
Trident: Task Scheduling over Tiered Storage Systems in Big Data
Platforms

Herodotos Herodotou

Cyprus University of Technology

Limassol, Cyprus

herodotos.herodotou@cut.ac.cy

Elena Kakoulli

Cyprus University of Technology

Limassol, Cyprus

elena.kakoulli@cut.ac.cy

ABSTRACT
The recent advancements in storage technologies have popular-

ized the use of tiered storage systems in data-intensive compute

clusters. The Hadoop Distributed File System (HDFS), for exam-

ple, now supports storing data in memory, SSDs, and HDDs, while

OctopusFS and hatS offer fine-grained storage tiering solutions.

However, the task schedulers of big data platforms (such as Hadoop

and Spark) will assign tasks to available resources only based on

data locality information, and completely ignore the fact that local

data is now stored on a variety of storage media with different

performance characteristics. This paper presents Trident, a prin-

cipled task scheduling approach that is designed to make optimal

task assignment decisions based on both locality and storage tier

information. Trident formulates task scheduling as a minimum

cost maximum matching problem in a bipartite graph and uses a

standard solver for finding the optimal solution. In addition, Tri-

dent utilizes two novel pruning algorithms for bounding the size

of the graph, while still guaranteeing optimality. Trident is imple-

mented in both Spark and Hadoop, and evaluated extensively using

a realistic workload derived from Facebook traces as well as an

industry-validated benchmark, demonstrating significant benefits

in terms of application performance and cluster efficiency.

PVLDB Reference Format:
Herodotos Herodotou and Elena Kakoulli. Trident: Task Scheduling over

Tiered Storage Systems in Big Data Platforms. PVLDB, 14(9): 1570-1582,

2021.

doi:10.14778/3461535.3461545

1 INTRODUCTION
Big data processing platforms such as Apache Hadoop [7] and

Spark [8] are now widely used for processing large amounts of data

in distributed clusters for a wide variety of applications, including

web-scale data mining, online analytics, and machine learning.

Such applications are typically executed in phases composed of

many parallel tasks. One of the most important components of

these platforms is their task scheduler, which is responsible for

scheduling the application tasks to the available resources located

on the cluster nodes, since it directly impacts the processing time

and resources utilization [35]. The ultimate goal of a task scheduler

is to find an optimal task distribution that will minimize the mean

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.

doi:10.14778/3461535.3461545

execution time of the scheduled tasks and maximize the utilization

of the allocated resources [18].

A plethora of scheduling algorithms have been proposed in re-

cent years for achieving a variety of complementary objectives such

as better resource utilization [26, 32, 38], fairness [25, 41], workload

balancing [12, 39], and data management [1, 4, 47]. One of the key

strategies towards optimizing performance, employed by almost

all schedulers regardless of their other objectives, is to schedule

the tasks as close as possible to the data they intent to process (i.e.,

on the same cluster node). Achieving this data locality can signif-

icantly reduce network transfers (since moving code in a cluster

is much cheaper than moving large data blocks) and improve both

application performance and cluster utilization [18, 35].

At the same time, the rapid development of storage technologies

and the introduction of new storagemedia (e.g., NVRAM, SSDs) [29]

is stimulating the emergence of tiered storage systems in cluster com-

puting. For example, HDFS, the de facto distributed file system used

with Hadoop and Spark deployments, has extended its architecture

to support storing data in memory and SSD devices, in addition to

HDD devices [20]. OctopusFS [27] and hatS [28] extended HDFS to

support fine-grained storage tiering with new policies governing

how file blocks are replicated and stored across both the cluster

nodes and the storage tiers. In addition, in-memory distributed file

systems such as Alluxio [3] and GridGain [19] are used for storing

or caching HDFS data in cluster memory.

While tiered storage systems have been shown to improve the

overall cluster performance [21, 27, 28], current task schedulers

are oblivious to the presence of storage tiers and the performance

differences among them. In the past, scheduling a data-local task

meant the task would read its input data from a locally-attached

HDD device. In the era of tiered storage, however, that task might

read data from a different storage media such as memory or SSD.

Hence, the execution times of a set of data-local tasks can vary

significantly depending on the I/O performance of the storage me-

dia each task is reading from. In addition, as the bandwidth of the

interconnection network keeps increasing (and headed towards In-

finiBand), the execution time bottleneck of tasks is shifting towards

the I/O performance of the storage devices [5, 31].

Very fewworks address (fully or partly) the task scheduling prob-

lem over tiered storage. In the presence of an in-memory caching

tier, some systems like PACMan [6], BigSQL [16], and Quartet [14]

will simply prioritize scheduling memory-local tasks over data-local

tasks (as they assume that only two tiers exist). H-Scheduler [31]

is perhaps the only other storage-aware scheduler implemented

for Spark over tiered HDFS. H-Scheduler employs a heuristic algo-

rithm for scheduling tasks to available resources that, unlike our

approach, does not guarantee an optimal task assignment.

1570

https://doi.org/10.14778/3461535.3461545
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461545

In this paper, we introduce Trident, a principled task schedul-
ing approach that can exploit the storage type information provided
by the underlying tiered storage system for making optimal sched-
uling decisions in both a locality-aware and a storage-tier-aware
manner. Specifically, the scheduling problem is encoded into a bi-

partite graph of tasks and available cluster resources, where the

edge weights represent the cost of reading data based on locality

and storage tier information. The problem is then formulated as a

minimum cost maximum matching optimization problem, which is

solved using a standard solver for finding the optimal task assign-

ments. More concretely, our contributions are as follows:
(1) We formally define the problem of task scheduling over tiered

storage and formulate it as a minimum cost maximummatching

problem in a bipartite graph.

(2) We introduce two pruning algorithms for bounding the size of

the graph and reducing the scheduling time by up to an order

of magnitude without affecting the optimality of the solution.

(3) We extend YARN’s resource request model with a general no-

tion of locality preferences to account for storage tiers.

(4) We implemented the Trident scheduler in both Spark andHadoop,

showing the generality and practicality of our approach.

(5) We performed an extensive evaluation using a realistic work-

load and an industry-validated benchmark, showcasing signifi-

cant benefits for application performance and cluster efficiency.

Outline. The rest of this paper is organized as follows. Section 2

reviews prior related work. Section 3 formally defines the task

scheduling problem over tiered storage. Sections 4 and 5 present

the details of our task scheduling approach when implemented in

Spark and Hadoop, respectively. Section 6 describes our evaluation

methodology and results, while Section 7 concludes the paper.

2 RELATEDWORK
Multiple scheduling algorithms have been proposed in the past and

are presented in various comprehensive surveys [18, 35]. In this

section, we discuss the most relevant ones. Hadoop offers three

schedulers out-of-the-box: (1) FIFO (First In First Out), which as-

signs tasks to resources in order of job submission [30]; (2) Capacity,
which allocates resources to jobs under constraints of allocated ca-

pacities per job queue [33]; and (3) Fair, which assigns resources

to jobs such that they get, on average, an equal share of resources

over time [44]. Similarly, Spark supports FIFO and Fair scheduling.

In terms of data locality, the three schedulers behave in a similar

manner: given some available resources on a node, they will try to

assign (in order) data-local, then rack-local, then remote tasks.

Several studies focus on improving data locality rates. Delay

Scheduling [45] will have the next job wait for a small amount of

time if it cannot launch a data-local task, in at attempt to increase

the job’s data locality. Delay scheduling is actually offered as a con-

figurable option in all aforementioned schedulers. Wang et al. [42]

focus on striking the right balance between data locality and load

balancing using stochastic network theory, in order to simultane-

ously maximize throughput and minimize delay. Scarlett [4] and

DARE [1] employ a proactive and reactive approach, respectively,

for changing the number of data replicas based on access frequen-

cies in an attempt to improve data locality. Unlike Trident, none of

the above approaches support tiered storage.

A set of approaches tackle the issue of task scheduling over het-

erogeneous clusters that contain nodes with different CPU, memory,

and I/O capabilities. One common theme involved is estimating

the task execution times in order to correctly identify slow tasks

(on less capable nodes) and re-execute them. LATE [47] adopts a

static method to compute the progress of tasks, SAMR [9] calcu-

lates progress of tasks dynamically using historical information, and

ESAMR [36] extends SAMR to employ k-means clustering for gener-

ating more accurate estimations. Tarazu [2] and PIKACHU [17] use

dynamic load rebalancing to schedule tasks after identifying the fast

and slow nodes at runtime. More recently, RUPAM [43] employed

a heuristic for heterogeneity-aware task scheduling, which consid-

ers both task-level and hardware characteristics while preserving

data locality. While the aforementioned approaches work over het-

erogeneous clusters, they ignore the heterogeneity resulting from

different locally-attached storage devices.

The increasing memory sizes is motivating the use of distributed

memory caching systems in cluster computing. PACMan [6] and Big

SQL [16] utilize memory caching policies for storing data in cluster

memory for speeding up job execution. In terms of task scheduling,

they simply prioritize assigning memory-local tasks over data-local

tasks. Quartet [14] also utilizes memory caching and focuses on

data reuse across jobs. The Quartet scheduler follows a rule-based

approach: schedule a task 𝑇 on node 𝑁 if (i) 𝑇 is memory-local on

𝑁 or (ii) 𝑇 is node-local on 𝑁 but not memory-local anywhere else.

Otherwise, fall back to default scheduling with delay enabled. For

comparison purposes, we implemented Quartet and extended its

approach to search for SSD-local tasks first before HDD-local tasks.

H-Scheduler [31] is the only other storage-aware task scheduler

designed to work over a tiered storage system such as HDFS (with

tiering enabled). The key idea of H-Scheduler is to classify the tasks

by both data locality and storage types, and redefine their schedul-

ing priorities. Specifically, given available resources on some cluster

node, schedule tasks based on the following priorities: local memory

> local SSD > local HDD > remote HDD > remote SSD > remote

memory [31]. The main issue with H-Scheduler and Quartet is that

their heuristic methodology implements a best-effort approach that

(in many cases) leads to sub-optimal or even poor task assignments,

as we will see in Section 6. On the other hand, the principled schedul-
ing approach of Trident guarantees that the optimal task assignments
(as formalized in Section 3.1) will always be achieved.

