
Automating Incremental Graph Processing with Flexible
Memoization

Shufeng Gong1, Chao Tian2, Qiang Yin2, Wenyuan Yu2, Yanfeng Zhang1,
Liang Geng2, Song Yu1, Ge Yu1, Jingren Zhou2
Northeastern University1 Alibaba Group2

{gongsf, yusong}@stumail.neu.edu.cn, {tianchao.tc, qiang.yq, wenyuan.ywy, guanyi.gl, jingren.zhou}@alibaba-inc.com,
{zhangyf, yuge}@mail.neu.edu.cn

ABSTRACT
The ever-growing amount of dynamic graph data demands efficient
techniques of incremental graph processing. However, incremental
graph algorithms are challenging to develop. Existing approaches
usually require users to manually design nontrivial incremental
operators, or choose different memoization strategies for certain
specific types of computation, limiting the usability and generality.

In light of these challenges, we propose Ingress, an auto-
mated system for incremental graph processing. Ingress is able
to incrementalize batch vertex-centric algorithms into their
incremental counterparts as awhole, without the need of redesigned
logic or data structures from users. Underlying Ingress is an
automated incrementalization framework equipped with four
different memoization policies, to support all kinds of vertex-centric
computations with optimized memory utilization. We identify
sufficient conditions for the applicability of these policies. Ingress
chooses the best-fit policy for a given algorithm automatically
by verifying these conditions. In addition to the ease-of-use and
generalization, Ingress outperforms state-of-the-art incremental
graph systems by 15.93× on average (up to 147.14×) in efficiency.

PVLDB Reference Format:
Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng Zhang, Liang
Geng, Song Yu, Ge Yu, Jingren Zhou.Automating Incremental Graph
Processing with Flexible Memoization. PVLDB, 14(9): 1613 - 1625, 2021.
doi:10.14778/3461535.3461550

1 INTRODUCTION
Most of the current graph systems are designed to perform
computation over static graphs [14, 17, 30, 44, 51, 52, 54]. When
the graph is updated with input changes, they have to reperform
the entire computation on the new graph starting from scratch.
Such recomputation is costly as real-life graphs easily have trillions
of edges, e.g., e-commerce graphs [29] and they are constantly
changed, e.g., the relationships between users and items [10].

These highlight the need for incremental graph computation.
That is, we apply a batch algorithm to compute the result over
the original graph G once, followed by employing an incremental
algorithm to adjust the old result in response to the input changes
∆G to G. In practice, real-world changes are typically small, e.g.,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.
doi:10.14778/3461535.3461550

GraphSAGE

Automatic
Verification

Ingress

Distributed
Runtime Engine

Vertex-Centric
Graph Programs

GCN

SSSP WCC

PageRank SimRank

GIN

CommNet

PHP

LCA

Graph
updates

Updated
result

Flexible Memoization

Updated
intermediat

e states

Memoization-Free Engine

Memoization-Edge Engine

Memoization-Path Engine

Memoization-Vertex Engine

Figure 1: Overall structure of Ingress

EnglishWikipedia was expanded with on average less than 600 new
articles per day out of 5 million articles during 2019 [5]. In addition,
given small input changes ∆G, it is common to find a considerable
overlap between the computation over G and the recomputation
on the new graph updated with ∆G. Therefore, by making use of
the memoized previous result, incremental computation can reduce
unnecessary recomputation and is often more efficient.

The benefit of incremental computation has led to the devel-
opment of several incremental graph processing systems, notably
Tornado [42], GraphIn [41], KickStarter [46] and GraphBolt [31].
They adopt the vertex-centric model, where the same user-defined
function is executed in parallel at each vertex, and vertices
exchange updates with each other by message passing. The vertex-
centric model can naturally express iterative graph computation,
e.g., PageRank [37] and single source shortest path (SSSP) [16].

While the existing incremental graph systems [31, 41, 42, 46]
help eliminate redundant recomputation, they are limited by two
major drawbacks. First, they need nontrivial user intervention, e.g.,
GraphIn [41] and GraphBolt [31] ask users to manually deduce
the incremental operators, and Tornado [42] and KickStarter [46]
require users to make sure that the corresponding batch computa-
tion satisfies certain properties. Second, these systems use different
memoization policies and achieve different levels of generality.
For instance, GraphBolt, aiming at a high level of generality to
support wide variety of applications, needs to memoize a large
number of intermediate results. Although KickStarter, GraphIn
and Tornado memoize small amount of states, they only support a
specific class of graph computations satisfying the properties. Our
new findings show that some incremental algorithms even do not
employ any memoized intermediate states at all. However, checking
the properties of the graph computations and choosing the best
memoization policies bring heavy burdens to non-expert users.

Then two questions are naturally raised. Can we build an
incrementalization framework that automatically converts a
generic user-specified batch graph algorithm into an incremental
algorithm? Furthermore, can this framework deduce incremental

1613

https://doi.org/10.14778/3461535.3461550
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461550

Table 1: Performance comparison over dataset Twitter-2009

Algorithm System Time (s) Space (GB)

PageRank
Ingress 6.67 0.31

GraphBolt 59.35 13.66

SSSP
Ingress 0.59 0.6

KickStarter 16.69 1.39

algorithms with different memoization policies such that the
memoized intermediate results are as few as possible?

