑠 indicate skewness. Deletions are uniformly

chosen from the insertions.

• Binomial Distribution: The elements are generated ac-

cording to the binomial distribution with parameters 𝑛 and

𝑝 where 𝑝 is the probability of success in 𝑛 independent

Bernoulli trials.

In addition to the synthetic data sets, we used the following real

world Wiki dataset
8
:

7
See chapter 4 in [10] for implementation details.

8
https://dumps.wikimedia.org/other/pagecounts-ez/

• Page View Statistics for Wikimedia (Wiki) [23]: This is
an extensive data set consisting of page count files from

2007 to 2016. The experiments use the 2016 page count files,

which include 8 months of <projectname, pagename, #re-
quests, #bytes> tuples. The data are aggregated by day and

within each day, data are sorted on projectname and page-
name. In the experiments, deleted items are random uni-

formly chosen from the inserted items and each update is a

concatenation of projectioname and pagename and the com-

parison model is lexicographic

We also conducted experiments by exploring two additional

properties of the data sets:

• Sorted Dataset: Input is sorted in descending order such

that insertions arrive before deletions; The deletions are

uniformly chosen from the insertions.

• Shuffled Dataset: The insertions are randomly shuffled

and the deletions are also randomly shuffled and uniformly

chosen from the insertions.

5.3 Evaluation
The y-axis depicts the average of maximum quantile error over

5 independent runs: lower y-axis values indicate better accuracy.

Most of the following experiments evaluate the error value in ap-

proximating quantiles while increasing the sketch size in which the

x-axis denotes the sketch size. Except for Section 5.3.6, we assume

all insertions arrive before any deletions into the sketch. This input

pattern is in fact an adverse pattern as the discard operation will

find less matched pairs.

5.3.1 KLL± vs. Two-Parallel KLL vs. DCS. This experiment com-

pares the accuracy among KLL
±
, two-parallel KLL method, and

DCS under the same memory budget. The experiment measures

the quantile estimation when the underlying dataset is entirely

changed: We first insert one million elements from the binomial

distribution with parameter of B(2
16
, 0.5) in which the elements

should be densely centered at value 2
15
. Then another one million

elements are inserted from a uniform distribution in Figure 6(a), or

from a zipf distribution with skewness factor of 0.5 (moderate skew)

in Figure 6(b). Both the uniform distribution and zipf distribution

assume a bounded universe where |𝑈 | = 2
16
, and all inputs are ran-

domly shuffled. Finally, all elements from the binomial distribution

are deleted. Since the total insertions are two millions and the total

deletions are one million, the delete:insert ratio is 0.5.

Figure 6(a) and (b) show that both data driven sketch approaches,

KLL
±
and Two Parallel KLL, perform significantly better than the

universe driven DCS sketch. Although the maximum error of KLL
±

and Two Parallel Method decreases as the sketch size increases,

KLL
±
has less maximum error across all sketch sizes. This finding is

expected since KLL
±
makes a best effort to apply discard operations

thus catching cancellations early on which reduces the number of

compactions, whereas in the two-parallel KLL method each sketch

has no knowledge about the other and accumulates all the errors.

We observe that DCS performs worse on the zipf distribution com-

pared to a uniform distribution. The skewness in the input data

distribution affects the performance of DCS and decreases its accu-

racy as skewness increases. This observation for universe-driven

1224

(a) (b) (c)

Figure 6: Comparison of KLL± with Two Parallel KLL and DCSwhen the underlying data distribution is entirely changed from
Binomial to (a) Uniform and to (b) Zipf (.5). (c) KLL± accuracy with different delete:insert ratios.

DCS sketch is in consistent with the theoretical expectations [28].

On the other hand, the performance of both data-driven sketches,

KLL
±
and two-parallel KLL, is not affected by the skew in the input.

5.3.2 Error correlations: deletion ratio & sketch size. We experi-

mentally verified that the delete to insert ratio on the data set

affects the accuracy of the sketch. By scaling the sketch size by

a factor of (2𝛼 − 1)1.5 according to Section 4, KLL
±
can keep the

errors to the same level compare with errors from KLL with no

deletions, as shown in Figure 6 (c). This scaling factor depends on

the delete:insert ratio 𝑟 . For example, when 𝑟 = 0.5, we set 𝛼 = 2 to

increase the KLL
±
sketch size. Note (2𝛼 − 1)1.5 is actually an upper

bound, as in the proof we make no assumptions on the number of

discard operations which is affected by the input pattern. Hence.

we expect KLL
±
with scaled sketch sizes to perform no worse than

the original KLL with no deletions.

