
Real-Time Distance-Based Outlier Detection in Data Streams
Luan Tran

University of Southern California

Los Angeles, CA

luantran@usc.edu

Min Y. Mun

University of Southern California

Los Angeles, CA

mym_286@usc.edu

Cyrus Shahabi

University of Southern California

Los Angeles, CA

shahabi@usc.edu

ABSTRACT
Real-time outlier detection in data streams has drawn much

attention recently as many applications need to be able to detect

abnormal behaviors as soon as they occur. The arrival and departure

of streaming data on edge devices impose new challenges to process

the data quickly in real-time due to memory and CPU limitations of

these devices. Existing methods are slow and not memory efficient

as they mostly focus on quick detection of inliers and pay less

attention to expediting neighbor searches for outlier candidates.

In this study, we propose a new algorithm, CPOD, to improve

the efficiency of outlier detections while reducing its memory

requirements. CPOD uses a unique data structure called “core point”

with multi-distance indexing to both quickly identify inliers and

reduce neighbor search spaces for outlier candidates. We show

that with six real-world and one synthetic dataset, CPOD is, on

average, 10, 19, and 73 times faster than M_MCOD, NETS, and

MCOD, respectively, while consuming low memory.

PVLDB Reference Format:
Luan Tran, Min Y. Mun, and Cyrus Shahabi. Real-Time Distance-Based

Outlier Detection in Data Streams. PVLDB, 14(2): 141 - 153, 2021.

doi:10.14778/3425879.3425885

1 INTRODUCTION
Outlier detection is the task of finding data points that do not

conform to an expected behavior in a dataset. With the expansion

of data streaming across a broad range of applications, e.g.,

fraud detection in banking, defect detection in manufacturing,

and abnormal vitals detection in healthcare, detecting outliers in

data streams is receiving much attention. All these applications

require unusual events to be recognized the moment they happen.

For example, in real-time ECG monitors, abnormal heartbeats

must be detected as soon as possible to reduce the mortality of

patients. Furthermore, there is an increasing demand to conduct

outlier detection on edge devices such as security cameras, routers,

smartphones, and wearable devices [2, 7, 14] that have limited

memory capacity as well as low processing power. This paper

focuses on Distance-based Outlier Detection in Data Streams

(DODDS) with low CPU and memory requirements. In any given

dataset, a distance-based outlier is any data point that has less than

K neighbors within a distance of R.

Distance-based outlier detection was initially studied for static

datasets [10]. Later, it was shown that it can discover abnormalities

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.

doi:10.14778/3425879.3425885

in data streams with high accuracy, such as abnormal heartbeats

from ECG streams [13].

Because the size of data streams is potentially unbounded, outlier

detection is conducted for a slidingwindow, i.e., the set of active data

objects. This setting ensures maximum efficiency in computation

time and memory usage, as well as detecting the outliers within the

most recent context. In this setting, the outlier status of each data

point can change when a new slide arrives. More specifically, an

inlier can become an outlier if its neighbors expire, while an outlier

can become an inlier if it gains new neighbors. This characteristic

of DODDS presents a challenge in terms of monitoring the status

of every active data point for each sliding window. A number of

algorithms have been proposed for DODDS, such as ExactStorm [1],

LEAP [4], AbstractC [17], MCOD [12], LUE [12], DUE [12], NETS

[18], and M_MCOD [16]. Among these studies, MCOD, M_MCOD,

and NETS have performed best in processing times and memory

requirements.

The central idea of these methods is to quickly identify

inliers using unique data structures such as micro-cluster (MCOD,

M_MCOD) and inlier cell (NETS). These data structures store data

points that are neighbors of each other and in the range R/2 from

their centers. They maintain at least K+1 data points to guarantee

that all members are inliers. This approach eliminates the need

for explicit neighbor searches of the members. However, for the

remaining data points that are not in any micro-cluster or inlier

cell, linear neighbor searches are performed, which can be very

inefficient. For example, in Figure 1, no outlier exists when K =

3; however, these methods require neighbor searches for all data

points because for which neither micro-cluster nor inlier cell exists.

Furthermore, NETS requires much memory for high dimensional

data to maintain cells using a grid-based index structure.

To address these challenges, we propose the Core Point-based

Outlier Detection (CPOD) algorithm, which employs a new data

structure called “core point.” Core points use multi-distance

indexing to both identify inliers quickly and reduce neighbor search

spaces for outlier candidates. Additionally, CPOD employs the

minimal probing principle [4] to find optimal neighbor sets for

data points, further reducing unnecessary neighbor searches. The

number of core points is relatively insignificant compared to the size

of datasets (see Table 1), and thus CPOD consumes low memory.

Performance Improvement. With extensive experiments on

synthetic and real-world datasets, we observe that, on average,

CPOD is approximately 10, 19, and 73 times faster than M_MCOD,

NETS, and MCOD, respectively. CPOD also requires about three

times less memory than NETS and comparable memory to MCOD

and M_MCOD. For all the datasets with default settings, CPOD

requires less than 0.05 seconds to process one sliding window,

whereas in some cases other methods require more than 0.43

seconds. In particular, for one of our datasets (EM), CPOD takes

0.02 seconds to process one sliding window, while other methods

take 30 to 200 times longer.

141

https://doi.org/10.14778/3425879.3425885
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425885

Luan Tran, Min Y. Mun, and Cyrus Shahabi

Figure 1: Example data with K = 3. No micro-cluster exists because
the distance between any pair of data points is larger than R/2. No
inlier cell exists because all the cells contain at most 3 data points.

The remainder of this paper is organized as follows. In Section 2,

we formally define the DODDS problem and provide an overview

of the state-of-the-art algorithms. In Section 3, we introduce

our proposed algorithm, CPOD. In Section 4, we present our

evaluation results in detail. In Section 5, we discuss different

problem settings. We conclude the paper with discussion and future

research directions in Section 6.

2 BACKGROUND
In this section, we present the formal definition of DODDS and an

overview of the state-of-the-art algorithms.

2.1 Problem Definition
To define the problem, we first explain important concepts in

distance-based outlier detection and data streams. Given a distance

function which is defined in a metric space, neighbors and outliers

are defined as follows.

Definition 2.1 (Neighbor). Two data points are neighbors of each

other if their distance is not greater than R. A data point is not

considered a neighbor of itself.

Definition 2.2 (Distance-based Outlier). Given a dataset D, a
distance threshold R, and a neighbor count threshold K , a

distance-based outlier in D is a data point that has fewer than

K neighbors in D.

A data point that has at least K neighbors is called an inlier.
Figure 2(a) shows an example of a dataset from [12, 15] that has

two outliers with K = 4. Data points o1 and o2 are outliers since
they have three and one neighbors, respectively.

Definition 2.3 (Data Stream). A data stream is a possibly infinite

series of data points ...,on−2,on−1,on , ..., which are sorted in

increasing order of time.

Since the size of data streams is potentially unbounded, data

streams are typically processed in a sliding window, i.e., a set of

active data points. In this study, we adopt the count-based window
setting in data streams, as in the previous work [1, 4, 12, 15, 18],

which is defined as follows.

Definition 2.4 (Count-based Window). Given a positive number n
and a fixed window sizeW , the count-based window Dn is the set

ofW data points: on−W +1,on−W +2, ...,on .

Given the window size W, all count-based windows have the

same number of data points. Therefore, we can control the volume

of data that we process at a time and fairly evaluate the scalability
of the DODDS algorithms. We use the term window to refer to the

count-based window. In this setting, a slide represents the set of

data points that expire and arrive in the same batch for processing.

