
Updatable Learned Index with Precise Positions
Jiacheng Wu

Tsinghua University

Beijing, China

wu-jc18@mails.tsinghua.edu.cn

Yong Zhang*

Tsinghua University

Beijing, China

zhangyong05@tsinghua.edu.cn

Shimin Chen*

Chinese Academy of Sciences

Beijing, China

chensm@ict.ac.cn

Jin Wang

UCLA

Los Angeles, USA

jinwang@cs.ucla.edu

Yu Chen

Tsinghua University

Beijing, China

y-c19@mails.tsinghua.edu.cn

Chunxiao Xing

Tsinghua University

Beijing, China

xingcx@tsinghua.edu.cn

ABSTRACT

Index plays an essential role in modern database engines to accel-

erate the query processing. The new paradigm of “learned index”

has significantly changed the way of designing index structures

in DBMS. The key insight is that indexes could be regarded as

learned models that predict the position of a lookup key in the

dataset. While such studies show promising results in both lookup

time and index size, they cannot efficiently support update oper-

ations. Although recent studies have proposed some preliminary

approaches to support update, they are at the cost of scarifying the

lookup performance as they suffer from the overheads brought by

imprecise predictions in the leaf nodes.

In this paper, we propose LIPP, a brand new framework of learned

index to address such issues. Similar with state-of-the-art learned

index structures, LIPP is able to support all kinds of index oper-

ations, namely lookup query, range query, insert, delete, update

and bulkload. Meanwhile, we overcome the limitations of previ-

ous studies by properly extending the tree structure when dealing

with update operations so as to eliminate the deviation of location

predicted by the models in the leaf nodes. Moreover, we further

propose a dynamic adjustment strategy to ensure that the height

of the tree index is tightly bounded and provide comprehensive

theoretical analysis to illustrate it. We conduct an extensive set of

experiments on several real-life and synthetic datasets. The results

demonstrate that our method consistently outperforms state-of-the-

art solutions, achieving by up to 4×for a broader class of workloads
with different index operations.

PVLDB Reference Format:

Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, Chunxiao

Xing. Updatable Learned Index with Precise Positions. PVLDB, 14(8): 1276 -

1288, 2021.

doi:10.14778/3457390.3457393

1 INTRODUCTION

Tree indexes are essential components to support efficient data

access in modern database engines. Many different index structures

*
Yong Zhang and Shimin Chen are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.

doi:10.14778/3457390.3457393

have been proposed to meet the requirement of various access

patterns and workloads. The recent study on Learned Index [22]

has opened up a new way to construct the index for sorted data.

Given a dataset, Learned Index utilizes machine learning models

to learn the data distribution and predict the position of a lookup

key in the dataset. It could be realized via supervised learning

techniques by using the Cumulative Distribution Function (CDF)

of the dataset for training. Since the models might be inaccurate

for the predicted positions, the learned index needs to search the

lookup key in a bounded range around the predicted positions.

Recent comprehensive experimental studies [20, 31] demonstrate

that learned indexes achieve significant advantages over traditional

index structures in terms of high performance and low memory

footprint.

Nevertheless, the original Learned Index [22] only supports

lookup on read-only datasets and fails to handle update operations

which are essential in index structures. To address this problem,

two recent studies namely ALEX [11] and PGM [12] propose several

strategies to add support for updating the index. However, their

support for updates is at the expense of extra search overhead for

lookup operations. PGM uses the logarithmic method and thus

needs to find keys in a series of subtrees instead of a single one.

What’s more, ALEX even has unbounded “last mile“ search cost

in the leaf nodes since it does not provide any threshold of errors

caused by the wrong predictions. As illustrated in the example

shown in Figure 1, the lookup time of ALEX is dominated by the

search in the leaf nodes, which in the worst case would need linear

or binary search on the whole node. Consequently, they may suffer

from the poor lookup performance. Moreover, the update opera-

tions on these indexes also incur huge amounts of elements shifting.

These overheads are all brought by the imprecise predictions of

learned models.

To tackle with these issues brought by inaccurate predictions, we

propose the Updatable Learned Index with Precise Positions (LIPP),
a brand new learned index to provide efficient support for a full

set of index operations, namely lookup query, range query, insert,

update, delete and bulkload. A distinct advantage of LIPP is that it

eliminates the “last mile” search in the leaf nodes, thereby bounding

the lookup cost to tree height and significantly improving index

performance. The key-to-position mapping is precise in LIPP. If
multiple keys are mapped into the same position, a new child node

will be created to hold the keys. To bound the height of the tree

index, we propose kernelized linear models that are able to evenly

1276

https://doi.org/10.14778/3457390.3457393
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457393

distribute the mapping of newly inserted elements to positions, and

a light-weight adjustment strategy to keep the tree height bounded.

We also provide theoretical guarantee that the height of LIPP is

bounded to 𝑂 (log𝑁) with 𝑁 as the cardinality of dataset.

M

Key

Root

Node

M

M M

M

M

...

MM

M

exponential
search

M
position M

Gapped
Array

...
Figure 1: Extreme Case for ALEX [11]

We conduct an extensive set of experiments on both real world

and synthetic datasets with workloads of mixed operations. The

experimental results show that LIPP outperforms state-of-the-art

learned index structures by an obvious margin. Specifically, LIPP
achieves 2.8× and 6.3× better lookup performance than ALEX and

PGM for read-only workload. In terms of write-only and read-write

workloads, LIPP outperforms ALEX by up to 2.9×, and has similar

index size under most settings.

The rest of this paper is organized as follows: Section 2 intro-

duces the background for learned index series. Section 3 describes

the structure and properties of LIPP. Section 4 displays the details

of operations on LIPP. Section 5 provides theoretical analysis on

the performance of LIPP. Section 6 presents the experimental re-

sults. Section 7 discusses issues related to concurrency and new

hardware accelerators. Section 8 reviews the related work. Finally,

the conclusion is made in Section 9.

2 PRELIMINARIES

2.1 Tree-Based Index

In this paper, we aim at devising a learned index structure that can

support all operations in traditional tree-based indexes. Given 𝑥

and 𝑦 as keys and 𝑣 as value, an index 𝑆 supports the operations:

(1) 𝑚𝑒𝑚𝑏𝑒𝑟 (𝑥) = TRUE if 𝑥 ∈ 𝑆 , FALSE otherwise.

(2) 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑥) returns the element with key 𝑥 ∈ 𝑆 (if any), NIL

otherwise.

(3) 𝑟𝑎𝑛𝑔𝑒 (𝑥,𝑦) returns the elements whose keys ∈ [𝑥,𝑦]
(4) 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑣) inserts the element with key 𝑥 and value 𝑣 to 𝑆 .

(5) 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑥) removes the element with key 𝑥 from 𝑆 .

(6) 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑥, 𝑛𝑣) is implemented with the 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑥) followed
by 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑛𝑣) with a new key or value.

(7) 𝑏𝑢𝑙𝑘𝑙𝑜𝑎𝑑 (𝑥 [𝑁]) is used in practice to index 𝑁 elements at

initialization or for rebuilding index.

In this paper, we assume that the keys are unique. It is easy for

indexes to support duplicate keys, e.g. maintaining a pointer to an

overflow list. A typical example of tree-based structure is B+Tree, a
dynamic height-balanced tree. The overhead for lookup operations

on B+Tree consists of traversing from root to leaf nodes and binary

search in nodes. Besides, the node size of B+Tree is also limited.

The large node size will result in the huge cost of searching keys

inside nodes.

2.2 Learned Index

Given a key, Learned Index [22] maps it to the position in the

sorted array of keys, which thus is considered as a trained model.

Learned Index builds a hierarchy of models with fixed height called

Recursive Model Index (RMI). In order to locate a key, the higher-

level model predicts the model at the next level by learning the CDF

of the dataset. And the leaf-level model outputs the final prediction

for the position of the key. Finally, Learned Index applies extra

binary search to correct the wrong predictions on the sorted array

based on the given error bound 𝜖 . Due to the error bound, Learned
Index has much larger nodes that hold many more elements but

without incurring drastically higher search cost compared with

B+Tree. The larger node size of Learned Index results in fewer levels
of index, which significantly saves the cost of index traversal. This is

the main reason why Learned Index outperforms B+Tree in lookup

operations. However, Learned Index cannot support updates.
Some recent studies aim at supporting updates. PGM [37] uses

linear models and separates the keys in different linear segments

with given error bound. Unlike Learned Index, each model or seg-

ment of PGM specifies the first key covered by the segment. In

this way, PGM recursively constructs index on the sorted keys of

segments in low level. To locate a key, PGM applies the similar tra-

versal process as Learned Index except that the predicted position

at each level is required to be corrected immediately. To support in-

sertions, PGM employs the idea of LSM-tree [38]. Concretely, keys

are separated into subsets with different sizes and PGM indexes are

built over those subsets. Each insertion of a key is required to find a

series of non-empty sets, merge them into a large subset and build

a new PGM index on the large one. Unfortunately, it decreases the

lookup performance heavily since it has to search for a given key

in all components with different sizes. As shown in Table 1, the

lookup operations of PGM cost 𝑂 (log2 𝑁).
Meanwhile, ALEX separates elements in many data nodes shown

in Figure 1. The lookup procedure of ALEX is similar to Learned
Index, i.e., recursively locating the models in the next level. How-

ever, ALEX uses exponential search in the leaf node to locate the

given key, which is due to that ALEX is not bounded by any pre-

diction error threshold. The insert procedure of ALEX first utilizes

the lookup procedure to locate a proper position for inserted key

in the nodes and then tries to the insert the key into that position.

