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ABSTRACT
Recently, there has been an increase in the number of knowledge

graphs that can be only queried by experts. However, describing

questions using structured queries is not straightforward for non-

expert users who need to have sufficient knowledge about both

the vocabulary and the structure of the queried knowledge graph,

as well as the syntax of the structured query language used to de-

scribe the user’s information needs. The most popular approach

introduced to overcome the aforementioned challenges is to use nat-

ural language to query these knowledge graphs. Although several

question answering benchmarks can be used to evaluate question-

answering systems over a number of popular knowledge graphs,

choosing a benchmark to accurately assess the quality of a question

answering system is a challenging task.

In this paper, we introduce CBench, an extensible, and more

informative benchmarking suite for analyzing benchmarks and

evaluating question answering systems. CBench can be used to

analyze existing benchmarks with respect to several fine-grained

linguistic, syntactic, and structural properties of the questions and

queries in the benchmark. We show that existing benchmarks vary

significantly with respect to these properties deeming choosing a

small subset of them unreliable in evaluating QA systems. Until

further research improves the quality and comprehensiveness of

benchmarks, CBench can be used to facilitate this evaluation using

a set of popular benchmarks that can be augmented with other

user-provided benchmarks. CBench not only evaluates a question

answering system based on popular single-number metrics but also

gives a detailed analysis of the linguistic, syntactic, and structural

properties of answered and unanswered questions to better help

the developers of question answering systems to better understand

where their system excels and where it struggles.
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1 INTRODUCTION
Recent years witnessed an unprecedented growth in the number

of knowledge graphs (KGs) [6, 9, 16, 31, 36, 47]. These knowledge

graphs contain a plethora of information that can be potentially

used for question answering (QA). However, finding answers in a

KG is not an easy task. The user is required to have a detailed knowl-

edge of the KG, and a structured query language to describe their

questions in a structured format that can be used to find matches in

the KG. This requirement limits the ability to ask questions to power

users who have the necessary skills to write syntactically and se-

mantically correct queries to accurately represent their information

needs. The number of such users represents a tiny fraction of a po-

tentially large userbase. To overcome this challenge, a large number

of QA systems that let users describe their information needs using

natural language were developed [13, 18, 20, 22, 27, 29, 39, 49–52].

In fact, over 62 QA systems have been developed since 2010 [23].

As a result of the popularity of QA over KGs, several benchmarks

were introduced to evaluate QA systems [7, 8, 12, 35, 38, 40–43,

46]. These benchmarks typically include questions described in

natural language, answers to the questions from the KG targeted

by the benchmark, and possibly structured queries that return the

previously mentioned answers. To evaluate a newly developed

QA system, its developers need to choose from a large number of

benchmarks (at least 17 at the time of writing this paper) to evaluate

their system. Without a quantitative comparison that highlights

the differences between these benchmarks, choosing a subset of

them to evaluate a new QA system is mainly motivated by the ease

of comparison to existing systems in the literature
1
rather than

by how effective a benchmark is in evaluating a QA system. In

fact, existing benchmarks differ significantly from each other with

respect to the following three points:

• How the benchmarks were created: Some benchmarks are man-

ually created by human experts based on heuristics [3, 11, 12,

14, 40–46]. Other benchmarks are automatically generated from

the KG [7, 35, 38].

• Metadata: This includes what KGs that the benchmark target,

and the number of questions in the benchmark. Most bench-

marks target a limited number of KGs (All benchmarks that we

are aware of target only 5 KGs). Also, the number of questions

in each benchmark varies significantly. Out of the benchmarks

we are aware of, the benchmark with the smallest number of

questions includes 150 questions, while the benchmark with

the largest number of questions includes 108,442 questions.

• Linguistic, syntactical, and structural properties: The natural

language questions have linguistic properties. Their correspond-

ing queries (if they exist in the benchmark) also have syntactical

1
Out of 20 QA systems that were developed in the past 5 years, only 6 are open-sourced,

and only 3 systems are accessible via a functional web interface.
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and structural properties. In this paper, we reveal that existing

benchmarks vary significantly with respect to these properties,

which is reflected on the reported quality scores depending on

the benchmark used.

Another issue with existing benchmarks is their limited usability.

Today, benchmarks are used in the following fashion: The user

parses the benchmark file, extract the questions and utilizes the

QA system to find answers in the targeted KG, then compare the

returned answers to the answers extracted from the benchmark file

to calculate multiple evaluation scores like micro, macro, and global

F-1 scores (discussed in Section 7). The user then examines the

questions that the QA system failed to answer correctly and debug

their code to identify why the QA system struggles with these

questions. In that sense, the benchmark is used as a dataset that

helps in producing the aforementioned scores with a lost potential

of being more informative to its user by giving more details on the

fine-grained properties of the processed questions, which will help

the user better understand how the QA system behaves.

In this paper, we introduce CBench
2
, an extensible fine-grained

benchmark suite that overcomes the aforementioned challenges

facing accurate evaluation of QA systems. CBench can be used in

two modes: Benchmark Analysis Mode and QA Evaluation Mode.
CBench can be used in the first mode to perform a fine-grained

analysis on the natural language questions and queries in a set

of benchmarks selected by the user. CBench includes a total of

17 benchmarks targeting 5 KGs, and can be easily extended with

new benchmarks and KGs. For the structured queries, CBench ana-

lyzes several syntactical properties of structured queries like the

type of the query, the operators used, and the query size. CBench

also analyzes the structural properties (shapes) of the queries. For

the natural language questions, CBench analyzes several linguis-

tic properties like the type of question, and part-of-speech (PoS)

tags of each question token of the natural language question. In

our analysis, we surprisingly quantify high-degree variations with

respect to the linguistic, syntactical, and structural properties of

questions and queries among different benchmarks in the litera-

ture, and experimentally show that these differences result in an

inconsistent assessment of QA systems. These findings motivate

further research in building better benchmarks that address as much

fine-grained properties as possible to have a good coverage of real-

world questions that the QA systems will encounter in real-world

deployments.

Until such benchmarks are available, CBench facilitates evalu-

ating QA systems in the second mode (QA Evaluation Mode), in
which the user can choose the benchmarks they wish to use to

evaluate their QA system. Then, CBench interacts with the QA

system using a set of well-defined APIs to send/recieve question-

s/answers. In addition to reporting micro, macro, and global F-1

scores, CBench also analyzes all the questions in the chosen bench-

marks and their corresponding structured queries (if available).

Specifically, CBench returns (1) a detailed analysis of the proper-

ties of the queries that the evaluated QA system processed, and (2)

linguistically-similar natural language questions for any question

of interest (e.g., a question that the QA system failed to answer).

Using the two aforementioned types of output, the QA user can

2
https://github.com/aorogat/CBench

either (1) identify common properties between questions that the

QA system struggles with (e.g., most of the questions have a spe-

cific query shape), or (2) identify obvious inconsistencies in the

processed questions. For example, using CBench, we were able

to quickly identify that one of the QA systems we evaluated was

able to answer the question “What is the capital of Cameroon?”

correctly, while it incorrectly answered “What is the capital of

Canada?”, which highlights an overfitting problem in their entity

recognition and relation mapping approaches. Being able to quickly

identify commonalities or inconsistencies will help the QA system

developers to quickly identify the QA system component that they

need to improve. Based on the insights provided by CBench, the

user can also use it in a Debugging Mode within the QA Evaluation
Mode, where they can control CBench’s output questions based on

any of the linguistic, syntactical, or structural properties of all the

questions and queries in CBench to better understand how their

QA system behaves in several controlled situations. For example,

the user can specify that CBench only outputs temporal questions

whose queries have a star-shape.