Every slide contains the same number of data points. The slide size

S, which is fixed, characterizes the speed of the data streams. Every

time a new slide of S data points arrives, it is added into the window,

while the slide of the oldest S data points expires and is discarded.

Figure 2(b) shows an example of two consecutive windows with

W = 8 and S = 4. The x-axis reports the arrival time of data points

and the y-axis reports the data values. When the window D8 slides,
four data points {o9,o10,o11,o12} arrive in a new slide, and four

data points {o1,o2,o3,o4} expire and are removed from the current

window.

(a) Outlier detection in static

dataset with K = 4.

(b) Example of DODDS with K = 4,

W = 8, and S = 4.

Figure 2: Outlier detection in data stream and static dataset.

As the data points in a stream arrive and expire in slides, it

is important to distinguish between the following two concepts:

preceding neighbor and succeeding neighbor. For each data point o,
its preceding neighbors are neighbors that expire before it. On the

other hand, its succeeding neighbors are neighbors that expire in
the same slide or after it. Figure 2(b) illustrates the sliding window

concept and how it affects the outlier statuses of the data points.

For example, in this figure, o7 has one succeeding neighbor o5 and
three preceding neighbors, i.e., o2,o3, and o4.

The Distance-based Outlier Detection in Data Streams (DODDS)

is defined as follows.

PROBLEM 1 (DODDS). Given the window sizeW , the slide size
S , the distance threshold R, and the neighbor count threshold K ,
DODDS detects the distance-based outliers in every sliding window
...,Dn ,Dn+S ,

The challenge of DODDS is that the expired and newly arrived

neighbors can affect the outlier statuses of existing data points. For

example, in Figure 2(b), inD8, o7 is an inlier as it has 4 neighbors, i.e.,
o2,o3,o4 and o5. In D12, o7 becomes an outlier because o2,o3, and
o4 expired and o7 has only two neighbors, i.e., o5 and o9. Note that
an inlier that has at least K succeeding neighbors never becomes an

outlier in the future. Those inliers are thus called safe inliers. On the

other hand, the inliers that have less than K succeeding neighbors

are unsafe inliers, as they may become outliers when the context

changes and their preceding neighbors expire.

Several fundamental approaches, i.e., Exact-Storm [1], LUE [12],

and DUE [12], use an M-Tree [5] for indexing data points in

sliding windows to reduce the time of finding neighbors. M-Tree

is efficient in neighbor search, however, inserting and removing

data points from M-Tree is time-consuming. In [15, 16, 18], MCOD,

M_COD, and NETS with their unique data structures were shown

to outperform Exact-Storm, LUE, DUE, and LEAP [3] in CPU time

and memory requirement.

142

Real-Time Distance-Based Outlier Detection in Data Streams

2.2 Micro-cluster based Algorithms - MCOD
and M_MCOD

2.2.1 MCOD. In order to find if a data point is an outlier, we need

to check if it hasK neighbors. Neighbor searches can be significantly

expensive when carried out for every data point. MCOD [11]

introduced the concept of micro-clusters to reduce the need for

neighbor searches. A micro-cluster is composed of at least K + 1

data points. It is centered at one data point and has a radius of

R/2. According to the triangular inequality, the distance between

every pair of data points in a micro-cluster is not greater than R.

Therefore, every data point in a micro-cluster is an inlier. Figure 3(a)

shows an example of three micro-clusters, i.e.,MC1,MC2, andMC3,

and different symbols represent data points in each micro-cluster.

Some data points may not fall into anymicro-clusters and are stored

in a potential outlier (PD) list.

For any data point o, it can be added to an existing micro-cluster,

become the center of its micro-cluster, or be added to PD. For

instance, if o is within the distance of R/2 to the center of a

micro-clusterMC , MCOD addso toMC . Otherwise, MCOD searches

for the neighbors of o in PD with the range of R/2. If MCOD finds at

least K neighbors, it forms a new micro-cluster with o as the cluster
center. Otherwise, MCOD adds o to PD and finds all neighbors

for o. MCOD uses a linear search to find neighbors in PD. To find

neighbors in micro-clusters, according to the triangular inequality,

MCOD only searches in micro-clusters whose centers are in the

range of 3R/2 from o. Since MCOD does not store the neighbor

information of the data points in micro-clusters, it is efficient in

memory usage.

Drawbacks of MCOD: 1) MCOD performs poorly when most

data points do not have K neighbors in the range of R/2 and are

stored in PD because a large PD list is inefficient for neighbor

searches. 2) MCOD uses a linear search in all existing micro-clusters

when finding a micro-cluster for a data point, which is also

inefficient. 3) MCOD finds all the neighbors for each data point in

PD, which can incur unnecessary neighbor searches.

2.2.2 M_MCOD. M_MCOD improves MCOD by incorporating the

minimal probing principle [4]. More specifically, with M_MCOD, the

neighbor search for a data point o stops when it finds K neighbors.

Moreover, it utilizes the continuity characteristics of data streams

by first finding neighbors in the data points whose arrival times

are close to the arrival time of o. The succeeding slides of o are

checked first, and then the preceding slides to ensure the neighbors

are most recent. When some neighbors of o expire and o does not
have enough neighbors, M_MCOD refinds the neighbors for o in
the slides that have not been searched. To accommodate these

processes, for PD and each micro-cluster, M_MCOD employs a map

of slides and their corresponding data points to retrieve data points

given a slide index quickly.

Drawbacks of M_MCOD: M_MCOD improves MCOD by

solving its third drawback. However, M_MCOD still has the first

two drawbacks of MCOD.

2.3 Cell-based Algorithm - NETS
NETS employs a grid-based index structure to form cells that

are hyper-cubes in high dimensional space. The diagonal of each

cell is R, which forces the data points in a cell to be neighbors

of each other. This grid-based index structure is also used to

monitor the data points having at least a pre-defined number of

neighbors in dynamic density-based clustering problem [9]. Figure

3(b) illustrates 6 example cells in 2-dimensional data. Every data

point is placed in a cell. By using the grid-based index structure,

NETS can quickly assign a data point to a corresponding cell and

efficiently monitor the number of data points in every cell. If a cell

has at least K + 1 data points, it is called inlier cell because all the
data points inside it are inliers. NETS also provides a technique

to determine outlier cells that contain all outliers quickly. More

specifically, if the total number of data points in neighboring cells

within the range 2R from the current cell is not greater than K, the

current cell is an outlier cell. For the data points in undetermined
cells, NETS performs neighbor searches to find all their neighbors.

(a) Three micro-clusters with K = 4. (b) Two inlier cells and four

undetermined cells with K = 2.

Figure 3: Example micro-clusters and cells.

Drawbacks of NETS: 1) Cells are placed on a grid-based index

structure, and the diagonal of each cell is R. Hence, they do not cover

all neighbors in the range of R/2 from their centers and there is a

higher chance that a cell does not contain all inliers. 2) In cell-level

(detecting inlier and outlier cells) and point-level (detecting outlier

data points) outlier detection steps, NETS uses a linear search

over cells to find neighboring cells, which is inefficient. Therefore,

when data has a low concentration ratio [18], i.e., data points do not

have many neighbors in the range R/2, NETS generates few inlier

cells and incurs high CPU running time. 3) For each data point d
in undetermined cells, NETS does not apply the minimal probing
principle and finds all neighbors for d , which can incur unnecessary

neighbor searches. 4) With high dimensional data, NETS requires

much memory for maintaining cells using a grid-based index

structure.