ALEX also shifts the elements to make the gap for the inserted

key when there is a key in that position. As shown in Table 1, the

shifting procedure costs𝑂 (log𝑚) on average due to the underlying

layout gapped array of each data node, but can have 𝑂 (𝑚) cost in
the worst case, where𝑚 is the max node size. Furthermore, ALEX
performs node expansion or split when a leaf node does not have

enough free space for an insertion, but fails to provide upper bound

of time complexity on the performance for insertions. As shown in

Table 1, our solution LIPP avoids such problems and thus has lower

complexity and average latency.

2.3 Monotonically Increasing Models

A Monotonically Increasing function is one defined on ordered sets

that preserves the given order. Given a monotonically increasing

1277

Table 1: Summary of Complexity and Average Latency Comparisons among Different Indexes

LIPP ALEX PGM Learned B+Tree

Lookup

Complexity 𝑂 (log𝑁) 𝑂 (log𝑁 + log𝑚) 1 𝑂 (log2 𝑁) 𝑂 (log𝑁) 𝑂 (log𝑁)
Latency

6
24.23ns 68.92ns 151.53ns 139.09ns 237.94ns

Insert

Complexity 𝑂 (log2 𝑁) 𝑂 (log2 𝑁 + log𝑚) 2 𝑂 (log2 𝑁 + log𝑁) 3 — 𝑂 (log𝑁)
Latency

6
70.93ns 204.94ns 217.17ns — 1114.19ns

Search Range (Leaf) 𝑂 (1) 4 𝑂 (𝑚) 𝑂 (𝜖) 5 𝑂 (𝜖) 𝑂 (𝑚)
Search Range (Non-Leaf) 𝑂 (1) 𝑂 (1) 𝑂 (𝜖) 𝑂 (1) 𝑂 (𝑚)
1 𝑚 is the max number of slots in nodes.

2 𝑂 (log2 𝑁) +𝑂 (𝑚) for extreme cases.
3
Insertions include key existence checking.

4 𝑂 (1) means no need to search in nodes.
5 𝜖 is the prediction error threshold.

6
The latency is conducted on YCSB.

modelM, for any pair of keys𝑘𝑖 and𝑘 𝑗 , the property in Equation (1)

holds:

𝑘𝑖 ≤ 𝑘 𝑗 →M(𝑘𝑖) ≤ M(𝑘 𝑗) (1)

It is essential for the learned index structures to satisfy this

property so as to support range queries. A range query first locates

the position of the start key, then scans forward until it reaches the

end key. However, if the model is not monotonically increasing, it

may map the start key to a position after the predicted position of

the end key, causing incorrect results for the range query. In this

paper, we follow previous studies [11, 22] to employ linear models

for prediction, which satisfy the monotonically increasing property.

In our approach, the learned model M is a kernelized linear
function. We need to store the kernel function G and two model

parameters, i.e., the slope 𝐴 and the intercept 𝑏. Given a key 𝑘 , the

model computes the entry position in the node with an array of 𝐿

entries as Equation (2):

M(𝑘) =
⎧⎪⎪⎨⎪⎪⎩

0 ⌊𝐴 · G(𝑘) + 𝑏⌋ < 0

𝐿 − 1 ⌊𝐴 · G(𝑘) + 𝑏⌋ ≥ 𝐿

⌊𝐴 · G(𝑘) + 𝑏⌋ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

The only requirement of the kernel function is that it must be

monotonically increasing. Examples of kernel functions G include

the exponential function e
𝑥
, the logarithm function ln(𝑥), the linear

function 𝑥 , the quadratic function 𝑥2 when keys are positive, and

even polynomial functions

∑︁
𝑐𝑖𝑥

𝑖
, etc. In many real-world appli-

cations, we find the linear function behaves well. Accordingly, we

use the linear function as the default kernel function, unless other-

wise stated. However, if the distribution of a target data set is not

regular, our approach allows users to take advantage of the prior

knowledge of dataset and to specify a kernel function to improve

the performance of model. Due to the space limitation, we leave

the experiments related to the effect of specified kernel functions

of our methods on synthetic dataset in Appendix [44] B.1.

3 THE LIPP INDEX

3.1 Overview

The core idea of LIPP is to avoid inaccurate predictions, i.e., all

predictions made by models are exact.With precise positions,

the significant and inevitable overheads, including in-node search

for lookup, element shifting for insertion, can be eliminated. Never-

theless, to reach this goal we need to overcome the following two

challenges:

Firstly, predictions for two different keys might coincide

at one position. We call elements with such keys as conflicting
elements. To resolve conflicts, ALEX shifts the elements to make a

gap for the newly inserted ones, which causes inaccurate predic-

tions. Instead, we preserve the precise predictions by replacing the

current element with a new node that accommodates these two

conflicting elements (cf. Section 4.1 and 4.2).

The second challenge is derived from the first one: Simply cre-

ating new nodes for conflicting keys would cause the tree

height increasing without bound, thus hurting the performance

for both index lookup and insert operations. To deal with this chal-

lenge, we propose a novel adjustment strategy which redistributes

keys in a subtree to control the height of the subtree. It can wisely

select the appropriate subtree and determine when and how to

adjust the subtree to reduce the tree height (cf. Section 3.3 and 4.3).

We also provide theoretical guarantee for the tree height, along

with the complexity of lookup and insert operations (cf. Section 5).

As a result, we expect LIPP to be faster than both existing learned

index structures and traditional B+Trees for all index operations,
while the index size of LIPP is comparable to those of existing

learned index structures.

3.2 Structure

M

M M

M M M

... ...

...

keyNODE

DATA

NULL

Figure 2: Structure of LIPP

The overall structure of LIPP is shown in Figure 2. Each node

contains a modelM, an array of entries E, and a bit vector of entry
types. There are three types of entries in a node:

(1) NULL: The entry is an unused slot (gap). All entries are

initialized as NULL and used to store new keys. After an

insertion to a slot completes, the type of the entry is changed

to DATA.
(2) DATA: The entry contains one element with its key and

payload. When the payload is too large, we store a pointer

(or an offset) to the payload in the entry.

(3) NODE: The entry points to a child node in the next level,

thus helping form a tree structures. When a new element is

inserted into aDATA entry, a child node is created to hold the

1278

two conflicting entries. The current entry becomes NODE
and its content is the pointer to the child node.

The size of all three types of entries is 16 bytes. A DATA entry

consists of an 8B key and an 8B payload or pointers to payload,

while a NODE entry contains a child node pointer. The bit vector

specifies the type of each entry with two bits. For the 𝑖𝑡ℎ entry,

the 2𝑖𝑡ℎ bit indicates whether the entry is NULL or not, and the

(2𝑖 + 1)𝑡ℎ shows the entry type, i.e. DATA or NODE. Since the bit
vector is a light-weighted structure, the node size could be bounded

by a predefined hyper-parameter (e.g., 16MB).

Unlike existing learned index structures, LIPP does not distin-

guish leaf nodes (DataNode) from non-leaf nodes (InnerNode). In-

stead, all nodes are treated equally. Entry types are used to guide the

index operations to choose different actions. Details are illustrated

in Section 4.

LIPP is a sorted index. In every node, the entries (either theDATA
entry or entries in the subtree pointed to by the NODE entry) in

the array are sorted in key order. That is, keys in the left part of the

array are less than keys in the right part whether they are in the

node directly or in subtrees. This property is achieved by simply

requiring all models in all nodes monotonically increase.

3.3 Metrics for Evaluating the Learned Model

In this section, we start with finding a metric to evaluate the quality

of a learned model for indexing.

Given a model M, two keys 𝑘𝑖 and 𝑘 𝑗 conflict if and only if

M(𝑘𝑖) == M(𝑘 𝑗). We propose the notion of conflict degree in

Definition 3.1 to capture the maximum number of conflicts at any

position in the entry array:

Definition 3.1. For a node with 𝐿 entries and a learned model

M(𝑘), the conflict degree 𝑇M of the node is:

𝑇M = max

𝑙 ∈[0,𝐿−1]
|{𝑘 ∈ K|M(𝑘) == 𝑙}| (3)

whereK is the set of keys contained in this node, and 𝑙 is a possible

position ranging from 0 to 𝐿 − 1.
According to such a definition, the better the model is, the lower

the conflict degree it has. The conflict degree of the ideal model is 1.

The worst model maps all keys to the same position with a conflict

degree of |K |. Our goal is to find a model to achieve as low conflict

degree as possible.