Ingress. To answer these questions, we develop Ingress, an
automated vertex-centric system for incremental graph processing.
The overall structure of Ingress is shown in Figure 1. Given a
batch algorithm A, Ingress verifies the characteristics of A and
deduces an incremental counterpartA∆ automatically. It selects an
appropriate memoization engine to record none or part of run-time
intermediate states. Upon receiving graph updates, Ingress executes
A∆ to deliver updated results with the help of memoized states.

Ingress features the followings that differ from previous systems.

Flexible memoization. Ingress supports a flexible memoization
scheme and can perform the incrementalization, i.e., deducing
A∆ from A, under four different memoization policies. Specifically,
(1) the memoization-free policy records no runtime states of the
previous computation, (2) thememoization-path policy only records
a small portion of critical states (messages), which form a set of
paths, (3) thememoization-vertex policy records all the vertex states,
and (4) the (default) memoization-edge policy records all the edge
states, i.e., old messages. They can be adopted to incrementalize the
batch algorithms of e.g., PageRank, SSSP, forward process of Graph
Convolutional Network (GCN-forward) [26], and GraphSAGE [20]
with mean aggregator, respectively (see Figure 1). With these
four policies, flexible memoization is able to cover the need of
incrementalizing all vertex-centric algorithms and support all kinds
of incremental computation with optimized memory usage.

Automatic incrementalization. Ingress incrementalizes generic
batch vertex-centric algorithms into their incremental counterparts
as a whole. There is no need to manually reshape the data structures
or the logic of the batch ones, improving ease-of-use. Based on
the sufficient conditions that we establish for the applicability
of memoization policies, it selects an appropriate policy for each
batch algorithm to conduct incrementalization, and guarantees the
correctness. Moreover, by transforming sufficient conditions into
first-order formulas and applying SMT solver Z3 [11], the satisfi-
ability of the conditions can be automatically verified (Automatic
Verification module in Figure 1). Putting this together with the
four incrementalization engines that derive incremental algorithms
with the selected memoization policies (Figure 1), Ingress makes
the process of incrementalization transparent to users.

The rationale behind Ingress is (a) identifying the differences
between the prior run and the recomputation over the new graph,
and (b) enforcing their effects on the old intermediate results. For
some graph computations, such effects can be directly applied on
the previous final results, even without the need of memoizing
other intermediate information. In other words, the differences
across multiple steps of the iterative computation can be assembled
and processed in a singe batch. This is fully leveraged by Ingress to
achieve incrementalization with different memoization strategies.

High performance runtime. In addition to the ease-of-use and gen-
eralized reduction of memory consumption, Ingress also achieves
high performance runtime. Table 1 compares the performance of
Ingress for PageRank and SSSP with GraphBolt and KickStarter,
respectively, over the graph Twitter-2009 that consists of 1.5 billion
vertices and edges. Despite the fact that PageRank (resp. SSSP)
is well-supported in GraphBolt (resp. KickStarter), with 1% input
graph updates, i.e., |∆G |=1%|G |, Ingress outperforms GraphBolt
and KickStarter by 8.89× and 28.28×, respectively, in response
time. Ingress also has the least space cost, thanks to its flexible
memoization mechanism. It only incurs 2.26% and 34.26% the space
cost of GraphBolt (resp. KickStarter) for PageRank (resp. SSSP).

Contributions. We summarize our contributions as follows.

(1) A general framework for incrementalizing vertex-centric
algorithms (Section 3). It models the operations of incremental
computation in terms of the cancellation of old invalid messages
and the compensation of new missing messages, which can be
carried out with the help of different memoization policies.

(2) An analytical foundation for the correctness of the incremental-
ization w.r.t. different memoization policies, including the sufficient
conditions for the applicability of the policies (Section 4).

(3) The automation techniques for selecting appropriate memoiza-
tion policies for incrementalization, as well as a distributed runtime
engine to perform incremental graph computation (Section 5).

(4) An extensive evaluation of the incremental graph processing
system Ingress, demonstrating its efficacy (Section 6).

2 PRELIMINARIES
We start with a review of basic notations for vertex-centric
programming and incremental graph computation.

Graphs. We consider graphsG = (V , E, PG), directed or undirected.
Here V is a finite set of vertices, E ⊆ V × V is a set of edges,
PG = {PV , PE } is a pair of functions such that each vertex v in
V (resp. edge e in E) carries a property PV (v) (resp. PE (e)), which
indicates e.g., weight, label or keyword and is possibly empty.