3 CORE POINT-BASED OUTLIER DETECTION
- CPOD

Motivated by the drawbacks of micro-cluster based (MCOD,

M_MCOD) and cell-based (NETS) algorithms, we propose CPOD

that employs a new data structure called core point to expedite

neighbor searches for outlier candidates. A core point is a special

data point that stores its distances to other data points in multiple

ranges. In CPOD, every sliding window has a set of core points to

expedite the neighbor search. Using core points, similar to MCOD,

CPOD can also quickly identify inliers, which are at least K +1 data
points in the range R/2 from a core point. But different fromMCOD,

for the remaining data points which are outlier candidates, CPOD

uses core points within each slide to perform neighbor searches.

More specifically, for each outlier candidate, CPOD searches for

neighbors in surrounding slides to find enough neighbors. To

find neighbors in each slide, CPOD uses its corresponding core

points with some pruning techniques to reduce neighbor search

spaces. In this section, we first introduce the core point concept

143

Luan Tran, Min Y. Mun, and Cyrus Shahabi

and related pruning techniques, which are the essential parts of

CPOD. Subsequently, we discuss the corresponding data structures

and the complete algorithm.

3.1 Core Point Overview
3.1.1 Core Point Definition. The triangular inequality is commonly

used in reducing the neighbor search space. To simplify the

discussion, let us focus on a single slide and denote its dataset

as S. Moreover, let us call the data point for which we are finding

neighbors in a slide a query point q. Given q,S and two other data

points in S, i.e., c,p ∈ S, we have d(c,p) ≤ d(p,q) + d(q, c) and
d(c,p) ≥ d(q, c) −d(p,q). Therefore, if p is a neighbor of q, we have
d(c,p) ≤ R + d(q, c), and d(c,p) ≥ d(q, c) − R. In other words, if

d(q, c) is known, the neighbor p of q is in the range (d(q, c) − R)
to (R + d(q, c)) from c . Hence, data point c with its corresponding

distances to other data points in S can be used to produce the

reduced neighbor search for q. We define such a data point c as a
core point.

However, computing and storing the distances to all other data

points are time and memory consuming. Note that by the definition

of outlier, most of the data points have at least K neighbors and are

inliers. For example, if the outlier rate is 1%, 99% of data points have

at least K neighbors, which can be set to be core points. Therefore,

for each core point c , CPOD stores only the data points in the range

2R from c , which is sufficient to provide the reduced neighbor search

spaces for the neighbors of c . Consequently, given a dataset S, we
formally define a core point as follows.

Definition 3.1 (Core Point). A core point c is a data point that

stores the lists of data points, E(c), in different distance ranges from

it as follows.

E(c) = E0(c) ∪ E1(c) ∪ E2(c) ∪ E3(c)

where Ek (c) = {p ∈ S|kR/2 < d(c,p) ≤ (k + 1)R/2}, k ∈ {0, 1, 2, 3}.
Ek (c) is the list of the data points in S whose distances to c are

larger than kR/2 and less than or equal to (k + 1)R/2.

(a) Example core point c . (b) Example supporting core point set

C = {c1, c2, c3, c4 }.

Figure 4: Example core point and supporting core point set.

Figure 4(a) illustrates an example of a core point with its E lists in
different levels, E0(c) = {o2,o3,o4}, E1(c) = {o5,o8}, E2(c) = {o7},
E3(c) = {o9}.

Let us denote d-associate of a core point c as the list of data points
in S whose distances to c are not greater than d . We say that core
point c supports the data point p or p is linked to c if p is in the

R-associate of c , or in other words, p ∈ E0(c) ∪ E1(c). For example,

in Figure 4(a), core point c supports data points o2,o3,o4,o5 and o8.

Every data point should be supported in neighbor search. Therefore,

we define the supporting core point set of a data set as follows.

Definition 3.2 (Supporting Core Point Set). The supporting core
point set C of a data set S consists of core points such that:

• The distance between any pair of core points is greater than

R. In other words, ∀c1 , c2 ∈ C, d(c1, c2) > R.
• Each data point p ∈ S is linked to at least one core point c .
In other words, ∀p ∈ S,∃c ∈ C : p ∈ E0(c) ∪ E1(c).

The first constraint limits the size of the core point setCwhile the
second constraint guarantees that every data point in S is supported.
Figure 4(b) illustrates an example of supporting core point set (red

points) of a data set (black points). In this figure, for each data point

oi , 1 ≤ i ≤ 7, there exists at least one core point within a distance

of R. Table 1 shows the number of supporting core points for all

sliding windows in the real-world datasets we examine in this study.

We observed that for each dataset, a small number of core points,

i.e., less than 0.5% of the size of data set, can support all the data

points. With the window size set to 10,000 for small data sets, i.e.,

FC and TAO, and 100,000 for large datasets, i.e., GAS, EM, HPC,

and STK, we observed that the average number of supporting core

points for each window is less than 1% the window size.

3.1.2 Pruning Techniques using Core Point. CPOD performs

neighbor searches for outlier candidates in individual slides to verify

their outlier statuses. Therefore, with the supporting core point

set for each slide, CPOD utilizes the following pruning techniques,

which are applicable for any set of data, to obtain reduced search

spaces. Given a supporting core point set C for a single slide with

its data set S, let q be a query point that is a data point for which we

are finding neighbors, and N(q) be the neighbor set of q in S. Based
on an arbitrary distance from q to the core points in C, CPOD has

a corresponding reduced neighbor search space.

Theorem 3.3 (Instant Neighbor Confirmation). If the
distance between the query point q and a core point c ∈ C is less
than or equal to R/2, all the data points in E0(c) are neighbors of q. In
other words, if ∃c ∈ C such that d(c,q) ≤ R/2, we have E0(c) ⊆ N(q).

Proof. According to the triangular inequality, for any data point

p ∈ E0(c), we have d(p,q) ≤ d(p, c) + d(q, c) ≤ R/2 + R/2 = R.
Therefore, p and q are neighbors of each other. This completes our

proof. □

Using Theorem 3.3, for each data point q, which has a core point

in the range R/2, we simply have to count the data points in E0(c)
to get the number of neighbors of q in E0(c). This characteristic is
similar to counting neighbors in a cell in NETS or a micro-cluster

in MCOD and M_MCOD.

Theorem 3.4 (Search Space Reduction 1). If the distance
between the query point q and a core point c ∈ C is not greater
than R/2, all the neighbors of q are in the 3R/2-associate of c . In
other words, if ∃c ∈ C such that d(c,q) ≤ R/2, we have N(q) ⊆
E0(c) ∪ E1(c) ∪ E2(c).

Proof. According to the triangular inequality, for any neighbor

p ∈ S of q, we have d(p, c) ≤ d(p,q) + d(q, c) ≤ R + R/2 = 3R/2.
Therefore N(q) ⊆ E0(c) ∪ E1(c) ∪ E2(c). This completes our proof.

□

144

Real-Time Distance-Based Outlier Detection in Data Streams

Table 1: The number of core points for all sliding windows in real-world datasets.

Name Description Size Dimensions No. Core Points Core Points/Dataset Core Points/Window

GAS Household gas sensors 0.9M 10 1626 0.18 % 0.31 %

FC Forest cover types 0.55M 55 404 0.07 % 0.71 %

TAO Oceanographic sensors 0.6M 3 258 0.04 % 0.31 %

EM Gas sensor array 1.0M 16 3469 0.34 % 0.41 %

HPC Electric power consumption 1.0M 7 381 0.04 % 0.32 %

STK Stock trading records 1.1M 1 232 0.02 % 0.11 %

Theorem 3.4 provides the superset of the neighbors of q in S
when q has a core point within a distance of R/2, d(q, c) ≤ R/2.