We observe that there exists an upper bound for the minimum

𝑇M , i.e. ∃M,𝑇M ≤ ⌈𝑁3 ⌉ where 𝑁 is the number of keys in K , i.e.
𝑁 = |K |. However, the ⌈𝑁

3
⌉ may not be the tightest upper bound in

many cases. Thus, our goal is to find a best modelM = 𝐴G(𝑘) + 𝑏
with the minimum conflict degree 𝑇M . We need to first identify

certain properties that the modelM should satisfy under a given

conflict degree 𝑇 . TheM needs to map keys to positions between

0 and 𝐿 − 1. If a key is mapped to a position beyond the range, we

set its position to either 0 or 𝐿 − 1. However, since the position 0 or

𝐿 − 1 contains at most 𝑇 elements, the values of parameters 𝐴 and

𝑏 should follow Condition (4).{︃
𝐴 · G(𝑘𝑖) + 𝑏 ≥ 1, ∃𝑖 ≤ 𝑇

𝐴 · G(𝑘𝑁−1−𝑗) + 𝑏 < 𝐿 − 1, ∃ 𝑗 ≤ 𝑇 (4)

Since the keys are sorted, the former formula means there exists a

key𝑘𝑖 in the first𝑇 elements ofK that is notmapped to position 0. In

other words, at most𝑇 elements go to position 0. The latter formula

Algorithm 1: FMCD(K , 𝐿)
Input:K : the collection of keys,𝐿: the number of entries

Output:M: the model, 𝑇 : the conflict degree

begin1

𝑖 = 0; 𝑇 = 1; 𝑁 = |K |;2

𝑈𝑇 =
G(𝑘𝑁−1−𝑇)−G(𝑘𝑇)

𝐿−2 ;3

while 𝑖 ≤ 𝑁 − 1 −𝑇 do4

while 𝑖 +𝑇 < 𝑁 and G(𝑘𝑖+𝑇) − G(𝑘𝑖) ≥ 𝑈 do5

𝑖 = 𝑖 + 1;6

if 𝑖 +𝑇 ≥ 𝑁 then7

break;8

𝑇 = 𝑇 + 1;9

𝑈𝑇 =
G(𝑘𝑁−1−𝑇)−G(𝑘𝑇)

𝐿−2 ;10

M .𝐴 = 1

𝑈𝑇
;11

M .𝑏 =
𝐿−(M .𝐴 · (G (𝑘𝑁−1−𝑇)+G(𝑘𝑇)))

2
;12

return {M,𝑇 };13

end14

can be derived in a similar way. Based on the above conditions, we

further obtain the constraint on 𝐴 as Condition (5).

𝐴 ≤ max

𝑖, 𝑗

𝐿 − 2
G(𝑘𝑁−1−𝑗) − G(𝑘𝑖)

=
𝐿 − 2

G(𝑘𝑁−1−𝑇) − G(𝑘𝑇)
(5)

Once the value of 𝐴 satisfies Condition (5), it is easy to find a

value 𝑏 (e.g., 𝑏 = 1 −𝐴 · G(𝑘𝑇)) to satisfy Condition (4). Therefore,

Condition (5) and Condition (4) are essentially equivalent.

Besides, according to the definition of𝑇 , any consecutive𝑇 +1 ele-
ments should not conflict in the same position. Specifically, whether

two keys conflict with each other can be checked by Lemma 3.2.

Lemma 3.2. ∀𝑘, 𝑘 ′, if 𝐴 ≥ |(G(𝑘) − G(𝑘 ′)) |−1, 𝑘 and 𝑘 ′ will be
mapped to different positions.

Proof. |𝐴· (G(𝑘)−G(𝑘 ′)) | = | (𝐴·G(𝑘)+𝑏)−(𝐴·G(𝑘 ′)+𝑏) | ≥ 1.

Then ⌊𝐴 · G(𝑘) + 𝑏⌋ ≠ ⌊𝐴 · G(𝑘 ′) + 𝑏⌋. Thus, 𝑘 and 𝑘 ′ are mapped

to different positions. □

Therefore, 𝐴 ≥ |(G(𝑘𝑖) − G(𝑘𝑖+𝑇)) |−1 ensures 𝑘𝑖 and 𝑘𝑖+𝑇 do

not conflict. We can further have the Condition (6).

𝐴 ≥ max

𝑖∈[0,𝑁−1−𝑇]
1

G(𝑘𝑖+𝑇) − G(𝑘𝑖)
(6)

Finally, based on Condition (5) and (6), we conclude that the value

of 𝑇 must follow the Condition (7).

𝐿 − 2
G(𝑘𝑁−1−𝑇) − G(𝑘𝑇)

≥ max

𝑖∈[0,𝑁−1−𝑇]
1

G(𝑘𝑖+𝑇) − G(𝑘𝑖)
(7)

Similarly, the value of 𝑏 should satisfy the Condition (8):

𝐿 − 1 −𝐴 · G(𝑘𝑁−1−𝑇) ≥ 𝑏 ≥ 1 −𝐴 · G(𝑘𝑇) (8)

3.4 Efficient Algorithm for Deciding the Model

According to the conclusion in Condition (7), the next step is to

design an efficient algorithm to find the minimum 𝑇 satisfying:

∀𝑖 ∈ [0, 𝑁 − 1 −𝑇] : G(𝑘𝑖+𝑇) − G(𝑘𝑖) ≥ 𝑈𝑇 (9)

where 𝑈𝑇 =
G(𝑘𝑁−1−𝑇)−G(𝑘𝑇)

𝐿−2 . Note that 𝑈𝑇 monotonically de-

creases as 𝑇 increases as the keys are in ascending order.

The naive algorithm to compute the minimum 𝑇 is simply enu-

merating the value of𝑇 from 0 to ⌈𝑁
3
⌉ and checking the validity of

𝑇 by Condition (9). However, the time complexity is 𝑂 (𝑁 2), which
is too expensive for index operations.

1279

To solve this problem, we propose the Fastest Minimum Con-

flict Degree (FMCD) algorithm to achieve linear complexity for

computing the minimum 𝑇 and the corresponding modelM.

In Algorithm 1, we begin by considering the minimum 𝑇 as 1

(line 3) and setting𝑈𝑇 as𝑈1. Then we traverse the sorted keys inK
and check whether the current 𝑇 satisfies the condition G(𝑘𝑖+𝑇) −
G(𝑘𝑖) ≥ 𝑈𝑇 (line 5-6). If a key 𝑘𝑖 breaks the condition, 𝑇 is not

good. We increment the 𝑇 , update the𝑈𝑇 , and continue the check

from the failed key 𝑘𝑖 (line 9-10). Not until all keys are checked

can we jump out of the loop (line 7-8). At this moment, we get the

corresponding model’s parameters based on the computed conflict

degree (line 11-12).

Theorem 3.3 shows the optimum of the FMCD algorithm:

Theorem 3.3. The 𝑇0 returned from Algorithm 1 is precisely the
minimum 𝑇 satisfying Condition (9).

Condition	breaks	at

Condition	is	satisfied	for	all

Figure 3: Cases for Proof

sketch. Figure 3 shows the relations of G(𝑘𝑖+𝑇), G(𝑘𝑖), and
𝑈𝑇 when 𝑇 is changed to 𝑇0 for the key 𝑘 𝑗 , which results in the

correctness and the minimum of 𝑇0. See Appendix [44] A.1 for

details. □

The Complexity: Finally, we analyze the time and space complex-

ity of Algorithm 1. In fact, the algorithm visits a key only once if

the key passes the conditions in line 5. When the check fails, the

algorithm increments 𝑇 in line 9 and visits the key again. Since

𝑇 < 𝑂 (𝑁), the number of additional checks due to failed checks is

limited to 𝑂 (𝑁). Therefore, the time complexity of Algorithm 1 is

𝑂 (𝑁 +max𝑇) = 𝑂 (𝑁). As for the space complexity, the algorithm

needs 𝑂 (1) space for𝑈𝑇 .

4 OPERATIONS OF LIPP

In this section, we describe the procedures for index operations and

the algorithms to dynamically adjust the index structure.

4.1 Lookup and Range Queries

Index read operations include looking up a single key and obtaining

a range of keys. We introduce these two types of operations for our

proposed LIPP.

4.1.1 Lookup Queries. To look up a key, we start at the root node

of the index structure, and use the model of the current node to com-

pute the location of the given key in its entry array E. Depending
on the entry type, we have different actions.

Algorithm 2: Lookup(T , 𝑘)
Input: T : the LIPP index, 𝑘 : the lookup key

Output: 𝑖𝑠𝐹𝑜𝑢𝑛𝑑 : indicates whether 𝑘 is found,

𝑒: the entry containing 𝑘 if found

begin1

𝑛 ← the root node of T ;2

𝑒 ← 𝑛.E[𝑛.M(𝑘)];3

while 𝑡𝑦𝑝𝑒 (𝑒) == NODE do4

𝑛 ← the node pointed to from entry 𝑒;5

𝑒 ← 𝑛.E[𝑛.M(𝑘)];6

if 𝑡𝑦𝑝𝑒 (𝑒) == DATA then7

𝑘 ′ ← the key in entry 𝑒;8

if 𝑘 == 𝑘 ′ then9

return ⟨𝑇𝑟𝑢𝑒, 𝑒⟩;10

return ⟨𝐹𝑎𝑙𝑠𝑒, 𝑒⟩;11

end12

If the type of the entry is NODE, we then follow the pointer to

the child node at the next level. Otherwise, we reach the lowest

level of the traversal path. If it is a NULL entry, the key to lookup

does not exist in our index. If it is a DATA entry, we should be

careful in this case and cannot directly return the current entry. We

check whether the search key is the same as the key stored in the

entry because different keys can be mapped to the same position.

Only when it is consistent can we return the current entry as the

lookup result.

The above procedure is listed in Algorithm 2. Note that the

returned result contains the entry even when the key is not found.

This is used in the insert operation.

It is important to note that there is no need to use extra search

steps in each node in our lookup procedure. This is because the

model computes the precise position for the key in each node.

Therefore, the cost of the lookup query in our index is only 𝑂 (ℎ),
where ℎ is the height of the index tree.

