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ABSTRACT

Geo-replication is essential for providing low latency response

and quality Internet services. However, designing fast and correct

geo-replicated services is challenging due to the complex trade-off

between performance and consistency semantics in optimizing the

expensive cross-site coordination. State-of-the-art solutions rely

on programmers to derive sufficient application-specific invariants

and code specifications, which is both time-consuming and error-

prone. In this paper, we propose an end-to-end geo-replication

deployment framework AutoGR (AUTOmated Geo-Replication)

to free programmers from such label-intensive tasks. AutoGR en-

ables the geo-replication features for non-replicated, serializable

applications in an automated way with optimized performance and

correct application semantics. Driven by a novel static analyzer Rigi,

AutoGR can extract application invariants by verifying whether

their geo-replicated versions obey the serializable semantics of the

non-replicated application. Rigi takes application codes as inputs

and infers a set of side effects and path conditions possibly leading

to consistency violations. Rigi employs the Z3 theorem prover to

identify pairs of conflicting side effects and feed them to a geo-

replication framework for automated across-site deployment. We

evaluate AutoGR by transforming four serializable and originally

non-replicated DB-compliant applications to geo-replicated ones

across 3 sites. Compared with state-of-the-art human-intervention-

free automated approaches (e.g., strong consistency), AutoGR re-

duces up to 61.8% latency and achieves up to 2.12× higher peak

throughput. Compared with state-of-the-art approaches relying on

a manual analysis (e.g., PoR), AutoGR can quickly enable the geo-

replication feature with zero human intervention while offering

similarly low latency and high throughput.
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1 INTRODUCTION

To offer fast responses for users worldwide [2, 5, 47], many Internet

services replicate data across multiple geographically dispersed

data centers [23, 24, 26, 40, 50]. However, geo-replicated services
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Figure 1: An overview of the proposed end-to-end AutoGR

solution. AP, US, and EU stand for data centers in Singapore,

Oregon, and Frankfurt, respectively. The runtime library is

co-located with Server, omitted from the graph.

face an expensive wide-area communication problem, since concur-

rent user requests across sites must be coordinated for precluding

incorrect behaviors, e.g., states may permanently diverge between

sites, and/or application-specific invariants may be violated.

Various fine-grained consistency models have been proposed

for safely avoiding unnecessary coordination [30, 36, 42, 56]. PoR

consistency [36] and Generic Broadcast [42] express the consistency

semantics as the ordering restrictions over pairs of operations so

that weakening or strengthening the consistency semantics can

be achieved by imposing fewer or more restrictions. Tools like

Indigo [20] and SIEVE [34] can assist developers in identifying

necessary coordination, though it requires programmers to write

application-specific invariants and code specifications [18]. Such a

manual process is often very time-consuming and error-prone.

In this paper, we present an end-to-end framework named Au-

toGR (Automated Geo-Replication), which automatically deploys

geo-replicated applications based on their non-replicated serial-

izable versions without manually dealing with restriction-based

fine-grained consistency. AutoGR requires zero programmer efforts

to write any form of specifications while minimizing cross-site

coordination costs and preserving correct application semantics.

Our work is based on the key observation that the side effects

produced by user requests and the application-specific invariants

that programmers need to maintain are already implicitly reflected

in the logic of the programs. Therefore, it is possible to automatically

infer through a static program analysis of the code behaviors and

the invariants to detect potential conflicting operations that need to

be coordinated. For instance, to implement the withdraw operation

of a banking system, we must subtract from the current balance a

delta, which is specified by users. This subtraction summarizes the

intended code behaviors. To make this subtraction happen, we must

check the code to make sure the amount to be withdrawn should be
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less than or equal to the current balance. This checking reflects the

intended invariant that the balance must always be non-negative.

Following this insight, we propose, as one of our key contribu-

tions – a novel static analyzer called Rigi. As shown in Figure 1,

Rigi forms the static part of the AutoGR framework. In this paper,

we focus on the DB-compliant applications that implement their

logics in high-level language such as Java and store their states in

transactional databases. Rigi takes the non-replicated, serializable

application code and the corresponding database schema as inputs.

Without requiring any form of user specifications, it traverses the

corresponding control flow graph and extracts the side effects of

each operation over the shared data and the corresponding path

conditions that need to be met before the effects can be made to

ensure correct application semantics. With the help of our formal

database abstraction, we make those side effects and conditions

verifiable by further translating them into the code of Z3, a popular

and powerful theorem prover [27].

Rigi then employs Z3 to automatically check the commutativity

of the side effects of every pair of operations, and the compatibil-

ity of their corresponding path conditions. If pairs of conflicting

side effects are detected, Rigi generates ordering restrictions as its

outputs. The ordering restrictions are enforced by the runtime of

AutoGR to ensure the geo-replicated execution obeys the serializ-

able semantics of the non-replicated version of the application [41].

AutoGR integrates Rigi with an existing geo-replication and

coordination system Olisipo [7, 36], see Figure 1. The runtime

of AutoGR automatically deploys the geo-replicated application

through carefully coordinating the operations confined by the re-

strictions generated by Rigi between sites. This guarantees that the

generation of their conflicting side effects are serialized, and these

effects are propagated and replicated across all sites according to

the determined proper orders.

To demonstrate the power of AutoGR, we transform four non-

replicated applications including SmallBank [53], RUBiS [29], Seats

reservation [54] , and HealthPlus [6] into their geo-replicated ver-

sions. Our static analysis results suggest that the automatic rea-

soning cost is low and it is able to find the same minimal set of

restrictions as state-of-the-art solutions that need extensive efforts

from the programmer (e.g., PoR consistency [36]). The experimen-

tal results with a 3-site geo-replication setting highlight that com-

pared with state-of-the-art human-intervention-free approaches

(e.g., strong consistency), AutoGR reduces up to 61.8% latency and

achieves up to 2.12× higher peak throughput; compared with man-

ual analysis using state-of-the-art approaches (e.g., PoR), AutoGR

can quickly enable geo-replication with zero human intervention

while offering similarly low latency and high peak throughput.

We summarize our main contributions below:

• To the best of our knowledge, AutoGR is the first end-to-end

geo-replication framework that can automatically transform non-

replicated, serializable applications into their fast geo-replicated

version with little user interventions and without compromis-

ing important system properties such as state convergence and

invariant preservation.

• We offer an analyzer tool Rigi for performing static analysis over

source codes written in Java with manipulating data via SQL

interface. Rigi suggests a minimal set of ordering restrictions

over pairs of conflicting operations, requiring zero efforts from

developers. The core of Rigi consists of the database abstraction

in Z3, covering a substantial range of SQL features, and the

general commutativity and semantics checks.

• We evaluate AutoGR on three widely used benchmark appli-

cations and a real-world large web application to demonstrate

AutoGR’s generality and practicability for a wide range of appli-

cations, and its strengths over existing works in automatically

enabling the geo-replication feature with superior performance

on application latency and system throughput.

2 PRELIMINARIES

2.1 System model

We assume a distributed and replicated system consisting of multi-

ple replicas, spanning over geographically dispersed data centers

(a.k.a. sites). User requests (a.k.a. operations) are first submitted to

a nearby replica (denoted as primary) and are executed on that

replica against its local state 𝑆 . As the first step, this execution

only performs condition checks (taking banking as an example, a

𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤 request checks whether the amount of money requested

is greater than 0 and the 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is sufficient) and identifies the

corresponding side effect, but does not commit it. We model a side

effect as a deterministic function, which takes some arguments as

the input and transition the system from one state to another. Upon

completion of the primary execution, the collected side effect is

then propagated and replicated to all replicas, including the primary

one. Note that the state at a site that a side effect is applied to might

differ from 𝑆 observed when the corresponding side effect was

created. Following this, all sites together establish a global partial

order on the generation of side effects. Each site applies those side

effects in a total order, which may differ from site to site but must

be compatible with the global partial order.