Our contributions in the CBench suite are:

• To the best of our knowledge, We are the first to introduce the

concept of fine-grained analysis of questions and queries in QA

benchmarks.

• Using our fine-grained analysis, we surprisingly identify a high

degree of variations among existing benchmarks with respect

to several linguistic, syntactical, and structural properties of the

natural language questions and their corresponding queries in

the benchmarks.

• To demonstrate the effects of such variations, we evaluate six

QA systems using CBench in the QA Evaluation Mode and show
that their quality scores vary significantly.

• We give important insights to QA systems’ researchers on

benchmark selection and QA evaluation metrics.

The rest of this paper is organized as follows: Section 2 presents

the preliminaries of this paper. Section 3 discusses the architec-

ture of CBench. Section 4 gives an overview of the benchmarks in

CBench. Section 5 presents how CBench analyzes the structured

queries in the benchmarks. Section 6 presents how CBench analyzes

the natural language questions. Section 7 discusses our experiments

on six QA systems using CBench. Section 8 concludes the paper.

2 PRELIMINARIES
Knowledge Graph (KG): A knowledge graph is a directed graph

KG = {V ,E} consisting of a set of vertices V that represent enti-

ties, types, and literals, and a set of labeled edges E that connect

these vertices. RDF [2] is a popular representation model for KGs,

which organizes data as a set of triples in the form ⟨s,p,o⟩ where
s refers to subject, p refers to predicate, and o refers to object, such
that s,o ∈ V , and p ∈ E. SPARQL [1] is the structured query lan-

guage for querying RDF. Figure 1 visualizes a sample subgraph

from DBpedia [6].

Graph Pattern (gp): A Graph Pattern is a set of triple patterns. A

triple pattern can be generated from a triple by replacing the s , p,
or o by a variable from the universal set of variables U . A query

can include multiple graph patterns.
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dbr : Lenovo

dbr : Electronics

dbr : Bei jinд

dbo : Company

dbr : India

dbr : Indian_Railways

dbr : New_Delhi

dbo : Country

60000 1335000

dbo : numberOf Employees

dbo : f oundationPlace

dbo : industry

rdf : type

rdf : type

dbo : locat ion

dbo : capital
rdf : type

dbo : numberOf Employees

Figure 1: A Subgraph from the DBpedia.

Query (q): A query is represented as the pair (GP , SM), where GP
is the set of graph patterns in the query and SM is the set of solution

modifiers. The query returns an answer set A that (1) matches the

givenGP from a knowledge graph KG , and (2) modified to conform

to the the solution modifiers SM (e.g., select, ordered by, distinct,

limit and offset, etc.). In SPARQL, a query with type Select is used to
select all, or a subset of, the variables bound in the set of subgraphs

that matchesGP . If type isAsk instead of Select , it returns a Boolean
answer; true if GP can be matched (A is a non-empty set).

Natural Language Question (nlq): A natural language ques-

tion is represented as the list of all tokens of the question ex-

cluding white spaces and punctuation marks. Formally, nlq =
[token1, token2, . . . , tokenm ], wherem is the number of tokens in

the question.

Benchmark (B):AbenchmarkB = {NLQ,Q,G} consists of a set of

natural language questions NLQ , an optional set of formal queries

Q , and a set of gold standard answers G such that дi is the set of
gold standard answers for the question nlqi , whose corresponding
query is qi .

Example 1. Following is an example of a natural language ques-
tion that can be found in a benchmark (nlqi ): [Which, companies,
have, more, than, 1, million, employees, or, founded, in, Beijing]. The
query3 (qi ) that is associated with this question is:
SELECT DISTINCT ?uri WHERE {

?uri a dbo:Company {
?uri dbo:numberOfEmployees ?n .
FILTER ( ?n > 1000000 )

} UNION {
?uri dbo:foundationPlace dbr:Beijing.

}
}

The answers (дi ) to this query based on the subgraph in Figure 1 are
{“Lenovo”, “Indian Railways”}.

3 OVERVIEW OF CBENCH
Figure 2 shows the architecture of CBench, which can be used in

two modes: (1) The Benchmark Analysis Mode, where CBench can

be used to perform a fine-grained analysis on the structured queries

and the natural language questions on a set of benchmarks selected

3
The prefix dbr is bound to http://dbpedia.org/resource/

The prefix dbo is bound to http://dbpedia.org/ontology/

The prefix rdf is bound to http://www.w3.org/2000/01/rdf-schema#

by the user, and (2) the QA Evaluation Mode, where CBench can be

used to evaluate a QA system over the user-selected benchmarks

providing deeper insights on how the QA system is performing.

Benchmark Analysis Mode: CBench includes 17 benchmarks

from which the user can choose a subset for analysis. The user can

also upload their own benchmarks to be included in the analysis.

The Benchmark Builder passes the selected benchmarks (and the

uploaded ones, if any) to the Q-Analyzer which carries out the

syntactical and structural analysis of the queries (Section 5), and

the linguistic analysis (Section 6). Finally, the Q-Analyzer returns

the analysis report to the user.

QA Evaluation Mode: Just like the previous mode, the user se-

lects a set of benchmarks and/or upload their own to evaluate the

QA system. In addition, the user provides CBench with a URL for

an endpoint that CBench can query. Other configuration parame-

ters that are used in the evaluation (e.g., thresholds for calculating

quality scores) are also chosen by the user prior to evaluation. To

avoid the scenario where the selected benchmarks target different

versions of the same KG (discussed in Section 4), the Benchmark

Builder updates the answers of the queries in the selected bench-

marks through the Benchmark Updater module, which queries the

used KG that will be used for the evaluation to retrieve the up-

dated answers. The updated benchmarks are then passed to the

System Evaluator. The System Evaluator carries out three tasks:

(1) Communicating with the QA system to collect the answers to

the questions from the selected benchmarks, (2) calculating the

micro, macro, and global F-1 scores (discussed in Section 7), and (3)

retrieving the fine-grained analysis of the processed questions from

the Q-Analyzer. The System Evaluator then outputs an interactive

report that includes the scores and the analysis of the processed

questions to the user. The user can choose to focus on specific

questions to view all their fine-grained properties. CBench also

finds other questions that are linguistically similar to the selected

questions (discussed in Section 6). Using this feature, the user is

able to quickly identify either common features or inconsistencies

of unanswered or incorrectly answered questions, which will help

the user to understand which components of their QA system to

improve. The user can also use CBench in the Debugging Mode, in

which they can group questions/queries based on specific proper-

ties to evaluate their QA system in specific scenarios. For example,

the user can choose to evaluate their QA system only on aggregate

questions (e.g., How many) whose queries have a star-shape to

investigate how their system deals with such questions.

The details of the configurations of CBench, how to add a new

benchmark, and the API’s used for communication with the QA

systems can be found in the system’s repository
4
.

4 BENCHMARKS IN CBENCH
Before discussing the analysis of queries and natural language ques-

tions, we give an overview of the benchmarks that are included in

CBench. CBench can also be augmented with other benchmarks

provided by the user. Table 1 shows the benchmarks along with the

number of questions in each and the KGs they target. QALD5
is an

annual evaluation campaign for question answering that started in

4
https://github.com/aorogat/CBench

5
http://qald.aksw.org
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Figure 2: CBench Architecture.

Table 1: The benchmarks used in CBench. DB refers to DB-
pedia, FB refers to Freebase, MB refers to MusicBrainz, WK
refers toWikidata, and LS refers to LinkedSpending. Bench-
marks annotated with ⋆ do not include queries, and bench-
marks annotatedwith † target only single-factoid questions.