3 TASK SCHEDULING OVER TIERED STORAGE
Distributed file systems such as HDFS [34] and OctopusFS [27] store

data as files that are split into large blocks (128MB by default). The

blocks are replicated and distributed across the cluster nodes, and

stored on locally-attached HDDs. When tiering is enabled on HDFS

or OctopusFS is used, the block replicas can be stored on different

storage media. For example, Figure 1 shows how 3 blocks (𝐵1–𝐵3)

are stored across 4 nodes (𝑁1–𝑁4), with some replicas residing in

memory, SSDs, or HDDs. Various heterogeneous tiering scenarios

are also supported such as a tier not spanning all nodes (e.g., not all

nodes have SSDs) or having two tiers of the same storage type with

different performance characteristics (e.g., PCIe vs SATA SSDs) [27].

Data processing platforms, such as Hadoop and Spark, are re-

sponsible for allocating resources to applications and scheduling

1571

Processing

Platform

(e.g., Spark,

Hadoop)

𝑻𝟐𝑻𝟏 𝑻𝟑

𝑩𝟐

𝑩𝟏Tiered

Storage

System

(e.g., HDFS,

OctopusFS)

Memory Tier

SSD Tier

HDD Tier

𝑩𝟑

𝑩𝟏

𝑩𝟑

𝑩𝟐

𝑩𝟏

𝑩𝟐 𝑩𝟑

Node 𝑵𝟏 Node 𝑵𝟐 Node 𝑵𝟑 Node 𝑵𝟒

Notation:

𝐵𝑖 = Block 𝑖 | 𝑇𝑖 = Task 𝑖 | = data transfer

Tasks

Figure 1: Example of task execution over tiered storage. Task
𝑇1 is memory-local, 𝑇2 is rack-local, and 𝑇3 is SSD-local.

tasks for execution. In the example of Figure 1, assuming task 𝑇𝑖
wants to process the corresponding data block 𝐵𝑖 , the scheduler was

able to achieve two data-local tasks (𝑇1 and 𝑇3) and one rack-local

task (𝑇2). When the storage tiers are considered, we can further

classify the tasks 𝑇1 and 𝑇3 as memory-local and SSD-local, respec-

tively. While current schedulers only take into account data locality,

we argue (and show) that considering the storage tiers is crucial for

taking full advantage of the benefits offered by tiered storage.

3.1 Problem Definition
A typical compute cluster consists of a set of nodes 𝑁 = {𝑁1, ..., 𝑁𝑟 }
arranged in a rack network topology. The cluster offers a set of

resources 𝑅 = {𝑅1, ..., 𝑅𝑚} for executing tasks. A resource represents

a logical bundle of physical resources (e.g., ⟨1 CPU, 2GB RAM⟩),
such as a container in Hadoop or an Executor slot in Spark, and

it is bound to a particular node. For each resource 𝑅 𝑗 , we define

its location as 𝐿(𝑅 𝑗) = 𝑁𝑘 , where 𝑁𝑘 ∈ 𝑁 . Finally, a set of tasks
𝑇 = {𝑇1, ...,𝑇𝑛} require resources for executing on the cluster.

In a traditional big data environment (i.e., in the absence of tiered

storage), each task contains a list of preferred node locations based

on the locality of the data it will process. For example, if a task will

process a data block that is replicated on nodes 𝑁1, 𝑁2, and 𝑁4,

its list of preferred locations contains these three nodes. However,

when the data is stored in a tiered storage system such as OctopusFS

or tiered HDFS, the storage tier of each block is also available.

Hence, we define the task’s preferred locations 𝑃 (𝑇𝑖) = [⟨𝑁𝑘 , 𝑝
𝑖
𝑘
⟩]

as a list of pairs, where the first entry in a pair represents the node

𝑁𝑘 ∈ 𝑁 and the second entry 𝑝𝑖
𝑘
∈ R represents the storage tier.

We define 𝑝𝑖
𝑘
as a numeric score that represents the cost of reading

the data from that storage tier. Hence, the lower the score the

better for performance. Various metrics can be used for setting the

scores but their absolute values are not as important as representing

the relative performance across the tiers. For example, if the I/O

bandwidth of memory, SSD, and HDD media is 3200, 400, and 160

MB/s, respectively, then the scores 1, 8, and 20 would capture the

relative cost of reading data from those three tiers.

Scheduling a task 𝑇𝑖 on a resource 𝑅 𝑗 will incur an assignment
cost 𝐶 based on the following cost function:

𝐶 (𝑇𝑖 , 𝑅 𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝𝑖
𝑘

if 𝐿(𝑅 𝑗) = 𝑁𝑘 in 𝑃 (𝑇𝑖)
𝑐1 + 𝑝𝑖

𝑘
if 𝐿(𝑅 𝑗) in same rack as some 𝑁𝑘 in 𝑃 (𝑇𝑖)

𝑐2 otherwise (with 𝑐2 ≫ 𝑐1)

(1)

Table 1: List of notations.

Notation Explanation

𝑁𝑘 ∈ 𝑁 A node 𝑁𝑘 from a set of nodes 𝑁

𝑇𝑖 ∈ 𝑇 A task𝑇𝑖 from a set of tasks𝑇

𝑅 𝑗 ∈ 𝑅 A resource 𝑅 𝑗 (container/slot) from a set of resources 𝑅

𝐿 (𝑅 𝑗) Location (i.e., node) of resource 𝑅 𝑗

𝑃 (𝑇𝑖) Preferred locations (i.e., ⟨𝑁𝑘 , 𝑝
𝑖
𝑘
⟩ pairs) of task𝑇𝑖

𝑝𝑖
𝑘

Storage tier preference score for task𝑇𝑖 on node 𝑁𝑘

𝐶 (𝑇𝑖 , 𝑅 𝑗) Cost of scheduling task𝑇𝑖 on resource 𝑅 𝑗

𝑑 Default replication factor of the underlying file system

According to Equation 1, if the location of resource 𝑅 𝑗 is one

of the nodes 𝑁𝑘 in 𝑇𝑖 ’s preferred locations, the cost will equal the

corresponding tier preference score 𝑝𝑖
𝑘
. Alternatively, if 𝑅 𝑗 is on

the same rack as one of the nodes 𝑁𝑘 in 𝑇𝑖 ’s preferred locations,

the cost will equal the corresponding preference score 𝑝𝑖
𝑘
plus a

constant 𝑐1, which represents the network transfer cost within a

rack. Otherwise, the cost will equal a constant 𝑐2, representing the

network transfer cost across racks. The inter-rack network cost is

often much higher than the intra-rack cost and dwarfs the local

reading I/O cost; hence, we do not add a preference score to 𝑐2.

Using the above definitions, we can setup the task scheduling

problem as a constrained optimization problem:

Minimize
∑︂

(𝑇𝑖 ,𝑅 𝑗) ∈𝑇×𝑅
𝑥𝑖, 𝑗 𝐶 (𝑇𝑖 , 𝑅 𝑗) (2)

Subject to 𝑥𝑖, 𝑗 = {0, 1} ,∀ (𝑇𝑖 , 𝑅 𝑗) ∈ 𝑇 × 𝑅∑︂
𝑅 𝑗 ∈𝑅

𝑥𝑖, 𝑗 = 1 ,∀𝑇𝑖 ∈ 𝑇∑︂
𝑇𝑖 ∈𝑇

𝑥𝑖, 𝑗 = 1 ,∀ 𝑅 𝑗 ∈ 𝑅

The goal is to find all assignments (i.e., ⟨𝑇𝑖 , 𝑅 𝑗 ⟩ pairs) that will
minimize the sum of the corresponding assignment costs. The vari-

able 𝑥𝑖, 𝑗 is 1 if 𝑇𝑖 is assigned to 𝑅 𝑗 and 0 otherwise. The second

constrain guarantees that each task will only be assigned to one

resource, while the last constrain guarantees that each resource will

only be assigned to one task. The above formulation requires that

the number of tasks 𝑛 equals the number of resources𝑚. If 𝑛 < 𝑚,

the third constrain must be relaxed to

∑︁
𝑇𝑖 ∈𝑇 𝑥𝑖, 𝑗 ≤ 1 (i.e., some

resources will not be assigned), while if 𝑛 > 𝑚, the second con-

strain must be relaxed to

∑︁
𝑅 𝑗 ∈𝑅 𝑥𝑖, 𝑗 ≤ 1 (i.e., some tasks will not

be assigned). Table 1 summarizes the notation used in this section.

3.2 Min Cost Max Matching Formulation
The task scheduling problem defined above can be encoded as a

bipartite graph 𝐺 = (𝑇, 𝑅, 𝐸). The vertex sets 𝑇 and 𝑅 correspond

to the tasks and resources, respectively, and together form the ver-

tices of graph 𝐺 . Each edge (𝑇𝑖 , 𝑅 𝑗) in the edge set 𝐸 connects a

vertex 𝑇𝑖 ∈ 𝑇 to a vertex 𝑅 𝑗 ∈ 𝑅 and has a weight (or cost) as

defined in Equation 1. The constrained optimization problem for-

mulated in Equation 2 is equivalent to finding a maximummatching

𝑀 = {(𝑇𝑖 , 𝑅 𝑗)} with (𝑇𝑖 , 𝑅 𝑗) ∈ 𝑇 × 𝑅 in the bipartite graph 𝐺 that

minimizes the total cost function:∑︂
(𝑇𝑖 ,𝑅 𝑗) ∈𝑀

𝐶 (𝑇𝑖 , 𝑅 𝑗) (3)

1572

Tasks with preferred locations:
𝑃 𝑇1 = 𝑁1,𝑀 , 𝑁2, 𝑆 , 𝑁4, 𝐻
𝑃 𝑇2 = 𝑁1,𝐻 , 𝑁3, 𝑆 , 𝑁4, 𝑆
𝑃 𝑇3 = 𝑁2,𝑀 , 𝑁3, 𝐻 , 𝑁4, 𝑆

Available resources on nodes:
𝐿 𝑅1 = 𝑁1
𝐿 𝑅2 = 𝑁1
𝐿 𝑅3 = 𝑁2
𝐿 𝑅4 = 𝑁4

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝑹𝟏

𝑹𝟐

𝑹𝟑

𝑹𝟒

𝑴

𝑴

𝑴

𝑺

𝑺
𝑺

𝑯

𝑯

𝑯

(B)(A)

Figure 2: (A) Example of 3 tasks with preferred locations and
4 available resources. (B) Corresponding bipartite graph.𝑀 , 𝑆 ,
and𝐻 represent the tier preference scores (or costs) for mem-
ory, SSD, and HDD, respectively. The cost for rack-local as-
signments are not shown for clarity. The yellow highlighted
edges represent the optimal task assignments.