2.2 Restriction-based consistency model

Data copies at different replicas must be synchronized for main-

taining “consistency.” Traditionally, consistency means serializabil-

ity [21], i.e., the results obtained by concurrently executing a set

of operations/transactions should be equivalent to one of some

serial orders. However, the synchronization cost across wide-area

nodes is extremely high; moreover, a few industrial studies point

out even a slight increase in user experienced latency can lead to

significant revenue loss [2, 5, 47]. To offer low latency responses, sev-

eral fine-grained consistency models have been proposed towards

minimizing the expensive cross-site coordination in geo-replicating

services [17, 20, 39, 45, 46, 52]. More recently, PoR consistency [36],

expresses consistency semantics as a set of ordering restrictions

(for short, restrictions) over pairs of operations. Formally, for any

two operations 𝑢 and 𝑣 , if there exists a restriction over them, then

𝑢 and 𝑣 must be serialized so that their side effects are produced

and executed on all sites following the same order. For example, in

a banking system, to avoid over-withdrawal, one has to impose a

restriction over any pair of𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑠 .

The key ideas behind the above proposals are to make the be-

haviors delivered by the concurrent geo-replicated executions be

explained by some serial executions. In particular, they guarantee

that the following two crucial system properties are maintained

under relaxed consistency models. Informally, the first property
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is called state convergence, i.e., when beginning at the same ini-

tial state, after applying the same set of side effects (possibly in

a different order), all sites reach the same final state. Besides, the

second property is called invariant preservation, which says that at

each site, every state transition triggered by applying a side effect

should not violate application-specific invariants defined by devel-

opers, assuming the initial state preserving those invariants (We

call invariant-preserving state valid).

For geo-replicating an application, the key to making the best

use of the restriction-based fine-grained consistency models is to

identify all pairs of conflicting operations, each of which will be

confined by a restriction. AutoGR is built atop of this line of work.

2.3 Tool support and limitations

Some works have formulated a set of principles to guide developers

to identify restrictions [17, 20, 32, 36]. However, most of them

require extensive domain expertise and manual efforts to reason

about all possible concurrent executions of user requests. Such a

manual reasoning process is time-consuming and error-prone.

To relieve the burden imposed on programmers, many attempts

have been made towards offering automated tools for completing

this task [20, 34]. SIEVE computes the weakest preconditions for

each side effect, which summarizes when they cannot be executed

without coordination [34]. This solution is conservative, as it re-

quires coordinating the generation and replication of all problematic

side effects, whose weakest preconditions are evaluated to False.
To improve the limitation of SIEVE, Indigo performs static analysis

of operation post-conditions against invariants to infer the pairs

of concurrent operations that may lead to invariant violations [20].

One of the major drawbacks of this line of work is that they all

require programmers to write correct and sufficient specifications

about application-specific invariants and pre- or post-conditions of

their code in logic formulas. Another major drawback is that they

assume that the specifications written by programmers are always

correct and sufficient. Incomplete or too weak invariants can cause

incorrect system behaviors, while too strong or unnecessary invari-

ants lead to performance penalty. As a consequence, it’s desired to

completely release this burden from programmers by not requiring

them to specify application-specific invariants.

2.4 The Z3 theorem prover

Z3 is a state-of-the-art theorem prover developed by Microsoft Re-

search [27], and has been widely used to check the satisfiability

of logical formulas [37, 49]. Those formulas are input constraints

given by users and can be written as a Boolean combination of

atomic formulas, which are defined over a rich set of theories sup-

ported by Z3, such as integer and real arithmetic, bit-vectors, arrays,

quantifiers, and functions. Given a formula in the first-order logic

calculus with free variables, Z3 searches a set of assignments to

its variables, which satisfy that formula, and reports unsat, if the
search fails. We can take advantage of the rich set of theories in

Z3 to model the changes to the shared state of target applications,

while using the solver to reason about the consistency constraints

encoded in the original code.

void withdraw(Connection conn, String custName,

double amount) throws Exception {

PreparedStatement stmt = conn.prepareStatement(

"SELECT ∗ FROM ACCOUNTS WHERE name = ?");

stmt.setString(1, custName);

ResultSet rs = stmt.executeQuery();

if (rs.next() == false) throw new Exception(“Invalid account”);

long custId = rs.getLong(1);

stmt = conn.prepareStatement("

SELECT bal FROM SAVINGS WHERE custid = ?");

stmt.setLong(1, custId);

rs = stmt.executeQuery();

if (rs.next() == false) throw new Exception(“No saving account”);

double balance = rs.getDouble(1) − amount;

if (balance < 0) throw new Exception(“Negative balance”);

stmt = conn.prepareStatement(

"UPDATE SAVINGS SET bal =? WHERE custid =?");

stmt.setDouble(1, balance); stmt.setLong(2, custId);

stmt.executeUpdate();

conn.commit();

}

Figure 2: Pseudocode of aWithdraw transaction

3 OVERVIEW

The goal of AutoGR is to develop an end-to-end framework to auto-

matically deploy non-replicated serializable code in a geo-replicated

setting to explore performance benefits while maintaining the cor-

rect application semantics. The performance gains enabled by Au-

toGR come from two parts. First, AutoGR leverages on an existing

geo-replication framework Olisipo that enables fine-grained co-

ordination over pairs of operations that produce conflicting side

effects. Second, AutoGR integrates Olisipo with a static analyzer

Rigi to identify a minimal set of ordering restrictions that must

be ensured so that the intended semantics of the corresponding

geo-replication applications are not violated.

3.1 Target applications

We target and transition classic three-tier non-replicated applica-

tions [1, 10]. One of such applications spans its logic across client,

application server, and database tiers, and assumes a single-copy

database (often a relational database). The application server con-

tains the functional business logic, defined as a set of transactions.

Each transaction takes requests from clients as inputs, and intellec-

tually manipulates the state stored in the database via SQL queries.

These queries are statically defined as parameterized functions, and

instantiated by user inputs at runtime.

Here, we briefly elaborate on how the applications work. When

a transaction starts, it takes inputs from users (e.g., the key to the

target objects), and executes a SELECT query to retrieve shared

objects from the backend relational database. Then, it performs

certain condition checks to determine the side effects. For instance,

in Figure 2, theWithdraw transaction checks the existence of the

target account and the balance in that account fetched from the

database is greater than or equal to the amount supplied by users.

Depending on the checking results, the execution of that transaction

can go to different branches, which leads to different side effects. For

instance, if the check fails, then theWithdraw transaction generates

no side effects. Otherwise, it may perform changes to the shared

objects andwrite those side effects back to the database by executing
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updateCustomer
(“Bob”, LON)

{Bob,NYC}

cond:exists(“Bob”)

{Bob,FRA}

updateCustomer
(“Bob”, FRA)

{Bob,NYC}

cond:exists(“Bob”)

{Bob,LON}

effect: Bob.loc = LON effect: Bob.loc = FRA

effect: Bob.loc = FRA effect: Bob.loc = LON

(a) Violating execution 1

withdraw
(“Bob”,50)

100

cond:bal >= 50
&&exists(“Bob”)

-10

withdraw
(“Bob”,60)

100

cond:bal >= 60
&&exists(“Bob”)

-10

effect: bal -= 50 effect: bal -= 60

effect: bal -= 60 effect: bal -= 50

(b) Violating execution 2

withdraw
(“Bob”,90)

100

cond:bal >= 90
&&exists(“Bob”)

60

deposit
(“Bob”,50)

100

cond:exists(“Bob”)

60

effect: bal -= 90 effect: bal += 50

effect: bal += 50 effect: bal -= 90

(c) Correct execution.

Figure 3: Three possible executions of geo-replicated services without coordination. Ellipses represent states. Dashed boxes

represent user requests, while the dotted boxes and gray boxes indicate their path conditions and side effects, respectively.

The serial order established by solid arrows corresponds to the execution of generating and applying side effects at a site. The

dashed arrows indicate the propagation and replication of side effects from a site to another.

update queries such as INSERT, UPDATE, and DELETE. In the end, it

commits all side effects and makes the changes persistent.

3.2 A motivating example

Next, we use a simplified banking system as amotivating example to

explain the design principles behind Rigi for identifying conflicting

operations and generating ordering restrictions. The system has

three operations, namely, Withdraw, Deposit, and UpdateCustomer.

The pseudocode ofWithdraw is shown in Figure 2, and we omit the

other two in the interest of space. Figure 3 gives three concurrent

executions of these operations with no coordination placed.

Figure 3a illustrates an example of replicating non-commutative

side effects. Two concurrent requests of the UpdateCustomer oper-

ation are submitted to two data centers to change the location of

“Bob” from “NYC” to “LON” and “FRA,” respectively. When the side

effects of the two requests were replicated across the two sites in

different orders, the resulting states would differ. This violates a

critical system property called state convergence [43]. To preclude

this kind of anomalies, we need to check the commutativity of side

effects produced by operations in a pair-wise fashion and add a

restriction to coordinate the generation of any pairs of side effects

that do not commute.