Theorem 3.5 (Search Space Reduction 2). If the distance
between the query point q and a core point c ∈ C is not greater
than R, all the neighbors of q are in E(c). In other words, if ∃c ∈ C
such that d(c,q) ≤ R, we have N(q) ⊆ E(c).

Proof. According to the triangular inequality, for any neighbor

p ∈ S ofq, we haved(p, c) ≤ d(p,q)+d(q, c) ≤ R+R = 2R. Therefore
p ∈ E(c). This completes our proof. □

Theorem 3.5 provides the superset of the neighbors of the query

point q if q has a core point c within a distance of R, d(q, c) ≤ R.

Theorem 3.6 (No Neighbor Confirmation). Let Cqr = {c ∈
C|d(q, c) ≤ r } be the set of core points whose distances to q are
not greater than r . All the neighbors of the query point q are in
the R-associates of core points in Cq

2R . In other words, N(q) ⊆⋃
ci ∈C

q
2R
(E0(ci) ∪ E1(ci)). If the distance from q to any core point

c ∈ C is greater than 2R, q has no neighbor in S.

Proof. Assume a data point p ∈ S is a neighbor of q, d(p,q) ≤ R.
Because each data point in S is linked to at least a core point,

there exists a core point c ∈ C such that d(c,p) ≤ R. Therefore,
d(q, c) ≤ d(q,p) + d(c,p) ≤ R + R = 2R ⇒ c ∈ C

q
2R . Also, we

have p ∈ E0(c)∪E1(c). Therefore, N (q) ⊆
⋃
ci ∈C

q
2R
(E0(ci)∪E1(ci)).

Hence, if there is not any core point in the range 2R from q,C
q
2R = ∅,

N(q) = ∅, q does not have any neighbor in S. This completes our

proof. □

Theorem 3.6 provides the superset of the neighbors of q when q
does not have any neighbor, which is a core point in S, but there
exist core points in the distance range 2R from q. On the other

hand, if the distance from q to any core point in C is greater than

2R, q has no neighbor in S. By using this theorem, CPOD can avoid

unnecessary distance computations if q does not have any neighbor

in S.

Theorem 3.7 (Core Point Formation). For any core point c ,
its 2R-associate is a subset of the union of its R-associate and the
R-associates of other core points in the range 3R from it. In other
words, E(c) ⊆

⋃
ci ∈Cc

3R∪{c }
(E0(ci) ∪ E1(ci)).

Proof. According to the definition of supporting core point set,

every data point p ∈ E(c1) is linked to at least one core point c2
such that d(p, c2) ≤ R, core point c2 can be the same as or different

from core point c1. Therefore, d(c1, c2) ≤ d(c1,p) + d(p, c2) ≤

2R + R = 3R. Also, p is in the R-associate of c2. Therefore, E(c) ⊆⋃
ci ∈Cc

3R∪{c }
(E0(ci) ∪ E1(ci)). This completes our proof. □

Core Point Formation. Theorem 3.7 is used to form the

2R-associate of a core point. For a new set of data S, the process of
forming the set of core points supporting S can be separated into

two steps. In the first step, we start with an empty core point set,

C = ∅. For every data point p ∈ S, if p can be linked to an existing

core point c ∈ C, we add it to the R-associate of c . Otherwise, we
create a new core point c with the same values as p then link p to c
and add c to C. In the second step, after every data point is linked

to at least one core point, we find the 2R-associate of every core

point c in the R-associates of other core points in the range 3R from

c . Each data point candidate is added to the corresponding E list of
c based on its distance to c . Finally, C is outputted as the supporting

core point set of S.

3.2 Data Structure
In this section, we present the data structure for the two most

important objects in CPOD, data point and core point.

Data Point. In each data point p, p.neiдhborCount ,
p.predNeiдhborMap, and p.numSucNeiдhbors represent the

total number of found neighbors, the counts of neighbors in

preceding slides, and the number of succeeding neighbors,

respectively. We use p.closeCore to store the core point in the

range of R/2 from p and p.coreList to store the list of the core

points that are linked to p. It helps CPOD to instantly access the

reduced neighbor search spaces for p. Note that for each data point

p, there is at most one core point in the range R/2 from it. This is

because if there are at least two core points c1 and c2 in the range

R/2 from p, according to the triangular inequality, the distance

between c1 and c2 is not greater than R, and violates the definition

of supporting core point set (Definition 3.2). CPOD also stores

the last searched succeeding and preceding slides in p.lastRiдht
and p.lastLe f t , respectively. They are used when CPOD refinds

neighbors for p.
Core Point. In each core point c , each variable

c .E0, c .E1, c .E2, c .E3 is a map of slide indices and the corresponding

data points. For the example core point c in Figure 4(a), if (o1,o2,o3),
(o4,o5,o6), and (o7,o8,o9) are in slide S1, S2, and S3, respectively,
we have c .E0 = {1 : (o2,o3), 2 : (o4)}, c .E1 = {2 : (o5), 3 : (o8)},
c .E2 = {3 : (o7)}, c .E3 = {3 : (o9)}. CPOD also maintains a map

of slides and their corresponding supporting core point sets for

quickly retrieving core points during the neighbor search in

145

Luan Tran, Min Y. Mun, and Cyrus Shahabi

Figure 5: CPOD Algorithm Overview.

each slide. To accelerate the process of core point search, CPOD

maintains distinct core points in an M-Tree [5].

3.3 Algorithm Details
Our proposed algorithm CPOD is illustrated in Figure 5 and

Algorithm 1. It consists of three main procedures: processing

expired slide, finding a supporting core point set for new data,

and neighbor search for outlier candidates.

Expired Slide Processing. Every time a new slide Snew arrives,

a slide Sexpired expires. In function ProcessExpiredSlide(), line 5,

Algorithm 1, CPOD removes the expired slide from the current

window, decreases the neighbor counts of the data points by the

number of expired neighbors, and eliminates the expired data points

from the E lists of the existing core points.

Slide Indexing. CPOD selects a supporting core point set

(Definition 3.2) for every slide. That is illustrated by function

SelectCore() in Algorithm 2, which is called when a new slide

arrives, line 6, Algorithm 1. This function is also called by function

InitCore(), Algorithm 1, for initializing the supporting core points

for the first window. To select core points supporting a slide, CPOD

first links every data point p to a core point in the range R from

it by conducting range queries on the M-Tree [5] which stores all

the core points. For each data point p, if there exists a core point
c in the range R from p, p is linked to c , line 5 and 9, Algorithm

2. If no core point is found, a new core point c is created with the

same values of p, then p is linked to c , line 12, Algorithm 2. All the

new core points are also added to the M-Tree for efficient range

queries. Note that with this strategy, one core point can support

data points in multiple slides. For each core point c supporting a

slide, CPOD finds its 2R-associates in the R-associates of other core
points which are in the range 3R from c , according to Theorem 3.7.

For each candidate p, based on its distance to c , CPOD adds it to

the corresponding E list of c .
Fast inliers identification: After selecting core points that

support the new slide, CPOD updates the number of data points in

the E0 list of each core point, function UpdateHalfRCount(), line 7,

Algorithm 1. For each core point c , if c .E0 has at least K + 1 data
points, all the data points in c .E0 are inliers, according to Theorem

3.3.