By definition, a matching is a subset of edges𝑀 ⊆ 𝐸 such that

for all vertices 𝑣 in𝐺 , at most one edge of𝑀 is incident on 𝑣 . Hence,

at most one task will be assigned to one resource and vice versa. A

maximum matching is a matching of maximum cardinality, i.e., it

contains as many edges as possible. Since any task can potentially

be assigned to any resource, maximummatching will contain either

all tasks or all resources, depending on which set is smaller. Hence,

the constrains listed in Equation 2 are all satisfied. Consequently,

by solving the minimum cost maximum matching problem on 𝐺 ,

we are guaranteed to assign as many tasks as possible to resources

and to attain the lowest total assignment cost possible.

Figure 2(A) illustrates an example with three tasks and four

available resources located on three distinct nodes. Each task𝑇𝑖 has

a list of 3 preferred locations (i.e., ⟨node, tier⟩ pairs) according to the
storage location of the corresponding data block 𝐵𝑖 shown in Figure

1. For ease of reference, each tier preference score is indicated using

the constants𝑀 , 𝑆 , and 𝐷 , corresponding to the memory, SSD, and

HDD tiers of the underlying storage system, with 𝑀 < 𝑆 < 𝐷 .

The created bipartite graph with 7 vertices (3 for tasks and 4 for

resources) is visualized in Figure 2(B). Each edge corresponds to a

potential assignment of a task to a resource and is annotated with

the cost computed using Equation 1. The goal of task scheduling

in this example is to select the three edges that form a maximum

matching and minimize the total cost. The optimal task assignment

(see highlighted edges in Figure 2(B)) consists of two memory-local

tasks (𝑇1 on 𝑅1 and 𝑇3 on 𝑅3) and one SSD-local task (𝑇2 on 𝑅4).

Several standard solvers can be used for solving the minimum

cost maximum matching problem and finding the optimal task

assignment, including the Simplex algorithm, the Ford-Fulkerson

method, and the Hungarian Algorithm [13]. While the Simplex algo-

rithm is known to perform well for small problems, it is not efficient

for larger problems because its pivoting operations become expen-

sive. Its average run time complexity is 𝑂 (max(𝑛,𝑚)3), where 𝑛 is

the number of tasks and𝑚 is the number of resources, but has a com-

binatorial worse case complexity. The Ford-Fulkerson method re-

quires converting the problem into a minimum cost maximum flow

problem, with complexity 𝑂 ((𝑛 +𝑚)𝑛𝑚) in this setting. We have

chosen to use the Hungarian Algorithm as it runs in a strongly poly-

nomial time with low hidden constant factors, which makes it more

Algorithm 1 Compute and prune available resources

1: procedure ComputeResources(tasks[], resourceSets[])
2: resources = ∅ ⊲ List of available resource slots

3: if totalAvailableSlots(resourceSets) ≥ 𝑑 × tasks.length
4: nodesToTasks = ∅ ⊲ Map node to local task count

5: for each 𝑇𝑖 in tasks do
6: for each 𝑁𝑘 in 𝑃 (𝑇𝑖) do
7: nodesToTasks.get(𝑁𝑘).increment
8: for each 𝑆 𝑗 in resourceSets do
9: if nodesToTasks.contains(𝑆 𝑗 .node)
10: availSlots = computeAvailableSlots(𝑆 𝑗)
11: localTasks = nodesToTasks.get(𝑆 𝑗 .node)
12: maxSlots = min{availSlots, localTasks}
13: add maxSlots entries to resources
14: if resources.length ≥ tasks.length
15: return resources ⊲ Found enough resources

16: for each 𝑆 𝑗 in resourceSets do
17: availSlots = computeAvailableSlots(𝑆 𝑗)
18: add availSlots entries to resources
19: return resources ⊲ Return all available resource slots

efficient in practice. Specifically, its complexity is𝑂 (𝑛𝑚𝑥 +𝑥2lg(𝑥)),
where 𝑥 = min(𝑛,𝑚). Below, we introduce two vertex pruning al-

gorithms that reduce the complexity to 𝑂 (min(𝑛,𝑚)3), while still
guaranteeing an optimal solution. Approximation algorithms are

also available for finding a near-optimal solution with a lower com-

plexity [15]. However, the scheduling time of our overall approach

is so low (as evaluated in Section 6.4) that we opted for finding the

optimal solution with the Hungarian Algorithm.

3.3 Resource and Task Pruning Algorithms
In many cases, the number of tasks ready for execution does not

equal the number of available resources. For example, a small job ex-

ecuting on a large cluster will have much fewer tasks than available

resources, while a large job executing on a small or busy cluster will

have much more tasks than available resources. Next, we describe

two algorithms for pruning excess resources or tasks that reduce the

graph size and lead to a more efficient execution of the Hungarian

Algorithm, without affecting the optimality of the solution.

Pruning Excess Resources. Algorithm 1 shows the process of

computing and pruning the available resources in a cluster. The

input consists of a list of tasks and a list of resource sets. A resource
set represents a bundle of resources available on a node, which

can be divided into resources (i.e., slots) for running the tasks. The

pruning of excess resources is enabled when the total available

slots across all resource sets is 𝑑 times higher than the number

of tasks (line 3), where 𝑑 is the default replication factor of the

file system. The rational for this limit will be explained after the

algorithm’s description. First, the lists with the preferred locations

of all tasks are traversed for counting the number of local tasks that

can potentially be executed on each node (lines 4-7). The counts

are stored in a map for easy reference. Next, each resource set 𝑆 𝑗 is

considered (line 8). If 𝑆 𝑗 can be used to run at least one data-local

task (line 9), then we need to compute the maximum number of

slots (maxSlots) that can be created from 𝑆 𝑗 for running data-local

tasks. maxSlots will equal the minimum of (a) the total number of

1573

available slots from 𝑆 𝑗 , and (b) the number of tasks that contain 𝑆 𝑗 ’s

node in their preferred locations list (lines 10-12). Finally, maxSlots
entries (i.e., resource slots from 𝑆 𝑗) are added in the list of available

resources (line 13). After traversing all resource sets, if the list of

available resources has more entries than tasks, the list is returned

and the process completes (lines 14-15). Otherwise, resource slots

for all remaining available resources are added in the result list

(lines 16-18). This final step (lines 16-18) is also performed when

the number of total available slots is less than 𝑑 times the number

of tasks for returning all available resources.

Suppose 3 tasks are ready for execution and their preferred

locations are as shown in Figure 2(A). Further, the cluster consists

of 6 nodes (𝑁1–𝑁6), each with enough resources to create 3 slots.

Hence, there are a total of 18 available slots and the pruning will

take place. First, the number of possible data-local tasks will be

computed as {𝑁1 : 2, 𝑁2 : 2, 𝑁3 : 2, 𝑁4 : 3}. For the resource set of
𝑁1, even though there are 3 available slots, only 2 will be added in

the result list as only 2 can host data-local tasks. The same is true

for the resource sets of 𝑁2 and 𝑁3. For 𝑁4, all 3 available slots will

be added in the result list. Finally, since 𝑁5 and 𝑁6 do not appear

in the tasks’ preferred locations, no slots will be added in the result

list. Overall, only 9 out of the 18 possible resource slots will be

considered for the downstream task assignments. In fact, even if

the number of available resource slots were much higher, 9 is the

largest number of slots this process will return for this example.

In general, 𝑛 tasks and 𝑚 resources (with 𝑛 ≪ 𝑚) will lead to a

graph with 𝑛 +𝑚 vertices and 𝑛𝑚 edges without pruning, but only

4𝑛 vertices and 3𝑛2 edges with pruning, showcasing that a massive
pruning of excess resources is possible for small jobs.

Next, consider a different example where the same 3 tasks are

present but only 2 slots are available on each of the nodes 𝑁1–𝑁4.

If pruning were to take place (lines 3-15), all 8 slots would be added

in the result list, rendering the pruning process pointless. This

behavior is expected since each task will typically have 3 preferred

locations (since each file block has 3 replicas by default) spread

across several nodes. Hence, by enabling pruning only when the

number of available slots is greater than 𝑑 times the tasks, we avoid

going through a pruning process that will have no to little benefits.

Even though a large number of available resources may be

pruned, the optimality of the task assignments is still guaranteed
because (a) the excluded resources cannot lead to data-local assign-

ments, and (b) the retained resources that can lead to data-local

assignments are more than the tasks. Hence, the excluded resources

would not have appeared in the final task assignments.

Pruning Excess Tasks. Algorithm 2 shows the process of pruning

excess tasks in the presence of few available resources. In particular,

pruning is enabled when the number of tasks ready for execution is

higher than 𝑑 times the total number of available resources (line 2).

The rational is similar to before: avoid going through the process

of pruning tasks when pruning is not expected to significantly

reduce (if any) the number of tasks. When pruning is enabled, the

available resources are traversed for collecting the set of distinct

nodes (resourceNodes) they are located on (lines 3-5). Next, each task
is added in the result list only if at least one of its preferred locations

is contained in resourceNodes (lines 7-9). If the selected tasks are

more than the available resources, the result list is returned and

Algorithm 2 Prune tasks available for execution

1: procedure PruneTasks(tasks[], resources[])
2: if tasks.length ≥ 𝑑 × resources.length
3: resourceNodes = ∅ ⊲ Set of nodes with resources

4: for each 𝑅 𝑗 in resources do
5: resourceNodes.add(𝐿(𝑅 𝑗))
6: selectedTasks = ∅ ⊲ List of selected tasks

7: for each 𝑇𝑖 in tasks do
8: if resourceNodes.containsAny(𝑃 (𝑇𝑖))
9: selectedTasks.add(𝑇𝑖)
10: if selectedTasks.length ≥ resources.length
11: return selectedTasks ⊲ Found enough tasks

12: return tasks ⊲ Return all tasks

the process completes (lines 10-11). In the opposite case, or when

pruning is not enabled, the list with all tasks is returned (line 12).