Figure 3b shows an example using the side effects of two concur-

rent Withdraw requests. Although the two side effects commute,

this execution is still invalid. This is because the path conditions

established at the primary replica could be invalidated by the con-

current execution of other operations. In this example, the path

condition for the side effect of a successful withdrawal would be

balance − money ≥ 0. Clearly, the condition holds in the primary

replica of the two simultaneousWithdraw requests. Nevertheless,

it becomes false when the side effect reaches the other (remote) site.

Application of the side effects of both requests results in a negative

balance value, violating the expected invariant. To preclude this

type of violations, we need to derive a semantics check to determine

if we should add a restriction between the pair of side effects that

are not invariant preserving.

Unlike the above two harmful concurrent executions, Figure 3c

represents a correct one, where aWithdraw can run concurrently

with a Deposit, for which the reason is two-fold. First, their side

effects are commutative. Second, the conditions corresponding to

the two identified side effects are compatible, i.e., the side effect of

Deposits will not invalidate the condition of successful Withdraws,

and vice versa. This indicates that no coordination should be placed

to restrict the generation and replication of the two side effects.

3.3 Challenges and opportunities

Inspired by the examples shown in Figure 3, the correctness require-

ment implies that the geo-replicated version should not generate

more states than the original, non-replicated version. Therefore,

we may need to output a restriction over a pair of side effects if

they meet either of the following two conditions: a) they are non-

commutative side effects and may cause replicas to terminate in a

divergent state that cannot be generated in any serializable order;

and b) the condition leading to one of the two side effects might no

longer hold when seeing the other side effect.

To detect the two cases without the programmer’s inputs, we

need to “understand” the operations solely from the source code

to infer side effects and invariants. First, due to the code struc-

ture of the target applications, for inferring side effects, it is suf-

ficient to understand the specifications of SQL queries and the

changes induced on arguments that instantiate the queries. Second,

application-specific invariants are implicitly encoded into the con-

ditional checks taken at each branch along a control flow path of

each transaction. As a result, to automatically infer the invariants,

we need to extract and understand the semantics of the path condi-

tion leading to a particular side effect. This step requires traversing

all distinct code paths. It may also involve the understanding of

the semantics of SELECT queries, since the variables in the branch

conditional check formula may be fetched from the database.

Identifying conflicting pairs of side effects requires us to make

the gathered side effects and path conditions verifiable. Here, we

translate them into the code of Z3 [27], and then ask Z3 to check

the commutativity of the side effects and the compatibility of their
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Figure 4: The design of the Rigi analyzer.

corresponding conditions by proving certain formulas. The check-

ing provably identifies a minimal set of non-commutative or non-

invariant-compliant pairs of side effects as necessary ordering re-

strictions that need to be enforced by the runtime part of AutoGR.

4 Rigi: A STATIC ANALYZER

As illustrated in Figure 4, Rigi is comprised of a database specifi-

cation library (or short, DBLib), a side effect collector (or short,

Collector), and a rule checker (or short, Checker).

(1) DBLib represents the abstraction of relational databases in Z3Py,

a Z3 API in Python. It covers a substantial range of SQL features

and serves as a building block for Rigi.

(2) Collector inspects the source code and identifies the side

effects generated in different code paths. It gathers the path

conditions leading to particular side effects. It also translates

the side effects and their path conditions into code in Z3Py.

(3) Checker calls the Z3 theorem prover [27] and generates re-

strictions through commutativity and semantics checks over

pairs of operations’ side effects and their path conditions.

4.1 Database abstraction in Z3

Table 1 shows DBLib, our database abstraction in Z3, covers a sub-

stantial range of SQL features. The basic features cover the table

schema definition and simple queries such as SELECT, UPDATE, etc.
The first row of Table 1 shows the translation of a table definition

in SQL into an extensional array in Z3Py, which consists of pairs of

< KEY, VALUE >, where KEY represents the unique index of the corre-
sponding table that may include one or more attributes, and VALUE
covers the remaining attributes. Both KEY and VALUE are defined as

an algebraic data type in Z3Py where each of their attributes is de-

clared as a primitive type such as IntSort, StringSort, BoolSort,
and RealSort (We also enable to use FPSort instead of RealSort
for stricter floating-point verification). For instance, the primary

key of the table RSVN is translated into a customized data struc-

ture of type K_RSVN to include two attributes, namely R_C_ID and

R_F_ID. Considering that the data for each row of the table can be

fetched by a primary key or a unique index key, we additionally

allow both of them to point to the same row of the table.

The second four lines of Table 1 represent the translation of basic

SQL queries. First, the SELECT and UPDATE queries are translated

into Select and Store operations on Z3Py arrays, parameterized

by the primary key. We additionally allow specifying which set of

attributes of the target record a query intends to fetch or update.

Regarding INSERT, we create a key value pair, and make the corre-

sponding key point to the value through the Store function. For
DELETE, we just set the target record to be nil.

The last three lines of Table 1 show how we model the advanced

SQL features, ranging from comparison operator to aggregation.

First, for the comparison operator, we fetch the target attribute by

the corresponding key and compare it with the supplied argument,

e.g., end_date in the example. Second, we translate cross-table join

queries into multiple sub-selections, each of which fetches records

of interest from a particular table with the same unique key. Third,

for ORDER BY on an attribute, we specify a relation over the list

of records that for any adjacent pairs of records, the value of the

target attribute of the former record is always either greater or less

than the counterpart of the latter record.

4.2 Collecting side effects and conditions

The mission of Collector is to collect side effects and their corre-

sponding path conditions, and to translate them into Z3Py code, on

a per path basis. It first builds an Abstract Syntax Tree (AST) from

the source code of the target application to obtain the control flow

graph. Then, it traverses the entire control flow graph to identify

paths via a depth-first-search algorithm. The path analysis faces

an infinite path problem, in the presence of loops. To address this

challenge, we take inspiration from an existing work [34] that many

real-world applications (including those we analyze) satisfy a loop

iteration independence property, which says that the parts of the

state modified in each iteration are disjoint. In this case, we handle

loops by first verifying this independence property and then un-

folding the independent loops so that the number of paths becomes

finite. We explain the handling of complex loops in Section 4.3.

We skip paths that are either read-only or leading to abort, since

they do not generate side effects. Then, we iterate all remaining

code paths, and collect the side effect for a path by performing

one-to-one direct translation from Java code to Z3Py code with the

following two exceptions. First, we ignore control flow condition

checks along the target path, which will be handled by the condition

collecting phase. Second, for every encountered SQL statement, we

translate it into its corresponding form using our extended DBLib

APIs, presented in Table 1. It is worth mentioning that this one-to-

one translation is feasible since Z3 itself already supports common

data types and the associated computations, while our DBLib covers

the database statements. Take Withdraw for an example. To update

the account balance, the transaction assigns a local variable 𝑏𝑎𝑙𝑎𝑛𝑐𝑒

by the value fetched from the backend database. Then it performs a

local computation to subtract 𝑎𝑚𝑜𝑢𝑛𝑡 from 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , where 𝑎𝑚𝑜𝑢𝑛𝑡

is supplied by the user. At the end, the transaction sets the final value

of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to instantiate a UPDATE query “update set bal = ? where

custId = ?”. After the translation, the resulting Z3Py code preserves

the semantics of the original code. This translation enables our

Z3-based Checker to infer the numeric changes on the balance

variable, i.e., decrement here, to extract commutative side effects.

In addition to side effects, Rigi gathers the path condition bymak-

ing conjunction of the Boolean formulas of every branch taken by

the corresponding path. The individual formula may involve both

shared objects fetched from the database or arguments from user

inputs, which requires Rigi to substitute the variables involved in

each formula with their source. For example, in the banking system,

a formula “𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑎𝑚𝑜𝑢𝑛𝑡 >= 0” determining whether a with-

draw can be admitted, is translated into “table_accounts(userId).bal
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Table 1: Specifications in Z3Py automatically derived for database APIs which cover a substantial range of SQL features.

