
Discovering Related Data At Scale

Sagar Bharadwaj
Microsoft Research

t-sabhar@microsoft.com

Praveen Gupta
Microsoft Research

t-pravgu@microsoft.com

Ranjita Bhagwan
Microsoft Research

bhagwan@microsoft.com

Saikat Guha
Microsoft Research

saikat@microsoft.com

ABSTRACT

Analysts frequently require data from multiple sources for their
tasks, but finding these sources is challenging in exabyte-scale data
lakes. In this paper, we address this problem for our enterprise’s
data lake by using machine-learning to identify related data sources.
Leveraging queries made to the data lake over a month, we build a
relevance model that determines whether two columns across two
data streams are related or not. We then use the model to find rela-
tions at scale across tens of millions of column-pairs and thereafter
construct a data relationship graph in a scalable fashion, process-
ing a data lake that has 4.5 Petabytes of data in approximately
80 minutes. Using manually labeled datasets as ground-truth, we
show that our techniques show improvements of at least 23% when
compared to state-of-the-art methods.

PVLDB Reference Format:

Sagar Bharadwaj, Praveen Gupta, Ranjita Bhagwan, and Saikat Guha.
Discovering Related Data At Scale. PVLDB, 14(8): 1392 - 1400, 2021.

doi:10.14778/3457390.3457403

1 INTRODUCTION

Analysis tasks frequently need multiple data streams 1 spanning
different organizational groups within a data lake. For instance,
to create a łcollaboration graphž that links users who work with
each other, an analyst has to process several streams from multiple
collaboration platforms such as those providing email, video con-
ferencing and instant-messaging. Another example is a task that
determines the cause of service downtime and attributes it to either
faulty application-level components, faulty network components,
or malfunctioning hardware. This requires information from the
application’s various components or micro-services, the underlying
network, and its compute infrastructure.

Analysts find it extremely laborious to discover such related
sources of data in large data lakes, a task that takes themmany days
or even months. To make matters worse, data lakes are extremely
large and continuously growing. Microsoft’s data lake has roughly
doubled in size every year for the last decade. Also, unlike relational
databases where foreign-key relationships often capture related
data, in large unstructured data lakes, data in isolated organizational
silos seldom have inter-relationships that are explicitly defined.

To address this problem, previous work [9, 25] has proposed
several techniques to build łdata relationship graphs" that captures
related data sources. Building such a data graph boils down to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457403

1A data stream is analogous to a table.

answering the question, łGiven a column in a data stream, what
are the related columns in other data streams in the data lake?".
These techniques make significant advances towards answering
this question. However they suffer from two shortcomings. First,
they require a single sweep over the entire data which, given the
exabyte-scale of our data lake, is prohibitive. Second, they propose
a fixed set of metrics and, to define relevance, a user of the data
graph has to craft ways of combining them. Ideally, the definition
of relevance should be specific to a data lake, and the data graph
construction algorithm should automatically determine how to
combine different metrics to give one formula for relevance.

While the immense scale of our data lake poses a daunting chal-
lenge, it also provides two unique opportunities. First, Cosmos,
Microsoft’s Data Lake, sees about one million jobs every day, each
of which may run multiple JOIN queries on the data. Such large
numbers enable us to treat queries as data. Using JOIN clauses they
hold, we build a relevance model that captures a definition of rele-
vance that is specific to the data lake. Second, Cosmos holds around
two billion data streams with twenty six billion data columns, yield-
ing an unprecedented amount of metadata. This allows us to treat
metadata as data and we use metadata-specific features to build
the relevance model. These features can capture related columns
with names such as machine and datacenterwhich data-based fea-
tures cannot. We also use data-based features inspired by previous-
work [9, 25] but only on samples of data for textual columns.

In this paper, we propose the Data Lake Navigator(DLN), a sys-
tem that builds and uses the relevance model to construct a data
graph for Cosmos.

Our paper makes the following novel contributions:

• We use machine-learning on queries made to data streams,
specifically JOIN clauses, to learn characteristics of related
data columns.
• We use two metadata-based features: embedding-enhanced

column-name similarity and column-name uniqueness. We
use data-based features as well, but to scale well, instead of
calculating them on full data, we base them on data samples.
• We show that a metadata-only approach to build data graphs
is indeed feasible, provides value, and is scalable. We also
show that data-based features do provide value, though more
marginal than expected.
• Weevaluate the relevancemodel for one large service, namely
Office365 Core. Additionally, we build a data graph using this
model for one of Microsoft’s internal services and evaluate,
using a manually labeled dataset, how well it detects useful
relations not seen before in any queries.

We evaluate a metadata-only relevance model, which learns
characteristics of related columns using only metadata-based fea-
tures, and an ensemble model which uses metadata features for
numeric columns, and both metadata and data-based features for
textual columns. Our results, quite counter-intuitively, show that

1392



the metadata-only model which uses only 2 features detects related
columns with 0.96 precision and 0.92 recall, whereas the ensemble
model improves this marginally to 0.97 and 0.95 respectively. Our
approach also scales well, as we show that we can process a large
data lake with 137,000 streams, 2.6 million columns, 30,754 unique
columns and 4.5 Petabytes of data in 80 minutes. Furthermore, we
compare our approach with three state-of-the-art techniques using
a manually-labeled dataset. We show that DLN shows an improve-
ment of at least 23% in F1-score over the state-of-the-art. We also
show through several examples that DLN learns many interesting
relationships which were not observed in any JOIN clauses.