Vertex-centric model. In vertex-centric models [17, 30], a vertex
program A is executed in parallel on all vertices in the input
graph G iteratively. The program A can be represented by a triple
(H ,U,G), where H is the aggregation function of A, U is the
update function and G is the propagation function. Following the
Bulk Synchronous Parallel (BSP) model [45], the computation ofA
are separated into super-steps. In each round i , A performs

mi
v = H(M

i−1
v),

x iv = U(x
i−1
v ,m

i
v),

mi
v ,w = G(x

i
v ,m

i
v , PE (v,w)) (∀w ∈ Nbr(v))

at each vertex v . Here Mi−1
v ={m

i−1
u ,v |(u,v) ∈ E} refers to the set

of messages received by v at the start of round i; x iv (resp. x i−1v)
denotes the state of vertex v in round i (resp. i − 1); mi

v is the
aggregated result of the messages; andmi

v ,w denotes the message
sent from v to w at round i + 1, where w is in the neighbor set
Nbr(v) of v . Intuitively, each vertex v first aggregates the received
messages byH ; it then appliesU to adjust its state to x iv with the

1614

aggregated resultmi
v ; at last it generates a set of messages by G

and propagates them to its neighbors. In practice, there are many
cases thatH andU have the same logic, e.g., summing the values.

Starting from the initial round, each vertex executesA in parallel.
They communicate via synchronous message passing. The process
terminates when no more changes are made to vertex states, i.e.,
the computation reaches a fixpoint and all vertices are halted [30].

In light of the simplicity and the distributed nature of the model,
a large number of vertex-centric algorithms are proposed [33].

Example 1: We show three example vertex-centric algortihms.

(a) PageRank. Consider PageRank that computes the set {PRv | v ∈
V } of PageRank scores, which is defined as the unique solution to
the equations {PRv = d × sum(u ,v)∈EPRu/Nu + (1 − d) | v ∈ V }.
Here d is a constant damping factor and Nu denotes the number
of outgoing neighbors of vertex u in graph G. As opposed to the
standard PageRank algorithm that exploits the power method, a
delta-based PageRank algorithm [52] can be represented as follows.
• H(Mi−1

v) = sum(Mi−1
v); U(x i−1v ,m

i
v) = sum(x i−1v ,m

i
v);

• G(x iv ,m
i
v , PE (v,w)) = d ×m

i
v/Nv (∀w ∈ Nbr(v)).

Observe that H = U = sum. Intuitively, each vertex uses its
state xv to store its PageRank score. In particular, xv = 0 and
M0
v = {1−d} for allv ∈ V . Each time a vertexv aggregatesmessages

from its neighbors and updates its state by sum. It converts the
aggregated result mi

v to d ×mi
v/Nv and propagates it to all its

neighbors. As shown in [52], this delta-based PageRank algorithm
computes the PageRank scores for all vertices correctly.

(b) SSSP. As another example, consider SSSP that computes the
shortest distance from a given source s to all vertices in a directed
graph G. A vertex-centric algorithm for SSSP works as follows.
• H(Mi−1

v) = min(Mi−1
v); U(x i−1v ,m

i
v) = min(x i−1v ,m

i
v);

• G(x iv ,m
i
v , PE (v,w)) =m

i
v + PE (v,w) (∀w ∈ Nbr(v)).

Here the state xv of v indicates the shortest distance from s to
v and PE (v,w) represents the length of (v,w). Initially, we have
x0v = ∞ and M0

v = ∅ for all v , s; and x0s = 0, M0
s = {0}. Each

vertex v aggregates messages and updates its state by using min
for bothH andU. It creates and sends a message to each neighbor
w , which can represent the shortest length of paths through v tow .
The algorithm terminates when all shortest distances are fixed.

(c) GCN-Forward. Consider theGCN-forward [26]. Given a directed
graphG and K weight matrices {W1, . . . ,WK }, it is to compute the
features of each vertex v iterativley based on K weight matrices
and the features of the neighbors that are withinK-hops away from
v . The weight matrices {W1, · · · ,Wk } are trained beforehand by
multiple graphs; thus they are independent to the input graph G.
An algorithm for GCN-forward can be defined as follows.
• H(Mi−1

v) = sum(Mi−1
v); U(x i−1v ,m

i
v) = relu(mi

v);
• G(x iv ,m

i
v , PE (v,w)) = x iv •Wi (∀w ∈ Nbr(v)).

Initially, each x1v is set to the input feature vector v0 of v and
M0
v = ∅. At the i-th round, each vertex merges multiple vectors

into one by summing the corresponding elements of the vectors in
the messagesMi−1

v ; it then updates its feature vector to relu(mi
v).

Here the operation relu just resets the negative values in the vector
to zero. At last it computes a message of vi •Wi , i.e., x iv •Wi ,

Table 2: Summary of notations
Notation Definition
A, A∆ batch algorithm and incremental algorithm
H, U, G aggregation, update and propagation function, resp.
U− the inverse function of U
x iv the state of vertex v at round i
mi
v the aggregated result of the messages sent to v at round i

M i−1
v , M the set of messages sent to v at round i , a set of messages
mi−1
v ,w a single message sent from v to w in round i

where • is matrix multiplication and propagates it to each outgoing
neighborw . The computation terminates at the round K + 1. □

Incremental computation. The problem of incremental graph
computation is formalized as follows.
• Input: A graphG , the (old) outputA(G) computed by a batch
graph algorithm A, and input updates ∆G to G.
• Output: The new output A(G ⊕ ∆G) = A(G) ⊕ ∆O .