Continuing with the example with the 3 tasks (recall Figure 2(A)),

suppose that only one resource slot is available on node 𝑁2. In this

case, only tasks𝑇1 and𝑇3 will be included in the selected tasks list as

they record 𝑁2 in their preferred locations; task𝑇2 will be excluded.

The optimality of the task assignments is safeguarded because the

excluded tasks (which cannot lead to data-local assignments) would

have never been selected by the Hungarian Algorithm since there

are still more (data-local) tasks than available resources.

4 TASK SCHEDULING IN APACHE SPARK
Spark is a data processing framework that utilizes a restricted form

of distributed shared memory, called Resilient Distributed Datasets

(RDDs), for enabling in-memory computations in a fault-tolerant

way [46]. Spark applications invoke a set of coarse-grained deter-

ministic transformations (e.g., map, filter, join) and actions (e.g.,

count, collect) on RDDs for implementing their business logic.

4.1 Current Task Scheduling
A Spark application executes as a set of independent Executor pro-
cesses coordinated by the Driver process. Initially, the Driver con-
nects to a cluster manager (either Spark’s Standalone Manager [8],

Hadoop YARN [40], orMesos [23]) and receives resource allocations

on cluster nodes that are used for running the Executors. The Driver

is responsible for the application’s task scheduling and placement

logic, while the Executors are responsible for running the tasks and

storing RDD data over the entire duration of the application.

Internally, an application is divided into jobs based on RDD

actions. A job is a directed acyclic graph of stages built based on the

RDD lineage graph. Finally, a stage consists of a set of parallel tasks.
Whenever a stage 𝑆 is ready for execution (i.e., its input data is

available), the Task Scheduler is responsible for assigning 𝑆 ’s tasks
to the available resources (or slots) of the Executors. The default

scheduling algorithm is as follows. Given some available slots on

Executor 𝐸 running on some node 𝑁 , look for a task that needs to

process a data partition cached on 𝐸, thus creating a process-local
assignment. Otherwise, look for a task that needs to process a data

block stored on𝑁 , thus creating a data-local assignment. Otherwise,

make a random assignment if the task has no locality preferences,

or a rack-local assignment, or a remote assignment, in that order.

1574

4.2 Trident Scheduler in Spark
The Trident Scheduler is proposed to replace the current Task

Scheduler in the Spark Driver in order to take advantage of the

storage tier information of the processed data. The input to Trident

consists of (i) a list of tasks belonging to the same stage along

with their preferred locations, and (ii) the list of Executors, each

with its available resource set. Given this input, Trident utilizes

Algorithms 1 and 2 to select which resources and tasks to use,

builds the bipartite graph as described in Section 3.2, and uses the

Hungarian Algorithm for making the optimal task assignments.

The Spark execution model creates two additional noteworthy

scheduling scenarios that are naturally handled by our graph en-

coding. First, the preferred location of a task𝑇 can be an Executor 𝐸

containing a cached data partition created during a previous stage

execution. Assigning task 𝑇 to 𝐸 achieves the best locality possi-

ble as it leads to a process-local execution. In this case, we set the

tier preference score to zero, thereby guiding Trident in favoring

process-local assignments over all other. Second, tasks that will read

input from multiple locations during a shuffle (e.g., tasks executing

a reduceByKey) have no locality preference. Since the current Task

Scheduler schedules such tasks before making any rack-local (or

lower) assignments, we set their assignment cost to a number lower

than the network cost 𝑐1 to ensure that Trident has the same behav-

ior. In conclusion, our graph-based formulation can easily generalize
to a variety of locality preferences for task assignment.

5 TASK SCHEDULING IN APACHE HADOOP
Apache Hadoop consists of a resource management layer and a

processing layer [40]. The former follows a master/worker archi-

tecture, where the Resource Manager is responsible for allocating
resources to running applications and theNode Managers run on the
worker nodes and manage the user processes on those nodes. In the

processing layer, an Application Master manages an application’s

life-cycle, negotiates resources from the Resource Manager, and

works with the Node Managers to execute and monitor the tasks.

Allocated resources have the form of Containers, which represent a

specification of node resources (e.g., CPU cores, memory).

5.1 Current Resource and Task Scheduling
When it starts, the Application Master (AM) creates first a set of

resource requests based on the input data to process and the tasks it

plans to execute. A resource request contains: (a) a priority within

the application (e.g., map or reduce); (b) a locality preference (either

a host name, a rack name, or ‘∗’); (c) resources per container (e.g., 1
CPU, 2 GB RAM); and (d) number of containers [40]. The AM uses

heartbeats (every 1 second by default) to send the requests to the

Resource Manager (RM) and to receive the allocated containers.

The RM receives the resource requests and stores them internally.

It also receives periodic heartbeats from Node Managers containing

their resource availability. Upon a node heartbeat, the RM uses a

pluggable Scheduler to allocate the node resources to applications.

The order of applications and the amount of resources to allocate

to each one depend on the type of scheduler (e.g., FIFO vs. Fair).

Data locality is taken into account only when it is time to allocate

resources to a particular application at a specific request priority.

At that point, the scheduler tries to allocate data-local containers;

Resource Requests:

𝑝1, 𝑁1, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 2, 𝑀: 1, 𝑆: 0, 𝐻: 1

𝑝1, 𝑁2, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 2, 𝑀: 1, 𝑆: 1, 𝐻: 0

𝑝1, 𝑁3, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 2, 𝑀: 0, 𝑆: 1, 𝐻: 1

𝑝1, 𝑁4, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 3, 𝑀: 0, 𝑆: 2, 𝐻: 1

𝑝1, 𝑟1, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 3, 𝑀: 2, 𝑆: 1, 𝐻: 0

𝑝1, ∗, 1 𝑐𝑝𝑢, 2 𝐺𝐵 , 3, 𝑀: 2, 𝑆: 1, 𝐻: 0

Available resources on nodes:

𝑁1: 2 𝑐𝑝𝑢, 4 𝐺𝐵 𝑁4: 4 𝑐𝑝𝑢, 8 𝐺𝐵
𝑁2: 1 𝑐𝑝𝑢, 2 𝐺𝐵 𝑁5: 2 𝑐𝑝𝑢, 4 𝐺𝐵
𝑁3: 0 𝑐𝑝𝑢, 0 𝐺𝐵 𝑁6: 3 𝑐𝑝𝑢, 6 𝐺𝐵

Potential Containers:

𝑁1, 𝑀

𝑁1, 𝐻

𝑁2, 𝑀

𝑁4, 𝑆

𝑁4, 𝑆

𝑁4, 𝐻

Allocated Containers:

𝑁1, 𝑀
𝑁2, 𝑀
𝑁4, 𝑆

Notation:

Resource request: {priority, locality, resources per container, # of containers, preference map}

Container: (node, assignment cost)

Figure 3: Example of resource requests based on the preferred
locations of the tasks shown in Figure 2(A), and allocated
containers after executing Algorithm 3.

otherwise, rack-local containers; otherwise, remote ones. The cur-

rent schedulers also support the option of doing the allocations

asynchronously (e.g., every 100ms) based on all available resources

in the cluster, but do so in the same manner as described above.

Upon a heartbeat from an AM, the RM returns the allocated con-

tainers. The AM will then assign tasks to the allocated containers

while taking data locality into account following the same strategy

as above: first data-local, then rack-local, then remote. Finally, the

tasks are sent to the Node Managers for execution.

Therefore, scheduling based on locality preferences in Hadoop
actually takes place at two distinct locations: (1) the RM for allocat-

ing containers to applications, and (2) the AM for assigning tasks

to the allocated containers. Consequently, the Trident scheduler

in Hadoop consists of two components, one running in the RM

(Section 5.3) and one running in the AM (Section 5.4).

5.2 Extending YARN’s Resource Request Model
Given a list of tasks with preferred locations, the AM will generate

the resource requests as follows. For each distinct node𝑁 (or rack𝑅)

that appears in the preferred locations, a request will be created for

𝑁 (or 𝑅), where the number of containers will equal the number of

times 𝑁 (or 𝑅) is found in the preferred locations. Finally, a ‘∗’ (i.e.,
anywhere) request will be created, with the number of containers

equal to the number of tasks.

In order for the RM’s Scheduler to consider storage tier prefer-

ences, we need to extend the resource request model to include

them. We do so by introducing the notion of a preference map in

the resource request, which maps each tier preference score (recall

Section 3.1) to the number of containers requested for that score (i.e,

tier). Consider the example in Figure 2(A) containing 3 tasks with

preferred locations. Tasks 𝑇1 and 𝑇2 list node 𝑁1 in their preferred

locations, which leads to the creation of one resource request for 2

containers on 𝑁1, as shown in Figure 3. The preference map will

contain the entries {𝑀 : 1, 𝐻 : 1} because for 𝑇1, 𝑁1 is paired with

the score 𝑀 and for 𝑇2, 𝑁1 is paired with 𝐻 . Regarding node 𝑁2,

the preferred locations for 𝑇1 and 𝑇3 contain the pairs ⟨𝑁2, 𝑆⟩ and
⟨𝑁2, 𝑀⟩, respectively. Hence, the resource request for 𝑁2 asks for

2 containers, with preference map {𝑀 : 1, 𝑆 : 1}. This information

can then be used by the scheduler for making better decisions. For

1575

example, instead of allocating 2 containers on 𝑁1 (which would

lead to 2 data-local containers, 1 memory-local and 1 HDD-local),

it would be better to allocate 1 container on 𝑁1 and 1 on 𝑁2, which

would lead to 2 memory-local containers.

When computing the preference map for a rack-local resource

request, we only count the per-task lowest scores that are paired

with nodes belonging to that rack. The rational is to match the

default behavior of the underlying tiered storage systems that direct

a rack-local read to the highest tier (with the lowest score). In the

example of Figure 2(A), all nodes belong to the same rack (𝑟1) and

the lowest scores for 𝑇1, 𝑇2, and 𝑇3 are 𝑀 , 𝑆 , and 𝑀 , respectively.