Benchmarks #Qs KG Version

QALD-1 [40] 199 DB, MB 3.6

QALD-2 [14] 344 DB, MB 3.7

QALD-3 [12] 397 DB, MB 3.8

QALD-4 [41] 321 DB 3.9

QALD-5 [42] 334 DB 2014

QALD-6 [43] 431 DB, LS 10-2015

QALD-7 [46] 530 DB, WD 04-2016

QALD-8 [45] 315 DB, WD 10-2016

QALD-9 [44] 408 DB 10-2016

LC-QuAD [38] 4,998 DB 04-2016

WebQuestions [8] 5,810 FB 09-08-2015

GraphQuestions [35] 5,166 FB 06-2013

SimpleQuestions⋆† [11] 108,442 FB FB2M, FB5M

SimpleDBpediaQA⋆† [7] 43,086 DB 10-2016

TempQuestions⋆ [26] 1,271 FB 09-08-2015

ComplexQuestions⋆ [4] 150 FB 09-08-2015

ComQA⋆ [3] 11,214 Wikipedia -

2011. Therefore, it includes 9 benchmarks (QALD-1 to QALD-9). LC-
QuAD is a semi-automated question generation dataset. SPARQL

templates are automatically generated and are converted into nat-

ural question templates. These general templates are manually

transformed into natural language questions. GraphQuestions is
a set of questions that are generated in two steps. First, generat-

ing a set of graph-structured logical patterns from the KG, then

transforming them into natural questions with the help of human

annotators.WebQuestions is a set of questions obtained from non-

experts. These questions are collected based on suggestions from

Google Suggest API. The questions with answers from Freebase are

taken and annotated by Amazon Mechanical Turk workers then

converted to SPARQL queries by experts. SimpleQuestions is gen-
erated by shortlisting the set of facts from Freebase that can be

converted to informative questions. Then, these elected facts were

sampled and passed to annotators to manually generate natural

language questions whose answers are the entities in these facts.

SimpleDBpediaQA is a subset of the SimpleQuestions benchmark

dataset created by mapping entities and predicates from Freebase to

DBpedia. TempQuestions consists exclusively of temporal questions.

These questions are extracted from Free917 [15], WebQuestions and
ComplexQuestions. ComplexQuestions is multi-constraints question-

answer pairs that have some questions from WebQuestions (596
questions) and some manually labelled questions. ComQA is a large

benchmark that includes real questions taken from the WikiAn-

swers platform and present various challenging aspects such as

compositionality, temporal reasoning, and comparisons.

5 ANALYSIS OF STRUCTURED QUERIES
Most of the benchmarks discussed in Section 4 include structured

queries that can be used to obtain the answers to the natural lan-

guage questions in the benchmark. Inspired by prior work on the

analysis of query logs of endpoints [10], we discuss how the Query

Analyzer processes the SPARQL queries by focusing on both their

syntactically and structural properties to present them in the final

report shown to the user. We use CBench’s Benchmark Analysis

Mode to process all queries from the 12 benchmarks that include

SPARQL queries to highlight the high-degree variations among

them, then we give our insights in light of these variations. In Sec-

tion 7, we use CBench’s QA Evaluation mode to experimentally

show the effects of these variations on the accurate assessment of

QA systems.

5.1 Syntactical Analysis of Queries
In this section, we study the syntactical properties of the queries,

which include the frequency of query keywords, the number of

triple patterns in the query, and the frequency usage of operators.
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Table 2: Percentage of keyword occurrences in queries for
each benchmark.

Element QALD LC-QuAD Web Graph

Select 91.63% 91.52% 100.00% 100.00%

Ask 8.37% 8.48% 0.00% 0.00%

Distinct 76.65% 91.52% 99.98% 0.00%

Limit 6.51% 0.00% 0.02% 0.00%

Offset 3.93% 0.00% 0.00% 0.00%

Order By 5.99% 0.00% 0.02% 0.00%

And 51.65% 70.67% 37.65% 41.75%

Filter 10.33% 0.00% 99.62% 100.00%

Union 6.10% 0.00% 0.36% 0.00%

Optional 5.37% 0.00% 0.00% 0.00%

Not Exists 0.21% 0.00% 0.00% 0.00%

Minus 0.21% 0.00% 0.00% 0.00%

Aggregators 5.27% 0.00% 0.00% 20.17%

Group By 5.27% 0.00% 0.00% 13.74%

Having 1.34% 0.00% 0.00% 0.00%

5.1.1 Query Keywords. We count the frequency of query keywords

in the benchmarks. The results are shown in Table 2. Due to the

lack of space, we combine all the queries from QALD-1 to QALD-9
and report them under QALD. In the case of repetitive questions,

we consider the most recent query. After deduplication, the QALD
discussed here include 959 questions. We find that even within the

9 QALD benchmarks, variations still exist. We will highlight these

variations later in this section. The first block in Table 2 reports

the query types. In general, the majority of queries use the Select
keyword across all benchmarks (at least 91% of queries).Ask queries
whose answers are either true (if a solution matches the graph

pattern in the query) or false (otherwise) represent 8.37% and 8.48%

of the queries in QALD and LC-QuAD, respectively. GraphQuestions
andWebQuestions do not include queries that use the keyword Ask.

The second block in Table 2 includes the keywords used as so-

lution modifiers in the queries. We notice that the majority of the

queries use the Distinct keyword in all benchmarks except Graph-
Questions, which is the only benchmark that does not use any of the

four solution modifiers. The Limit, Offset and Ordered-By keywords

are not frequently used in QALD, and almost non-existent in other

benchmarks.

The third block in Table 2 has keywords used to describe the

graph patterns as described in Section 2. The And operator, which

represents the conjunctions of triple patterns, is often used across all

benchmarks. However, there is a large variation in the percentage

of queries that use the keyword, where the minimum percentage is

37.65% (WebQuestions), and the maximum percentage is 70.67% (LC-
QuAD). The Filter keyword demonstrates an interesting case, where

it is used in almost all questions inWebQuestions and GraphQues-
tions, but with a much smaller percentage in QALD and not used

at all in LC-QuAD. The remaining keywords (Union, Optional, Not
Exists, and Minus) are used in a small percentage of queries across

all benchmarks. But again, there is a high degree of variation across

all benchmarks in their usage for these keywords.

Figure 3: Percentage of queries exhibiting different number
of triple patterns for each benchmark.

Lastly,Aggregators (e.g., count,max, etc.) andGroup-By keywords
are used only in QALD and GaphQuestions. The keyword Having is

used in QALD only.

With respect to the 9 QALD benchmarks, variations also exist

although they come from the same organization. For example, the

Distinct keyword occurs in only 38.69% of the QALD-1 queries ,
whereas in the other QALD benchmarks, the Distinct keyword oc-

curs in between 67% to 91% of the queries. The Limit keyword
occurrences steadily increase from 4.17% in QALD-1 to 9.64% in

QALD-9. The Offset keyword is approximately never used in QALD-
1 to QALD-3, but occurs more frequently in the other QALD bench-

marks (from 4% to 8%). The Filter and Optional keywords occur
frequently inQALD-1 andQALD-2 (39.29% and 54.44% of the queries,

respectively), while this percentage is significantly declined in other

QALD benchmarks (does not exceed 11%).

5.1.2 Number of Triple Patterns. The Query Analyzer also counts

the number of triple patterns in all the graph patterns of the queries

as a measure of the size of the queries in the benchmarks. The total

number of triple patterns has been computed and categorized from

1 to 11+ triple patterns for every benchmark. Figure 3 shows that

the queries with a low number of triple patterns (from 1 to 3) are

dominant in all benchmarks except the GraphQuestions benchmark,

in which there are no queries with 1 triple pattern. Noticeably,

the earlier versions of QALD and the GraphQuestions benchmarks

include longer queries when compared to the other benchmarks.