Here the input batch update ∆G consists of a set of unit updates.
To simplify our discussion, we consider the insertion or deletion
of a single edge as a unit update in the sequel, which can simulate
certain modifications, e.g., updates on edge weight. For instance,
each change to the weight on edge e = (u,v) can be considered as
deleting e and followed by adding another edge e ′ = (u,v) with the
new weight. Vertex updates are dual of edge updates and can also
be readily handled by our proposed approaches. In addition,G ⊕∆G
denotes applying updates ∆G to G, similarly for A(G) ⊕ ∆O , i.e.,
∆O denotes the changes to the old output in response to ∆G.

Notations of the paper are summarized in Table 2.

3 INCREMENTALIZATION FRAMEWORK
We next present the incrementalization framework underlying
Ingress. It aims to directly deduce an incremental graph algorithm
A∆ from a given batch vertex-centric algorithm A, without the
need of extra user-generated logic or data structures. In a nutshell,
the deduced algorithm catches the differences between two runs
of its batch counterpart with respect to the messages that should
be transmitted. It carries out the corresponding adjustment of old
results with the help of an effective memoization strategy.
Message-driven differentiation. In a vertex-centric model, the
(final) state of each vertex v is decided by the messages that v
receives in different rounds of the iterative computation. Due to
this property, we can reduce the problem of finding the differences
among two runs of a batch vertex-centric algorithm to identifying
the changes to messages. Then for incremental computation, after
fetching the messages that differ in one round of the runs over
original and updated graphs, it suffices to replay the computation
on the affected areas that receive such changed messages, for state
adjustment. After that, the changes to the messages are readily
obtained for the next round and the algorithm can simply perform
the above operations until all changed messages are found and
processed. This coincides with the idea of change propagation [6].

To distinguish the differences among messages, we introduce
old invalid messages and new missing messages.

(1) Invalid messages. An old message transmitted during the run
over the original graphG is called invalid if either its value becomes

1615

out-dated for the new graph G ⊕ ∆G or the link for passing the
message is disconnected due to input updates ∆G.

(2) Missing messages. A new message transferred in the run over
theG ⊕ ∆G is calledmissing if it is either a revised version of an old
message w.r.t. G or is associated with a newly added edge in ∆G.

Example 2: Consider running the delta-based PageRank algorithm
of Example 1(a) on the graph G shown in Figure 2(a). Assume that
a batch update ∆G to G removes the edge (A,C) and inserts the
edge (C,A); and G⊕∆G is shown in Figure 2(b). Here invalid and
missing messages can be identified by inspecting the batch run of
PageRank algorithm over G from the perspective of G⊕∆G. In the
first round, vertex A receives a message 1−d . It applies propagation
functionG and generates twomessages,d(1−d)/2 andd(1−d)/2 for
vertices B and C (see Example 1(a)), respectively. Both are invalid
w.r.t. G⊕∆G. Indeed, in the absence of edge (A,C), vertex A should
only send onemissing message d(1−d) to B. Similarly, in the second
round, since A receives d(1 − d) from D, it will send two invalid
messages (1 − d)d2/2 and (1 − d)d2/2 to B and C , respectively; and
one message to B is missing. In each round of the prior run over G ,
the insertion of (C,A) also triggers an invalid message from C to D
and two missing messages from C to A and D. □

As such, the incremental algorithm first discovers all the invalid
and missing messages. It then reperforms the computation on
affected areas of G ⊕ ∆G by generateing cancellation messages
(resp. compensation messages) to undo (resp. replay) their effects.

It is a common practice to memoize previous computed
(intermediate) results in incremental processing [6, 21], similarly
for identifying invalid and missing messages.

Memoization policies. A simple memoization strategy for
detecting invalid and missing messages is to record all the old
messages inMi

v , for each vertex v and i ≥ 0 in the batch run over
G. Then the changed messages can be found by direct comparison
between the messages created in the new run and those memoized
ones. Guided by the changed messages, the incremental algorithm
revises the states of the data iteratively as described above, i.e.,
canceling (resp. recovering) the effects of invalid messages (resp.
missingmessages). Here the old states of each vertex can be restored
from the stored messages without explicit memoization.

Although this solution is general enough to incrementalize all
vertex-centric algorithms, it usually causes overwhelming memory
overheads [31, 41], especially for algorithms that take a large
number of rounds to converge. In light of this, we incorporate a
flexible memoization scheme in the incrementalization framework to
optimize memory usage to different extents whenever possible. The
scheme consists of four memoization policies: (1) the memoization-
free policy (MF) that records no runtime old messages, (2) the
memoization-path policy (MP) that only records a small part of old
messages, (3) the memoization-vertex policy (MV) that tracks the
states of the vertices among different steps, and (4) thememoization-
edge policy (ME) that keeps all the old messages.