Hence, the preference map contains {𝑀 : 2, 𝑆 : 1}. The same process

is performed for computing the preference map for the ‘∗’ request.
It is important to note that the current resource request model

forms a “lossy compression of the application preferences” [40],

which makes the communication and storage of requests more effi-

cient, while allowing applications to express their needs clearly [40].

However, the exact preferred locations of the tasks cannot be

mapped from the resource requests back to the individual tasks.

Hence, the Trident’s component running in the RM will follow

a different scheduling approach rather than using the Hungarian

Algorithm, described next.

5.3 Trident’s Scheduling Component in the RM
The Scheduler in the RM is responsible for allocating resources to

the various running applications by effectively making three deci-

sions: (1) for which application to allocate resources next; (2) how

many resources to allocate to that application; (3) which available

resources (i.e., containers) to allocate. The first two decisions are

subject to various notions or constraints of capacities, queues, fair-

ness, etc. [35]. Locality is only taken into consideration during the

third decision, when a specific amount of available resources are

allocated to a particular application. Hence, our Trident Scheduler,

which focuses only on the third decision, can be incorporated into

a variety of existing schedulers, including FIFO, Capacity, and Fair,

for making assignments based on both node locality and storage

tier information.

Algorithm 3 shows Trident’s container allocation process, run-

ning in YARN’s Resource Manager. The input is a list of resource

requests submitted by an application (with a particular priority)

and the number of maximum containers to allocate based on queue

capacity, fairness, etc. The high level idea is to first build a list of

potential containers to allocate based on locality preferences and

then allocate the containers with the lowest assignment cost. The

total number of containers is computed as the minimum of the total

number of requested containers and the maximum allowed con-

tainers (line 3). Next, for each resource request 𝑆𝑛
𝑖
that references

a particular cluster node 𝑁𝑘 (lines 4-5), we compute the number

of available containers on 𝑁𝑘 based on 𝑁𝑘 ’s available resources

and 𝑆𝑛
𝑖
’s requested resources per container (line 6). The number

of containers on 𝑁𝑘 (numConts) will equal the minimum between

the number of available containers and the number of requested

containers in 𝑆𝑛
𝑖
(line 7). Finally, numConts containers will be added

in the list of potential containers (line 8). The assignment cost for

each container is also computed based on the preference map in 𝑆𝑛
𝑖

in procedure AddContainers, which will be described later.

Algorithm 3 Allocate containers in YARN’s Resource Manager

1: procedure AllocateContainers(requests[],maxContainers)
2: containers = ∅ ⊲ List of potential containers

3: totalConts = min{getTotalConts(requests),maxContainers}
4: for each node-local request 𝑆𝑛

𝑖
in requests do

5: 𝑁𝑘 = getNode(𝑆𝑛
𝑖
)

6: availConts = computeAvailableContainers(𝑁𝑘 , 𝑆
𝑛
𝑖
)

7: numConts = min{availConts, 𝑆𝑛
𝑖
.numContainers}

8: addContainers(containers, numConts, 𝑁𝑘 , 𝑆
𝑛
𝑖
, 0)

9: if containers.length < totalConts
10: for each rack-local request 𝑆𝑟

𝑖
in requests do

11: for each 𝑁𝑘 in getNodes(Sri) do
12: availConts = computeAvailableContainers(𝑁𝑘 , 𝑆

𝑟
𝑖
)

13: numConts = min{availConts, 𝑆𝑟
𝑖
.numContainers}

14: addContainers(containers, numConts, 𝑁𝑘 , 𝑆
𝑟
𝑖
, 𝑐1)

15: if containers.length ≥ totalConts
16: break double for loop

17: if containers.length < totalConts
18: add remaining containers to containers with cost 𝑐2
19: sort(containers) ⊲ Sort containers on cost

20: return containers.take(totalConts)
21: procedure AddContainers(containers, numConts, node,

request, rackCost)
22: iter = request .preferenceMap.getSortedIterator()
23: currCount = 0

24: for 𝑖 = 0 to numConts do
25: if currCount == 0

26: currEntry = iter .next
27: currCost = currEntry.getKey
28: currCount = currEntry.getValue
29: containers.add(Container(node, currCost + rackCost))
30: currCount = currCount − 1

If the number of potential containers so far is less than the num-

ber of needed containers (line 9), a similar process is followed for the

resource requests with rack locality. Specifically, for each rack-local

resource request (line 10) and for each node in the corresponding

rack (line 11), the appropriate number of containers is added in the

list of potential containers (lines 12-14). In this case, the network

cost 𝑐1 is added to the assignment cost of each container (recall

Equation 1). As soon as the number of needed containers is reached,

the double for loop is exited for efficiency purposes (lines 15-16). If

the number of collected containers is still below the needed ones,

the remaining potential containers from random nodes are added

in the list with assignment cost equal to 𝑐2 (lines 17-18).

Due to the aggregate form of the resource requests (recall Section

5.2), it is possible that the number of potential containers is higher

than the needed containers (totalConts), even after the first loop

iteration of node-local requests (lines 4-8). In common scenarios

where data blocks are replicated 3 times, this number will typically

equal 3 times totalConts. This behavior is desirable in order to

consider all storage tier preferences of the requests. Hence, our

last step is to select the totalConts containers with the smallest

assignment cost from the list of potential containers (lines 19-20).

The 𝑠𝑜𝑟𝑡 on line 19 dominates the complexity of Algorithm 3 as

1576

𝑂 (𝑛𝑙𝑔(𝑛)), where 𝑛 is the number of potential containers, which

typically equals 3 times the number of total requested containers.

The AddContainers procedure in Algorithm 3 is responsible for

creating and adding a number of potential containers on a node. The

assignment costs for each container depend on the tier preferences

of the resource request. The key intuition of the algorithm (lines

22-30) is to assign the lowest cost first as many times as requested.

Next, assign the second lowest cost as many times as requested,

and so on. For example, suppose the preference map contains {𝑀 :

2, 𝑆 : 3, 𝐻 : 1} and 3 containers are needed. The 3 corresponding

assignment costs to containers will equal𝑀 ,𝑀 , and 𝑆 .

Figure 3 shows a complete example with (i) the resource requests

generated based on the tasks preferred locations from Figure 2(A),

and (ii) the current available resources in the cluster with 6 nodes.

The resource request on 𝑁1 asks for 2 containers, which can fit in

the available resources of 𝑁1. Hence, two potential containers are

created, one with cost𝑀 and one with cost 𝐻 . The request on 𝑁2

also asks for 2 containers but only 1 can fit there; thus, 1 container

is created with cost𝑀 . There are no available resources on 𝑁3 so no

containers are created there. Finally, even though 4 containers can

fit on 𝑁4, the corresponding request asks for only 3, which leads to

the creation of 3 potential containers with costs 𝑆 , 𝑆 , and 𝐻 . At this

point, the list of potential containers contains 6 entries, which are

more than the 3 total requested containers. Finally, this list is sorted

based on increasing assignment cost and the first 3 containers are

allocated to the application, leading to the best resource allocation

based on preferred (node and storage tier) locality.

5.4 Trident’s Scheduling Component in the AM
As soon as the MapReduce Application Master receives a set of

allocated containers, it needs to assign tasks to them. The Trident

Scheduler replaces the default scheduler formaking optimal storage-

tier-aware assignments. In particular, Trident will build the bipartite

graph containing map tasks (the only type of tasks with locality

preferences in MapReduce) and the allocated containers along with

the assignment costs, as described in Section 3.2. In the case of

MapReduce, the number of allocated containers will always be less

than or equal to the number of tasks. Hence, only Algorithm 2 is

implemented in MapReduce for pruning excess tasks when only

a few containers are allocated. Finally, Trident will employ the

Hungarian Algorithm for finding the optimal task assignments on

the allocated containers. Regarding reduce tasks (which do not have

locality preferences), they are randomly assigned to their allocated

containers in the same manner performed by the default scheduler.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness and efficiency of the

Trident Scheduler in making both locality-aware and storage-tier-

aware scheduling decisions for improving application performance

and cluster efficiency. Our evaluation methodology is as follows:

(1) We study the effect of Trident when scheduling a real-world

MapReduce workload from Facebook (Section 6.1).

(2) We investigate the impact of input data size and application

characteristics on task scheduling using an industry-validated

benchmark on bothHadoop (Section 6.2) and Spark (Section 6.3).

(3) We evaluate the scheduling time needed by Trident (Section 6.4).

Table 2: Facebook job size distributions, binned by data sizes.

Bin Data size % of Jobs % of Resources % of I/O

A 0-128MB 74.4% 25.0% 3.2%

B 128-512MB 16.2% 12.2% 16.1%

C 0.5-1GB 4.0% 7.3% 12.0%

D 1-2GB 3.0% 13.4% 19.3%

E 2-5GB 1.6% 20.8% 21.9%

F 5-10GB 0.8% 21.4% 27.5%

Experimental Setup. Our evaluation is performed on an 11-node

cluster running CentOS Linux 7.2 with 1 Master and 10 Workers.

The Master node has a 64-bit, 8-core, 3.2GHz CPU, 64GB RAM,

and a 2.1TB RAID 5 storage configuration. Each Worker node has

a 64-bit, 8-core, 2.4GHz CPU, 24GB RAM, one 120GB SATA SSD,

and three 500GB SAS HDDs. We implemented our approach in

Apache Hadoop v2.7.7 and Apache Spark v2.4.6. For the underlying

file systems we used HDFS v2.7.7 (without enabling tiering) as a

baseline and OctopusFS [27], a tiered file system that extends and is

backwards compatible to HDFS. OctopusFS was configured to use

3 storage tiers with 4GB of memory, 64GB of SSD, and 3×320GB of

HDD space on each Worker node. The default replication factor is

3 and the default block size is 128MB for both file systems.

Implementation. Hadoop and Spark were modified to propagate

the storage tier information from the input file readers to the sched-

ulers, in the same way node locations are propagated. Trident was

implemented as a pluggable component overriding the scheduling

interfaces provided by the two systems. Overall, we added 2875

lines of Java code to Hadoop and 944 lines of Scala code to Spark.

Schedulers. In addition to our Trident Scheduler, we implemented

twomore schedulers from recent literature, namelyH-Scheduler [31]
and Quartet [14] (as described in Section 2), within the MapRe-

duce Application Master and the Spark Driver. When running the

Hadoop experiments, we used the Capacity Scheduler in YARN’s

Resource Manager, as was done in [14]. For comparison purposes,

we also tested both Hadoop’s and Spark’s Default task schedulers,

which do not take storage tier into consideration.