Category Description Example SQL statement Z3Py specification

Basic

features

Data

model

CREATE TABLE RSVN (
R_C_ID BIGINT NOT NULL ,
R_F_ID BIGINT NOT NULL ,
R_SEAT BIGINT NOT NULL , ...

PRIMARY KEY (R_C_ID ,R_F_ID))

K_RSVN = Datatype (...)
K_RSVN.declare (...,(R_C_ID , R_F_ID))
V_RSVN = Datatype (...)
V_RSVN.declare (...)
TABLE_RSVN = Array (..., K_RSVN , V_RSVN)

Basic

queries

SELECT NAME FROM ACCOUNTS
WHERE CUSTID = cid

V_ACCOUNTS.NAME(Select(
TABLE_ACCOUNTS , K_ACCOUNTS.new(cid)))

INSERT INTO USERS
(ID,FIRSTNAME ,LASTNAME ,...)

VALUES (uid ,fname ,lname ,...)

Store(TABLE_USERS , K_USERS.new(uid),
V_USERS.new(uid , fname , lname , ...))

UPDATE CUSTOMER
SET C_BASE_AP_ID = aid ,
LOCATION = loc
WHERE C_ID = cid

Store(TABLE_CUSTMER , T_CUSTMER.new(cid),
V_CUSTMER.new(V_CUSTMER.BALANCE(
Select(TABLE_CUSTMER ,T_CUSTMER.new(cid)))
,aid ,...,loc ,...))

DELETE FROM ACCOUNTS
WHERE CUSTID = cid

Store(TABLE_ACCOUNTS ,
K_ACCOUNTS.new(cid), V_ACCOUNTS.nil)

Advanced

features

Comparison

operator

SELECT ID FROM ITEMS
WHERE ID=id AND END_DATE <= end_date

V_ITEMS.END_DATE(Select(
TABLE_ITEMS ,K_ITEMS.new(id))) <= end_date

Inner join

SELECT BALANCE ,F_SEATS_LEFT ,
R_ID , R_SEAT , R_PRICE

FROM T_CUSTOMER ,T_FLIGHT ,T_RSVN
WHERE C_ID=cid AND C_ID=R_C_ID

AND F_ID=fid AND F_ID=R_F_ID

V_CUSTOMER.BALANCE(Select(T_CUSTOMER ,K_CUSTOMER.new(cid)))
V_FLIGHT.F_SEATS_LEFT(Select(T_FLIGHT ,K_FLIGHT.new(fid)))
V_RSVN.R_ID(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_SEAT(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_PRICE(Select(T_RSVN ,K_RSVN.new(cid ,fid)))

Aggregation

SELECT USER_ID , BID
FROM BIDS
WHERE ITEM_ID = iid

ORDER BY bid
DESC LIMIT 1

ForAll ([k_bids_1 ,k_bids_2], Implies(And(V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_1)) == iid , V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_2)) == iid , V_BIDS.USER_ID(
Select(TABLE_BIDS ,k_bids_2)) == winner),V_BIDS.BID(
Select(TABLE_BIDS ,k_bids_1)) <= V_BIDS.BID(Select(
TABLE_BIDS ,k_bids_2))))

- amount >= 0”, where userId is a user’s customer id and bal repre-

sents the balance attribute she wants to retrieve. 𝑟𝑠.𝑛𝑒𝑥𝑡 () == false

is a commonly used conditional check to decide whether a partic-

ular record exists or not. In this case, Rigi first determines which

SELECT query 𝑟𝑠 refers to, and then generates a Z3Py formula “ta-

ble_[name](pkey) == nil”, where 𝑛𝑎𝑚𝑒 and 𝑝𝑘𝑒𝑦 stand for the

corresponding table name and primary key in that query.

In the end, the output of Collector is a set of tuples, each of

which consists of 𝑜 , pcond, and arg, standing for the side effect, path

condition, and arguments, respectively. Examples are in Table 2.

4.3 Checking rules

As depicted in Figure 4, Checker takes the database specifications

and the ⟨o, pcond, arg⟩ tuples generated by Collector as input,

and performs two checks, namely the commutativity and semantics

check, to figure out the conflicting side effect pairs.

Commutativity check. For two operations 𝑢1 and 𝑢2, assume

their side effects and arguments are ⟨𝑜1, arg1⟩ and ⟨𝑜2, arg2⟩, re-
spectively. The commutativity check is relatively straightforward

and well studied in the literature [25, 55], and concentrates only

on side effects. Here, we check, for any reachable state 𝑠 of a target

application, whether the following assertion is satisfied:

𝑜1 (𝑜2 (𝑠, arg2), arg1) = 𝑜2 (𝑜1 (𝑠, arg1), arg2)
This assertion says that two side effects are commutative if ap-

plying them against the same initial state in different orders leads

to the same final state. Take the problematic concurrent execution

shown in Figure 3a, for example. The side effects of UpdateCustomer

are not self-commutative; thus, Rigi adds a restriction over any pair

of UpdateCustomer operations.

Additionally, for a transaction containing complex loops with

non-independent iterations, it is hard for Rigi to infer their side

effects. In this case, we resort to a conservative but safe strategy,

where the corresponding transaction will be marked as conflicting

with all other side effects that have write-write conflicts with it.

Semantics check.To ensure the transitioning from a non-replicated

serializable code into its geo-replicated version is correct, we per-

form semantics check by asserting for any concurrent execution

of two operations 𝑢1 and 𝑢2, the application of their side effects

against a valid state in a serial order will not lead to an unreachable

state in the non-replicated version. Formally, let 𝑜1 be the side effect

of 𝑢1, 𝑜2 and 𝑜
′
2
be the side effect of 𝑢2 generated when 𝑢2 misses or

sees 𝑜1, we should assert that the two operations 𝑢1 and 𝑢2 can be

executed without restriction if (1) 𝑜2 is a no-op side effect (i.e., miss-

ing the side effect of 𝑢1, 𝑢2 produces no side effect); or (2) 𝑜2 = 𝑜 ′
2

(i.e., 𝑢2 produces the same side effect regardless of the existence

of 𝑢1). Finally, we translate the above principle into checking the

following formula:

For any reachable state 𝑠 , (𝑠 ,arg
2
) satisfying 𝑝𝑐𝑜𝑛𝑑2

⇒ (𝑜1(𝑠 , arg1), arg2) satisfies 𝑝𝑐𝑜𝑛𝑑2.

We use two following counter-examples to illustrate this idea.

First, as shown in Figure 3b, imagine we run two withdraws simul-

taneously against an initial state (balance is 100) where they want

to deduct 50 (denoted as 𝑢1) and 60 (denoted as 𝑢2) from the shared

account, respectively. If 𝑢1 sees the side effect of 𝑢2 (the remaining

balance is 40), then the side effect of 𝑢1 will never be generated. In

this case, without ordering the execution of these two operations

may lead to violations in the intended application semantics that

balance should never be negative. Thus, Rigi automatically adds a

restriction over 𝑢1 and 𝑢2.

Take RUBiS as another counter-example, placebid is to bid on an

item when the corresponding auction is still open, while closeAuc-

tion terminates an auction and declares the winner. When placebid

did not see the side effects of closeAuction, it would continue to bid

for an auction that was already closed. As closeAuction may miss
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the side effects of placebid which issues a higher bid than those

observed by closeAuction, the winner declaration would violate an

intended application semantic where the winner must be the bidder

associated with the highest accepted bit. Following a similar logic

above, Rigi produces a restriction over placebid and closeAuction.

Furthermore, a transaction containing complex loops with non-

independent iterations is marked conflicting with all other side

effects whose generation phases need to read objects written by it.

In summary, Rigi faithfully follows the program logic of the non-

replicated serializable code and may create false positives if the

side effect analysis becomes conservative and less accurate, due to

complex loops. False positives will negatively impact performance,

but they will not cause state divergence or invariant violations. In

contrast, it produces no false negatives since we assume that the

non-replicated code to be analyzed must be serializable.

4.4 Correctness

To ensure our proposal is correct, we formulate the correctness into

the following two theorems, and provide only the proof sketches,

in the interest of space.

Definition 1 (Idleness). A 𝑘-site geo-replicated system is idle, if

𝑘 sites begin at the same valid initial state, and after operating for a

while, all side effects ever generated are applied at all 𝑘 sites while

no new side effects are being generated at the same time.