(1) Memoization-free (MF). This policy does not record any old
message at all. Instead, the incremental algorithms should handle
the effects of invalid and missing messages directly on the previous
batch run’s converged states, i.e., final results. This is doable for a

(b). (!). SSSP (source = A)G⊕∆G

−dx∗
A/2 → B,C

dx∗
A → B

−dx∗
C → D

dx∗
C/2 → A,D

∅
∅ ∅

∅
D

Compensation

Cancellation

CBAMessages D

⊥ → D

2 → C

∅ ∅
∅ ∅ ∅

D

Compensation

Cancellation

CBAMessages D

⊥ → C

A D

CB

(c). PageRank(are PagreRank scores of A and C in)x∗
A, x

∗
C G(a). GraphG

A D

CB

Figure 2: Sample graph and messages for PageRank and SSSP
class of vertex-centric algorithms performing traceable aggregations,
in which the effects of multiple messages can be “assembled”
into that of a single message. Moreover, the effects of old invalid
messages can be “eliminated” by propagating their inverse version.

With the MF policy, an incremental algorithm first generates
summarized versions of cancellation and compensation messages
from the previous converged states. They are then processed with
the same functions of the batch algorithm, to cancel (resp. compen-
sate) the effects of invalid messages (resp. missing messages).

Example 3:Continuingwith Example 2, to fix the PageRank scores,
we regard the messages received by vertices in each round as
“correct with noises” w.r.t. G ⊕ ∆G. We eliminate these noises by
cancellation and compensation messages. For example, for each
invalid message valuem to B (resp.C), we can send −m, the inverse
ofm, as a cancellation message to undo its effect. Similarly, we need
to process all the missing messages for B. A key observation is that
instead of sending the cancellation (resp. compensation) messages
one by one, we can just compute one summarizedmessage to handle
the effects of all invalid and missing messages for each vertex. This
is because H and U of PageRank algorithm (i.e., sum) embrace
traceable aggregation. Indeed, in the batch run whenever vertex
A accumulates a message of valuemi to its state xv via function
U, it generates and sends two invalid messages of value dmi/2
to B and C via function G. Observe that x∗A=sumi {mi }, where x∗A
is the converged state of the prior run over G. The aggregation
of invalid messages to B and C can be then expressed by dx∗A/2.
Thus to cancel the effects of these invalid messages, it suffices to
send a summarized cancellation message −dx∗A/2 to B (resp.C). The
summarized compensation message to B can be deduced accordingly,
whose value can be expressed bydx∗A; it is used to enforce the effects
of missing messages to B. Edge insertion of (C,A) can be processed
along the same lines with cancellation and compensation messages.

All the cancellation and compensation messages are shown in
Figure 2(c). The incremental algorithm restarts the computation of
PageRank (Example 1(a)) with these messages. As will be clear in
Section 4.1, it converges to revised PageRank scores forG ⊕ ∆G . □

(2) Memoization-path (MP). This policy only records a small
portion of old messages that are effective. In fact, in some vertex-
centric computation with traceable aggregations, the final state xv
relies only on a subset of messages sent to vertex v , which can
be referred to as effective messages and form a set of paths. Take
SSSP as an example. The value of the shortest distance w.r.t. v is
determined by the smallest messages received from the neighbors
of v , which lie on the shortest paths from the source vertex. Hence
there is no need to handle the effects of invalid messages that are
not effective. Under this policy, the incremental algorithms store the

1616

paths of effectivemessages to process invalidmessages. Themissing
messages can be handled as that in memoization-free policy.

Example 4: Recall graphG and input updates ∆G from Example 2
and assume that each edge in G has unit length. Consider running
SSSP algorithm of Example 1(b) onG . Observe that the final shortest
distance value x∗C (resp. x∗D) for vertex C (resp. D) is determined
by the message 1 (resp. 2) that sent from A to C and (resp. C to D).
Thus these two messages are effective. Similarly, there is an effective
message 1 from A to B. The incremental algorithm for SSSP stores
above three effective messages and works in two phases as follows.

(1) It first cancels the effects of the stored effecitve messages
that become invalid for G ⊕ ∆G. Since edge (A,C) is removed,
the effective message 1 cannot be passed from A to C and it
becomes invalid. Then the incremental algorithm guidesA to send a
cancellation message ⊥ toC , which indicates the invalidation of the
effective message. It resets xC to the initial state∞. The cancellation
message ⊥ is further propagated to D, hence xD is also reset to∞.
At this time, all the effects of invalid effective messages are canceled.

(2) The second phase is to restore the effects of missing messages.
For each unrest vertexv that either is the source node of an inserted
edge or is connected to a reset vertex, the algorithm generates a set
of compensation messages via function G, in which the converged
states x∗v suffice for the messages propagation purpose (see the
definition of G in Example 1(b)). These messages are sent to
reset vertices and the destination nodes of inserted edges, i.e., a
compensation message of value 2 is sent from B to C . That is, the
message propagation of the batch algorithm for SSSP resumes with
the compensation messages. The computation terminates when the
correct revised distance values w.r.t. G ⊕ ∆G are obtained. □

(3) Memoization-vertex (MV). The memoization-vertex policy
keeps track of the states w.r.t. the vertices across different rounds of
the batch computation, in a stepwise manner. This is based on the
observation that some vertex-centric algorithms directly transfer
vertex states as messages. Hence it suffices to memoize the vertex
states (aggregated results), from which the invalid and missing
messages can be easily discovered in incremental algorithms.
Despite the fact that multiple values will be kept for each vertex, it
reduces the space cost from the scale of edges to vertices.