Performance Metrics. The various schedulers are compared us-

ing three performance metrics: (1) the data locality of tasks, i.e., the

percentage of memory-, SSD-, HDD-, and rack-local tasks sched-

uled in each scenario; (2) the reduction in completion time of jobs
compared to the baseline; and (3) the improvement in cluster effi-
ciency, defined as finishing the jobs by using the least amount of

resources [6, 21]. The cluster efficiency is computed by summing

the individual runtimes of all tasks in a job. All results shown are

averaged over 3 repetitions.

6.1 Evaluation with Facebook Workload
This part of the evaluation is based only on a MapReduce workload

as it is derived from real-world production traces from a 600-node

Hadoop cluster deployed at Facebook [11]. With the traces, we used

the SWIM tool [37] to generate and replay a realistic and representa-

tive workload that preserves the original workload characteristics,

including the distribution of input sizes and skewed popularity of

data [6]. The workload comprises 1000 jobs scheduled for execu-

tion over 6 hours and processing 92GB of input data. When using

1577

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

A B C D E F A B C D E F

HDFS OctopusFS

D
at

a
Lo

ca
lit

y

Rack-local

HDD-local

SSD-local

Mem-local

Figure 4: Data locality rates for all schedulers over the two file systems, broken down into the six Facebook workload bins.

OctopusFS, we enabled its Least Recently Used eviction policy so

that later jobs in the workload can take advantage of the memory

tier (since the aggregate capacity of the memory tier is 40GB) [21].

To differentiate the effect of task scheduling on different jobs,

we split them into six bins based on their input data size. Table

2 shows the distribution of jobs by count, cluster resources they

consume, and amount of I/O they generate. As noted in previous

studies [6, 10], the jobs exhibit a heavy-tailed distribution of input

sizes. Even though small jobs that process <128MB of data dominate

the workload (74.4%), they only account for 25% of the resources

consumed and perform only 3.2% of the overall I/O. On the other

hand, jobs processing over 1GB of data account for over 54% of

resources and over 68% of I/O. More in-depth workload statistics

can be found in [21].

We executed the workload on Hadoop over HDFS (without tier-

ing) using the Default and Trident schedulers as well as on Hadoop

over OctopusFS using all four schedulers. Figure 4 shows the data

locality rates for all schedulers over the 2 file systems, broken down

according to the job bins. With HDFS and the Default Scheduler,

there is a clear increasing trend in the percent of data-local tasks

(note that all data is stored on HDDs) as the job size increases. The

achieved data locality is low at 30-40% for small jobs (Bins A, B)

for a combination of reasons: (i) the cluster is busy, (ii) these jobs

have only a few tasks to run, and (iii) the scheduler considers one

node at a time for task assignments. Hence, it is unlikely that any

given node will be contained in the tasks’ preferred locations. With

increasing job sizes (and number of tasks), there are more oppor-

tunities for data-local scheduling and the data locality percentage

increases up to 81%. The Trident Scheduler, on the other hand, con-

siders all available resources together at all times, and hence it is

able to achieve almost 100% of data locality for all job sizes.
With OctopusFS, the trend of data-local tasks for the Default

Scheduler is the same as with HDFS (see Figure 4). As the De-

fault Scheduler ignores the storage tier, those data-local tasks are

(roughly) divided equally into memory-, SSD-, and HDD-local tasks.

The H-Scheduler and Quartet have similar or slightly higher overall

data-locality rates compared to the Default Scheduler. For small

jobs, since there are little opportunities for data-local tasks (for

the same reasons explained above), there is also little chance for

doing any meaningful storage-tier-aware task assignments. For

0%

5%

10%

15%

20%

25%

30%

35%

40%

A B C D E F

R
e

d
u

ct
io

n
 in

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

Trident Default H-Sched Quartet Trident
HDFS OctopusFS

Figure 5: Percent reduction in completion time for Facebook
workload, compared to Default Scheduler over HDFS.

bigger jobs, both schedulers are able to make more memory-local

assignments, reaching 30-40% of the total tasks and around 50%

of the data-local tasks. In addition, SSD-local tasks are typically

more compared to HDD-local tasks. With OctopusFS, not only is

Trident able to reach almost 100% of data locality for all job sizes,

it also obtains over 83% of memory-local tasks. In fact, in 4 out of

the 6 bins, Trident is able to achieve over 99% of memory-local tasks,
showcasing Trident’s ability to find optimal tasks assignments in
terms of both locality and storage tier preferences in a busy cluster.

Figure 5 shows the percent reduction in job completion time com-

pared to using the Default Scheduler over HDFS for each bin (recall

Table 2). Using the Trident Scheduler over HDFS improves the over-

all data-local rates as explained above, which in turn reduces job

completion time modestly, up to 13% for large jobs (Bins F). Much

better benefits are observed when data is stored in OctopusFS as

data is residing in multiple storage tiers, including memory and SSD.

Even though the Default Scheduler over OctopusFS does not take

into account storage tiers, it still benefits from randomly assigning

memory- and SSD-local tasks, and hence, it is able to achieve up to

20% reduction in completion time. The storage-tier-aware sched-

ulers are able to increase the benefits further, depending on the job

size. Small jobs (Bins A, B) experience only a small improvement

(<8%) in completion time for all schedulers. This is not surprising

since time spent on I/O is only a small fraction compared to CPU

1578

0%

10%

20%

30%

40%

50%

60%

A B C D E F

Im
p

ro
ve

m
e

n
t

in
 E

ff
ic

ie
n

cy

Bin

Trident Default H-Sched Quartet Trident
HDFS OctopusFS

Figure 6: Percent improvement in cluster efficiency for Face-
book workload, compared to Default Scheduler over HDFS.

and network overheads. The gains in job completion time increase

as the input size increases, while we start observing different trends

across the schedulers. In particular, H-Scheduler is able to provide

an additional 2%-8% gains over the Default Scheduler, resulting in

up to 28% gains for large jobs (Bin F). Quartet offers similar per-

formance, with only 3% higher gains for jobs belonging in bins C

and E. Finally, Trident is able to consistently provide the highest
reduction in completion time across all job bins, with 14%-37% gains

for large jobs, almost double compared to the Default Scheduler.

With each memory- and SSD-local access, the cluster efficiency

improves as there is more I/O and network bandwidth available for

others tasks and jobs. Figure 6 shows how this improvement relates

to the different job bins. Larger jobs have a higher contribution in

efficiency improvement compared to smaller jobs since they are

responsible for performing a larger amount of I/O (recall Table 2).

Across different schedulers, the trends for efficiency improvement

are similar to the trends for completion time reduction shown in

Figure 5 and discussed above: benefits improve with larger jobs and

Trident always offers the highest gains. Hence, improvements in

efficiency are often accompanied by lower job completion times,

doubling the benefits. For example, Trident is able to reduce comple-

tion time of large jobs by 37%, while consuming 50% less resources.

Another interesting observation (not shown due to lack of space)

is that the shuffling time in Hadoop also decreases by up to 37%

for large jobs due to the high memory-locality rates achieved by

Trident, which reduce local disk I/O and network congestion.

6.2 Hadoop Evaluation with HiBench
In order to further investigate the impact of task scheduling on a

variety of workloads exhibiting different characteristics, we used

the popular HiBench benchmark v7.1 [24], which provides imple-

mentations for various applications on both Hadoop MapReduce

and Spark. In total, eight applications were used spanning four cat-

egories: micro benchmarks (TeraSort, WordCount), OLAP queries

(Aggregation, Join), machine learning (Bayesian Classification, K-

means Clustering), and web search (PageRank, NutchIndex) [22].

In addition, all workloads were executed using three data scale pro-
files, namely small, large, and huge, which resulted in about 200MB,

1.5GB, and 10GB of input data per application, respectively.

Since the individual workload characteristics do not affect data

locality rates, we present the aggregate rates for each scale profile

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

HDFS OctopusFS HDFS OctopusFS HDFS OctopusFS

small large huge

D
at

a
Lo

ca
lit

y

Rack-Local

HDD-Local

SSD-Local

Mem-Local

Figure 7: Data locality rates for all schedulers over the two
file systems for the HiBench MapReduce workload.

in Figure 7. The overall trend of data locality rates is similar to the

one observed for the Facebook workload: larger jobs exhibit more

data-local tasks. However, in these experiments, the rates are much

higher since the cluster is lightly loaded, and thus there are more

scheduling opportunities (note that HiBench runs one application at

a time). Hence, the Default Scheduler is able to achieve 66%–89% of

data locality instead of 31%–81% in the case of Facebook. Compared

to the Default Scheduler, the H-Scheduler and Quartet offer no

to little improvement in terms of memory-locality for small and
large jobs. The two schedulers are able to achieve good results only
when scheduling huge jobs, for which there are a lot of available

resources in the cluster, resulting in about 62% memory-local tasks,

followed by 19% SSD-local tasks, and 10% HDD-local tasks. Finally,

the Trident Scheduler over OctopusFS is able to achieve 100% data
locality with over 96% memory-locality across all three data scales,
demonstrating once again its superior scheduling abilities.

Figure 8(A) shows the percent reduction in completion time

(compared to the Default Scheduler over HDFS) of the eight Hi-

Bench applications run using the large data scale. As expected, I/O
intensive applications (i.e., TeraSort, Aggregation, K-means) dis-

play the highest benefits across all schedulers, since scheduling

more memory-local tasks has a direct impact in reducing both the

generated I/O and the overall job execution time. Simply using the

Default Scheduler over OctopusFS results in 23%–31% higher per-

formance for these applications, while H-Scheduler increases the

benefits to 25%–35%. Interestingly, Quartet offers almost no benefits

over the Default Scheduler, mainly because it falls back to delay

scheduling when it cannot make any data-local assignments [14]; a

strategy that does not increase data locality rates in this setting, and

thus, only causes overhead. Finally, Trident is able to significantly
boost performance up to 44% (i.e., almost 2× speedup) due to its 100%
memory-locality rates.