5.1.3 Query Operators. We also study the co-occurrences of the

Filter, And, Union, and Optional operators in the queries. The results

can be found in Table 3. The first block of the table shows the queries

with graph patterns that have triple patterns with no operators

(with a single triple pattern without filter), with Filter only, with
And only, or with both Filter and And operators. The next row has

their subtotal (conjunctive patterns with filters or CPF ). Most of the

queries (from 89.77% to 100.00%) in all benchmarks are CPF queries.

However, the distribution of queries using the combinations of the

two operators varies.

The second block in the table shows the co-occurrences of the

Optional operator with different types of CPF queries. This operator
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Table 3: The frequency of the operators used in queries: Fil-
ter (F), And (A), Optional (O), and Union (U).

Operators QALD LC-QuAD Web Graph

none 42.25% 29.33% 0.09% 0.00%

F 0.00% 0.00% 62.19% 58.25%

A 42.87% 70.67% 0.17% 0.00%

A, F 4.65% 0.00% 37.19% 41.75%

CPF 89.77% 100.00% 99.64% 100.00%

O 0.00% 0.00% 0.00% 0.00%

O, F 2.58% 0.00% 0.00% 0.00%

A,O 0.10% 0.00% 0.00% 0.00%

A,O, F 1.45% 0.00% 0.00% 0.00%

CPF +O +4.13% +0.00% +0.00% +0.00%

U 2.48% 0.00% 0.07% 0.00%

U , F 0.10% 0.00% 0.00% 0.00%

A,U 1.96% 0.00% 0.05% 0.00%

A,U , F 0.31% 0.00% 0.24% 0.00%

CPF +U +4.86% +0.00% +0.36% +0.00%

is only used in the QALD benchmarks with an increase of +4.13%

in the relative size.

Finally, The third block of the table shows that theUnion operator
is not used in GraphQuestions and LC-QuAD, and is rarely used

in WebQuestions, while it is more frequently used in QALD. For
the QALD benchmarks, there are other combinations that are rare

and therefore not included in this table. For example, (O,U), (O,F,U),

(A,O,U), etc.

5.2 Structural Analysis
In addition to the syntactical analysis of the queries, we also analyze

the structural shapes of the queries of the following types of queries:

1. Conjunctive queries that can use only the And operator, denoted

by CQ. 2. Conjunctive queries that can use both And and Filter
operators, denoted by CQF. 3. Conjunctive queries that can use And,
Filter and Optional operators, denoted by CQOF.

CBench identifies eight different shapes of queries. Figure 4

illustrate these shapes
6
. The Single-Edge shape has only one edge.

The Chain shape with length n is a series of edges {x0,x1}, {x1,x2},
. . . {xn−1,xn }. The Cycle shape is like the Chain shape except that

the first node in the chain is the same as the last node. The Chain-Set
shape is a set of one or more unconnected chains. The Tree shape
can have any connected nodes keeping only one path between any

two nodes. The Star shape is a special case of the Tree shape where
there exists exactly one node with more than 2 neighbors. The

Flower shape is the graph that has a node that is connected to at

least one attachment that could have any of the following three

shapes: Chain, Tree and Petal, where the Petal is a graph with two

or more disjoint paths between a source node and a destination

node. The Forest shape includes a set of unconnected trees. It is
worth noting that some shapes subsume other shapes. For example,

6
Examples of questions, their corresponding queries, and their structural shapes can

be viewed in the repository.

Figure 4: The different shapes recognized by CBench

the Tree shape subsumes the Chain shape, which subsumes the

Single-Edge shape.
Table 4 shows the distribution of query shapes across all bench-

marks. Again, due to the lack of space, we combine all 9 benchmarks

of QALD into one column. The table shows that queries with the

Single-Edge shape represent at least 45.13% of the queries in almost

all benchmarks. This shape corresponds to simple-factoid questions.

The only exception is the GraphQuestions benchmark, which does

not include any Single-Edge queries.
It is interesting to see that a high percentage of the queries have

the Chain shape. With the exception of GraphQuestions, this shape
includes at least 72% of queries in all benchmarks. This observation

along with the information from Figure 3 indicate that a high per-

centage of the queries have a Chain shape with a relatively short

length of the chain. In contrast, the Chain-Set shape distribution
has almost the same percentage as that of the Chain shape, which

indicates that queries that have the Chain-Set shape, but not the
Chain shape are rare in all benchmarks. The same observation ap-

plies to the Tree and Forest shapes, indicating rare occurrences of
Forest shapes that are not trees. The Star shape distribution ranges

between 8.61% and 30.7% across all benchmark. The Cycle shape
is poorly represented in all benchmarks as every benchmark has

from one to two queries or no queries for this shape.

5.3 Insights on Benchmark Selection (1)
It is out of the scope of our study to determine which benchmark

is quantitatively and qualitatively best in evaluating QA systems.

However, given the previous fine-grained properties of queries in

the discussed benchmarks, and until further research on bench-

marking QA over KGs is done, we can give insights on what the

user can expect when using the discussed benchmarks in QA eval-

uation. In this section, and without loss of generality, we discuss

evaluating QA on the two most common KGs in the literature (DB-

pedia and Freebase), excluding simple-factoid questions.

QA over DBpedia: QALD-1 to QALD-9, and LC-QuAD target DB-

pedia with a mix of simple and complex queries. If the user intends

to evaluate their QA system over DBpedia, we recommend using
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Table 4: Cumulative shape analysis of CQ, CQF, CQOF across all benchmarks.

QALD LC-QuAD Web Graph

Shape CQ CQF CQOF CQ CQF CQOF CQ CQF CQOF CQ CQF CQOF
Single-Edge 50.82% 46.88% 45.13% 29.35% 29.35% 29.35% 40.00% 63.29% 63.29% 0% 0.00% 0.00%

Chain 83.77% 80.79% 80.20% 72.93% 72.91% 72.91% 80.00% 90.98% 90.98% 0% 59.56% 59.56%

Chain-Set 83.90% 81.60% 80.97% 72.93% 72.91% 72.91% 80.00% 90.98% 90.98% 0% 59.56% 59.56%

Star 14.84% 15.86% 16.59% 27.05% 27.06% 27.06% 20.00% 8.61% 8.61% 0% 30.70% 30.70%

Tree 99.75% 97.80% 97.90% 100.00% 100.00% 100.00% 100.00% 99.66% 99.66% 0% 97.74% 97.74%

Forest 100.00% 99.54% 99.56% 100.00% 100.00% 100.00% 100.00% 99.93% 99.93% 0% 97.74% 97.74%

Cycle 0.13% 0.12% 0.11% 0.00% 0.00% 0.00% 0.00% 0.32% 0.32% 0% 0.00% 0.00%

Flower 99.87% 98.15% 98.23% 100.00% 100.00% 100.00% 100.00% 99.98% 99.98% 0% 99.33% 99.33%

all benchmarks from QALD in addition to LC-QuAD, which is not

a common practice in the literature. Based on the previously dis-

cussed properties, we notice that the QALD benchmarks have better

coverage of all possible different cases of using query keywords (Ta-

ble 2) and combination of operators (Table 3), while the LC-QuAD
queries exclusively use only the Distinct along with conjunctions

of triple patterns. Also, the QALD queries include a non-negligible

number of queries that have more than three triple patterns (differs

from oneQALD benchmark to another), whereas 100% of the queries

in LC-QuAD have at most three triple patterns (Figure 3). This is

an indication that the QALD benchmarks include more complex

queries, which may prove more challenging for QA systems. This

is demonstrated by the more complex query shapes in QALD that

do not exist in LC-QuAD (i.e., Forest, Cycle, and Flower). However,

since the QALD benchmarks are manually created, they include 959

questions in total, whereas LC-QuAD includes almost 5000 ques-

tions. This indicates better linguistic and vocabulary coverage in

LC-QuAD. Indeed, further investigations reveal that LC-QuAD’s
queries span 6 times more resources (entities) and 2 times more

predicates than QALD.
QA over Freebase: The two benchmarks targeting Freebase that

include queries areWebQuestions and GraphQuestions. We recom-

mend using GraphQuestions if the user intends to evaluate their QA
system over Freebase. While the differences are minor in terms of

the operators used in the benchmarks (Table3), other syntactical

and structural properties showcase the differences. GraphQuestions
include aggregate queries, while WebQuestions do not (Table 2).