Theorem 2 (State convergence). For a 𝑘-site geo-replicated

system beginning at the same valid initial state, if the generation and

application of side effects is coordinated by the restrictions identified

by Rigi and executed by AutoGR, then when the system is idle, the

reached final states of all 𝑘 sites converge.

Proof. Assume 𝑛 side effects are generated in the target geo-

replicated system, denoted by 𝑜1, 𝑜2, . . . , 𝑜𝑛 . Let ⟨𝑜1, 𝑜2, . . . , 𝑜𝑛⟩ de-
notes the state obtained by applying these𝑛 side effects sequentially

against the initial state. We show by induction on 𝑛 that for all 𝑛,

all traces of 𝑛 side effects are either not admitted by the target due

to the Rigi’s static checks and AutoGR’s runtime coordination, or

will lead to the same final state when the system is idle.

(1) 𝑛 = 0, 1. Trivially convergent.

(2) 𝑛 = 2. There are two possible traces, (𝑜1, 𝑜2) and (𝑜2, 𝑜1). If
⟨𝑜1, 𝑜2⟩ ≠ ⟨𝑜2, 𝑜1⟩, then one of the two traces will be eliminated

by Rigi as the two side effects are not commutative.

(3) For case 𝑛 + 1, we assume one admissible trace is (𝑜1, 𝑜2, . . . , 𝑜𝑛,
𝑜𝑛+1). We then consider an arbitrary trace (𝑝1, . . . , 𝑝𝑙 , 𝑜𝑛+1, 𝑝𝑟 ,
. . . , 𝑝𝑛), where 𝑟 = 𝑙 + 1 and the sequence (𝑝𝑖 ) is an arbi-

trary permutation of the sequence (𝑜 𝑗 ) for 𝑗 ≤ 𝑛. If 𝑙 = 𝑛,

by the induction hypothesis, the proposition holds. If 𝑙 < 𝑛,

for ⟨𝑝1, . . . , 𝑜𝑛+1, . . . , 𝑝𝑛⟩ = ⟨𝑜1, . . . , 𝑜𝑛+1⟩ to hold, the only pos-

sibility is to move 𝑜𝑛+1 to the end. And this condition is only

satisfied when 𝑜𝑛+1 commutes with all 𝑝𝑖 for 𝑖 ≥ 𝑟 , which can

be shown by induction on 𝑛 − 𝑟 . □

Theorem 3 (Invariant preservation). For a𝑘-site geo-replicated

system with a valid initial state, if the generation and application of

side effects are coordinated by the restrictions identified by Rigi and

executed by AutoGR, then at each site, every state before generating

or after applying a side effect must be valid.

Proof. Let 𝐼 denote the application-specific invariants encoded

in the non-replicated, serializable application. For a side effect 𝑜 , we

say a state 𝑠 is 𝑜-compatible, if 𝑜 can be generated against state 𝑠 ,

i.e., 𝑠 satisfies both 𝐼 and the path condition leading to 𝑜 . For a 𝑘-site

geo-replicated version of the target non-replicated application, we

need to reason if the states before (denoted by 𝑠𝑖 ) and after (denoted

by 𝑠 ′
𝑖
) applying an admitted side effect 𝑜𝑖 are both valid. Without

loss of generality, we perform the following analysis against a site

𝐴, which receives two side effects 𝑜1 and 𝑜2 from any site in the

geo-replicated system (𝐴 itself included). There are three major

cases to be considered.

(1) 𝑜2 arrived at 𝐴 after 𝑜1, and 𝑠2 = 𝑠 ′
1
(𝑜2 is right after 𝑜1).

(a) The generation of 𝑜2 sees the side effect of 𝑜1, and thus 𝐼

holds at 𝑠1, 𝑠2, 𝑠
′
2
by the correctness of the non-replicated

version.

(b) The generation of 𝑜2 misses the side effect of 𝑜1. In this case,

𝑠 ′
1
must be 𝑜2-compatible, by the logic of Rigi’s semantics

checks.

(2) 𝑜2 arrived at 𝐴 after 𝑜1, but there are several side effects 𝑜3, 𝑜4,

. . . , 𝑜𝑖 , . . . , 𝑜𝑛+2 between 𝑜1 and before 𝑜2. We prove this by

induction on 𝑛.

(a) The base case 𝑛 = 0 is exactly the first case.

(b) For case 𝑛 + 1, by the induction hypothesis, 𝑠 ′
𝑛+2 must be

𝑜2-compatible, and for each 2 < 𝑗 < 𝑛 + 2, 𝑠 𝑗 is 𝑜 𝑗 -compatible.

(3) 𝑜1 arrived at 𝐴 after 𝑜2. We prove this by a similar logic in the

above case (1) and (2).

By the case analysis above, we therefore show that 𝐼 is preserved

at every moment before and after applying a side effect. □

4.5 Optimizations

Here, we extend Rigi to incorporate the following advanced features

for practical considerations.

CRDTs support. Conflict-free Replicated Data Types (CRDTs) [44,

48] design operations that commute by construction. Thus, appli-

cations can leverage CRDTs to increase the space of commutative

operations/side effects, in order to relax strong consistency con-

straints imposed by potential state divergence in the presence of

uncoordinated concurrent request executions. To cope with the

increasing attention on CRDTs [14, 16], we adapt Rigi to work with

CRDTs. This adaption only requires us to extend Collector to

generate commutative side effects according to the target CRDT’s

intended rules for merging concurrent updates, while leaving the

commutativity checks to remain the same. To demonstrate this

extensibility, we use a simple “Last-Writer-Win (LWW)” strategy as

an example, which resolves conflicting updates by determining an

arbitration order over those updates and pick up the latest write to

be the final value [33, 43, 48]. To support this strategy, Collector

assigns a unique timestamp 𝑡𝑠 to the corresponding side effect by in-

cluding 𝑡𝑠 in its argument list. Then an axiom is added to Checker

saying that the side effect will be applied when 𝑡𝑠 is greater than

the local observed timestamp.

Uniqueness. The non-replicated, serializable applications often

make use of the database’s AUTOINCREMENTAL feature to ensure

that a unique number is generated automatically whenever a new

record is inserted into the table. When migrating to geo-replication,

restrictions must be placed between pairs of side effects, each of

which needs to put a record into the same database table, to preclude

possible commutativity and semantic violations. To avoid the costly

cross-site coordination for the unique id assignment, popular web
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services choose to partition the key space and assign different

ranges to different replicas [4]. To support this feature, we add

another optional axiom to Checker saying that the 𝑖𝑑 obtained in

the corresponding side effects is unique, i.e., ∀𝑖𝑑 ′, 𝑖𝑑 ≠ 𝑖𝑑 ′.
Developers can enable the commutative transformation by turn-

ing on the −DOpt option. Note that although these transformations

introduce new behaviors, i.e., some serializable execution orders

previously rejected by the corresponding non-replicated application

are now accepted, theorems 2 and 3 are still valid.

4.6 AutoGR integration

The implementation of Rigi consists of 2.1 𝑘 lines of Java code, 3.4

𝑘 lines of Kotlin code, and 521 lines of Z3Py code, where the Z3Py

code performs the commutativity and semantics checks shared

across applications. Rigi uses a Java parser [9] and a SQL state-

ment parser [8] to generate database specifications, analyze the

code paths, and collect side effects plus path conditions, for applica-

tions that are written in Java and using the SQL interface for data

access. Note that we specialize our implementation on Java web

applications since Java is one of the most popular languages used

for implementing back-end server applications in major Internet

service providers [13]. We further take advantage of the fact that

the application code is often straightforward with few advanced

programming features, thus considering only a subset of Java, e.g.,

control flow constructs (if, while, try-catch, etc.), built-in data

types (Int, String, etc.), method calls, and basic OOP features.