The CPU-intensive jobs (i.e., WordCount, Join, Bayes, PageRank)

exhibit more modest benefits since the I/O gains from improved

scheduling are overshadowed by the CPU processing needs. The

benefits from Trident over OctopusFS range between 23% and 29%,

while they are much lower for the other three schedulers at 8%-23%.

Finally, Trident is the only scheduler able to offer any meaningful

benefits (28% compared to ∼6% for the other schedulers) to the

shuffle-intensive NutchIndex job because running 100% data-local

tasks frees up the network for the demanding shuffle process.

Figure 8(B) shows the corresponding improvement in cluster

efficiency for the large HiBench applications. The efficiency results

1579

0%

10%

20%

30%

40%

50%

TeraSort WordCount Aggregation Join Bayes K-means PageRank NutchIndexR
e

d
u

ct
io

n
 in

 C
o

m
p

le
ti

o
n

 T
im

e

MapReduce Application

HDFS & Trident OctopusFS & Default OctopusFS & H-Sched OctopusFS & Quartet OctopusFS & Trident

0%

10%

20%

30%

40%

50%

60%

TeraSort WordCount Aggregation Join Bayes K-means PageRank NutchIndex

Im
p

ro
ve

m
e

n
t

in
 E

ff
ic

ie
n

cy

Figure 8: (A) Percent reduction in completion time and (B) percent improvement in cluster efficiency compared to Default
Scheduler over HDFS for the HiBench MapReduce applications run using the large data scale.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
ed

Q
u

ar
te

t

Tr
id

e
n

t

D
e

fa
u

lt

Tr
id

e
n

t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

en
t

D
e

fa
u

lt

Tr
id

en
t

D
e

fa
u

lt

H
-S

ch
e

d

Q
u

ar
te

t

Tr
id

e
n

t

HDFS OctopusFS HDFS OctopusFS HDFS OctopusFS

small large huge

D
at

a
Lo

ca
lit

y Rack-Local

HDD-Local

SSD-Local

Mem-Local

Figure 9: Data locality rates for all schedulers over the two
file systems for the HiBench Spark workload.

have the same trends with the reductions in completion times

discussed above, but interestingly the magnitude of the gain is

higher. The reason is twofold. First, the jobs are executed as a set

of parallel tasks. Even if a large fraction of the tasks consume less

resources via avoiding disk I/O, the remaining tasks may delay

the overall job completion. Second, the job completion time also

accounts for CPU processing as well as the output data generation,

both of which are independent of the input I/O [21].

The results for the small and huge data scale are similar in trend

and omitted due to space constraints. The main difference is the

magnitude in gains, which is typically lower for the small scale
and higher for the huge scale (compared to the large scale) for all
schedulers. The highest reduction in completion time was recorded

for the huge Aggregation job using the Trident Scheduler at 57%.

6.3 Spark Evaluation with HiBench
The evaluation with the HiBench workloads was repeated on Spark

in the samemanner as onHadoop (described in Section 6.2), with the

exception of NutchIndex, which is not implemented for Spark. We

used Spark’s Standalone Cluster Manager for allocating resources
across applications, which is widely used in practice [14]. Each

application received one Executor process on each worker node,

while the Driver process was executed on the Master node.

The overall data locality rates for all schedulers for the HiBench

Spark workload are shown in Figure 9. Our first key observation is

that, unlike Hadoop, the Spark Default Scheduler is able to achieve

over 94% data locality across all data scales. There are two reasons

explaining this behavior. First, each application has available re-

sources on all nodes, and hence, can selectively choose which ones

to use for the task assignments (especially for smaller jobs), unlike

MapReduce that gets resources on some nodes based on containers

allocated from YARN. Second, the Default Scheduler has a built-

in load balancing feature that iterates the available resources on

each node one slot at a time, which increases the opportunities for

data-local assignments (or memory-local in the case of H-Scheduler

and Quartet). This is also evident by how both the H-Scheduler

and Quartet are able to achieve high memory locality rates of over

71% and 84% for large and huge applications, respectively. Trident,
however, is able to achieve 100%memory locality for both small and
large applications, as well as 96% memory locality for huge applica-
tions, significantly outperforming all other schedulers. Finally, note
that process-local tasks are all assigned in a separate process, before

the other tasks are assigned; hence, the percent of process-local

tasks is the same for all schedulers over both file systems.

In terms of reduction in completion time, the overall trends

are similar as in the case of running the applications on Hadoop,

and are shown in Figure 10 for the large and huge data scales.

In particular, the H-Scheduler and Quartet are able to offer good

performance improvements over the Default Scheduler because

they are able to exploit the storage tier information, but are still

outperformed by Trident in all cases. The magnitude of gains for

the large iterative applications (i.e., Bayes, K-means, and PageRank)

are lower for Spark compared to Hadoop because Spark will cache

the output data from the first iteration in memory and then use

process-local tasks for the following iterations. Hence, the gains

from memory-local task assignments only impact the first iteration.

Even then, in the case of huge Bayes and K-means, Trident is able to

speedup their first iteration by 4×, leading to an overall application

speedup of over 2×. Spark’s PageRank does not enjoy such benefits

because its first iteration is very CPU intensive, thus limiting the I/O

gains frommemory-locality. Another interesting observation is that,

unlike with Hadoop, Quartet is able to outperform H-Scheduler in

Spark by 4% on average in most cases, because its delay scheduling

approach is actually able to improve memory-locality rates by 2%-

5%. Finally, in the case of the huge workload, Trident is able to
significantly improve performance for most applications, reaching up
to 66% reduction in completion time, i.e., 3× speedup.

6.4 Time Needed for Scheduling
Finally, we evaluate Trident’s scheduling time as we vary the num-

ber of tasks 𝑛 ready for execution and the number of cluster nodes

𝑟 with available resources. For this purpose, we instantiate a Spark

1580

0%

10%

20%

30%

40%

50%

60%

70%

TeraSort WordCount Aggregation Join Bayes K-means PageRank TeraSort WordCount Aggregation Join Bayes K-means PageRank

large huge

R
e

d
u

ct
io

n
 in

 C
o

m
p

le
ti

o
n

 T
im

e

Spark Application per Data Scale

HDFS & Trident OctopusFS & Default OctopusFS & H-Sched OctopusFS & Quartet OctopusFS & Trident

Figure 10: Percent reduction in completion time compared to Default Scheduler over HDFS for the HiBench Spark applications
run using the large and huge data scales.

8

16

32

64
128
256
512
1024

0

50

100

150

200

250

8 16 32 64 128 256 512 1024

Sc
h

ed
u

lin
g

Ti
m

e
(m

s)

Number of Tasks

8

16

32

64
128
256
512
1024

0

50

100

150

200

250

8 16 32 64 128 256 512 1024

Sc
h

e
d

u
lin

g
Ti

m
e

(m
s)

Number of Tasks

Figure 11: Trident’s scheduling time in Spark Driver when the two pruning algorithms are (A) disabled or (B) enabled.

Manager and register 𝑟 virtual nodes, each with one Executor. Next,

we submit a Spark application with one stage of 𝑛 tasks. Each task

has a list of 3 preferred locations (i.e., ⟨node, tier⟩ pairs) in random

nodes and tiers across the cluster. Finally, we measure the actual

time needed by Trident to make all possible task assignments. This

time also includes updating all relevant internal data structures

maintained by the Spark Driver.

Figure 11 shows the scheduling times as we vary both 𝑛 and 𝑟

between 8 and 1024 (note the logarithmic scale of both axes), when

our two pruning algorithms are either disabled or enabled. With

pruning, as long as one of the two dimensions (i.e., tasks or nodes) is

small, the scheduling time is very low and grows linearly. For exam-

ple, with up to 64 tasks, the scheduling time is below 2ms regardless

the cluster size, whereas it can reach 20ms without pruning for

1024 nodes (i.e., there is an order of magnitude reduction). Similarly,

large jobs (𝑛 ≥ 256) get scheduled quickly in under 3ms in small

clusters (𝑟 ≤ 32), whereas scheduling time can reach 54ms without

pruning. The scheduling time increases non-linearly only when

both dimensions are high, since pruning cannot help. However,

even in the extreme case of scheduling 1024 tasks on a 1024-node

cluster, the scheduling time is only 240ms. More importantly, this

overhead is incurred by the Spark Driver (or the MapReduce Ap-

plication Master in Hadoop) and not the cluster, and is minuscule

compared to both the total execution time of such a large job and

the potential performance gains from Trident’s scheduling abilities.

We repeated this experiment in Hadoop and the scheduling times

in MapReduce AM are very similar to the ones observed for Spark.

However, Trident’s scheduling times in YARN’s Resource Manager

are much lower, as they are governed by Algorithm 3. Specifically,

in the case of 1024 tasks × 1024 nodes, Trident’s scheduling time

is 61ms as opposed to 60ms for FIFO and 162ms for Capacity (ex-

tra time due to updating queue statistics after each assignment),

highlighting the negligible overheads induced by our approach.

7 CONCLUSION
The advent of tiered storage systems has introduced a new dimen-

sion in the task scheduling problem in cluster computing. Specifi-

cally, it is important for task schedulers to consider both the locality

and the storage tier of the accessed data when making decisions, in

order to improve application performance and cluster utilization.

In this paper, we propose Trident, a new scheduling approach that

casts the task scheduling problem into a minimum cost maximum

matching problem in a bipartite graph, which enables Trident to ef-

ficiently find the optimal solution. We have implemented Trident in

both Hadoop and Spark, showcasing the generality of the approach

in scheduling tasks for two very different platforms. Our experimen-

tal evaluation with real-world workloads and industry-validated

benchmarks demonstrated that Trident, compared to state-of-the-

art schedulers, can maximize the benefits induced by tiered storage

and significantly reduce application execution time.

1581

REFERENCES
[1] Cristina L Abad, Yi Lu, and Roy H Campbell. 2011. DARE: Adaptive Data

Replication for Efficient Cluster Scheduling. In Proc. of the 2011 IEEE Intl. Conf.
on Cluster Computing (CLUSTER). IEEE, 159–168.

[2] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijaykumar.