Also, WebQuestions queries tend to be shorter (over 60% of queries

are single-triple-pattern and almost 100% have no more than three

triple patterns), whereas GraphQuestions have longer and more

complex queries (more than 35% of queries have more than three

triple patterns reaching 10 triple patterns) as shown in Figure 3.

This is further showcased by the percentage of simpler query shapes

for both benchmarks, where most of the queries inWebQuestions
are chain queries, while GraphQuestions have higher percentage
of more complex shapes. WebQuestions can be considered a better

alternative to evaluate simple questions over Freebase because it
includes single-triple-pattern queries, while GraphQuestions do not

include such queries.

We will discuss our insights on benchmark selection with respect

to the benchmarks that do not include queries in Section 6.

6 ANALYSIS OF NATURAL LANGUAGE
QUESTIONS

SPARQL queries are used to represent the graph patterns, whose

matches are the desired answers in the KG. Therefore, analyzing

SPARQL queries gives deeper insights into the structure of the

questions in the benchmarks. However, not all benchmarks include

SPARQL queries that correspond to the natural language ques-

tions (as previously shown in Table 1). In CBench, we also analyze

the natural language questions via the NLQ Analyzer to provide

linguistic-based insights on the questions in the benchmarks. The

analysis of the natural language questions in CBench focuses on

the type of the natural language questions (Section 6.1). This anal-

ysis gives the user insights on benchmark selections (Section 6.2).

In addition, to support the user with linguistic-based insights on

the performance of the evaluated QA, CBench provides the user

with the most linguistically-similar questions to any question of

interest. In order to support this feature, CBench converts all nat-

ural language questions in the benchmarks to their vector space

(Section 6.3). This feature is demonstrated in Section 7.

6.1 Type of Questions
In CBench, the questions are categorized into:

• Wh-questions: the type of questions that starts with a wh-
pronoun (i.e., What, When, Where, Who, Whom, Which, and
Whose). For example,Where was the first ford motor company
located? (WebQuestions) is a wh question. This excludes ques-

tions starting with the keywordWhy, which targets non-factoid
questions that are out of scope for QA over KGs.

• How-questions: Questions starting with the keyword how fol-

lowed by many or an adjective, such as How many different
currencies are used in the places governed by the president of
France? (LC-QuAD) or How tall is Michael Jordan? (QALD-9).
Other non-factoid How questions are not included.

• Yes/No questions: Questions that can be answered with yes or
no: Is Michelle Obama the wife of Barack Obama? (QALD-9).

• Requests: Direct requests, such as Can you name all the states of
the US? (GraphQuestions). Such a question can be considered as

a rephrasing of aWhat question. However, we put these ques-
tions in a different category because they are usually handled

differently in QA systems.

• Topicalized questions: Questions in which an entity or preposi-

tional phrase is topicalized for the purpose of emphasis: Adobe
pdf supports how many computing platforms? (GraphQuestions).
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Table 5: Question frequency percentages (%) by type for all
benchmarks.
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What 10.80 53.44 55.32 33.08 60.73 57.19 29.35 32.00 47.13

When 6.00 0.00 4.12 0.07 0.01 0.00 22.03 8.00 10.66

Where 1.88 9.96 18.57 1.10 7.37 10.48 4.48 0.67 4.19

Which 27.25 13.30 1.81 18.28 13.20 12.51 9.44 29.33 6.96

Who 15.68 11.97 19.82 8.52 11.52 12.09 33.52 30.00 21.27

Whom 0.34 0.12 0.00 0.17 0.01 0.03 0.00 0.00 0.09

Whose 0.00 0.22 0.00 0.07 0.06 0.05 0.00 0.00 0.04

How 12.60 1.26 0.36 9.27 0.69 0.41 1.02 0.00 0.25

Yes/No 7.63 2.09 0.00 0.14 1.20 1.48 0.00 0.00 0.01

Requests 16.88 5.63 0.00 9.92 3.31 3.99 0.00 0.00 0.98

Topical 0.94 2.01 0.00 19.38 1.90 1.77 0.16 0.00 8.42

Table 5 shows the percentage of questions of each question type

across all benchmarks. We break the wh-questions into their sub-

types. For wh-questions, we also include many questions that start

with a preposition followed by a wh-word, such as in which or to
where, because the single preposition can be easily moved to the

end without changing the rest of the sentence. From these results,

we observe that there is no dominant question type across the

benchmarks and the distribution of query types vary widely.

6.2 Insights on Benchmark Selection (2)
In Section 5.3, we discussed our insights on benchmark selection

based on our analysis of benchmarks that include queries. In this

section, we enrich this discussion on these benchmarks and add

new insights on the benchmarks that do not include queries. Again,

and without loss of generality, we discuss evaluating QA on the

two most common KGs in the literature (DBpedia and Freebase),

excluding simple-factoid questions.

QA over DBpedia:We previously mentioned that both QALD and

LC-QuAD need to be used to evaluate a QA system over DBpe-

dia. This recommendation is solidified by our observations in this

section. Both benchmarks vary in terms of the types of questions,

where each benchmark covers the types that are not covered by

the other. For example, LC-QuAD does not includeWhen-questions
but QALD does, and QALD does not includeWhose-questions but
LC-QuAD does.

QA over Freebase: Among the benchmarks that target Freebase,

GraphQuestions is the most comprehensive being the only bench-

mark that covers all question types. In contrast, the other bench-

marks (WebQuestions, TempQuestions, ComQA, and ComplexQues-
tions) miss between 4 and 6 types. Another advantage of using

GraphQuestions is that it includes different utterances of the same

question, which further challenges a QA system. For example,

“What celebrities are imitated by Will Ferrell?”, “Who did Will

Ferrell impersonate?”, etc. It is interesting to notice that GraphQues-
tions include yes/no questions. However, the queries and answers

do not reflect this type of questions by not using the SPARQL’s

ASK keyword and having non-binary answers. For example, the

question "Are there any digital cameras with the maximum aper-
ture reaching 5.2?" is answered by a list of these cameras instead

Algorithm 1: Vectorization of natural language questions us-

ing PoS tagging

input :List of tokens that represent the natural language
question tokens , tag dictionary td , PoS tagger taддer

output :Fixed-size vector representation pos_f req[|td |]

1 Initialize pos_taд = [i] = 0;

2 for token in tokens do
3 pos_f req [indexO f (taддer (token))]++;

4 end
5 Return pos_f req;

of yes/no answer. Prior to CBench, the user needed to adjust for

this scenario by changing the answer in the benchmark to either

Yes or No. CBench handles this scenario for the user. TempQues-
tions focuses on questions that include temporal aspects. So, it can

be used as an auxiliary benchmark to another main benchmark

(e.g., GraphQuestions). The number of questions in ComplexQues-
tions (150) and the number of types not included (6) are the main

disadvantages of using it.