We integrate Rigi with Olisipo, an existing geo-replication and

coordination system built by Li et al. [7, 36], to form our end-to-end

geo-replication AutoGR framework, see Figure 1. Olisipo consists

of three key system components. First, there is a runtime library

attached with application servers deployed at each site for commu-

nicating with the rest of Olisipo for extracting runtime side effects

through local transaction execution, and for initiating cross-site

replication and necessary coordination. Second, the global coor-

dination service of Olisipo consists of a set of servers, which are

spanning over different sites, running a BftSmart [51] consensus

protocol. This service will tell whether a side effect that needs

coordination can be admitted or not. If so, the dependencies are

determined, which implies that this operation is admitted to the

global partial order. Otherwise, the coordination service suggests

aborting this operation due to conflicts. Finally, at the low level

of the runtime there is a geo-replicated data store with replicas

spanning over different sites. The store offers causally consistent

replication, in which it receives the side effects with ordering de-

pendencies and replicates the side effects at every replica when the

specified dependencies are locally satisfied. This replication strat-

egy ensures that the serial order of applying side effects at every

site is compatible with the global partial order of the corresponding

operations, as pointed by the systemmodel description presented in

Section 2. However, there is no guarantee from the geo-replicated

store that the final state will converge and the correct application

semantics are always preserved. This is all done by the joint work

of the coordination layer and the static analyzer Rigi.

This integration requires Rigi to generate a static and unique

signature, for each side effect that requires coordination, and the

list of static signatures will be consumed by the runtime library

for initiating the coordination procedure. In addition, the restric-

tions identified by Rigi are kept and looked up by the coordination

service to serialize pairs of conflicting side effects. To minimize

the code changes to make target non-replicated applications geo-

replicated, the logic of the runtime library is implemented in the

database connector. Following this, the code adaption is just to

replace the original connector with the one offered by AutoGR.

Olisipo offers “Last-Writer-Win (LWW)” and “UniqueIdGenera-

tion” strategies for transforming the non-commutative side effects

into commutative ones to enable geo-replicated services to maxi-

mize the performance, which match Rigi’s optimizations. When

the −DOpt is enabled, AutoGR automatically assigns the logical

timestamps to corresponding attributes to take advantage of LWW,

and enables UniqueIdGeneration on all primary keys associated

with the AUTOINCREMENTAL keyword.
Finally, the workflow in the AutoGR runtime is as follows: user

requests are sent to a web server at a site in close proximity to them.

At the primary site, the server executes the user request against the

local database replica to collect side effects. Then, the web server

consults the coordination service for admitting or rejecting the

request via the runtime library. When accepting this request, the

web server sends the side effect associated with the dependencies

to the geo-replicated store for applying side effects across sites.

Finally, results and decisions are delivered back to the end users.

4.7 Discussions

Application languages. Though the current implementation of

Rigi only supports applications written in basic Java, the design

principles of Rigi are general and can be extended to support ad-

vanced Java features and other languages. Such extensions can

be made by enhancing Collector to gradually take more Java

constructs and library functions into consideration or use language-

specific parsers. To link other language applications plus the analy-

sis results achieved by Rigi to the runtime of AutoGR, we can mod-

ify the language-specific database connectors to intercept database

calls for creating runtime path signatures, and extracting read/write

sets for cross-site replication and coordination, as described above.

Backend storage systems. AutoGR relies on serializability and

transactional support offered by the backend storage systems, since

the abstraction of transactions eases the consistency reasoning. In

addition, the Z3 abstraction over SQL queries already expresses

the behaviors of key-value stores since the former covers the lat-

ter. However, compared to SQL-compliant databases, the use of

key-value stores would lead us to make Collector stronger since

the application logic needs to perform computations that can be

handled by SQL queries.

Incremental analysis. Currently, Rigi does not assume incremen-

tal analysis when facing changes in the target code base. It suggests

that upon code changes, the developers would need to run Rigi

against the whole code base again to infer possible new restrictions

for safety. This would result in additional efforts to link the updated

application with AutoGR, as newly introduced side effects need

to generate unique signatures for runtime lookup. Despite that

we believe this overhead is manageable, adapting Rigi to support

incremental analysis would be a wise option.

Failure handling. At runtime, we rely on Olisipo to handle fail-

ures. The state of the site coordinators is replicated through a
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Table 2: Conditions and side effects corresponding to a few simplified examples in the four benchmark applications. Note that

the values of parameters such as 𝑖𝑡𝑒𝑚𝐼𝑑 are part of the corresponding side effect, which are obtained when the side effect is

generated at the primary site and encoded into that side effect, thus precluding non-determinism.

Operation Condition Side effect

RUBiS PlaceBid

table_item(itemId) != nil ∧ table_item(itemId).closed==False

∧ table_user(uId) != nil ∧ table_item(itemId).max_bid<price

table_bids(bid) = (itemId, uId, price)

table_item(itemId).nb_of_bids++

table_item(itemId).max_bid = price

Small-

Bank

Send-

Payment

amount ≥ 0 ∧ table_checking(sendAcct).balance ≥ amount
table_checking(sendAcct).balance -= amount

table_checking(destAcct).balance += amount

Seats

NewRe-

servation

table_flight(fid) != nil ∧ table_flight(fid).seat_left > 0 ∧
table_res(fid, seat) == nil ∧ table_res(fid, cid) == nil

InsertReservation(table_res, cid, fid, seat, price)

table_flight(fid).seat_left -= 1

UpdateCustomer(table_customer, cid, info, price)

AddFrequentFlyer(table_fflyer, cid, alid)

Health-

Plus

makeLabAp-

pointment

table_lab_appointment(laId) == nil ∧ table_lab_test(testId)

!= nil ∧ table_tmp_bill(patientId) == nil

InsertLabAppintment(laId, testId, patientId, ...)

InsertTmpBill(billId, patientId, fee)

Table 3: The basic statistics of applications and the lines of

code generated by Rigi for applications.

Code-

base

#op/

#update_op/

#loop_op

Code generated by Rigi

DB Cond.

Side

effects

SmallBank 2.5k 6/5/0 29 38 119

RUBiS 9.8k 28/6/0 113 62 191

Seats 5.0k 7/4/2 267 65 207

HealthPlus 15.7k 157/50/40 524 1,113 1,387

Paxos-like protocol, thus tolerating up to 𝑓 failures. However, the

vulnerability in AutoGR lies in the operation propagation. Cur-

rently, AutoGR relies on each site to send its own local side effects

to all remote sites. A pair-wise network outage or failure of a site

would possibly result in partial replication, e.g., side effects were

missing by some sites. However, this can be addressed using stan-

dard techniques for exchanging causal logs or reliable multicast.

5 EVALUATION

We exercise four web applications: SmallBank [53], RUBiS [29],

Seats Reservation [54], and HealthPlus [6]. The first three have been

extensively used in related work and the last one is a real-world

deployable application. They are designed by having web servers

running application logic to interact with a shared backend data-

base. Table 3 shows their basic statistics. The simplest application,

SmallBank, simulates an online banking system where four out

of the total five transactions contain updates. RUBiS emulates an

eBay-like [3] online auction website, where six out of the total 16

transactions are update transactions. Seats Reservation (or short,

Seats) models an electronic Airline ticketing service. It consists of

six transactions, four out of which contain updates. HealthPlus is a

real-world deployable management system for health care facility.

It consists of 157 transactions in total and 50 of which are updates.

Given the large code base and the prohibitive number of checks

(5112) for manual analysis in HealthPlus, we use it to evaluate the

generality and practicability of our approach.

5.1 Static analysis

Here, we report the Rigi’s main results and refer readers to our

online documents [12] for other detailed results.

Side effects and path conditions. Table 3 summarizes the num-

ber of code automatically generated by Rigi. First, it reads the

Table 4: Statistics of checks, where #failed_commu and

#failed_sem correspond to the number of failed commuta-

tivity and semantics checks, respectively.

#checks
#failed

commu.

#failed

sem.
#restr.

SmallBank

normal

20

0 4 4

opt. 0 4 4

RUBiS

normal

90

19 15 21

opt. 4 8 8

Seats

normal

90

32 26 35

opt. 25 26 28

HealthPlus

normal

5112

148 76 148

opt. 61 47 74

database organization files (e.g., SQL schema) to produce the Z3Py

specifications about the table data structures. For this purpose, Rigi

generates 29, 113, 267, and 524 lines of database specifications for

SmallBank, RUBiS, Seats, and HealthPlus, respectively. SmallBank

has the least amount of database specifications, as it has only three

tables, while HealthPlus is at the other end with 37 tables.

Second, Rigi traverses all code paths, and creates 119-1387 and 38-

1113 lines of side effect and path condition specifications for the four

applications, respectively. We show the exemplified extracted side

effects and path conditions in Table 2. The number of side effect and

path condition specifications is proportional to the codebase size

for applications except for Seats. Though Seats has fewer tables and

transactions than RUBiS, they are more complex (e.g., containing

more attributes, or more state changes), leading to 136.28% and

8.38 % more DB and side effect specifications, respectively. Finally,

we also examine the number of paths and loops in those update

transactions. In SmallBank and RUBiS, each update transaction does

not contain loops and has only a single path leading to side effects.