2 BACKGROUND

In this section, we provide a brief overview of Cosmos, Microsoft’s
big-data processing system, and Scope, the language for processing
data on Cosmos. For a more in-depth description of Cosmos and
Scope refer to [4, 24].

Cosmos [4] stores multiple exabytes of mostly telemetry data
and is used daily for analytical jobs by every product team at Mi-
crosoft. Data in Cosmos is stored in either unstructured or struc-
tured streams. Unstructured streams, similar to files in a file-system,
are stored as opaque byte streams where Cosmos is oblivious to
any metadata. Structured streams, similar to tables in a database,
are stored as rows or columns with additional schema metadata.
Cosmos offers more efficient APIs for extracting data from struc-
tured streams. Unlike file-systems and databases, Cosmos data is
stored in very large pages, called extents, that can be 1Gb or more in
size. Extents are compressed and encoded for optimized sequential
access at the cost of random access.

The design of Cosmos has resulted in some best-practices when
dealing with log data and telemetry. Raw data, such as web-server
logs, is initially ingested and transformed into a structured stream.
Another script then enriches it by adding additional useful columns,
for example joiningwith other reference data and computed columns,
to produce a final (cooked) stream that other teams can consume.
The cooked stream is structured to enable efficient querying.

Data is processed and consumed using Scope [24] scripts. Scope
is a SQL dialect to filter, join, and select from data stored in Cosmos.
A user or service submits a Scope script to the Cosmos cluster,
which then compiles and executes the job, and if the job completes
successfully, persists the output back into Cosmos. The Scope com-
piler stores various compile-time artifacts including the submitted
script and generated query plan for debugging and later analysis.
In Section 4.1 we describe how we parse this generated query plan
to create ground-truth for our models.

Teams often provide multiple Views of their streams. A View,
similar to a (non-materialized) SQL view, generates a logical dataset
at query time by transforming an underlying physical dataset. This
ensures forward compatibility of downstream consumers to break-
ing schema changes in the underlying stream. A secondary reason
is to include computed columns or joins that are too expensive
to store separately. The Scope compiler inlines Views at compile
time such that the generated query plan includes joins and other
operators from Views and the calling script alike.

2.1 Scaling Challenges

Cosmos stores multiple exabytes of data in billions of unstructured
and structured streams. The streams have 13 columns on average,
though themaximum encountered column count exceeds 8000. Row
counts typically exceed tens of millions for cooked streams. Over 1
million Scope jobs are processed by the cluster on any given day.
These jobs are submitted by over 5000 users, and several thousand
service accounts.Given this scale, metadata access is significantly
faster than data access because of the following four reasons.

First, metadata requires reading only the metadata block from
disk, and in newer versions is stored in-memory in a distributed
service obviating any disk access. Thus a data discovery approach
that works in metadata-only mode will be significantly faster today
and more so in the future.

Second, data access in Cosmos is optimized for batch-processing
throughput and not interactive latency. As such, an implicit assump-
tion is that Scope scripts will access a small number of streams (few
tens) and typically consume rows sequentially. This assumption is
borne out in the vast majority of production workloads. However,
building a data graph entails a dramatically different access pattern,
one that spans a large number of streams. Cosmos does not sup-
port random sampling either. We do not envision Cosmos being
optimized for our workload and so pick a design point that trades
off some correctness for performance, i.e. we use metadata pre-
dominantly, and sample only the top 1000 rows as data. Section 4.2
further quantifies the costs that drove this decision.

Third, Views present an additional performance challenge. Since
Views are arbitrary pieces of Scope code, they may hide expensive
joins and other computations. For metadata-only approaches, Views
present no cost since the schema of the View is declared in the
View code and available at compile-time. Sampling data from a
View, however, requires materializing the entire view. Retrieving
even a single row from a view may involve a resource intensive
computation (e.g. aggregation).

Finally, in addition to performance implications, there are compli-
ance and audit implications for accessing data. Accessing data has a
significantly higher compliance workload than accessing metadata.
Given the ease of gathering metadata, we have given particular
attention to developing an accurate metadata-only model.

3 PROBLEM AND SOLUTION OVERVIEW

We address the problem of building a data graph for Microsoft’s
data lake. We break this down into two parts. First, we build a
relevance model that captures relevance between column-pairs in
the data lake. Second, we design scalable algorithms to build the
data graph using this relevance model.

3.1 Building the Relevance Model

Previous work[3, 25] has used several metrics for relevance, such
as number of overlapping values in columns, content similarity
and schema similarity. We believe that a more appropriate way to
capture relevance is to learn a combination of all such metrics, i.e.
it is better learned using examples of column-pairs that are already
known to be related. Fortunately, we have access to a large number
of Scope queries that have run on Cosmos in the past. We believe
that the JOIN clauses in these queries give us a rich dataset of related

1393
