2012. Tarazu: OptimizingMapReduce onHeterogeneous Clusters. ACM SIGARCH
Computer Architecture News 40, 1 (2012), 61–74.

[3] Alluxio 2021. Alluxio: Data Orchestration for the Cloud. Retrieved May 5, 2021

from http://www.alluxio.org/

[4] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert Green-

berg, Ion Stoica, Duke Harlan, and Ed Harris. 2011. Scarlett: Coping with Skewed

Popularity Content in MapReduce Clusters. In Proc. of the 6th European Conf. on
Computer Systems (EuroSys). ACM, 287–300.

[5] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2011.

Disk-locality in Datacenter Computing Considered Irrelevant. In Proc. of the 13th
Workshop on Hot Topics in Operating Systems (HotOS). USENIX, 12–17.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Warfield, Dhruba Borthakur,

Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated

Memory Caching for Parallel Jobs. In Proc. of the 9th USENIX Symp. on Networked
Systems Design and Implementation (NSDI). USENIX, 267–280.

[7] Apache Hadoop 2021. Apache Hadoop. Retrieved May 5, 2021 from https:

//hadoop.apache.org

[8] Apache Spark 2021. Apache Spark. Retrieved May 5, 2021 from https://spark.

apache.org

[9] Quan Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo. 2010. SAMR: A Self-adaptive

MapReduce Scheduling Algorithm in Heterogeneous Environment. In Proc. of
the 10th IEEE Intl. Conf. on Computer and Information Technology (ICCIT). IEEE,
2736–2743.

[10] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive Analytical Pro-

cessing in Big Data Systems: A Cross-industry Study of MapReduce Workloads.

PVLDB 5, 12 (2012), 1802–1813.

[11] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011. The

Case for Evaluating MapReduce Performance using Workload Suites. In Proc. of
the 2011 IEEE Intl. Symp. on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 390–399.

[12] Dazhao Cheng, Jia Rao, Yanfei Guo, and Xiaobo Zhou. 2014. Improving MapRe-

duce Performance in Heterogeneous Environments with Adaptive Task Tuning.

In Proc. of the 15th IEEE Intl. Conf. on Cluster Computing (CLUSTER). ACM,

97–108.

[13] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

2009. Introduction to Algorithms. MIT press.

[14] Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, and

Angela Demke Brown. 2016. Quartet: Harmonizing Task Scheduling and Caching

for Cluster Computing. In Proc. of the 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage). USENIX, 1–5.

[15] Ran Duan and Seth Pettie. 2014. Linear-time Approximation for Maximum

Weight Matching. Journal of the ACM (JACM) 61, 1 (2014), 1–23.
[16] Avrilia Floratou, Nimrod Megiddo, Navneet Potti, Fatma Özcan, Uday Kale, and

Jan Schmitz-Hermes. 2016. Adaptive Caching in Big SQL using the HDFS Cache.

In Proc. of the 7th ACM Symp. on Cloud Computing (SoCC). ACM, 321–333.

[17] Rohan Gandhi, Di Xie, and Y Charlie Hu. 2013. PIKACHU: How to Rebalance

Load in Optimizing MapReduce On Heterogeneous Clusters. In Proc. of the 2013
USENIX Annual Technical Conference (ATC). USENIX, 61–66.

[18] Kannan Govindarajan, Supun Kamburugamuve, Pulasthi Wickramasinghe, Vib-

hatha Abeykoon, and Geoffrey Fox. 2017. Task Scheduling in Big Data-Review,

Research Challenges, and Prospects. In Proc. of the 9th Intl. Conf. on Advanced
Computing (ICoAC). IEEE, 165–173.

[19] GridGain 2021. GridGain In-Memory Computing Platform. Retrieved May 5,

2021 from http://www.gridgain.com/

[20] HDFS 2020. HDFS Archival Storage, SSD & Memory. Retrieved May 5, 2021

from https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/

ArchivalStorage.html

[21] Herodotos Herodotou and Elena Kakoulli. 2019. Automating Distributed Tiered

Storage Management in Cluster Computing. PVLDB 13, 1 (2019), 43–56.

[22] HiBench 2020. HiBench Suite. Retrieved May 5, 2021 from https://github.com/

intel-hadoop/HiBench

[23] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for

Fine-grained Resource Sharing in the Data Center. In Proc. of the 8th USENIX
Symp. on Networked Systems Design and Implementation (NSDI). USENIX, 295–
308.

[24] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2011. The

HiBench Benchmark Suite: Characterization of the MapReduce-based Data Anal-

ysis. In New Frontiers in Information and Software as Services. Springer, 209–228.
[25] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. 2009. Quincy: Fair Scheduling for Distributed Computing

Clusters. In Proc. of the 22nd ACM Symp. on Operating Systems Principles (SOSP).
ACM, 261–276.

[26] Jingjie Jiang, Shiyao Ma, Bo Li, and Baochun Li. 2016. Symbiosis: Network-aware

Task Scheduling in Data-parallel Frameworks. In Proc. of the 35th IEEE Intl. Conf.
on Computer Communications (INFOCOM). IEEE, 1–9.

[27] Elena Kakoulli and Herodotos Herodotou. 2017. OctopusFS: A Distributed File

System with Tiered Storage Management. In Proc. of the 2017 ACM Intl. Conf. on
Management of Data (SIGMOD). ACM, 65–78.

[28] KR Krish, Ali Anwar, and Ali R Butt. 2014. hatS: A Heterogeneity-aware Tiered

Storage for Hadoop. In Proc. of the 14th IEEE/ACM Intl. Symp. on Cluster, Cloud
and Grid Computing (CCGrid). IEEE, 502–511.

[29] Sparsh Mittal and Jeffrey S Vetter. 2015. A Survey of Software Techniques for

using Non-volatile Memories for Storage and Main Memory Systems. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 27, 5 (2015), 1537–1550.

[30] Seyed Reza Pakize. 2014. A Comprehensive View of Hadoop MapReduce Sched-

uling Algorithms. International Journal of Computer Networks & Communications
Security 2, 9 (2014), 308–317.

[31] Fengfeng Pan, Jin Xiong, Yijie Shen, Tianshi Wang, and Dejun Jiang. 2018. H-

scheduler: Storage-aware task scheduling for heterogeneous-storage spark clus-

ters. In Proc. of the 24th IEEE Intl. Conf. on Parallel and Distributed Systems
(ICPADS). IEEE, 1–9.

[32] Mario Pastorelli, Damiano Carra, Matteo Dell’Amico, and Pietro Michiardi. 2015.

HFSP: Bringing Size-based Scheduling to Hadoop. IEEE Transactions on Cloud
Computing 5, 1 (2015), 43–56.

[33] Aparna Raj, Kamaldeep Kaur, Uddipan Dutta, V Venkat Sandeep, and Shrisha Rao.

2012. Enhancement of Hadoop Clusters with Virtualization Using the Capacity

Scheduler. In Proc. of the Third Intl. Conf. on Services in Emerging Markets. IEEE,
50–57.

[34] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In Proc. of the 26th Intl. Conf. on Massive
Storage Systems and Technology (MSST). IEEE, 1–10.

[35] Mbarka Soualhia, Foutse Khomh, and Sofiène Tahar. 2017. Task Scheduling in

Big Data Platforms: A Systematic Literature Review. Journal of Systems and
Software 134 (2017), 170–189.

[36] Xiaoyu Sun, C. He, and Ying Lu. 2012. ESAMR: An Enhanced Self-Adaptive

MapReduce Scheduling Algorithm. In Proc. of the 18th IEEE Intl. Conf. on Parallel
and Distributed Systems (ICPADS). IEEE, 148–155.

[37] SWIM 2016. SWIM: Statistical Workload Injector for MapReduce. Retrieved May

5, 2021 from https://github.com/SWIMProjectUCB/SWIM/wiki

[38] Jian Tan, Xiaoqiao Meng, and Li Zhang. 2013. Coupling Task Progress for

MapReduce Resource-aware Scheduling. In Proc. of the 32nd IEEE Intl. Conf. on
Computer Communications (INFOCOM). IEEE, 1618–1626.

[39] Zhuo Tang, Min Liu, Almoalmi Ammar, Kenli Li, and Keqin Li. 2016. An Opti-

mized MapReduce Workflow Scheduling Algorithm for Heterogeneous Comput-

ing. The Journal of Supercomputing 72, 6 (2016), 2059–2079.

[40] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, et al. 2013. Apache Hadoop YARN: Yet Another

Resource Negotiator. In Proc. of the 4th ACM Symp. on Cloud Computing (SoCC).
ACM, 1–16.

[41] Jiayin Wang, Yi Yao, Ying Mao, Bo Sheng, and Ningfang Mi. 2014. Fresh: Fair

and Efficient Slot Configuration and Scheduling for Hadoop Clusters. In Proc. of
the 7th IEEE Intl. Conf. on Cloud Computing (CLOUD). IEEE, 761–768.

[42] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. 2014. Map Task Schedul-

ing in MapReduce with Data Locality: Throughput and Heavy-traffic Optimality.

IEEE/ACM Transactions On Networking 24, 1 (2014), 190–203.

[43] Luna Xu, A. Butt, Seung-Hwan Lim, and R. Kannan. 2018. A Heterogeneity-

Aware Task Scheduler for Spark. In Proc. of the 2018 IEEE Intl. Conf. on Cluster
Computing (CLUSTER). IEEE, 245–256.

[44] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. 2009. Job Scheduling for Multi-User MapReduce Clusters.
Technical Report UCB/EECS-2009-55. EECSDepartment, University of California,

Berkeley. Retrieved May 5, 2021 from http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-55.html

[45] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple Technique for Achiev-

ing Locality and Fairness in Cluster Scheduling. In Proc. of the 5th European Conf.
on Computer Systems (EuroSys). ACM, 265–278.

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. 2012. Resilient

Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-

puting. In Proc. of the 9th USENIX Symp. on Networked Systems Design and
Implementation (NSDI). USENIX, 15–28.

[47] Matei Zaharia, Andy Konwinski, AnthonyD Joseph, RandyHKatz, and Ion Stoica.

2008. Improving MapReduce Performance in Heterogeneous Environments. In

Proc. of the 8th USENIX Symp. on Operating Systems Design and Implementation
(OSDI). USENIX, 29––42.

1582

http://www.alluxio.org/
https://hadoop.apache.org
https://hadoop.apache.org
https://spark.apache.org
https://spark.apache.org
http://www.gridgain.com/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
https://github.com/SWIMProjectUCB/SWIM/wiki
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html