4.1.2 RangeQueries. A range query is used to find the elements

whose keys are in the specified range, which is an important op-

eration in database engines. Given the range [𝑢, 𝑣], we first find
the position of the start key 𝑢 by performing the point lookup

procedure described above.

Since the index is monotonic, we scan forward until reaching the

end key 𝑣 . If we reach the end of the entry array containing the start

key before reaching the end key, we traverse back to the previous

level and continue the scan. When reaching a NODE entry during

the scanning process, we follow the pointer to scan the associated

child node. We can further use the bit vector to quickly skip over

gaps.

One concern is that during the scanning process, wemay perform

unnecessary comparisons between an entry key and the end key.

We address this concern by first locating the positions of the end

key 𝑣 in all levels and then simply visiting the elements up to the

computed positions without key comparisons.

4.2 Index Inserts

Apart from locating the keys, the index should handle insert opera-

tions, while maintaining the strict order guarantee for the index. In

1280

Algorithm 3: Insert(T , 𝑘 , 𝑝)
Input: T : the LIPP index, 𝑘 : the key, 𝑝: the payload

begin1

Entry 𝑒 ← Lookup(T , 𝑘).𝑒;2

if 𝑡𝑦𝑝𝑒 (𝑒) == NULL then3

𝑡𝑦𝑝𝑒 (𝑒) ← DATA;4

𝑒 ← ⟨𝑘, 𝑝⟩;5

else6

𝑘 ′ ← the key in entry 𝑒;7

𝑛 ← a new node trained on 𝑘, 𝑘 ′;8

𝑡𝑦𝑝𝑒 (𝑒) ← NODE;9

𝑒 ← the pointer to node 𝑛;10

for node 𝑛′ in the reversed traversal path do11

Adjust(T , 𝑛′);12

end13

our case, it is easy to achieve this requirement when we follow the

Algorithm 3.

In the insert algorithm, the logic to reach the entry in the final

level is the same as in the lookup algorithm described above. When

the entry returned by the lookup query is a gap, i.e. NULL, we
simply insert the new element into this gap. But when a conflict

happens, we need to replace the elements with a pointer to the new

node containing the new element as well as the original one. At

the same time, we change the entry type to NODE to indicate the

existence of the node.

During the experiments, we find the creation of new nodes with

two elements is a common operation. This can exert negative influ-

ence on the performance. To improve the performance, we construct

our own memory pool for small node allocation and recycling.

After finishing the insert operation, we follow the search tra-

versal path in the opposite direction and judge whether the nodes

should trigger the adjustment to keep the index height bounded, as

will be detailed in Section 4.3.

4.3 Adjustment Strategy on the Model

In this section, we describe the adjustment strategy to keep the tree

height bounded. Before doing the actual adjustment, we first update

and check the statistics of the nodes in the traversal path after an

insert operation. We trigger the adjustment on a chosen node when

certain conditions are satisfied. The adjustment procedure is shown

in Algorithm 4. To understand the adjustment strategy, we focus

on two core issues: When to adjust and How to adjust?

4.3.1 When to adjust? In LIPP, we propose two main criteria, as

shown in Algorithm 4, to decide whether to trigger adjustment on

a node:

Firstly, the number of inserted elements in the subtree rooted at
node 𝑛 should be at least 𝛽 times as large as the elements in the
subtree rooted at 𝑛 in the last adjustment. Concretely, the condition
can be formulated as the expansion ratio

𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚
𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚

≥ 𝛽 for

node 𝑛, where 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 is the number of elements specified to

𝑛 by the adjustment (line 13 in Algorithm 5) and 𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚

is incremented for each insertion. 𝛽 is set to 2 by default. The

default value is derived from the logarithm methods of PGM, i.e.,

always triggering the merge process for a series of indexes when

Algorithm 4: Adjust(T , 𝑛)
Input: T : the LIPP index, 𝑛: the node to adjust

begin1

𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚 = 𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚 + 1;2

if the insertion conflicts then3

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚 = 𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚 + 1;4

if 𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚 ≥ 𝛽 · 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 and5

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚
𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚−𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ≥ 𝛼 then

K ← the collection of keys contained in the subtree6

rooted at 𝑛;

𝑛′ ← BuildPartialTree(K);7

Replace node 𝑛 with 𝑛′ in T ;8

end9

the inserted elements is twice as much as elements contained in

the largest index. This criterion effectively reduces the frequency

of adjustments and leads to low adjustment complexity even in the

worst cases (cf. Section 5).

Secondly, the conflict ratio between the number of conflicts and
insertions in the subtree rooted at node 𝑛 exceeds a given threshold
𝛼 , i.e.

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚

𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚−𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ≥ 𝛼 . This is because conflicts

result in the creation of new small nodes and possibly increase the

tree height. Consequently, conflicts tend to hurt the performance

for both lookup and insert operations. Thus, we should trigger

adjustment if we have seen too many conflicts in the subtree rooted

at 𝑛. By default, we set the threshold 𝛼 = 0.1 to achieve a better

balanced tree. To further choose proper parameters, we conduct

the parameter analysis for 𝛼 and 𝛽 in Appendix [44] B.2.

In addition, we observe that adjustment on anodewith either

toomany or too few elements downgrades the performance.

For the first observation, the extreme case is that when the root

node is triggered to adjust, all elements should participate in the

adjustment, which may not be acceptable for a very large tree.

Therefore, we should restrict the number of elements participating

in the adjustment. When the node size is close to the predefined

threshold (e.g. 16MB) which means that the node has already con-

tained enough entries and elements, the current node should be

fixed and not participate the adjustment afterwards. As for the

second observation, when the number of elements of a node is

small, a few insertions will trigger adjustment in the early stage.

To eliminate such case, the nodes with less than 64 elements are

required not to trigger the adjustment.

4.3.2 How to adjust? In Algorithm 4, if a node 𝑛 satisfies the above

conditions, the adjustment is triggered. First of all, we collect all

elements in the subtree rooted at node 𝑛 by sequential traversal

(line 6). The keys of the collected elements are in order because the

tree is sorted. Then, we build a partial tree structure on the elements

(line 7). Finally, we update the pointer of the original node to point

to the root of the new tree structure (line 8). Figure 4 illustrates

the node adjustment procedure. The main procedure of adjustment

is to build a proper tree structure based on the collection of keys.

Utilizing the properties of models and conflicts in Section 3.3, the

optimal tree structure should consist of nodes with best models

having the minimum conflict degree. The resulting models distrib-

ute the elements in the entry array to minimize conflicts, thereby

1281

M (15/24)

M (4/7)
...

key NODE DATA NULL

M (2/2) M (2/2)

...

M (15/25)

M (8/8)

+1

+1

+1

M (build_num/element_num)

......

 .element_num ≥ 2 · .build_num

 (7+1) (4)

������

Figure 4: Node Adjustment

reducing the number of elements assigned to the next level and

limiting the tree height.

In Algorithm 5, we use the FMCD algorithm as described in Sec-

tion 3.4 to compute the best model for each node. Given a collection

K of keys, we create a new node 𝑛 with 𝐿 entries, where 𝐿 is 𝛿 (e.g.,

𝛿 = 2) times of the number of keys to preserve enough gaps for

future insertions after the adjustment (line 2). 𝐿 is also bounded by

the pre-defined node size upper bound, i.e., 𝐿 ≤ 16𝑀𝐵/16𝐵 = 1𝑀 .

In fact, 16𝑀𝐵 is set from the max node size in ALEX, and 𝐿 = 1𝑀 in

our experience always produces good results and does not need to

be tuned. Next, we obtain the model for the new node𝑛 on the given

keys by FMCD (line 3). After that, we insert every key into the

entry given by the model. When there is a conflict, i.e., more than

one element are mapped to a given position 𝑙 , we collect conflicting

elements into K𝑙 , recursively build the partial tree on K𝑙 to create

a subtree, and set the entry at position 𝑙 to point to the child tree

(line 9-12). For a non-conflicting element, we simply insert it to the

entry predicted by the model (line 6-8). Finally, we initialize the

basic statistics for the new node, which will be used by the next

adjustment (line 13-14). The returned node 𝑛 is the node to replace

the original node in LIPP.
We will analyze the impact of adjustment on lookup and insert

operations in Section 5.

4.4 More Operations

Bulkload: The bulkload operation follows the same procedure as

the partial tree building in algorithm 5. The returned result is the

root node.

Delete: Delete is supported by looking up the entry of the element

andmarking the type of that entry asNULL. If a future lookup query
for this deleted key is executed, it just traverses to a NULL entry,

which indicates non-existence of the key. It may be argued that

nodes should be either contracted or merged after entry deletions.

Since real-world datasets tend to increase over time, we believe

retaining the gaps generated by deletions is beneficial to subsequent

insertions. Thus, for simplicity, we do not modify tree structures

for deletions.

Update: There are two types of updates. One is to modify the key,

and the other is only to modify the payload. The former is imple-

mented by combining a delete operation with an insert operation,

while the latter is supported by looking up the key and over-writing

the payload.