Example 5:With the memoization-vertex policy, an incremental
algorithm for GCN-forward can be deduced from the batch
algorithm of Example 1(c), by memoizing the aggregated resultmi

v
for each vertexv (v ∈ V) at round i (i ∈ [1,K+1]). In particular,m1

v
is defined as the input feature vector w.r.t.v . Given the graphG and
updates ∆G of Example 2, the incremental algorithm asks vertex A
to send a cancellation messagem1

A,C= −m
1
A•W1 to C in the initial

round, to undo the effect of an invalidmessagem1
A•W1 transmitted

during prior run. This is feasible since GCN-forward takes sum as
H . Upon receiving this, vertex C adjusts the cancellation message
to −relu(m2

C)•W2 and propagates it to D; it also sends a new
compensation message relu(sum(m2

C ,m
1
A))•W2 to D. These two

represent the difference between the messages transmitted during
the two runs. The algorithm also updates m2

C to sum(m2
C ,m

1
A).

Analogously, a compensation messagem1
C •W1 is sent from C to A

in the first round to enforce the effect of a missing message.

Summing up, during round i (0<i≤K) of the incremental
algorithm, for each vertex v that receives messages, a can-
cellation message −relu(mi

v)•Wi and a compensation message
relu(sum(mi

v ,M
i
v))•Wi are created and propagated to the neigh-

bors of v . Here Mi
v denotes the set of messages received by v in

round i . The recordedmi
v is also updated to sum(mi

v ,M
i−1
v). Finally,

computing relu(mK+1
v) can obtain the revised results for G ⊕ ∆G.

As observed in [20, 53], such incremental computation of GCN-
forward is effective in anomaly detection in dynamic e-commerce
graphs and link prediction in evolving social networks, where
updated edges refer to new item clicks and user relationships. □

(4) Memoization-edge (ME). When a batch vertex-centric algorithm
cannot be incrementalized with any of the above three policies,
the incrementalization should proceed with memoization-edge
policy. Here all the old messages of the prior run are memoized for
identifying and processing invalid and missing messages. Therefore,
the incremental algorithms just simply replay the computation on
affected areas that receive evolved messages. WithME policy, we
can handle any algorithm in the vertex-centric model of Section 2.

Space complexity. It is easy to see that besides the previous
final results, the space complexity of the auxiliary information
in the incremental algorithms deduced via MF (resp. MP, MV, ME)
policy is O(1) (resp. O(|V |), O(r |V |), O(r |E |)). Here r is a variable
representing the number of rounds in the batch runs.

Workflow. The workflow of incrementalization includes two parts.

(a) Policy selection. Given a batch vertex-centric algorithm A, the
framework first chooses a memoization policy for incrementalizing
A. As will be seen in Section 4, there are sufficient conditions
for the applicability of different memoization policies so that the
decision can be made according the properties of A.

(b) Algorithm builder. The second part is to deduce the incremental
algorithm with the selected memoization policy. Based on the
sufficient conditions, such an algorithm A∆ can be easily
constructed from A (see Section 4).

4 FLEXIBLE MEMOIZATION
Below we present how to deduce incremental algorithms A∆ from
the given batch ones A with different memoization policies. We
introduce sufficient conditions for adopting the memoization-free
(Section 4.1), memoization-path (Section 4.2) and memoization-
vertex (Section 4.3) policies in incrementalizingA, respectively. We
leave out memoization-edge since the incrementalization with this
policy is simple and its process has been outlined in Section 3.

4.1 Incrementalization via Memoization-Free
As discussed in Section 3, with the memoization-free (MF) policy,
the deduced incremental algorithms should initiate two sets of
messages, i.e., cancellation and compensation messages directly from
the converged states of batch runs, which are needed to handle
invalid and missing messages, respectively. In fact, this is applicable
for incrementalizing a class of batch algorithmsA, in which (1) the
effects of messages can be canceled via their "inverse" form; and
(2) the effects of messages can be clearly traced. We next formalize
these as sufficient conditions for enforcing MF policy.

1617

Conditions. The sufficient condition has three sub-conditions.

(1) The first condition says that the update functionU ofA has an
inverse functionU− satisfying the following.
(C1) U(M \M ′) = U(M ∪ {U− ◦ U(M ′)}) (∀M ′ ⊆ M)

That is, in order to cancel the effects of a setM ′ of invalid messages,
it suffices to propagate and enforce their inverseU− ◦U(M ′). Here
◦ is a function composition operator such that U− ◦ U denotes
applying functionU followed by functionU−.