Neighbor Search. For the data points that have been

not determined as inliers in the previous step, CPOD runs

neighbor searches to find their neighbors, function FindNeighbor(),

Algorithm 3. In this function, CPOD first finds in the succeeding

Algorithm 1: The Overall Procedure of CPOD
input :A data stream Σ, First window D
output :Outliers in every sliding window

parameters :Window size W, Slide size S, Distance

threshold R, Neighbor threshold K

1 allCores ← InitCore(D) // Init core points

/* New slide Snew arrives with index s */

2 while (s,Snew) do
3 outliers ← ∅

4 Sexpired ← GetOldestSlide(D,W, S)

5 ProcessExpiredSlide(Sexpired)
/* Select core points for new slide */

6 allCores [s] ← SelectCore(Snew)

7 UpdateHalfRCount(allCores [s])

8 for p ∈ Snew do
/* Continue if closeCore has more than K data points

in the range R/2. Theorem 3.3 */

9 if p.closeCore.countHal f R > K then
10 continue

/* Neighbor search for outlier candidates in the new

slide */

11 FindNeighbor(p)

12 if p.neiдhborCount < K then
13 outliers .add(p)

/* re-find neighbors for outlier candidates in other

slides */

14 for p ∈ W \ Snew do
15 if p.neiдhborCount < K then
16 FindNeighbor(p)

17 if p.neiдhborCount < K then
18 outliers .add(p)

19 yield(outliers)

slides, line 1 to 6, then the preceding slides, line 7 to 12. During

the neighbor search for data point q, by using q.lastLe f t and

q.lastRiдht , CPOD only searches for neighbors in the slides that

have not been checked before. In each slide s , CPOD first finds

the core points that can be used for reducing neighbor search

space, function SelectCore(), Algorithm 2. There are four possible

scenarios: 1) There exists one core point in the range R/2 from q,

146

Real-Time Distance-Based Outlier Detection in Data Streams

Algorithm 2: SelectCore(S)
input :A slide S
output :Corresponding core points

static variables :Existing core points allCores
1 corePoints ← ∅ // Init core points

2 for p ∈ S do
/* Find core point for p in current core points */

3 distance, c ← FindCore(p, corePoints)

4 if c then // linked to a current core point

5 AddToE(c,p,distance)

6 else // find in the previous core points

7 distance, c ← FindCore(p,allCores)

8 if c then
9 AddToE(c,p,distance)

10 corePoints .add(c)

11 else // create a new core point from p
12 c ← NewCore(p)

13 AddToE(c,p, 0)

14 corePoints .add(c)

15 for c ∈ corePoints do
16 for c2 , c ∈ corePoints do
17 distance ← ComputeDistance(c, c2)

18 if distance ≤ 3R then
/* Only need to check with data points linked to

c2. Theorem 3.7 */

19 CheckCoreWList(c, c2.E0)

20 CheckCoreWList(c, c2.E1)

21 return corePoints

Algorithm 3: FindNeighbor(q)
input :Data point q
/* First, search for neighbors in succeeding slides that q has

not checked yet */

1 s_slides ← GetSucceedingSlides(q, checked = f alse)

2 for S ∈ s_slides do
3 FindNeighborInSlide(q,S)

4 q.lastRiдht ← S

5 if q.neiдhborCount ≥ K then
6 return

/* Then, search for neighbors in preceding slides that q has

not checked yet */

7 p_slides ← GetPrecedingSlides(q, checked =

f alse, reversedOrder = true)

8 for S ∈ p_slides do
9 FindNeighborInSlide(q,S)

10 q.lastLe f t ← S

11 if q.neiдhborCount ≥ K then
12 return

13 return

2) There exists at least one core point in the range R/2 to R from q,

Algorithm 4: FindNeighborInSlide(q, S)
/* Find core points in S to get reduced the search space */

1 distance, cores ← FindCorePoint(q,allCores [S.sIdx])
2 if distance ≤ R/2 then

/* Using Theorem 3.4 */

3 c ← cores [0]

4 q.neiдhborCount ←

q.neiдhborCount + size(c .E0[S.sIdx])
5 returnIfEnoughNB(q)

6 FindNbInList(q, c .E1); returnIfEnoughNB(q)

7 FindNbInList(q, c .E2); returnIfEnoughNB(q)

8 else if distance ≤ R then
/* Using Theorem 3.5 */

9 c ← cores [0]

10 FindNbInList(q, c .E0); returnIfEnoughNB(q)

11 FindNbInList(q, c .E1); returnIfEnoughNB(q)

12 FindNbInList(q, c .E2); returnIfEnoughNB(q)

13 FindNbInList(q, c .E3); returnIfEnoughNB(q)

14 else if distance ≤ 2R then
/* Using Theorem 3.6 */

15 for c ∈ cores do
16 FindNbInList(q, c .E0)

17 returnIfEnoughNB(q)

18 FindNbInList(q, c .E1)

19 returnIfEnoughNB(q)

20 return

3) There exists at least one core point in the range R to 2R from q,
and 4)There is no core point in the range 2R from q.

In each scenario, CPOD uses the corresponding reduced search

space, according to Theorem 3.4, 3.5, and 3.6.

Instant neighbor confirmation: Specifically, in the first scenario,

if there exists one core point c in the range R/2 from q, all the data
points in c .E0[s] are neighbors ofq without computing any distance,

according to Theorem 3.3. The neighbor count of q is updated by

the size of c .E0[s]. If q still does not have enough neighbors, the

neighbor search space for q is reduced to c .E1[s] ∪ c .E2[s].
Neighbor search space reductions: In the second scenario, there

exists one core point c in range R/2 to R from q, the reduced

neighbor search space is c .E0[s] ∪ c .E1[s] ∪ c .E2[s] ∪ c .E3[s],
according to Theorem 3.5. In the third scenario, there exists a listC
of core points in the range R to 2R from q, the reduced neighbor

search space is

⋃
ci ∈C (ci .E0[s] ∪ ci .E1[s]), according to Theorem

3.6.

Instant no neighbor confirmation: In the fourth scenario, there

is no core point in the range 2R from q, CPOD instantly confirms

that q has no neighbors and stops neighbor search in slide s ,
according to Theorem 3.6.

During the neighbor search, if q has found enough neighbors, i.e.,
at least K neighbors when checking preceding slides or at least K

succeeding neighbors when checking succeeding slides, the process

is stopped, function returnIfEnoughNB(), Algorithm 4. The numbers

of succeeding neighbors and preceding neighbors of q are updated

with the count of found neighbors accordingly. Eventually, if q

147

Luan Tran, Min Y. Mun, and Cyrus Shahabi

does not have K neighbors, it is added to the outlier list. After the

neighbor search step is complete, the outlier list is outputted.

3.4 Complexity Analysis
For each sliding window, we denoteNc as the number of core points,

Nf as the number of outlier candidates, and Nr as the number of

distance computations for a possible outlier. In the worst case, the

time for indexing a new slide is O(NcS), the time for neighbor

search is Nf Nr . Therefore, the total time complexity is O(NcS +
Nf Nr). In most cases, Nc <<W as depicted in Table 1 and Nf <
W . Because CPOD utilizes the minimal probing principle to stop

neighbor search when finding enough neighbors, in most cases, Nr
is small as reported in Table 7. Therefore, in most cases, the time

complexity can be reduced to O(S +WNr).
Regarding the memory requirements, storing every window

requiresO(W) space, and storing Nc core points requiresO(NcT2r)
space, where T2r is the number of data points in the range 2R of

core points. Therefore, the total space complexity isO(W + NcT2r).
In most cases, Nc <<W and T2r <W , and hence the total space

complexity can be approximated as O(W).