6.3 Linguistically-Similar Questions
Each token in the question is assigned a tag based on both the token

itself and its context in the question. This process is known as Part-

of-Speech (PoS) tagging. There have been numerous works in the

literature on PoS tagging [17]. State-of-the-art approaches use a

bidirectional recurrent neural network (BiLSTMs) and a subsequent

conditional random field (CRF) decoding layer in combination with

word embeddings that are trained over a large corpus of text [5, 30].

In CBench, we utilize a pre-trained model [24] to annotate each

token in a question with its predicted PoS tag. However, CBench

can be used with any PoS tagger. We define the tag dictionary
td = {t1, t2, . . . , tn } as the set of all possible tags (of size n) that
can be assigned to a question token. We use two types of tags:

(1) The Universal POS (UPOS)
7
, and (2) the more comprehensive

Penn Treebank tag set [48]. The simple UPOS tags are the common

representations for the word types, such as NOUN, VERB, and ADJ,
and do not code for any morphological features (i.e. the structure

of words such as stems, root words, prefixes, and suffixes). On the

other hand, the Penn Treebank tags are more specific. For example,

the VERB tag is further divided into MD - auxiliary, VB - base form,

VBD - past tense,VBG - present participle,VBN - past participle,VBP
- non-3rd person singular present, and VBZ - 3rd person singular

present. We denote the tag dictionary for UPOS as tdU POS , where

|tdU POS | = 17, and the tag dictionary for Penn Treebank as tdPenn ,
where |tdPenn | = 36. In section 7, we qualitatively evaluate both

choices of tag types in CBench.

Due to the richness of natural language, it is not expected that

a sequence of PoS tags will reoccur frequently in the limited set

of questions in the benchmarks. Therefore, for this linguistic fea-

ture (PoS tags), we use a function ftaд that embeds the previously

defined natural language representation (list of tokens) into a fixed-

size vector space whose number of dimensions n is equal to the size

of the tag dictionary used. Algorithm 1 illustrates this function. The

function uses the PoS tagger to tag each token in the question, then

7
https://universaldependencies.org/u/pos/
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updates the frequency of the tag in the final vector representation.

This representation not only captures the definition and the context

of each token but also indirectly captures the length of the question

by counting the frequencies of the occurrences of the tags.

We use the obtained vector representation to calculate how syn-
tactically similar a pair of questions is. In CBench, we use the eu-

clidean distance measure to represent how dissimilar two questions

are. Formally, the distance between two vector representations of

questions p and q is calculated as d(p,q) =
√∑n

i=1(pi − qi )2, where

n = |td |. This definition of distance is used to find the k most syn-

tactically close questions to a question of interest (e.g., a question

that is incorrectly answered). The k questions are shown to the user

marked with whether they are correctly or incorrectly answered.

To quickly find the k nearest questions to a question of interest, we

pre-compute a distance matrix between each pair of questions in

the benchmark. This one-time process takes less than a minute.

It is worth noting that in addition to PoS tagging, we also im-

plemented a similar approach based on dependency parse trees

of the questions in the benchmark to map the questions to their

corresponding vectorized representations before calculating the

pair-wise euclidean distances. We did not observe major changes

in the output (discussed in Section 7).

7 EVALUATION
In this section, we experimentally evaluate six QA systems over

different benchmarks using CBench. We show how the variations in

the previously discussed properties of the questions/queries affect

the evaluation of QA systems (Section 7.1). We then discuss our in-

sights on evaluating the QA systems using CBench (Section 7.2). We

also use CBench to perform a fine-grained analysis of the questions

processed by the QA systems (Section 7.3). Finally, we qualitatively

evaluate the different settings for highlighting linguistically-close

questions to a question of interest (Section 7.4).

QA Systems: We evaluate six QA systems [19, 21, 25, 28, 34, 37].

Three systems are remotely located and accessed via web services

and three systems are run locally on the same computer as CBench.

All systems are evaluated over the most recent versions of DBpedia

and Wikidata.

Benchmarks: The benchmarks included in CBench are shown

in Table 1. For the fine-grained query analysis, we exclude the

benchmarks that do not include SPARQL queries.

Evaluation Metrics: We evaluate the QA system using three met-

rics: Micro, macro, and global F-1 scores. First, we define precision,

recall, and F-1 for an individual question qi . If we assume that the

set of answers in the gold standard for qi (correct answers) is Gqi ,

and the set of answers from the QA system for this question is

Aqi , then we define the precision as Pqi =
|Gqi

⋂
Aqi |

|Aqi |
, recall as

Rqi =
|Gqi

⋂
Aqi |

|Gqi |
, and F-1 as Fqi =

2Pqi Rqi
Pqi +Rqi

. If there are n ques-

tions in the benchmark, then micro F-1 is calculated as follows:

Pµ =
∑n
i=1 |Gi

⋂
Ai |∑n

i=1 |Ai |
, Rµ =

∑n
i=1 |Gi

⋂
Ai |∑n

i=1 |Gi |
, and Fµ =

2PµRµ
Pµ+Rµ . The

macro F-1 is defined by calculating the F-1 scores per question and

averaging the values for all questions. Formally, FΣ =
∑n
i=1 Fqi
n . The

global F-1 score evaluates the overall quality of the QA system in

terms of the question it can answer correctly. If we assume that

the set of questions in a benchmark is Q , the set of questions that
are processed by the QA system (non-empty answers) is S , and the

set of questions that is answered correctly is C , then we define the

global precision as PG =
|C |

|S | , global recall as RG =
|C |

|Q |
, and global

F-1 as FG =
2PGRG
PG+RG . The latter definition of the global scores is

strict because a question is considered to be answered correctly

only if Fqi = 1. Therefore, in the literature, the notion of what

is considered a correctly answered question is relaxed, which is

referred to as partially correct answered questions. A question is con-

sidered partially correctly answered if 0 < Fqi < 1. In this paper,

we also study the effect of changing the Fqi value used to consider

a question to be partially correctly answered on the reported FG .

7.1 Evaluation of QA Systems
Table 6 shows the six systems and their scores for the 3 metrics

used in CBench with Fqi > 0 for considering a question to be

considered partially correctly answered. The effect of changing the

value of the Fqi threshold will be discussed later in this section.

gAnswer experiments on QALD-7 and QALD-8 are excluded since

they include questions that target Wikidata, which is not supported

by gAnswer. The table shows that although the QALD benchmarks

come from the same source, the six systems have considerably large

variations in their scores. We calculate the average and standard

deviation for all scores. The standard deviation values range from

0.0 to 0.15, which are considered to be high for variations in F-1

scores. When adding the LC-QuAD scores to the results, we notice

a slight increase in the standard deviation of the global and micro

scores and a slight decrease in the macro score. We will address the

differences between the F-1 scores in Section 7.2

Even though Freebase is deprecated since 2015, several bench-

marks still target evaluating question answering over it. The follow-

ing experiment is inspired by the recent trend of migrating Freebase

to Wikidata [32]. We evaluate WDAqua using the benchmarks that

originally target Freebase, but over Wikidata. The challenge to do

this experiment is to guarantee that a chosen question from any

of the benchmarks can be answered using Wikidata. We randomly

sample questions from all the benchmarks and manually exam-

ine if the question can be answered using Wikidata by identifying

the entities in the questions and the answers in the benchmark in

Wikidata and finding a path that connects them, which resembles

how a query should be written to retrieve the answers. We con-

tinue sampling until we find 200Wikidata-answerable questions for

each benchmark (with the exception of ComplexQuestions, which
includes only 150 questions). The results for this experiment are

shown in Table 7. WDAqua performs considerably better for ques-

tions fromWebQuestions and ComplexQuestions compared to the

other benchmarks. This especially affects the standard deviation of

FG (0.12), which is significant for F-1 scores.