By contrast, there are 2 and 40 transactions that contain loops in

Seats and HealthPlus, respectively. Rigi further discovers that the

two Seats’ loops obey the loop iteration independence property,

thus can be unfolded one time. For HealthPlus, 24 out of 40 loop

transactions obey the independence property. Overall, each of these

transactions of the four applications leads to between 1 and 9 pairs

of conditions and side effects.

Checks and restrictions. Table 4 summarizes the number of re-

strictions identified by Rigi for four applications. By taking pairs of
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side effects and path conditions extracted above as the input, Rigi

performs 20, 90, 90, and 5112 checks for SmallBank, RUBiS, Seats,

and HealthPlus, respectively, where half are commutativity checks,

and the other half are semantics checks. Based on the pair-wise

checking presented in Section 4.3, the number of checks is roughly

the square of the number of distinct code paths. This explains the

substantial gap in the number of checks between HealthPlus and

the other three applications.

We configure Rigi with two modes: Normal or Opt, correspond-
ing to disable or enable the optimizations presented in Section 4.5.

Note that switching on optimizations may affect the number of

identified restrictions, rather than the number of checks. We first

focus on the the Normalmode results. For SmallBank, all side effects

of its four update transactions are commutative w.r.t. each other,

thus it does not report any commutativity violation restrictions.

Besides, it identifies four restrictions related to the failures of se-

mantics checks. Take the restriction between a pair of SendPayment

operations as an example. The semantics check performed by Rigi

takes as input the path condition and side effect of SendPayment

as shown in Table 2, and identifies a possible violation: when two

SendPayment operations are running concurrently, the side effect of

one operation possibly invalidates a path condition associated with

the side effect of the other, which asserts the remaining balance is

enough. The remaining three restrictions follow a similar logic.

Rigi suggests 21 restrictions for RUBiS, out of which 19 and

15 correspond to commutativity and semantic violations, respec-

tively. There are 35 restrictions identified for Seats, where 32 and

26 are related to commutativity and semantic violations, respec-

tively. HealthPlus has 148 restrictions, out of which 76 correspond

to both commutativity and semantic violations, while the remain-

ing 72 are only related to failed commutativity checks. Interest-

ingly, there are 13, 23, and 76 pairs of side effects and path condi-

tions fail in both commutativity and semantics checks, for RUBiS,

Seats, and HealthPlus, respectively. Take the pair (RegisterItem,
StoreBid) in RUBiS as an example. Its commutativity check fails be-

cause RegisterItem overwrites nb_of_bids, which is increased by
StoreBid. Its semantics check fails as StoreBid asserts the new bid

is larger than max_bid, which can be invalidated by RegisterItem
when inserting a new item. Among the four applications, Seats ex-

hibits the highest ratio of restricted pairs of side effects. The reason

is two-fold. First, side effects of Seats’ transactions are complex

and with limited commutativity, due to either conflicting writes

on shared attributes or concurrent addition and removal from a

shared database table. Second, all reservation-related side effects

have to ensure a strict invariant, encoded in the corresponding path

conditions, that one seat cannot be sold to two different users.

Next, we evaluate Rigi under the Opt mode, which enables the

two commutative transforming features introduced in Section 4.5.

When switching from Normal to Opt, the results of SmallBank re-

main unchanged, since all its side effects commute w.r.t each other.

The numbers of restrictions of RUBiS and HealthPlus are greatly

reduced from 21 to 8, and 148 to 74, respectively. For RUBiS, the

UniqueIdGeneration feature eliminates 15 and 7 failed commutativ-

ity and semantics checks. Similarly, the last-writer-win and UniqueI-

dGeneration strategy together introduce a 58.78% drop in the num-

ber of failed commutativity checks for HealthPlus, and UniqueI-

dGeneration additionally eliminates 29 failed semantics checks.
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Figure 5: Analysis Cost breakdown for static analysis of four

representative applications. In each bar cluster, the bars on

the left and right correspond to the time cost of running

Rigi under Normal or Opt mode, respectively.

Nevertheless, we observe the limited improvement for Seats even

with optimizations, i.e., only 7 failed commutativity checks have

been removed while the failed semantics checks remain the same.

This is because only commutativity violations corresponding to the

UpdateCustomer side effects can be eliminated by the last-writer-

win strategy. We also see the opportunity to apply some other

advanced CRDT solutions, e.g., add-win or remove-win set [48], to

eliminate the commutativity violations between NewReservation

and DeleteReservation. Considering the correctness reasoning of

such transformation, we leave this exploration as future work.

Comparison to other analysis methods. Here, we compare our

work with the most relevant tool Indigo. However, as Indigo offers

only two simple APIs (Decrement and Increment), it is impossible to

write specifications for the three case study applications. Therefore,

to evaluate the effectiveness of Rigi, we choose to compare its

results with manual efforts to achieve PoR consistency, which iden-

tifies a set of rules to find a minimal set of restrictions [36]. We find

that the restrictions automatically identified by Rigi match those

found by the manual process for applications except HealthPlus.

This shows that Rigi can find a minimal set of sufficient restrictions

without requiring any explicit invariants and conditions describing

the target operations’ behaviors. However, with more than 5000

checks required by HealthPlus (see Table 4), it is impractical to

perform the reasoning manually.

Performance implications of Rigi.Wemeasure Rigi’s time cost

on a server, which has 16 Intel(R) Xeon(R) CPU E5-2620 cores and

64GB RAM, and runs CentOS 7, Python 3.6.6, Z3 4.8.10, and Java 8.

The single-thread performance numbers are summarized in Figure 5

under the two aforementioned modes. Overall, within the Normal
mode, Rigi takes from 23.8 seconds to 1.5 hours to analyze all four

applications. As expected, it spends the least amount of the analysis

time for the simplest SmallBank, and the most for HealthPlus with

the largest codebase.

Figure 5 presents the analysis cost breakdown for the four steps

of the static analysis: generating DB specifications, collecting side

effects plus conditions, checking semantic violations, and checking

commutativity. Among the four steps, the time cost of the first two

steps is almost negligible. For instance, it only takes 29 seconds

to complete the DB specification generation and side effect/path

condition even for the largest HealthPlus. The commutativity and
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Figure 6: Average latency perceived by users at different sites across four system configurations (lower is better)

semantics checks dominate the analysis cost and the cost of per-

forming these checks exhibits quadratic growth. Among the four

applications, it takes the least time cost to analyze SmallBank, as

the side effects and conditions of this application are relatively

straightforward, plus it requires the least number of checks. Al-

though Seats contains fewer transactions than RUBiS, it takes a

longer time to complete the static analysis. This is due to the fol-

lowing two reasons. First, some transactions in Seats have more

paths than RUBiS. Second, some paths of Seats contain more update

queries than RUBiS. Thus, the analysis of Seats is more complex

than RUBiS. HealthPlus observes the longest analysis time due to

its larger transaction space.

When switching to Opt, the time for computing the DB specifi-

cations and collecting pairs of conditions and side effects remains

almost the same across the four applications. SmallBank observes

no change in the checking time since its checks are not affected

(see Table 4). However, we observe an up to 58.38% reduction in the

commutativity checking time for the remaining three applications.

This result is consistent with the elimination of failed commuta-

tivity checks in Table 4. Furthermore, the semantics checking time

has also been reduced for RUBiS and HealthPlus, except Seats. This

is because the semantics checks of Seats remain the same.

Additionally, with 16 threads, Rigi under the Normal mode in-

troduces a 3.2-11.5𝑋 speedup of the static analysis time for the four

examined applications, e.g., in the largest improvement, it reduces

the time cost of analyzing HealthPlus from 5351.209s to 465.402s.

Thus, we conclude that given the analysis is a one-time and of-

fline job, the cost is moderate, and Rigi scales well to applications

with larger sizes. Note that even for experienced experts with state-

of-the-art tools like PoR, it may take a few days for small-scale

applications and usually it is infeasible for large ones. Thus the

analysis cost saving is tremendous, not to mention that the whole

process is fully automated with little manual effort.