(2) The other two conditions ensure that the effects of messages can
be clearly traced across multiple iterations. That is, the effect of an
invalid messagemi

u ,v tov sent in round i+1 can be traced from the
vertex state x jv for any later round j > i . Combining this invariant
with condition (C1), we can cancel the effects of invalid messages
and compensate the missing messages without memoizing any
intermediate states. It is obvious that aggregation functionH and
update function U should be identical (i.e., H = U), otherwise
the traceability no longer exists due to the update function. An
algorithmA with traceability should have the following properties.

(C2) U({U(M)} ∪M ′) = U(M ∪M ′)
(C3) U ◦ G ◦U(M) = U ◦ G(M)

Intuitively, condition (C2) enables partial aggregation for
functionU, so that we can directly measure the effects of partially
aggregated messages. (or even a single message). If condition (C3)
holds, the embedded aggregations within the iterations can be
“picked out” without affecting the result, e.g.,U◦G◦U◦G◦U(M) =
U◦G◦G(M). It also states that function G generates messages
solely based on the input aggregated results and edge properties,
without considering the vertex states. This is because it does not
require applying functionU as the prerequisite. Thus, here we use
G(M) in (C3) instead of G(xv ,mv , PE (v,w)). By conditions (C2)
and (C3), the state of each vertex is the aggregation of all messages
accumulated so far, i.e., xtv = U(

⋃t
i=0m

i
v). With this traceability,

we do not store any intermediate vertex states.
If a vertex-centric batch algorithm A satisfies the above

conditions, we say that A isMF-applicable.

Example 6: Since sum(M \ M ′) = sum(M, {−sum(M ′)}), where
M (resp. M ′) consists of real numbers, we know that PageRank
algorithm of Example 1(a) satisfies (C1) and U− computes the
negative value of the input. The other two conditions also hold as
function sum is associative and sum(d × M1/Nv ,d × M2/Nv) =
sum(d × sum(M1,M2)/Nv), i.e.,U ◦ G ◦U(M) = U ◦ G(M). □

We next show how to deduce the necessary messages to directly
adjust the vertex states under the above conditions.

Deducing messages. Suppose that G is updated with input
changes ∆G. For each vertex v , we deduce two sets of messages.

(1) Cancellation messages. Denote by w1, . . . ,wk the neighbors of
v in G. Given ∆G, the old message mi

v ,w j
sent from v to w j

could become invalid. This happens when G(x iv ,mi
v , PE (v,w j)) ,

G(x ′iv ,m
′i
v , P

′
E (v,w j)), where x ′iv , m′iv and P ′E (w,w j) refer to the

vertex state, aggregated result and edge property w.r.t. the new run
over G ⊕ ∆G , respectively. In this case, we call (v,w j) is an evolved
edge for transmitting messages. To eliminate the effects of invalid

Algorithm 1: Incrementalization via MF policy
Input: Graph G, updates ∆G, result {x∗v }v ∈V computed by A.
Output: Updated result {x ′v }v ∈V w.r.t. G ⊕ ∆G.
1 find all evolved edges induced by ∆G;
2 foreach evolved edge (v,w j) do
3 m∗v =U−(x∗v , x0v);
4 M−v←M−v ∪ {U

−◦U◦G(∗,m∗v , PE (v,w j))};
5 M+v←M+v ∪ {U◦G(∗,m

∗
v , P
′
E (v,w j))};

6 restore computation with messages {M−v ,M+v } (∀v ∈ V);

messages, we create a setM−v of cancellation messages as
M−v = {U

− ◦ U ◦ G(∗,m∗v , PE (v,w j)) | evolved (v,w j) in G} (1)

wherem∗v is the aggregation of initial and all received messages.
In fact, all the messages propagated from v tow j in the batch run
are Mv ,w j=

⋃∞
i=0 G(x

i
v ,m

i
v , PE (v,w j))=

⋃∞
i=0 G(∗,m

i
v , PE (v,w j)),

as the message generation does not depend on the vertex state
x iv . Let all the messages received by w j across iterations be⋃∞
i=0M

i
w j
= Mv ,w j ∪M

′, whereM ′ represents the messages from
w j ’s other neighbors. Observe that finally m∗w j

= U(Mv ,w j ∪

M ′). Then removing the effects of messages Mv ,w j is equivalent
to updating x∗w j

to U(M ′). By condition (C1), we have that
U(

⋃∞
i=0M

i
w j
∪ {U− ◦ U(Mv ,w j)}) = U(M

′). Thus it suffices to
propagateU− ◦ U(Mv ,w j) from v to w j . By conditions (C2) and
(C3), we have that U(Mv ,w j) = U(

⋃∞
i=0 G(∗,m

i
v , PE (v,w j))) =

U(G(∗,U(
⋃∞
i=0m

i
v), PE (v,w j))). As m∗v = U(

⋃∞
i=0m

i
v) in the

end, U(Mv ,w j) = U ◦ G(∗,m
∗
v , PE (v,w j)) and the cancellation

message sent tow j can be expressed asU−◦U◦G(∗,m∗v , PE (v,w j)).
However, we do not record m∗, we can deduce m∗ by m∗ =
U−(x∗v , x

0
v) because x∗ = U(x0v ∪m∗v).