We also investigate the effects of using different thresholds for

the Fqi for a question to be considered partially correct. For this

analysis, we evaluate WDAqua and gAnswer over QALD-9 (the

benchmark both systems perform best in). Figure 5 shows that

the two systems are significantly affected by the change of the Fqi
value used. Although the two systems start at nearly the same value

for FG , where a question is considered partially correct if Fqi > 0,

WDAqua is more sensitive to stricter thresholds. Overall, there is
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Table 6: Evaluation of QA Systems over benchmarks targeting DBpedia/Wikidata. Benchmarks annotated with⋆ include ques-
tions that target Wikidata.

Qanary[33, 34]

WDAqua[19] gAnswer[25, 53] (TM+DP+QB) QAsparql[28] AskNow[21] AskPlatypus[37]

Basis FG Fµ FΣ FG Fµ FΣ FG Fµ FΣ FG Fµ FΣ FG Fµ FΣ FG Fµ FΣ
QALD-1 0.31 0.27 0.14 0.44 0.18 0.24 0.00 0.00 0.00 0.02 ≈0.00 0.01 0.12 ≈0.00 0.07 - - -

QALD-2 0.32 0.17 0.16 0.41 0.08 0.21 0.00 0.00 0.00 0.03 ≈0.00 0.01 0.14 ≈0.00 0.10 - - -

QALD-3 0.21 0.23 0.11 0.28 0.11 0.16 0.05 ≈0.00 0.02 0.12 0.01 0.06 0.19 ≈0.00 0.13 - - -

QALD-4 0.21 0.17 0.12 0.30 0.13 0.16 0.03 ≈0.00 0.01 0.16 0.02 0.08 0.13 0.05 0.08 - - -

QALD-5 0.31 0.19 0.18 0.36 0.10 0.20 0.04 ≈0.00 0.02 0.23 0.01 0.12 0.29 0.11 0.09 - - -

QALD-6 0.36 0.15 0.24 0.39 0.09 0.25 0.05 ≈0.00 0.02 0.29 0.01 0.17 0.30 0.09 0.09 - - -

QALD-7⋆ 0.39 0.19 0.29 - - - 0.07 0.02 0.06 0.30 0.14 0.17 0.37 0.14 0.15 0.15 ≈0.00 0.08

QALD-8⋆ 0.43 0.17 0.33 - - - 0.09 0.01 0.04 0.46 0.12 0.30 0.33 0.10 0.13 0.11 ≈0.00 0.06

QALD-9 0.43 0.20 0.32 0.44 0.10 0.30 0.08 ≈0.00 0.07 0.32 0.02 0.19 0.26 0.07 0.08 - - -

Mean 0.33 0.19 0.21 0.36 0.12 0.20 0.05 ≈0.00 0.03 0.21 0.04 0.12 0.24 0.06 0.10 0.13 ≈0.00 0.07

Std 0.08 0.04 0.09 0.06 0.04 0.04 0.03 ≈0.00 0.03 0.15 0.05 0.09 0.09 0.05 0.03 0.03 ≈0.00 0.01

LC-QuAD 0.20 0.03 0.15 - - - 0.02 0.01 0.01 0.46 0.14 0.34 0.16 0.01 0.11 - - -

Mean 0.32 0.18 0.20 0.36 0.12 0.20 0.04 0.01 0.03 0.24 0.05 0.15 0.23 0.06 0.10 0.13 ≈0.00 0.07

Std 0.09 0.06 0.08 0.06 0.04 0.04 0.03 0.01 0.02 0.16 0.06 0.11 0.09 0.05 0.03 0.03 ≈0.00 0.01

Table 7: Evaluation of QA Systems over benchmarks target-
ing Freebase. ComplexQuestion is annotated with⋆ because
it includes 150 questions only.

WDAqua [19]

(200 Questions)

Benchmark FG Fµ FΣ
GraphQuestions ≈0.00 ≈0.00 ≈0.00

WebQuestions 0.22 0.12 0.12

TempQuestions 0.13 0.05 0.06

ComQA 0.16 0.02 0.07

ComplexQuestions⋆ 0.32 0.11 0.19

Mean 0.17 0.06 0.09

Std 0.12 0.05 0.07

Figure 5: Evaluation of QA systems over QALD-9 using dif-
ferent thresholds for the Fqi .

a drop-in FG of 0.12 in WDAqua, where as gAnswer’ score drops

by 0.09. Both drops are considered significant for F-1 scores, in

general. The drop in WDAqua’s score is higher than that of gAn-

swer becauseWDAqua produces less-quality answers for individual

questions compared to gAnswer. Therefore, a more restrictive qual-

ity threshold results in such a drop. It is also noticeable that the first

step (from Fqi ≥ 0 to Fqi ≥ 0.1) has the most significant impact as

FG drops by 0.04 for both systems, which is considered significant

given the slightly stricter threshold.

7.2 Insights on Evaluation Metrics and
Benchmarks

CBench includes the three evaluation metrics that have been used

in the literature: Micro F-1 (Fµ ), Macro F-1 (FΣ), and Global F-1 (FG ).
It is interesting to see that previous works on QA over KG usually

use only a subset of the three metrics. It is also common to use only

the Global F-1. Our evaluation suggests that using a subset of the

metrics is misleading in evaluating QA systems. Table 6 shows that

the choice of a metric changes the order of the superior system. For

example, if we consider the Global F-1 scores and use any of the

QALD benchmarks for evaluation, gAnswer is superior to WDAqua.

However, if we consider the Micro F-1 scores, WDAqua is superior.

This means that the quality of the answer of individual questions

is better in WDAqua (better Micro F-1 scores). However, gAnswer

is able to answer more questions correctly or partially correctly.

Interestingly, the same observation applies for the same QA system

in some cases. For example, when evaluating WDAqua using the

benchmarks QALD-1 to QALD-5, the Micro F-1 score is larger than

the Macro F-1 score. However, using QALD-6 to QALD-9, the Macro

F-1 score is larger. This means that the questionsWDAqua struggles

with in QALD-6 to QALD-9 have long answers. This results in a

worse hit on the micro scores than on the macro scores (average of

scores of individual questions). The order also changes based on the

benchmark used, suggesting that the choice of a set of benchmarks

in evaluation can be misleading in evaluating QA systems. For

example, if we consider the Global F-1 scores and use QALD-7 to

evaluate QAsparql and AskNow, we notice that AskNow is superior.

However, if we use QALD-8, a benchmark from the same authors
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Figure 6: The properties of the Chain-shaped queries of the
queries from QALD-9 answered by WDAqua. T represents
the number of triple patterns.

but one year younger, QAsparql is superior. These variations pose

questions on how the benchmarks are created. It is interesting to

see that these variations do not exist only for the automatically-

generated benchmarks, but also for benchmarks that are manually

created. This leads us to conclude that more research effort needs

to be put to better understand how to sufficiently represent a good

balance between all the combinations of the properties that we

proposed in our work to have good coverage of as many cases

as possible that a QA system could face in practice. Until such

research is done, we recommend taking a comprehensive approach

in evaluating QA systems by considering all evaluation metrics over

the benchmarks that we recommended using in Sections 5.3 and 6.2.

Such a comprehensive approach is now facilitated by CBench.