Algorithm 5: BuildPartialTree(K)
Input: K : the collection of keys to adjust

Output: 𝑛: the new root node of partial tree

begin1

𝑛 ← new node with 𝐿 = max(1𝑀,𝛿 · |K |) entries;2

𝑛.M ← FMCD(K , 𝐿).M;3

for 𝑙 ∈ [0, 𝐿] do4

K𝑙 = {𝑘 ∈ K|𝑛.M(𝑘) == 𝑙};5

if |K𝑙 | == 1 then6

𝑡𝑦𝑝𝑒 (𝑛.E[𝑙]) ← DATA;7

𝑛.E[𝑙] ← 𝑘 ∈ K𝑙 ;8

else if |K𝑙 | > 1 then9

𝑡𝑦𝑝𝑒 (𝑛.E[𝑙]) ← NODE;10

𝑛′ ← BuildPartialTree(K𝑙);11

𝑛.E[𝑙] ← the pointer to node 𝑛′;12

𝑛.𝑒𝑙𝑒𝑚𝑒𝑛𝑡_𝑛𝑢𝑚 ← |K|; 𝑛.𝑏𝑢𝑖𝑙𝑑_𝑛𝑢𝑚 ← |K|;13

𝑛.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑛𝑢𝑚 ← 0;14

return 𝑛;15

end16

Overflow Insert and Lookup: An overflow operation means that

a key exceeds the existing key space in the tree. For instance, the

append-only insert workload may cause consecutive overflow in-

serts. In LIPP, the overflow insert and lookup can be optimized by

maintaining two temporary sorted buffers for the right-most and

the left-most entries and triggering adjustment when either buffer

is full. Note that this design will not affect the normal insert and

lookup operations because normal operations do not visit the two

extra buffers. We use binary search in the buffers to improve search

performance for overflow operations.

5 ANALYSIS

In this section, we provide complexity analysis for both lookup

and insert operations, which is already shown in Table 1. Other

operations can be analyzed in the similar way.

5.1 Tree Height and Lookup Analysis

In LIPP, the lookup traverses along a path from root to the final

entry without extra search steps. Therefore, the lookup cost is only

related to the height of the index structure.

A tree index can be either built from bulkload operations, i.e., an

adjustment on the root node, or result from a number of random

insertions. We first analyze the tree height for the former case:

Let𝑚 be the minimum fanout of an index, i.e., min⌈𝑁
𝑇
⌉ among all

nodes. In fact,𝑚 ≥ 3 since 𝑇 ≤ ⌈𝑁
3
⌉, which indicates that at least

⌈𝑁
𝑇
⌉ ≥ 3 positions each contains up to 𝑇 entries for any given 𝑁

elements.

Theorem 5.1. The height of a LIPP index with 𝑁 elements built
from adjustment is at most 𝑂 (log𝑁).

Proof. Even in the extreme case, for each level of the index

structure, there are at least𝑚 branches, each of which contains at

most
𝑁
𝑚 elements. Thus, the height of index is at most 𝑂 (log𝑚 𝑁).

□

1282

Now we pay more attention to the height of the index built from

scratch in Theorem 5.2, which is a more common way for index

construction in practice.

Theorem 5.2. The height of a LIPP index with 𝑁 elements is at
most 𝑂 (log𝑁).

sketch. The core idea is to find the recursive relation between

the number of elements existed in the parent and the child node.

Refer to Appendix [44] A.2 for details. □

Finally, as the complexity of lookup operations depends only

on the tree height, it is obvious that the complexity of a lookup

operation is 𝑂 (log𝑁), even in the worst cases.

In the average case, it is obvious that LIPP has the complexity

𝑂 (log𝑚 𝑁) for lookup operations when the fanout of nodes is at

least 𝑚. Compared with PGM, which takes 𝑂 (log2𝑚 𝑁 + log
2
𝜖)

where 𝜖 is the error threshold, and ALEX, which takes 𝑂 (log𝑚 𝑁 +
log

2
𝑚), LIPP achieves the best complexity for lookup operations.

5.2 Insert Analysis

Though the cost of a normal insertion also depends on the tree

height, we need to concentrate on the cost of adjustment, which

incurs extra overhead for insertions. Since adjustment is not trig-

gered by each insertion, it is reasonable to employ the amortized

analysis for insert operations.

Firstly, we analyze the adjustment cost in the worst case.

Theorem 5.3. The adjustment on a node with 𝑁 elements costs at
most 𝑂 (𝑁 · log𝑁).

Proof. With 𝑁 elements, obtaining the best model with the

minimum conflict degree costs 𝑂 (𝑁). Meanwhile, the height for

the adjusted tree is 𝑂 (log𝑁). In the worst case, each level would

cost 𝑂 (𝑁) to train models. Then the total cost would be at most

𝑂 (𝑁 · log𝑁). □

Then, for the LIPP index with size 𝑁 built from the insertions,

we only pay amortized 𝑂 (log2 𝑁) for each insertion:

Theorem 5.4. The amortized cost for insert operations is at most
𝑂 (log2 𝑁).

sketch. We use the accounting method [10] for the analysis.

The core idea is to save extra 𝑂 (log𝑁) credits for each node along

the traversal path of insertions and to consume credits for the

adjustment. Please refer to Appendix [44] A.3 for details. □

Insertions with amortized complexity 𝑂 (log2 𝑁) for LIPP seems

worse than B+Tree. But compared with other learned indexes, we

still achieve better complexity. In fact, ALEX costs𝑂 (𝑚) for shifting
the elements in the extreme cases where𝑚 is the average fan-out

of a node. Besides, our performance is analyzed in the worse case

rather than average case. In most cases, an insertion only needs to

traverse to the NULL entry and add the element, which costs only

𝑂 (log𝑚 𝑁). Moreover, experimental results in Section 6 show that

insertions behave well in practice.

6 EVALUATION

6.1 Experiment Setup

Datasets: We evaluate our method using four popular benchmarks

mainly used in [11], with the detailed statistics shown in Table 2: (1)

Longitudes (LTD) consists of the longitudes of locations around

Table 2: Statistics of Datasets

LTD LLT LGN YCSB

Num Keys 1B 200M 190M 200M

Key Type double double int64 int64

Payload Size 8B 8B 8B 80B

Total Size 16G 3.2G 3.04G 17.6G

the world from Open Street Maps
1
. (2) Longlat (LLT) consists of

compound keys which combine the longitudes and latitudes from

Open Street Maps by applying transformation to these pairs, whose

distribution is severely non-linear. (3) Lognormal (LGN) is gener-
ated artificially according to the log-normal distribution

2
. Besides,

the values are multiplied by 10
9
and rounded down to the nearest

integers. (4) YCSB is also artificially generated, representing the

user IDs from YCSB benchmark
3
. These values are uniformaly dis-

tributed across int64 domain. No duplicated elements are contained

in these datasets unless otherwise stated. We also randomly shuf-

fle these four datasets to simulate the real-world scenarios, which

follows the settings mentioned in paper [11].

Baselines: We compare LIPP with existing state-of-the-art base-

lines: (1) Standard B+Tree, as implemented in the STX B+Tree [5]. It
is the fastest implementation for all in-memory B+Tree structures
over many common operations. (2) Adaptive Radix Tree(ART) [26],
a trie optimized for main memoring indexing and adapted to the

data. (3) ALEX [11], an in-memory, updateble learned index, which

utilizes the gapped array to accommodate elements with exponen-

tial search step. (4) PGM [12], a fully-dynamic compressed learned

index with provable worst-case bounds. (5) Learned Index [22],

using a two-level recursive model index with linear model at each

node and binary search steps which only support lookup operations.

(6) BwTree [27], a general purpose, concurrent and lock-free B+-

Tree index. These source codes are publicly available. We download

and run their codes following the guidelines specified in the papers.

Workloads: The primarymetric is the average throughput for LIPP
compared with other methods. To demonstrate the performance

over different index operations, we evaluate the throughput on

different types of workloads: (1) The Read-Only workload, which

performs lookup operations on the indexes built from bulkloading

100M randomly selected keys. (2) The Read-Heavy workload, which

contains 33% inserts to put elements into indexes and 67% reads to

randomly lookup elements. (3) The Write-Heavy workload, which

contains 67% inserts and 33% lookups. (4) TheWrite-Only workload,

which consists of only insert operations. The workloads (2) through

(4) are tested on an empty index. Besides, the keys to lookup are

selected randomly from the set of existing keys in the index, and

the keys to insert are randomly chosen from non-existed ones. We

run the workloads on different indexes within 100M operations for

five times and obtain their throughput of operations (either lookup

or insert) finally.

Environment: We implement LIPP in C++ and compile it with

GCC 9.0.1 in O3 optimization mode. All experiments are conducted

on an Ubuntu 18.04 Linux machine with 4.0 GHz Intel Core i7 (4

cores and 8 threads) and 32GB memory, only using a single thread.

1
https://registry.opendata.aws/osm

2
https://en.wikipedia.org/wiki/Log-normal_distribution

3
https://github.com/brianfrankcooper/YCSB.git

1283

https://registry.opendata.aws/osm
https://en.wikipedia.org/wiki/Log-normal_distribution
https://github.com/brianfrankcooper/YCSB.git

LTD LLT LGN YCSB

10

20

30

40

Th
ro
ug
hp
ut

 (m
illi

on
 o

ps
/s

ec
)

(a) Read-Only

LTD LLT LGN YCSB

5

10

15

20

Th
ro
ug
hp
ut

 (m
illi

on
 o

ps
/s

ec
)

(b) Read-Heavy

LTD LLT LGN YCSB

5

10

15

Th
ro
ug
hp
ut

 (m
illi

on
 o

ps
/s

ec
)

(c) Write-Heavy

LTD LLT LGN YCSB

4

8

12

Th
ro
ug
hp
ut

 (m
illi

on
 o

ps
/s

ec
)

(d) Write-Only

LIPP B+ Tree ART ALEX PGM BwTree Learned

Figure 5: Throughput: Comparisons with State-of-the-art Methods

6.2 Compare with State-of-the-art Methods

Next we compare LIPP with state-of-the-art methods. The results

are shown in Figure 5. To sum up, our approach achieves promising

results and consistently beats those state-of-the-art methods on

different types of workloads.