4 EXPERIMENTS
We compared our proposed algorithm CPOD with MCOD [15],

M_MCOD [16], and NETS [18], which are current, state-of-the-art

algorithms. For a fair evaluation, all the algorithms were

implemented in Java. We obtained the NETS source codes, which

were public in [18]. Our experiments were conducted on a Linux

machine with a 3.47 GHz processor and 10 GB Java heap space.

Datasets. We used the six real-world data sets and a synthetic

data set listed in Table 2, similar to [15, 16, 18]. The number of

dimensions of the datasets ranges from 1 to 55. Datasets GAU,

STK, and TAO are low dimensional (1 to 3), where GAU [15] is

generated by a Gaussian mixture model with three distributions,

STK [15] contains stock trading records, and TAO [1, 12] contains

oceanographic data provided by the Tropical Atmosphere Ocean

project. Datasets HPC and GAS are mid-dimensional (7 to 10),

where HPC contains electric power consumption data, and GAS

contains household gas sensor data. Datasets EM and FC are

high-dimensional (16 to 55), where EM contains chemical sensor

data, and FC contains forest cover type data. They are all available

at UCI Machine Learning Repository [6].

Default Parameter Setting. To derive comparable outlier rates

across datasets, which are approximately 1%, we set the default

parameter values as in Table 2, similar to [1, 12, 15, 18]. Unless

specified otherwise, all the parameters take on their default values

in our experiments. For NETS, we set the number of sub-dimensions

parameters, as suggested in [18], to be 3 and 4 for FC and EM,

respectively.

Performance Measurement. We measured the CPU time of

all the algorithms for processing each sliding window with

ThreadMXBean in Java and used a separate thread to monitor the

Java Virtual Machine memory. The CPU running time and peak

memory measurements were averaged over all sliding windows.

4.1 Highlights of Results
We compared all the algorithms using all the datasets with the

default value parameters. Figures 6 and 7 show the CPU running

time and peak memory of the methods. Regarding CPU running

Table 2: Datasets and Default Parameter Values.

Dataset Dim Size W S R K

GAU 1 1.0M 100,000 5,000 0.028 50

STK 1 1.1M 100,000 5,000 0.45 50

TAO 3 0.6M 10,000 500 1.9 50

HPC 7 1.0M 100,000 5,000 6.5 50

GAS 10 0.9M 100,000 5,000 2.75 50

EM 16 1.0M 100,000 5,000 115 50

FC 55 0.6M 10,000 500 525 50

Table 3: The Speedups of CPOD compared toOtherMethods: Others’
CPU Running Time / CPOD’s CPU Running Time.

Dataset GAS FC TAO EM HPC GAU STK Average

MCOD 98 25 18 201 24 80 67 73

M_MCOD 7 6 4 30 6 14 7 10

NETS 25 7 6 77 17 1 1 19

time, CPOD ran much faster than the other algorithms with GAS,

FC, TAO, EM, HPC datasets, and was comparable to NETS with

GAU and STK datasets. As reported in Table 3, on average, CPOD

was approximately 10, 19, and 73 times faster thanM_MCOD, NETS,

and MCOD, respectively. Especially with the EM dataset, CPOD

required only 0.02 seconds to process one sliding window, which

was 30, 77, and 201 times faster than M_MCOD, NETS, and MCOD,

respectively, all requiredmore than 0.6 seconds. The reasonwas that

the concentration ratio of EM is low, i.e., many data points do not

have K neighbors in the range R/2. There were few micro-clusters

in MCOD and M_MCOD or inlier cells in NETS. With GAU and

STK datasets, which are one-dimensional, CPOD had a comparable

total CPU running time to NETS. This remarkable performance of

CPOD demonstrated the merits of pruning techniques using core

points and the minimal probing principle in reducing neighbor

search space. Table 4 shows the average number of performed

distance computations for processing each sliding window in all

methods. They include the distance computations in indexing data

points and neighbor searches. As depicted, on average, CPOD

required 5.3, 8.6, and 34.1 times fewer distance computations

than NETS, M_MCOD, and MCOD, respectively. Especially for

the high-dimensional datasets, i.e., EM, FC, in which the distance

computation is significantly expensive, CPOD required at least 8

times fewer distance computations than the other methods.

Figure 6: Overall CPU Running Time Comparison.

148

Real-Time Distance-Based Outlier Detection in Data Streams

Figure 7: Overall Peak Memory Comparison.

Table 4: Average Number of Distance Computations Per Sliding
Window (millions).

Dataset EM FC HPC GAS TAO STK GAU Average

MCOD 56.0 1.35 4.47 17.29 0.17 0.8 5.89 12.3

M_MCOD 12.0 0.6 2.2 2.6 0.03 0.8 3.56 3.1

CPOD 0.27 0.07 0.72 0.43 0.02 0.32 0.7 0.36

NETS 4.6 0.26 5.1 3.3 0.02 0.02 0.2 1.94

Table 5: Memory Comparison: Others’ PeakMemory / CPOD’s Peak
Memory.

Dataset GAS FC TAO EM HPC GAU STK Average

MCOD 0.86 0.96 0.83 0.88 0.93 0.83 0.87 0.88

M_MCOD 1.27 1.55 1.15 1.14 1.11 1.56 1.17 1.28

NETS 1.34 12.71 1.29 8.59 1.18 1.22 1.35 3.95

Regarding memory requirements, as shown in Figure 7, CPOD

required comparable memory to MCOD, M_MCOD, and much less

than NETS. We report the ratio between the peak memory of the

other algorithms and CPOD in Table 5. As reported, on average,

CPOD required comparable memory to MCOD and M_MCOD and

three times less memory than NETS. Especially with the FC dataset,

the peak memory of CPOD was 12.7 times less than NETS and 1.5

times less than M_MCOD. CPOD required low memory because the

number of core points is relatively small compared to the window

size. CPOD required high memory for the EM dataset than the

other datasets because there were more core points (see Table 1).

Note that in return, for the EM dataset, CPOD achieved the highest

speedup compared to the other methods. We observed a high peak

memory in NETS with the EM and FC datasets. That is because the

EM and FC datasets are high dimensional, and the grid-based index

structure in NETS requires high memory.

4.2 Effects of Parameters on Performance
We varied the parameter values to verify the robustness of the

performance of the algorithms. Due to the lack of space, we present

the results for the selected datasets, i.e., FC, GAS, EM, and HPC.

The results with the other datasets showed similar patterns. When

varying one parameter, the other parameters took the default values.

4.2.1 Varying Window SizeW . The window size determines the

volume of the amount of workload on the algorithms. In this

experiment, we varied the window sizeW from 1K to 20K with FC,

from 10K to 200K with GAS, EM, and HPC.

Figure 8 shows the CPU running time of the algorithms. While

the CPU time increased along with W for all the algorithms in

most cases, the increase in CPU time for CPOD is mainly due to an

increase in the number of data points for neighbor search. Notably,

the increase in CPU time of CPOD was tiny compared to that of the

other algorithms. The gap between CPOD and the others increased

along withW. In all cases, CPOD was much faster than the other

algorithms.

Figure 9 reports the peak memory when W increases. The

peak memory increased because of the increase in the number

of data points in a window. In most cases, the peak memory of

CPOD was always lower than NETS and is comparable to MCOD

and M_MCOD. With the EM dataset, the peak memory of CPOD

increased more than with the other data sets as the number of core

points grew but still less than 100 MB. Note that, in return, for

this dataset, CPOD achieved the highest speedups compared to the

other algorithms.