7.3 Fine-Grained Evaluation
In light of the results in Section 7.1, we analyze the queries of the

questions processed by the QA systems. Due to the lack of space, the

experiments in this section focus on WDAqua, over Chain-shaped
and Star-shaped queries of QALD-9, using a threshold Fqi > 0.8

to consider a question to be partially correct. We highlight the

effectiveness of using CBench’s Debugging Mode to obtain the

fine-grained results for these specific category of queries. Other

settings (shapes, benchmarks, thresholds, and gAnswer) show simi-

lar results. It is also worth noting that these specific categories can

be navigated to through the interactive report shown to the user if

the user decides to evaluate the QA system using all the questions

in a benchmark since we do a two-level grouping of all questions

processed by the QA system when presenting them to the user.

The first level of grouping is by shape, and the second level is by

combinations of query properties.

Figures 6 and 7 show the fine-grained analysis for the the afore-

mentioned categories (Chain-shaped and Star-shaped queries, re-

spectively). For each shape, each combination of properties shows

how many questions were answered correctly or incorrectly by the

Figure 7: The properties of the Star-shaped queries of the
questions from QALD-9 answered byWDAqua. T represents
the number of triple patterns

QA system. Figure 6 shows that there are 17 different combination

of properties for all the Chain queries in QALD-9. Most of the Chain
queries are either conjunctive queries that use the keywords select
and distinct and have one triple pattern (56 questions are correctly

answered and 97 are incorrectly answered), or conjunctive queries

that use the same two keywords and have two triple patterns (28

questions are correctly answered and 49 are incorrectly answered).

The user can choose any of the categories in the figure to examine

individual questions, in which case, they can use the natural lan-

guage analysis features of CBench (will be qualitatively evaluated

in Section 7.4). It is worth noting that the Chain shape subsumes

the Single-Edge shape, which is actually represented in this figure

through the top five combinations of properties (i.e., T = 1).

Figure 7 shows the Star queries of QALD-9. These are considered
to be more complex queries, with at least three triple patterns. The

figure shows that WDAqua answered only 8 out of 38 questions

whose query shape is Star. It is also worth noting that the union of

the results in the two figures is the expected results for the Tree-
shaped queries. The user can also navigate through the figures

representing different shapes through the subsumption hierarchy

of shapes.

Debugging the QA System Using Fine-Grained Analysis:
The main three components in any QA system are (1) Entity Recog-

nizer, (2) Relation Mapper and the (3) Query Builder. For example,

given the questionWhat is the capital of Canada? discussed in Table
9, a good QA system’s Entity Recognizer would recognize the token

Canada as the corresponding resource (i.e. dbr:Canada in DBpedia).

The Relation Mapper maps the sequence of tokens is the capital of
to the corresponding predicate (i.e. dbo:capital in DBpedia). Lastly,

the Query Builder produces the following formal query that re-

turns the answers from the targeted KG: SELECT ?x {dbr:Canada
dbo:capital ?x.}. These modules can be either dependent/indepen-

dent on/of each other. The Query Builder mainly depends on a

predefined/learned set of query templates as well as the entities

and relations detected by the Entity Recognizer and the Relation

Mapper. CBench can help the QA developers to learn more about
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Table 8: Closest 5 question to the incorrectly answered ques-
tion "What currency should I take toDubai?", based onUPOS
and Penn Treebank tag. The marks ✓/✗denote correctly/in-
correctly answered questions.

Linguistically Closest Questions - UPOS

Answer Question

✓ What currency should I take to Mauritius?

✓ What currency should I take to Jamaica?

✓ What currency should I take to Mexico?

✓ What currency should you take to Morocco?

✗ What prompted Shakespeare to write poetry?

Linguistically Closest Questions - Penn Treebank

Answer Question

✓ What currency should I take to Jamaica?

✓ What currency should I take to Mauritius?

✓ What currency should you take to Morocco?

✓ What currency should I take to Mexico?

✓ What kind of money should I take to Jamaica?

the query templates that the QA does not handle using its fine-

grained analysis. For example, Figure 6 shows that WDAqua fails

to answer all the queries with properties like (CQ, select-distinct-
limit-offset-and, T=2) and (CQF , select-distinct-filter-and, T=2). This
indicates that the query builder of WDAqua may not be generating

the query templates: SELECT DISTINCT ?x{ ... } OFFSET m LIMIT
n and SELECT DISTINCT ?x{ ... FILTER(...)}. It is possible, however,
that there is an issue with the Entity Recognizer and Relation Map-

per for all the questions that were incorrectly answered. A more

obvious example is when the fine-grained analysis shows that some

questions whose queries have specific properties were answered

correctly and some were not. The user can choose any of these

questions for further investigations (discussed next).

7.4 Qualitative Evaluation of
Linguistically-Similar Questions

In this section, we assume that the user navigates through the fine-

grained analysis figures and investigates a question of interest that

is not correctly answered by the QA system. For benchmarks that

do not include SPARQL queries, the user can directly choose any

question from the benchmark. CBench finds the k linguistically

closest questions to this chosen question based on the approach

discussed in Section 6. This feature is especially beneficial in debug-

ging the Entity Recognizer and the Relation Mapper components

in the QA system. In this experiment, we use gAnswer as the QA

system. Other configurations do not reflect major changes to the

top-5 questions. Changing the value of the thresholds for Fqi to
consider a question to be partially correctly answered results in

possible changes in the label of the correctness of the question.

Table 8 shows the linguistically-closest 5 questions to the incor-

rectly answered question “What currency should I take to Dubai?”.

There is considerable overlap between the two tag dictionaries (4

out of 5 questions match). In both cases, we note that almost all of

the similar questions are correctly answered, unlike the question

Table 9: Closest 5 question to the incorrectly answered ques-
tion "What is the capital of Canada?", based on UPOS and
Penn Treebank tag. The marks ✓/✗denote correctly/incor-
rectly answered questions.

Linguistically Closest Questions - UPOS

Answer Question

✗ What is the nickname of Edinburgh?

✓ What is the capital of Cameroon?

✗ What is the meaning of Heydar ?

✗ What is the currency of Chile?

✗ What is the capital of Venezuela?

Linguistically Closest Questions - Penn Treebank

Answer Question

✗ What is the title of Kakae?

✓ What is the currency of Rhodesia?

✓ What is the capital of Cameroon?

✗ What is the capital of Venezuela?

✗ What is the origin of Xynisteri?

of interest, possibly highlighting that the question is correctly an-

swered if the entity is a country (one-hop connection to currency

in the KG) rather than a city (two-hops connection to currency).

Table 9 shows a different interesting scenario for the incorrectly

answered question “What is the capital of Canada?”, where for the

top part (using UPOS), most of the similar questions are also incor-

rectly answered. We note that all the questions have the template

“What is the <place_holder> of <place_holder>?”. This indicates

that the QA system struggles with this type of questions with

only few exceptions. However, the question “What is the capital

of Cameroon?” is answered correctly. This indicates that the QA

system either could not identify Canada as an entity, or capital of
as the predicate dbo:capital. Indeed, investigating gAnswer reveals

that the Relation Mapper (referred to in gAnswer as the Relation

Recognition step) mistakenly mapped the relationship in the ques-

tion to the type predicate due to the sparsity of the relation mention

dictionary that is built based on a large text corpus, which is con-

sidered an overfitting problem in learning the textual patterns.

8 CONCLUSION
In this paper, we highlight the high-degree variations in the bench-

marks used to evaluate question answering over knowledge graphs.

We experimentally show that these variations affect the reported

scores for multiple question answering systems. To overcome the

effects of such variations, we introduce CBench, a fine-grained

benchmark suite that comes with a prepacked set of popular bench-

marks that target multiple popular knowledge graphs. CBench is

easy to use and extensible. It does not only provide the user with the

traditionally known quality scores, but it also gives a fine-grained

analysis of the processed questions and their corresponding queries

based on multiple features. This analysis can be used by the user

to quickly identify the strong and weak points of their evaluated

question answering system.
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