The input random shuffled stream contains a million insertions

drawn from a uniform distribution. The deletions are uniformly

chosen from the insertions. This experiment shows the interplay of

space and accuracywhen the delete:insert ratio 𝑟 in the input stream

increase, and verifies the theoretical claim made in Section 4.1

that changing the sketch size in accordance with 𝑟 keeps the error

roughly constant. Figure 6 (c) shows that the higher delete:insert

ratio leads to larger errors, while increasing the sketch size with

the increase in deletions ensure the accuracy is no worse than the

original KLLwith no deletions. For instance, when KLL uses𝑘 = 512,

the corresponding average maximum error value is 0.0028. For

𝑟 = 0.25, scaling KLL± space with 𝛼 = 4

3
, 𝑘 increased to 1102 and the

corresponding averaged maximum error value is 0.0022. Similarly

for 𝑟 = 0.5, scaling KLL
±
space with 𝛼 = 2, 𝑘 increases to 2661

and the corresponding averaged maximum error value is 0.0019.

This verifies the theoretical expectation that scaling the sketch size

according to the delete:insert ratio keeps the error roughly constant.

5.3.3 Different Data Distributions. In this experiment, we further

demonstrate the trade-off between space and accuracy on different

data distributions. Figures 7(a) through 7(c) depict the maximum

quantile errors with increasing sketch size for synthetic datasets

uniform and zipf and for real world data Wikimedia page view
statistics. The experiment also plots the behaviour of KLL

±
and KLL

when the input steam is sorted vs. shuffled. While the universe-

driven DCS’s accuracy is independent from the input pattern and

the number of deletions [28], the DCS plots in Figure 7(a) and (b) are

used as a comparison reference for KLL
±
with large delete:insert

ratio, namely 90%. In Figure 7 (a) and (b), note that even when a

significant number of items are deleted and the delete:insert ratio

becomes 90%, KLL
±
still performs well compare to DCS.

The behavior of all sketches is consistent across all data distribu-

tions: larger space leads to smaller errors. The experiment shows

that KLL
±
behaves worse on shuffled streams compared to sorted

streams, across all types of data distributions. This finding is con-

sistent with [18] where it is observed that the randomness within

the stream affects the accuracy of the sketch.

5.3.4 Update Time. In this section, we experimentally compare

the update time among KLL, KLL
±
, and DCS sketches. The items in

the input stream are shuffled uniform distribution of |𝑈 | = 2
16
. We

also include the update time of DCS for𝑈 = 2
32
. All sketches share

the same space budget. In Figure 8(a), the y-axis is the update-time

and the x-axis is the stream length, smaller y-value implies faster

update time per item. The result is aligned with our expectation,

namely that KLL
±
incurs slightly more time than KLL using the

same memory budget, because KLL
±
makes a best effort to apply

discard operations before compaction. In DCS, on the other hand,

the universe size affects the update time as a larger universe size

leads to slower update time per item.

5.3.5 Error Sensitivity to stream length. This experiment demon-

strates that the quantile approximation error of KLL
±
is indepen-

dent of the input stream length, as shown in Figure 8(b). In this

figure, the x-axis denotes the input stream length in which N =(I+D),
where 𝑁 is the total number of operations in the stream, and 𝑟

determines the percentage of elements that are deleted. For this

experiment,KLL and KLL
±
both uses parameter 𝑘 = 1024. The inser-

tions are randomly shuffled items from uniform distribution and the

deletions are randomly chosen from the previously inserted items.

This experiment highlights that, for a given delete:insert ratio, the

error remains roughly constant with the increase in stream length

and hence is independent of the input stream size.

1225

(a) (b) (c)

Figure 7: Trade-off between space and accuracy on different data distributions

(a) (b) (c)

Figure 8: (a) Update time per item in KLL, KLL±, and DCS with universe size of 216 and 2
32; (b) Maximum error of shuffled

uniform streams with varying stream length; (c) Interleaved deletion pattern.

5.3.6 Interleaved Deletions. All prior experiments were performed

under the assumption that the input consists of insertions first, fol-

lowed by deletions. In this experiment, we explore the performance

of KLL
±
with inputs consisting of interleaved inserts and deletes.

The input stream is a shuffled uniform distribution. The input is

divided into a number of folds, such as 1, 10, 10
2
, and 10

3
, in which

1 fold means the whole input stream consist of a single pair of inser-

tions and deletions i.e., <all inserts, all deletes>. Similarly, 10 folds

means the stream consists of 10 pairs of < 𝐼
10
,
𝐷
10

> substreams

where 𝐼 and 𝐷 are the total number of inserts and deletes. For each

pair of <inserts, deletes>, the deletes are uniformly chosen from

its inserts. More folds imply deleted items are closer to their corre-

sponding inserted items. In Proposition 1, we showed that discard

operations introduce no error. When deleted items are closer to

the inserted items, we expect more discard operations leading to

fewer errors. Figure 8(c) shows that when number of folds are small,

the averaged maximum error is higher, and when number of folds

increases, KLL
±
improves its performance by applying more dis-

card operations, reducing the overall averaged maximum error. On

the other hand, the performance of Two Parallel KLL sketches will

not improve in the interleaved deletion pattern, as the insertions

and deletions are separately managed. When the insertions and

deletions are mixed, the maximum error of the KLL
±
decreases

which reflects more realistic real world scenarios.