4.2.2 Varying Slide Size S . The slide size controls the speed of data
streams and determines the number of data points arriving and

expiring in each update. In this experiment, we varied the slide size

S from 5% to 100% of the default value of W for each dataset.

Figure 10 reports the CPU running time of the methods. The

CPU time of all the methods increased in most cases because when

S is larger, more data points in a window are affected by expired or

new neighbors. Therefore, the time for indexing data points and

monitoring outlier statuses of data points increases. Again, CPOD

achieved the fastest CPU running time in all cases. Especially for

the EM dataset, the CPU running time of CPOD was always only

1% that of the other methods. For the FC, GAS, and HPC datasets,

the gap between the CPU running time of CPOD and NETS was

smaller along with S/W. That was because as S increases, the time

for indexing a new slide in CPOD increased while NETS uses a

grid-based index structure, which is less affected by the increase

in the slide size. In return, CPOD was always faster in neighbor

search and more efficient in quickly determining inliers. Therefore,

even in the extreme case, S =W, CPOD was also faster than NETS

with FC and EM, while comparable to NETS with GAS and HPC

datasets.

Figure 11 shows the peak memory of all the methods. We

observed that CPOD peak memory was comparable to MCOD and

M_MCOD with FC and EM in all cases, and with GAS and HPC

when S/W ≤ 10%. CPOD peak memory was always much smaller

than that of NETS. For the GAS dataset, the peak memory of CPOD

increased starting when S/W = 20%. However, even in the extreme

case, i.e., S =W, CPOD still required less than 50MB of memory.

4.2.3 Varying Radius Threshold R. The radius threshold R

determines the area of neighborhood. When R increases, each data

point can have more neighbors. In this experiment, we vary R from

10% to 1000% of the default value of R for each dataset.

Figure 12 shows the CPU running time of all the methods. When

R increases, all the methods ran faster because all data points can

have more neighbors and have smaller chances to become outliers.

Also, more data points can be quickly confirmed as inliers because

of more data points in micro-clusters or cells or E0 lists of core

points. CPOD achieved the fastest CPU running time in most cases.

Figure 13 shows the peak memory of all the methods. We

observed similar trends with the FC, GAS, and HPC datasets

in which the peak memory of the methods decreased when R

increased. In CPOD, the reason was that there are fewer core points.

149

Luan Tran, Min Y. Mun, and Cyrus Shahabi

Figure 8: Varying Window Size - CPU Time Comparison.

Figure 9: Varying Window Size - Peak Memory Comparison.

Figure 10: Varying Slide Size - CPU Time Comparison.

Figure 11: Varying Slide Size - Peak Memory Comparison.

Meanwhile, there are more data points in micro-clusters that do not

need to store preceding neighbor list in MCOD and M_MCOD, and

there are fewer cells in NETS. For the EM dataset, we observed that

the peak memory of CPOD first increased when R was increased

from 10% to 50%. This was because of the increase in the number

of data points in the E lists of core points. When R was further

increased, although the length of E lists also increased, the number

of core points decreased, thus decreasing the peak memory. In most

cases, the peak memory of CPOD was comparable to that of MCOD

and M_MCOD, while much smaller than that of NETS.

4.2.4 Varying Neighbor Threshold K . The neighbor threshold K

determines the number of neighbors required for a data point to

be an inlier. Therefore, when K is increased, the number of outliers

increases. We vary K from 10 to 100 for all the datasets. Figure

14 depicts the CPU running time of all the methods. In general,

the CPU running time of the methods increased along with K.

The reason is that there were fewer data points that were quickly

confirmed as inliers. Here again, CPOD was much faster than the

other methods. In all cases, CPOD was at least 2.5, 8.7, and 43.5

times faster than M_MCOD, NETS, and MCOD, respectively.

Figure 15 shows the peak memory of all the methods. The peak

memory of CPOD was comparable to M_MCOD with the EM

dataset, while much smaller than M_MCOD with the FC, GAS,

and HPC datasets. In all cases, CPOD required less memory than

NETS. Additionally, the peak memory of CPOD was quite stable

because the increase in K does not affect the E lists of core points.

4.3 Online Updating Radius Threshold
In an online outlier detection system, users may want to adjust

parameters, e.g., radius threshold R, to retrieve their expected

outliers. Micro-clusters in MCOD and M_MCOD, cells in NETS,

and core points in CPOD are built based on the radius threshold R.

150

Real-Time Distance-Based Outlier Detection in Data Streams

Figure 12: Varying Radius Threshold R - CPU Time Comparison.

Figure 13: Varying Radius Threshold R - Peak Memory Comparison.

Figure 14: Varying Neighbor Threshold K - CPU Time Comparison.

Figure 15: Varying Neighbor Threshold K - Peak Memory Comparison.

Consequently, the parameter R has a significant impact on all the

algorithms’ performance.When R is updated online, all the methods

need to rebuild their corresponding index structures and re-find

neighbors for the current data points. Table 6 shows the CPU time

of all the methods for rebuilding the index structures and re-finding

neighbors for the current data when R is updated online with the

HPC dataset. We observed similar trends with the other datasets. As

shown in this table, CPOD required a much shorter CPU time than

the other algorithms. Especially in the extreme case, when R was

updated to 10% of the default value, CPOD required only 21 seconds.

In contrast, the other methods took approximately 5, 18, and 26

times longer for re-indexing data points and re-finding neighbors.

This is because CPOD efficiently utilizes pruning techniques in

selecting supporting core points and finding neighbors.

Table 6: CPU Time (seconds) for rebuilding index structure and
re-finding neighbors when changing R - HPC Dataset.

R/Default R 10% 50% 100% 500% 1000%

CPOD 21.14 1.33 0.58 0.24 0.08
MCOD 545.06 52.31 10.95 1.48 0.71

M_MCOD 108.37 4.46 1.47 0.59 0.51

NETS 388.02 17.24 3.14 0.27 0.14

4.4 Running on Low-Resource Devices
We examined the performance of the algorithms when running on

low-resource devices. Specifically, we used a Raspberry Pi emulator

in which we varied the CPU clock speed from 700MHz to 1500 MHz

to simulate different real-world products. Raspberry Pi is commonly

used to manage streaming data in IoT systems. Its memory was set

to 1 GB. Figure 16 shows the running time of all the methods with

the EM and HPC datasets. As shown in this figure, CPOD always

151

Luan Tran, Min Y. Mun, and Cyrus Shahabi

Figure 16: Varying CPU Clock Speed of Raspberry Emulator.

required less than 0.1 seconds, while the other methods required at

least approximately 1 and 10 seconds for HPC and EM datasets.

4.5 The Breakdown of CPOD CPU Time
Figure 17 shows the breakdown of CPOD CPU time, which is

separated into three main steps, i.e., expired slide processing,

indexing new slide, finding neighbors for new and existing data. As

shown in this figure, most of the CPU time was spent on indexing

new slides and neighbor search.We observed the highest percentage

of time for finding neighbors for new data in high dimensional

data, e.g., FC, EM, HPC, and GAS. That was because of the large

numbers of outlier candidates requiring neighbor searches, which

are reported in Table 7. As depicted in this table, with the EM

dataset, there were 3,360 outlier candidates on average, which were

approximately 67% of a slide requiring neighbor searches. That is,

most data points do not have K neighbors in the range R/2. That

explains why the cell-based andmicro-cluster based methods do not

perform well with EM. The third row of Table 7 shows the average

number of distance computations for each outlier candidate in the

neighbor search. Interestingly, with EM and GAU, on average, each

outlier candidate only needs less thanK = 50 distance computations.