6.2.1 Read-OnlyWorkloads. For read-onlyworkloads, LIPP achieves
up to 2.8x, 6.3x, 15.3x, 9.8x throughput than ALEX, PGM, Learned In-
dex and B+Tree, respectively. Compared with Learned Index, ALEX
and PGM, LIPP is able to eliminate the in-node search step while

keeping the tree height bounded. Therefore, it incurs less compu-

tation overhead to locate the correct position. Besides, for those

traditional indexes B+Tree and ART, LIPP also has larger nodes to

accommodate many more elements on one level, and thus has less

tree height. Thus, the traversal path of LIPP is significantly shorter

than those of traditional indexes, resulting in better performance.

BwTree behaves even much worse than B+Tree since it costs more

time on the infrastructure to allow concurrent operations.

Meanwhile, on the LLT dataset, the throughput for LIPP is only

1.47x thanALEX. But we see thatALEX and PGM even behave worse

or similar than Learned Index on this dataset. The reason is that LLT
is highly non-uniform, which makes it difficult for learned model

to depict overall distributions and thus the tree height of indexes

increases. As a result, the traversal on tree structure dominates

the overall performance and the performance of all learned index

structures tends to be similar.

6.2.2 Read-Write workloads. For read-write workloads, LIPP again

achieves better performance than existed approaches with compa-

rable index size. Since Learned Index does not support any update

operations, we exclude it from the comparisons here. Figure 5 in-

dicates that LIPP beats ALEX, PGM, B+Tree, ART with 2.9x, 13.5x,

5.4x, 3.7x higher throughput on performance.

We observe that the performance of all methods decreases with

the increasing portion of insert operations. The reason is that ad-

justments are required to deal with changes in the index structure

caused by insert operations. Compared with the long distance shift-

ing of ALEX, the new node creation of LIPP is more light-weighted.

Since the adjustment helps to bound the tree height, LIPP still has

short traversal path for insert operations. Therefore, LIPP better

handles the write operations than ALEX. Besides, PGM performs

even worse in read-heavy workloads since PGM needs 𝑂 (log𝑁)
trees to support updating and each lookup operation should per-

form searching in all these trees. Since the traversal cost is still

the main bottleneck for traditional indexes, LIPP obviously beats

B+Tree and ART.

LTD LLT LGN YCSB

104

106

108

1010

In
de

x
siz

e
(b

yt
es

)

LIPP
B+ Tree
ART

ALEX
PGM
BwTree

(a) Read-Heavy

LTD LLT LGN YCSB

104

106

108

1010

In
de

x
siz

e
(b

yt
es

)

LIPP
B+ Tree
ART

ALEX
PGM
BwTree

(b)Write-Heavy

Figure 6: Index Size

6.2.3 Index Size. Due to space limitation, we just display the in-

dex size on read-heavy and write-heavy workloads in Figure 6. In

general, the index size of LIPP is not sensitive to the distribution of

datasets, and is comparable or less than that of ALEX and Learned
Index in read-write workload except for YCSB. The reason is that in

YCSB, the model can fit the distribution almost perfectly and there-

fore ALEX can better trade the search performance for reducing the

index size by holding the inaccurate elements in wrong positions.

At the same time, LIPP needs extra small nodes in the lowest level

to hold conflicting elements in local areas. Besides, we also observe

that PGM has larger index size because it utilizes the logarithmic

method to support insert and therefore requires to store a series of

index trees.

Nevertheless, we point out that the space overhead for the raw

data will overshadow that of index. For example, the size of YCSB

benchmark is 17.6 GB while the index size is not larger than 500

MB even for the worst method. Therefore, the index size will not

be the bottleneck of memory usage and the index overhead of LIPP
is acceptable.

6.2.4 RangeQuery. The range query operation can be implemented

by a simple lookup operation on the start key and a scan for the

following elements. We restrict the number of keys for scanning

to less than 100 for range queries, as mentioned in paper [11]. For

read-only workload, the performance of range query is comparable

with ALEX and B+Tree as shown in Figure 7, just keeping its advan-

tages up to 1.5x performance gain. The reason is that as scan time

begins to dominate the overall query time, the speedup of LIPP
on lookups becomes less apparent. Besides, LIPP needs to distin-

guish the different entry types and apply different actions during

the scan, which also slightly influences the performance of range

query. It is also worth mentioning that ART fail to support range

due to its implementation. Since PGM needs to insert elements in

a series of indexes, it requires to scan all components to support

1284

the range query in PGM. Thus the query time of PGM is orders of

magnitudes slower than LIPP and thus is ignored here.

LTD LLT LGN YCSB

1

2

3

4

Th
ro
ug
hp
ut
 (m

illi
on
 o
ps
/s
ec
) LIPP B+ Tree ALEX

Figure 7: Range Query

LTD LLT LGN YCSB

20

40

60

Bu
lk
lo
ad

 ti
m
e
(s
)

LIPP
B+ Tree

ALEX
ART

Figure 8: BulkLoad

6.2.5 Bulkload. In Figure 8, we demonstrate the time to load 100M

elements at once to build the index. Among all learned indexes,

LIPP only requires less than half of the time to bulkload compared

with ALEX and ART. Actually, LIPP only needs to create new nodes

for conflicting elements instead of shifting the elements to preserve

a gap for ALEX. Also, PGM has different layouts for read-only and

read-write workloads, and thus we ignored here. In addition, LIPP
is only slightly slower than B+Tree on bulkload since LIPP needs to

create small nodes for conflicting elements. But LIPP can make up

for its little slower bulkload time. Moreover, after we further insert

100K records after bulkload, the performance of insert operation in

B+Tree decreases sharply due to the aging problem.

6.3 Detailed Performance Study

R/W LIPP ALEX PGM Learned B+Tree

LTD 3.6/4.5 7.5/13.0 19.0/- 20.7/- 56.5/57.6

LLT 4.4/6.8 9.2/17.4 19.0/- 36.0/- 56.8/57.8

LGN 3.5/4.1 8.1/15.5 18.0/- 28.8/- 57.9/57.7

YCSB 3.1/3.1 9.1/10.7 17.0/- 12.6/- 57.0/57.8

Table 3: The Average Number of Memory Accesses

Next we investigate how the contribution that each proposed

technique makes to the overall performance. In Table 3, we dis-

play the average number of memory accesses for lookup and insert

operations on read-only and write-only workloads, separately rep-

resented by two values in each cell. For insert operations, we only

count the most common cases without structure modifications,

which reveals the length of common paths accessed by insertions.

Besides, since PGM uses logarithm methods to support insertion,

its memory access is meaningless for single insert operation. ART
just behaves similar to B+Tree. Thus we ignore them here.

The results in Table 3 show that LIPP has the significantly fewer

memory accesses compared with other baselines. In fact, the num-

ber of memory accesses is at least 3 for the indexes with two or

more levels. That is, one access to get the entry in root model, one

access to extract the pointer and obtain the child model, and one

access to locate the entry of the lookup key.

For lookup operations, LIPP eliminates the “last-mile” search of

ALEX and Learned Index, removes redundant lookups in different

components of PGM and also reduces the traversal path over index

trees compared with B+Tree and ART. Compared with LIPP, ALEX
requires extra memory accesses to finish the exponential search to

correct the mispredications in leaf nodes while PGM needs to find

keys in a series of subtrees and thus incurs more memory accesses.

Moreover, since B+Tree index has many more levels, the lookup

operations need to traverse the overall levels and figure out the

internal node by binary searching, which thus costs more overhead

as shown in the table. All improvements are reflected by the small

number of memory accesses. For insert operations, the adjustment

operation of LIPP is much cheaper than shift in ALEX and split

in B+Tree. In fact, ALEX aims to use a gapped array to reduce the

number of shifting elements to 𝑂 (log𝑚) with high probabilities,

but still incurs huge costs for each insertion and introduces the

overhead to maintain the structure of the gapped array.

To further display the internal properties of our method, we

conduct the experiments of variance analysis on the write-heavy

workload. In one run, we collect the latency (execution time) of each

operation, sort the latencies in the ascending order, and report 99-th

percentile latency in Figure 9a. LIPP has relative small latency com-

pared with ALEX and B+Tree. This is due to that LIPP has fewer

structure modifications, which is shown in Table 3a. Therefore,

most of our operations are handled in the common cases without

incurring too much overhead. Besides, LIPP utilizes the fewer mem-

ory accesses to finish these operations, which causes the lower

latency. As for ALEX, its structure modifications are more common

than LIPP [11]. While PGM uses logarithm methods to support

insertions, it will frequently incur merge process during insert and

lookup operations, which causes the larger 99-th percentile latency.

LTD LLT LGN YCSB

0.5

1.0

1.5

2.0

2.5

3.0

99
%

 L
at

en
cy

 (1
00

0
ns

) LIPP
B+ Tree

ART
ALEX

PGM

(a) 99-th Percentile Latency

LTD LLT LGN YCSB

102

103

104

105

106

St
an

da
rd
 D
ev
ia
tio

n
(n
s) LIPP

B+ Tree
ART
ALEX

PGM

(b) Standard Deviation

Figure 9: Variance of Operations

We also report the standard deviation of the operation time

in Figure 9b. Though LIPP seems not outstanding, the standard

deviation of our method is still comparable with those learned

indexes, i.e., ALEX and PGM. Actually, the structure adjustment

of the traditional indexes only involves a small amount of data.