6 CONCLUSIONS
Quantile approximations have an important role in both research

as well as real world systems. Many algorithms have been proposed

to approximate quantiles for the insertion-only and the turnstile

models. In this work, we propose a data-driven algorithm KLL
±

to approximate quantiles in the bounded deletions model. To our

knowledge, this is the first work to account for bounded deletions

for approximating quantiles. The experimental evaluations of KLL
±

highlight that the accuracy provided by the quantile approximations

of KLL
±
is significantly better than the state of the art DCS sketch

even when a significant fraction (90%) of elements are deleted. We

also demonstrate that the accuracy of KLL
±
is not affected by the

underlying distribution of the data which is not the case with the

universe-driven sketch such as DCS. Furthermore, the experiments

highlight that KLL
±
has much faster update times compared to

DCS. These characteristics of KLL
±
makes it a practical choice

for real world applications. Finally, we also demonstrated that the

deletion property of KLL
±
can be leveraged formaintaining quantile

estimation in fixed-sized sliding windows over datasets.

ACKNOWLEDGMENTS
Thanks to anonymous reviewers for their valuable feedback. Sujaya

Maiyya is partially supported by an IBM PhD Fellowship. This work

is funded in part by NSF grants CNS-1703560 and CNS-1815733.

1226

REFERENCES
[1] 2021. KLL

±
Technical Report. https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/

papers/KLL_Delete.pdf.

[2] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei

Wei, and Ke Yi. 2012. Mergeable summaries. In Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. 23–34.

[3] Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate counts and quan-

tiles over sliding windows. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. 286–296.

[4] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[5] Francesco Paolo Cantelli. 1933. Sulla determinazione empirica delle leggi di

probabilita. Giorn. Ist. Ital. Attuari 4, 421-424 (1933).
[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693–703.

[7] Zhiwei Chen and Aoqian Zhang. 2020. A Survey of Approximate Quantile

Computation on Large-Scale Data. IEEE Access 8 (2020), 34585–34597.
[8] Graham Cormode, Theodore Johnson, Flip Korn, Shan Muthukrishnan, Oliver

Spatscheck, and Divesh Srivastava. 2004. Holistic UDAFs at streaming speeds. In

Proceedings of the 2004 ACM SIGMOD international conference on Management of
data. 35–46.

[9] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[10] Graham Cormode and Ke Yi. 2020. Small Summaries for Big Data. Cambridge

University Press.

[11] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm.

[12] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. 2002.

How to summarize the universe: Dynamic maintenance of quantiles. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier,
454–465.

[13] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-

tion of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58–66.

[14] Michael B Greenwald and Sanjeev Khanna. 2016. Quantiles and equi-depth

histograms over streams. In Data Stream Management. Springer, 45–86.
[15] Xiaojia Guo, Kenneth C Lichtendahl, and Yael Grushka-Cockayne. 2018. Quantile

Forecasts of Product Life Cycles Using Exponential Smoothing. Harvard Business

School.

[16] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. In The Collected Works of Wassily Hoeffding. Springer, 409–426.
[17] Piotr Indyk. 2004. Algorithms for dynamic geometric problems over data streams.

In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
373–380.

[18] Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.

2019. Streaming Quantiles Algorithms with Small Space and Update Time. arXiv
preprint arXiv:1907.00236 (2019).

[19] Rajesh Jayaram andDavid PWoodruff. 2018. Data streamswith bounded deletions.

In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. 341–354.

[20] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation

in streams. In 2016 ieee 57th annual symposium on foundations of computer science
(focs). IEEE, 71–78.

[21] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-

proximate medians and other quantiles in one pass and with limited memory.

ACM SIGMOD Record 27, 2 (1998), 426–435.

[22] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1999. Random

sampling techniques for space efficient online computation of order statistics of

large datasets. ACM SIGMOD Record 28, 2 (1999), 251–262.

[23] Domas Mituzas. 2013. Page view statistics for Wikimedia projects.

[24] J Ian Munro andMike S Paterson. 1980. Selection and sorting with limited storage.

Theoretical computer science 12, 3 (1980), 315–323.
[25] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. 1996.

Improved histograms for selectivity estimation of range predicates. ACM Sigmod
Record 25, 2 (1996), 294–305.

[26] Viswanath Poosala, Yannis E Ioannidis, et al. 1996. Estimation of query-result

distribution and its application in parallel-join load balancing. In VLDB, Vol. 96.
3–6.

[27] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash

Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.

In Proceedings of the 2nd international conference on Embedded networked sensor
systems. 239–249.

[28] LuWang, Ge Luo, Ke Yi, and Graham Cormode. 2013. Quantiles over data streams:

an experimental study. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. 737–748.

[29] George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.

1227

https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/KLL_Delete.pdf
https://sites.cs.ucsb.edu/~sujaya_maiyya/assets/papers/KLL_Delete.pdf