That is because CPOD efficiently utilizes Theorems 3.3, 3.4, 3.5, and

3.6 for reducing neighbor search spaces.

Figure 17: The Breakdown of CPOD CPU Time.

Table 7: Outlier Candidates Per Sliding Window.
Dataset FC TAO EM HPC GAU GAS STK

No. Outlier Candidates 428 212 3360 1434 678 1919 711

Distance Computations

Per Outlier Candidate

191 72 45 354 39 71 51

4.6 Core Point Selection Process
CPOD uses a heuristic, Algorithm 2, to select core points supporting

each slide. It is equivalent to the min set cover problem [8], which

finds the fewest data points such that the union of their neighbors

covers the data set. This problem is NP-hard. We compared the

number of core points selected by CPOD with the minimum

core points selected by the integer programming approach, which

requires finding all neighbors for each data point and searching for

the best combination of core points. Although our heuristic does not

return the minimal core point set, it is much faster than the integer

programming approach because it neither finds all neighbors for

each data point nor conducts a core point combination search. We

report the average ratio between the number of CPOD’s selected

core points and the optimal core points for each slide, as in Table 8.

As reported in this table, the number of CPOD’s selected core points

was less than twice the optimal core points for all the datasets.

Table 8: Average Ratio Between the Number of CPOD Core Points
and Minimal Core Point Selection.

Dataset FC TAO GAU GAS EM HPC STK

CPOD/Optimal 1.9 1.61 1.39 1.98 1.99 1.54 1.32

5 DISCUSSIONS
With the sliding window setting, depending on the application,

users might be interested in the aggregated outlier status of every

data point from its outlier status in sliding windows. For example,

an aggregated outlier can be defined as a data point that is an outlier

in at least n ≥ 1 sliding windows. To achieve that, with CPOD, for

each data point, we can add a variable that monitors the number

of sliding windows in which it is an outlier. This study does not

consider the aggregation process after detecting outliers in every

sliding window to keep the problem more generic.

6 CONCLUSIONS
In this paper, we proposed CPOD, a real-time distance-based outlier

detection algorithm in data streams. With CPOD, we proposed

a core point data structure, along with multi-distance pruning

techniques, to both quickly identify inliers and reduce neighbor

search space. We showed that CPOD performs efficiently with

various types of datasets and outperforms the state-of-the-art

algorithms in CPU running time while consuming low memory.

An algorithm optimizing the memory usage of core points, e.g.,

minimizing the size of supporting core point set, or compressing

the E lists of a core point, can be explored in the future work.

ACKNOWLEDGMENTS
This work has been supported in part by NSF grants IIS-1910950

and CNS-2027794, the USC Integrated Media Systems Center, and

unrestricted cash gifts from Microsoft and Google. The opinions,

findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the sponsors.

REFERENCES
[1] Fabrizio Angiulli and Fabio Fassetti. 2007. Detecting distance-based outliers in

streams of data. In Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management. ACM, 811–820.

152

Real-Time Distance-Based Outlier Detection in Data Streams

[2] Dominik Breitenbacher, Ivan Homoliak, Yan Lin Aung, Nils Ole Tippenhauer,

and Yuval Elovici. 2019. HADES-IoT: A Practical Host-Based Anomaly Detection

System for IoT Devices. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 479–484.

[3] Lei Cao, Di Yang, Qingyang Wang, Yanwei Yu, Jiayuan Wang, and E.A.

Rundensteiner. 2014. Scalable distance-based outlier detection over high-volume

data streams. In Data Engineering (ICDE), 2014 IEEE 30th International Conference
on Data Engineering. 76–87.

[4] Lei Cao, Di Yang, Qingyang Wang, Yanwei Yu, Jiayuan Wang, and Elke A

Rundensteiner. 2014. Scalable distance-based outlier detection over high-volume

data streams. In 2014 IEEE 30th International Conference on Data Engineering.
IEEE, 76–87.

[5] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An E cient Access

Method for Similarity Search in Metric Spaces. In Proceedings of the 23rd VLDB
conference, Athens, Greece. Citeseer, 426–435.

[6] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[7] Nicholas Duffield, Patrick Haffner, Balachander Krishnamurthy, and

Haakon Andreas Ringberg. 2016. Systems and methods for rule-based

anomaly detection on IP network flow. US Patent 9,258,217.

[8] Uriel Feige. 1998. A threshold of ln n for approximating set cover. Journal of the
ACM (JACM) 45, 4 (1998), 634–652.

[9] Junhao Gan and Yufei Tao. 2017. Dynamic density based clustering. In Proceedings
of the 2017 ACM International Conference on Management of Data. 1493–1507.

[10] EdwinM. Knorr and Raymond T. Ng. 1998. Algorithms forMining Distance-Based

Outliers in Large Datasets. In Proceedings of the 24rd International Conference
on Very Large Data Bases (VLDB ’98). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 392–403.

[11] M. Kontaki, A. Gounaris, A.N. Papadopoulos, K. Tsichlas, and Y. Manolopoulos.

2011. Continuous monitoring of distance-based outliers over data streams. In

Data Engineering (ICDE), 2011 IEEE 27th International Conference on. 135–146.
https://doi.org/10.1109/ICDE.2011.5767923

[12] Maria Kontaki, Anastasios Gounaris, Apostolos N Papadopoulos, Kostas Tsichlas,

and Yannis Manolopoulos. 2011. Continuous monitoring of distance-based

outliers over data streams. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 135–146.

[13] Yuhang Lin, Byung Suk Lee, and Daniel Lustgarten. 2018. Continuous detection

of abnormal heartbeats from ECG using online outlier detection. In Annual
International Symposium on Information Management and Big Data. Springer,
349–366.

[14] Marina Thottan and Chuanyi Ji. 2003. Anomaly detection in IP networks. IEEE
Transactions on signal processing 51, 8 (2003), 2191–2204.

[15] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2016. Distance-based outlier detection

in data streams. Proceedings of the VLDB Endowment 9, 12 (2016), 1089–1100.
[16] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2019. Fast Distance-based Outlier

Detection in Data Streams based on Micro-clusters. In Proceedings of the
Tenth International Symposium on Information and Communication Technology.
162–169.

[17] Di Yang, Elke A. Rundensteiner, and Matthew O. Ward. 2009. Neighbor-based

Pattern Detection for Windows over Streaming Data. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances in Database
Technology (Saint Petersburg, Russia) (EDBT ’09). ACM, New York, NY, USA,

529–540.

[18] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: extremely fast outlier

detection from a data stream via set-based processing. Proceedings of the VLDB
Endowment 12, 11 (2019), 1303–1315.

153

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/ICDE.2011.5767923

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Micro-cluster based Algorithms - MCOD and M_MCOD
	2.3 Cell-based Algorithm - NETS

	3 Core point-based outlier detection - CPOD
	3.1 Core Point Overview
	3.2 Data Structure
	3.3 Algorithm Details
	3.4 Complexity Analysis

	4 Experiments
	4.1 Highlights of Results
	4.2 Effects of Parameters on Performance
	4.3 Online Updating Radius Threshold
	4.4 Running on Low-Resource Devices
	4.5 The Breakdown of CPOD CPU Time
	4.6 Core Point Selection Process

	5 DISCUSSIONS
	6 CONCLUSIONS
	Acknowledgments
	References