Thus, the latency of each operation for B+Tree and ART is relatively

uniform. However, the structure modifications of learned indexes

involve the larger number of keys and values and cost much more

time to finish, which causes the inevitable higher standard deviation.

In a word, the high standard deviation of our method is acceptable

and reasonable.

Besides, we report the number of adjustments, as well as the

ratio of time spent on adjustment to the overall running time. The

results in Table 3a illustrate the rarity of structure modifications

on LTD, LGN and YCSB and the results in Table 3b show that the

time used in adjustments is relatively small compared with the

running time, which thus is not the main bottleneck of LIPP. Be-
sides, we find that a single adjustment may spend much more time

than an insert operation without adjustment triggered. However,

it won’t be a severe case since the adjustment is rarity and more

than 99% of insert operations do not trigger adjustments. And in

1285

Appendix [44] B.3, the ratio of time spent on structure modifica-

tions for ALEX and adjustments for LIPP are comparable, which

also alleviates the severity of the above problem.

(a) # Adjustment

RH WH WO

LTD 27 32 32

LLT 2448 10887 20594

LGN 22 24 24

YCSB 11 11 11

(b) % Adjustment

RH WH WO

LTD 25% 33% 31%

LLT 13% 17% 17%

LGN 23% 26% 22%

YCSB 23% 21% 17%

Table 4: The Number and Time Ratio of Adjustments

Moreover, we explain the behaviour of our method on LLT

dataset. Since LLT is highly non-uniform and its distribution is

roughly jagged, LIPP utilizes many more adjustments to adapt this

irregular dataset. But the most of the adjustments only involve a

very small part of the data, which thus do not cost too much time.

As we can see in Table 3b, the time for adjustment caused on LLT

is still small compared to the overall running time, whose ratio

is only 13%, 17%, 17% on read-heavy, write-heavy and write-only

workloads.

6.4 Scalability with Data Size

Here we evaluate the scalability of LIPPwith the increasing volume

of data. We run both the read-heavy and write-heavy workloads on

the LTD dataset with the varying number of keys in the beginning,

instead of building the index from scratch.

10%20% 40% 80%
Initial data size

4

8

12

16

Th
ro
ug
hp
ut
 (m

illi
on
 o
ps
/s
ec
)

LIPP
B+ Tree

ALEX
ART

(a) Read-Heavy

10%20% 40% 80%
Initial data size

2

4

6

8

Th
ro
ug
hp
ut
 (m

illi
on
 o
ps
/s
ec
)

LIPP
B+ Tree

ALEX
ART

(b)Write-Heavy

Figure 10: Data Scalability

Figure 10 shows the results for both read-heavy and write-heavy

workloads. We see that LIPP beats ALEX and B+Tree with the in-

creasing data size. As the number of elements increases, the through-

put of LIPP slows down, but in a low rate since the tree height is

restricted by the FMCD strategy in adjustment. We also point out

that when the data volume is 40% in Figure 10b, the abnormal in-

creasing of LIPP is caused by the different tree structure of indexes

after bulkload on different number of keys.

6.5 The Effect of Adjustment Strategy

To show the effectiveness of our proposed algorithm for adjustment,

we compare LIPP using the default adjustment strategy (FMCD)
with LIPP simply using Linear Regression (LR) to obtain the model

parametersM .𝐴 andM .𝑏. Figure 11a shows the results, where

FMCD consistently achieves better than LR, even on YCSB that is

totally uniform. FMCD distributes different keys to make as few

conflicting elements as possible, while LR only tries to approximate

those keys and positions with straight lines. In addition, the low

LTD LLT LGN YCSB

5

10

15

20

Th
ro
ug

hp
ut
 (m

illi
on
 o
ps
/s
ec
)

FMCD (Read-Heavy)
LR (Read-Heavy)
FMCD (Write-Heavy)
LR (Write-Heavy)

(a) Throughput

LR FMCD

LTD 41567 57

LLT 40852 3680

LGN 1465 658

YCSB 8 5

(b) Conflict Degree min𝑇

Figure 11: Effect of Adjustment Strategy

complexity of FMCD restricts the cost of reconstruction not higher

than the performance improved by this strategy, making FMCD
more competitive. To further demonstrate the dominance of our

adjustment strategy, we apply LR and FMCD on 1𝑀 random keys

from different datasets to get two models, respectively. We then

obtain the conflict degree of these two models in Table 11b. The

results show that FMCD has many fewer conflict degrees than LR
consistently, which would have the fewer layers for all keys in

average and thus improve the overall performance. Actually, LR is

sensitive to the elements, where a drift on the last point results in

larger slope and thus causes more conflicts. But FMCD strategy is

more robust to the distribution, and tries its best to limit the conflict

degree to a very small number.

7 DISCUSSION

7.1 Concurrent Operations

Among past years, researchers have extensively studied how to im-

plement a concurrency control protocol in B+Tree or other trees [3,
24, 36]. In fact, LIPP can be considered as a tree and the adjustment

on LIPP can be viewed as a type of structure modification, similar

to the split or merge process in B+Tree. Thus, traditional ways to
support concurrency can be used in our method. We could apply

the latch coupling [3] protocol on LIPP, which needs read/write

locks. For lookup operations, we repeatedly acquire the read lock

on child and then unlock parent along the traversal path. For insert

operations, we traverse index and repeatedly obtain the write lock

on a child. Once the child is locked, we check if it is safe, i.e., this

node will not trigger the adjustment after inserted. If it is safe, we

release locks on ancestors.

Besides, LIPP’s unique advantage of precise positions reduces
concurrency contentions compared to B+Tree and other learned

indexes. In B+Tree or ALEX, insertions without structure modifica-

tions may cause elements to shift in the leaf nodes. Consequently,

lookup and insert operations in the same leaf node may still incur

contentions even though these two operations on different positions.

However, LIPP effectively eliminates such unnecessary contentions

since insert operations with no adjustment do not affect lookup

operations in other positions. Thus, we can remove mechanisms

for those contentions in concurrency control protocols.

7.2 New Hardware Accelerators

New hardware accelerators, such as GPU/TPUs, will make our

method even more valuable. At the same time, those new hardwares

have their own challenges, most importantly the high invocation

latency. It still requires 2-3 micro-seconds to invoke any operation

on them. However, with the expansion of video memory and the

1286

development of direct NVM access from GPU [35], it is reasonable

to assume that probably all learned indexes will fit on the GPU.

Besides, the integration of machine learning accelerators with the

CPU is getting better and with techniques like batching requests,

the cost of invocation can be amortized, so that we do not believe

the invocation latency is a real obstacle.

Another challenge is under-utilization brought by the totally dif-

ferent computing models of new hardwares. We need to fully utilize

the thousands of available GPU cores, which requires eliminating or

at least minimizing required communication between GPU threads

and branch divergence within a SIMD instruction. Therefore, we

may need to change the underlying data layouts to avoid the con-

tention as much as possible. Moreover, the synchronization and

communication in GPU are far more heavy-weighted and com-

plicated than that in CPU, which may require new concurrency

control protocols.

8 RELATED WORK

Learned Index With development of machine learning, a new

family of index structures, such as A-Trees [13] and Learned In-
dex [22], are introduced to learn the underlying data distribution to

index data items. This work inspires a series of work. FITing [14]
replaces the leaf nodes of a B+Tree with linear models to compress

index and maintain operations’ performance, which has restricted

guarantees for prediction error. PGM [12] extends the idea from

FITing, replaces the non-leaf node with linear models also and pro-

vides an optimal way to obtain piece-wise linear model under their

requirements. Both of PGM and FITing do support insertions but

just in naive and direct ways such as extra buffer and merge, which

thus are not their main contributions. ALEX [11], indeed, supports

the insert operations by utilizing almost fixed non-leaf nodes as

route to and applying exponential search on the gapped array in

their leaf nodes. However, these indexes just learn the approximate

position for elements and need extra search step to correct the

predictions. Therefore, they introduce another set of space-time

trade-offs between prediction error and tree size. LIPP is totally dif-

ferent, which introduces new structure to completely eliminate the

inaccuracy caused by learned model predictions. Besides, Nathan et

al. [37] put attention on the multi-dimensional in-memory learned

index. Kipf et al. [21] focus on the constructions of learned index

in single pass. Tang et al. [42] devise a scalable learned index for

multicore data storage. All of them are different from our scope.

Database Index Meanwhile, various indexes are proposed over

the last decades. Traditionally, B+Tree [2] and its variants are origi-

nally proposed for disk settings. However, realizing the importance

of cache utilization for memory indexes, several cache conscious

B+Trees [15] have entered the fields of researchers’ vision. Among

of them, Adaptive Radix Tree [26] integrates the B+Tree with Tries

to reduce cache misses, while CSS-trees [40] restrict index node size

to fit into CPU cache line and use arithmetic operations to elimi-

nate the usage of pointers in index nodes. Instead, pB+-tree [8] uses

larger index nodes but mainly relies on instructions to prefetch the

necessary information in advance. FAST [18] exploits the usage of

SIMD instructions to further optimize searches within index nodes

for cache performance. Meanwhile, Blink-Tree [28] provides a con-

current tree restructuring mechanism for handling underflow nodes

as well as overflow nodes. Except the series of B+Tree, the choices

of index for databases also have many candidates for specific pur-

poses, such as T-trees [25], red-black trees [7], LSM tree [38], and

more recently, HOT [6]. Besides, some researchers put their atten-

tions on new hardware platforms, such as Multi-Core Chips [27],

Non-VolatileMemory [9, 29], Hardware TransactionalMemory [41],

Solid-State Disk [17], Graphic Processing Units [4, 19], etc.