5.2 Geo-replication

System configurations. We run geo-replicated experiments on

EC2 m4.2xlarge virtual machines (VM) across three sites: Asia-

Pacific-Southeast (AP), US-West (US), and EU-Central (EU). Each

VM has 8 vCPUs, 32 GB of RAM, and runs Ubuntu 16.04, MySQL

5.5, Tomcat 6.0, and Java 8. The average round-trip latency between

any pair of the three sites ranges from 157 to 169ms.

We deploy AutoGR across the three sites, where each site has

a database server host a copy of replicated data, a coordinator to

participate in a Paxos-like consensus protocol [22], and a proxy

that is attached to the original application code to execute user

requests via AutoGR. We run applications with two different con-

figurations: (a) we configure AutoGR with the set of restrictions

identified by Rigi without the commutative transformation (de-

noted as “AutoGR-Normal”); and (b) we configure AutoGR with

the set of restrictions identified when the commutative transforma-

tion is enabled (denoted as “AutoGR-Opt”).

Baselines. We deploy two baselines: (1) a geo-replicated service

spanning three sites but serializing all updates, which is a standard

deployment offering strong consistency and requiring no manual

work, denoted as “Strong”; and (2) a three-site geo-replicated service

coordinating use requests guided by the aforementioned manually

identified restrictions (denoted as “Manual”).

Datasets and workloads. The dataset of RUBiS is generated using

the following parameters: 500,000 old items, 33,000 active items, and

1,000,000 users. We populate a 1.3-2.5 GB database with randomly

generated records for the remaining three applications. RUBiS runs

the representative bidding mix workload, which consists of 85%

read-only transactions and 15% update transactions. For the other

three applications, we generate workloads for them by following

the RUBiS’s setup. Users are evenly distributed across the three

sites, issuing requests in a close loop to the replica at the closest

proximity. We measure average user-observed latency per site and

the aggregated throughput across sites by adding up their individual

values. For each evaluation point, we repeat experiments three times

and report the average.

User-observed latency. The primary goal of our proposal is to au-

tomatically transition non-replicated applications to be geo-replicat-

ed with enhanced performance in terms of low user perceived la-

tency. Figure 6 summarizes the average latency observed by users

at different sites across all system configurations. The error bars

represent standard deviation. For all applications except HealthPlus,

compared to “Manual”, “AutoGR-Opt” achieves similar latency

performance. This finding is consistent with the results obtained in

the case studies section that Rigi with the commutative transfor-

mation option enabled can identify the same restriction set as PoR

consistency does. We do not show such a comparison for HealthPlus

since the manual analysis is infeasible for such a large codebase.

In comparison with “Strong”, “AutoGR-Opt” reduces the user ob-

served latency from 39.8% to 61.8% for all four applications. This

is because the set of identified restrictions is minimal and only a

small fraction of requests that need cross-site coordination, while

in “Strong” all update requests are coordinated. Among the four

applications, the latency improvement of RUBiS is the best, while

that of Seats is the worst. This is because with the AutoGR-Opt

setting, RUBiS imposes the fewest number of restrictions, but Seats

needs the most.

“AutoGR-Normal” achieves 24.84% to 54.1% lower user observed

latency than “Strong” for RUBiS, SmallBank, and HealthPlus, but

behaves similarly as “Strong” for Seats. This result is consistent
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with the restrictions identified by Rigi without the commutative

transformation. In that case, “AutoGR-Normal” almost serializes

all update transactions for Seats. Finally, “AutoGR-Opt” achieves

the same performance as “AutoGR-Normal” for SmallBank and

HealthPlus for different reasons. For SmallBank, “Opt” does not

eliminate its restrictions. Unlike this, even the number of restric-

tions drops in HealthPlus, the limited performance improvement is

because the workload is random and the number of user requests,

whose side effects are restricted by AutoGR-Normal but freed by

AutoGR-Opt, accounts for a quite small fraction. Therefore, we

expect visible improvements in the presence of more skewed work-

loads. In contrast, “AutoGR-Opt” reduces latency from 24.8% to

26.0% than “AutoGR-Normal” for both RUBiS.

Peak throughput. Next, we shift our attention to the implication

of peak throughput. Figure 7 illustrates the peak throughput of

different system configurations, which is normalized to the peak

throughput of “Strong”. These results are consistent with latency

observed in Figure 6. “AutoGR-Opt” performs the best for all ap-

plications. It achieves as good performance as “Manual”, which

represents the best performance gain with the most human inter-

vention for manually identifying restrictions, for all applications

except HealthPlus (Again, we haven’t conducted the manual anal-

ysis for HealthPlus since it can be extremely time-consuming and

also error-prone). “AutoGR-Opt” achieves a speedup ranging from

1.39 to 2.12 times, compared to “Strong”. Finally, if we disable the

commutative transformation, “AutoGR-Normal” still introduces a

1.22-2.12× speedup of peak throughput for all applications except

Seats. The reasons for throughput comparison are similar to those

of the latency comparison we presented above.

6 RELATEDWORK

Geo-Replicated Systems. Many cloud storage systems offer geo-

replication features [11, 15, 24, 26, 28], assuming either strong or

eventual consistency [24, 26, 28]. Recently, Azure CosmosDB [15]

and Google Cloud DataStore [11] provide a set of APIs that read

data with different consistency guarantees, but they still serial-

ize updates for strong consistency. Unlike them, AutoGR follows

restriction-based consistency models, and automatically enables

the geo-replication feature for un-replicated applications with en-

hanced performance without requiring developers to identify manu-

ally problematic concurrent executions that should be coordinated.

Consistency models and fine-grained coordination. To close

the gap between strong and eventual consistency, hybrid consis-

tencymodels, such as RedBlue consistency [35], have been proposed

to allow strongly and causally consistent operations to co-exist in

a single system. Recently, to minimize the coordination in geo-

replication, fine-grained consistency proposals such as PoR con-

sistency [36] completely drop the definition of consistency levels

and instead map the consistency semantics into a set of ordering

restrictions over pairs of operations (analogous to “conflict relation”

in Generic Broadcast [42]). Our approach is built on top of this line

of work and extends them for two main aspects – a) we build an

automated analysis tool, which identifies the required restrictions

and free programmers from the error-prone and time-consuming

task; and b) we offer an end-to-end solution for automatically de-

ploying non-replicated serializable applications as geo-replicated

with enhanced performance and preserved application semantics.

Tool supports. Some recent proposals aim to relieve developers’

burdens to adapt their applications to use fine-grained consistency

models in geo-replicated scenarios [17, 30, 34]. SIEVE statically

computes the weakest preconditions which lead to side effects that

always preserve invariants [34]. Indigo [20] checks whether the

concurrent execution of a pair of operations would violate invari-

ants and provides a set of mechanisms to resolve conflicts. Hamsaz

takes a sequential object as input and automatically synthesizes a

replicated object that avoids unnecessary coordination [31]. These

works rely on specifications and application-specific invariants that

programmers need to write manually. Unlike them, Rigi does not

assume the existence of specifications; instead, it infers the side

effects and their path conditions solely from the source code. MixT

is a language for designing geo-distributed transactions [38], where

different levels of consistency are associated with the attributes of

database tables. However, this approach requires programmers to

re-implement their applications using MixT. The goal of IPA [19] is

orthogonal to ours, as it ensures invariants on an eventually con-

sistent replicated store by repairing and compensating violations

introduced by running conflicting operations in parallel.

CRDTs. We significantly differ from CRDTs [44, 48] by (1) the

primary interest of AutoGR and Rigi is to identify pairs of non-

commutative side effects based on the original code rather than

improving operation commutativity; and (2) convergence alone

cannot prevent invariant violations, which can be avoided by Rigi’s

semantics checks and AutoGR’s runtime coordination. Further-

more, CRDTs are complementary to our proposal, and AutoGR can

be extended to incorporate more CRDTs, as some case-study appli-

cations show limited commutativity and the use of LWW indeed

leads to fewer restrictions and better geo-replication performance.

7 CONCLUSION

We present AutoGR – an automated end-to-end framework for

deploying non-replicated applications as geo-replicated. The core

of AutoGR is a static analysis tool Rigi that automatically identifies

necessary restrictions without user interventions. Experimental

results show that AutoGR has the following benefits: (1) low rea-

soning cost, (2) optimal performance, and (3) little manual effort.
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