Machine Learning for Database Systems Machine Learning

has been proved its power in different database related fields. Pavlo

et al. [39] construct “self-driving” database systems which can auto-

matically optimize themselves without human intervention to cope

with complicated query workload and data characteristics. Mean-

while, Ma et al. [30] follow the ideas and further design a query

workload forecasting framework in autonomous DBMS. Moreover,

Aken et al. [1] propose an automatically database tuning frame-

work boosted by machine learning techniques. More researchers

also put focus on combining learning techniques with traditional

SQL optimization in different aspects. Marcus et al. [32–34] tackle

the problem of query optimization in database system. Meanwhile,

Wu et al. [43] also learn cardinality models for overlapping sub-

graph templates on the shared cloud workloads. Yang et al. [47]

study the problem of selectivity estimation using deep learning

techniques, which approximate the joint data distribution without

any independence assumptions. Also, Kristo et al. [23] introduce a

new type of distribution sort that leverages a learned model of the

empirical CDF of the data. In addition, Zhang et al. [48] propose

a learned scheduler that leverages overlapping data reads among

incoming queries and learns a scheduling strategy that improves

cache hits. Besides, Yang et al. [46] adopt machine learning tech-

niques for data partitioning to improve storage issues of database

system. And Yang et al. [45] utilize a machine learning method

to predict hot records in an LSM-tree storage engine and prefetch

them into the cache. Hsu et al. [16] devise new algorithms which

learn relevant patterns for data streams and use them to improve

its frequency estimates.

9 CONCLUSION AND FUTUREWORK

In this paper, we introduce LIPP, a brand new learned index struc-

ture to efficiently support a full set of index operations. We address

the bottleneck of previous learned index structures by precisely

predicting the position of a search key and thus eliminating the

last-mile searches within leaf nodes. To this end, we provide a novel

metric to decide the layout of tree nodes and propose a dynamic

adjustment strategy to tightly bound the height of the tree. Experi-

mental results on popular datasets demonstrate the superiority of

our proposed method on a variety of workloads.

For the future work, we plan to explore the ways to automatically

and effectively select the monotonic functions to make LIPP more

robust to datasets with different distributions. Besides, it is also

interesting to investigate how to implement LIPP into real world

relational DBMS with concurrency control and how to adjust LIPP
for new hardwares.

ACKNOWLEDGMENTS

Jiacheng Wu, Yong Zhang, Yu Chen and Chunxiao Xing are sup-

ported by National Key R&D Program of China (2018YFB1404401),

State Key Laboratory of Computer Architecture (ICT, CAS) under

Grant No. CARCHA202008.

1287

REFERENCES

[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine

Learning. In SIGMOD. 1009–1024.
[2] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance of

Large Ordered Indices. Acta Informatica 1 (1972), 173–189.
[3] Rudolf Bayer and Mario Schkolnick. 1977. Concurrency of Operations on B-Trees.

Acta Informatica 9 (1977), 1–21.
[4] Felix Beier and Kai-Uwe Sattler. 2017. GPU-GIST - a case of generalized database

indexing on modern hardware. it Inf. Technol. 59, 3 (2017), 141.
[5] Timo Bingmann. [n.d.]. STX B+ Tree. https://panthema.net/2007/stx-btree/,

Version 0.9.

[6] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018.

HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In

SIGMOD. 521–534.
[7] Joan Boyar and Kim S. Larsen. 1992. Efficient Rebalancing of Chromatic Search

Trees. InAlgorithm Theory - SWAT, Otto Nurmi and Esko Ukkonen (Eds.), Vol. 621.

151–164.

[8] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2001. Improving Index

Performance through Prefetching. In SIGMOD. 235–246.
[9] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.

PVLDB 8, 7 (2015), 786–797.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, 3rd Edition. MIT Press. http://mitpress.mit.

edu/books/introduction-algorithms

[11] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In SIGMOD. 969–984.
[12] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. PVLDB 13, 8 (2020),

1162–1175.

[13] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and

Tim Kraska. 2018. A-Tree: A Bounded Approximate Index Structure. CoRR
abs/1801.10207 (2018).

[14] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD. 1189–1206.
[15] Richard A. Hankins and Jignesh M. Patel. 2003. Effect of node size on the

performance of cache-conscious B
+
-trees. In SIGMETRICS. 283–294.

[16] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-Based

Frequency Estimation Algorithms. In ICLR. OpenReview.net.
[17] Martin V. Jørgensen, René Bech Rasmussen, Simonas Saltenis, and Carsten Schjøn-

ning. 2011. FB-tree: a B
+
-tree for flash-based SSDs. In IDEAS. ACM, 34–42.

[18] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen,

Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey. 2010. FAST:

fast architecture sensitive tree search on modern CPUs and GPUs. In SIGMOD.
339–350.

[19] Mincheol Kim, Ling Liu, and Wonik Choi. 2018. A GPU-Aware Parallel Index

for Processing High-Dimensional Big Data. IEEE Trans. Computers 67, 10 (2018),
1388–1402.

[20] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned

Indexes. CoRR abs/1911.13014 (2019).

[21] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In aiDM@SIGMOD 2020. 5:1–5:5.
[22] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504.
[23] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. 2020.

The Case for a Learned Sorting Algorithm. In SIGMOD. 1001–1016.
[24] Philip L. Lehman and S. Bing Yao. 1981. Efficient Locking for Concurrent Opera-

tions on B-Trees. ACM Trans. Database Syst. 6, 4 (1981), 650–670.
[25] Tobin J. Lehman and Michael J. Carey. 1986. A Study of Index Structures for Main

Memory Database Management Systems. In VLDB, Wesley W. Chu, Georges

Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi (Eds.). 294–303.

[26] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix

tree: ARTful indexing for main-memory databases. In ICDE. 38–49.

[27] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:

A B-tree for new hardware platforms. In ICDE. IEEE Computer Society, 302–313.

[28] Sungchae Lim, Joonseon Ahn, and Myoung-Ho Kim. 2003. A Concurrent B-Tree

Algorithm Using a Cooperative Locking Protocol. In BNCOD, Vol. 2712. 253–260.
[29] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+-Trees: Optimizing Persistent

Index Performance on 3DXPoint Memory. PVLDB 13, 7 (2020), 1078–1090.

[30] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and

Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving

Database Management Systems. In SIGMOD. 631–645.
[31] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned

Indexes. CoRR abs/2006.12804 (2020).

[32] Ryan Marcus and Olga Papaemmanouil. 2019. Towards a Hands-Free Query

Optimizer through Deep Learning. In CIDR.
[33] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned

Query Optimizer. PVLDB 12, 11 (2019), 1705–1718.

[34] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural

Network Models for Query Performance Prediction. PVLDB 12, 11 (2019), 1733–

1746.

[35] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Satoshi

Matsuoka. 2018. DRAGON: breaking GPU memory capacity limits with direct

NVM access. In SC. IEEE / ACM, 32:1–32:13.

[36] C. Mohan. 1990. ARIES/KVL: A Key-Value Locking Method for Concurrency

Control of Multiaction Transactions Operating on B-Tree Indexes. In PVLDB,
DennisMcLeod, Ron Sacks-Davis, andHans-Jörg Schek (Eds.). Morgan Kaufmann,

392–405.

[37] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-Dimensional Indexes. In SIGMOD. 985–1000.
[38] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385.

[39] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-

turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,

Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.

In CIDR.
[40] Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-

Support in Main Memory. In VLDB, Malcolm P. Atkinson, Maria E. Orlowska,

Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie (Eds.). 78–89.

[41] Dimitrios Siakavaras, Panagiotis Billis, Konstantinos Nikas, Georgios I. Goumas,

and Nectarios Koziris. 2020. Efficient Concurrent Range Queries in B+-trees

using RCU-HTM. In SPAA, Christian Scheideler and Michael Spear (Eds.). ACM,

571–573.

[42] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie

Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore data

storage. In PPoPP. ACM, 308–320.

[43] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi

Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.

Proc. VLDB Endow. 12, 3 (2018), 210–222.
[44] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing.

2021. Updatable Learned Index with Precise Positions. arXiv:2104.05520 [cs.DB]

[45] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie

Wang, Rongyao Chen, Jianying Wang, and Gui Huang. 2020. Leaper: A Learned

Prefetcher for Cache Invalidation in LSM-tree based Storage Engines. PVLDB 13,

11 (2020), 1976–1989.

[46] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,

Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.

2020. Qd-tree: Learning Data Layouts for Big Data Analytics. In SIGMOD. 193–
208.

[47] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter

Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019.

Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279–292.

[48] Chi Zhang, Ryan Marcus, Anat Kleiman, and Olga Papaemmanouil. 2020.

Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. CoRR
abs/2007.10568 (2020).

1288

https://panthema.net/2007/stx-btree/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://arxiv.org/abs/2104.05520