(2) Compensation messages. The setM+v of compensation messages
can be computed as the dual of cancellation messages M−v . They
will be utilized to enforce the effects of missing messages passed
via evolved edges. More specifically, we derive the compensation
messages by using the new edge properties w.r.t.G ⊕ ∆G as follows:

M+v = {U ◦ G(∗,m
∗
v , P
′
E (v,w j)) | evolved (v,w j) in G ⊕ ∆G} (2)

As discussed above, this is needed if there exist differences between
the messages sent from v during the runs overG andG ⊕ ∆G . That
is, G(∗,m∗v , PE (v,w j)),G(∗,m

∗
v , P
′
E (v,w j)) for neighborw j of v .

We are now ready to show how to incrementalize a vertex-centric
algorithm A that is MF-applicable.
Incremental algorithm. Given a graph G, input updates ∆G to
G and the previous result {x∗v }v ∈V derived by an MF-applicable
batch algorithm A over G, the deduced incremental Algorithm 1
computes the updated results forG ⊕∆G . It first finds those evolved
edges (v,w j) induced by input updates, i.e., ∆G triggers invalid
or missing messages (line 1). This is achieved by comparing the
messages that directly created with the previous converged states as
descried above. For each evolved edge, it then initiates appropriate
cancellation and compensation messages based on Equations (1)
and (2) (lines 2-5). Starting with the transmission of these messages
to designated neighbors, it restores the iterative computation of
A over G ⊕ ∆G to get the updated results i.e., applying the same
functionsH ,U and G as batch counterpart A (line 6).

1618

Example 7: Continuing with Example 3, we use Algorithm 1 to
generate the cancellation and compensation messages as shown in
Figure 2(c). Observe that both A and C pertain to involved edges.
We first applyU− ◦ U ◦ G over G and generates two cancellation
messages inM−A, one for B and one forC . Based on the definitions of
U and G for PageRank (see Example 1), both messages are −dx∗A/2.
ForM+A, we applyU ◦ G over G ⊕ ∆G to generate a compensation
message to B inM+A with value dx∗A. The messagesM−C andM+C can
be computed similarly (see Figure 2(c)). □

The correctness of Algorithm 1 is verified by the following.

Theorem 1: The computation of MF-applicable A restored with
messages (M−v ,M

+
v) converges to the correct result A(G ⊕ ∆G). □

Proof sketch: Let Xi = {x iv | v ∈ V } (resp.Mi) be the collections
of vertex states (resp. messages) in the i-the round of computation.
We first characterize Xk in terms of the initial states X0 and
messagesMi (i ≥ 0) propagated during run-time. We next analyze
the initial vertex states X̂0 and the initial messages M̂0 generated
by Algorithm 1 for incremental computation. With these, we are
able to show that the incremental computation on G ⊕ ∆G starting
from (X̂0, M̂0) converges to the same result as the computation
from (X0,M0), i.e., they share an identical characterization. □

Apart from PageRank, many other algorithms are also MF-
applicable, such as SimRank [23], Penalized Hitting Probability
(PHP) [19], Katz Metric [24], Believe Propagation [38] and
Adsorption [7], i.e., they can be incrementalized with Algorithm 1.

Relative boundedness. The measure of relative boundedness is
proposed in [12], which inspects whether the cost of an incremental
algorithm A∆ can be expressed by a function of the differences
of two runs of a batch algorithm A. If so, it incurs necessary cost
for incrementalizing A. Since the incremental algorithms deduced
with MF policy only propagate the differences of the messages, we
have that Algorithm 1, denoted as A∆, is bounded relative to A.

4.2 Incrementalization via Memoization-Path
When the inverse functionU− required by the condition (C1) of
MF-applicability is hard to find, one might be tempted to store the
whole set of intermediate results and messages for removing invalid
messages. However, not all is lost. Despite condition (C1), there
are vertex-centric algorithms in which only part of the messages
decide the final results. To this end, it suffices to consider the
cancellation of those invalid messages that have impacts on the
converged states. Putting this and the properties of traceability
together, it is feasible to incrementalize another class of algorithms
A via the memoization-path (MP) policy, where a small portion
of the old effective messages are memoized. Since we still need
traceability, the aggregation functionH and update functionU of
batch algorithm A should be identical.

Conditions. The sufficient condition for applying MP policy in
incrementalizaion is also composed of two parts.

(1) The aggregation, i.e., update functionU in batch algorithm A
selects as output a single element from the input set. That is,
(C4) U(M) =mc ∈ M .

The condition (C4) requires the existence of a specific inputmessage
mc , which is referred to as an effective message.

Algorithm 2: Incrementalization via MP policy
Input: G, ∆G, {x∗v }v ∈V as in Algo. 1, effective messagesME .
Output: Updated {x ′v }v ∈V w.r.t. G ⊕ ∆G and algorithm A.
1 foreachmc ∈ ME sent via a deleted (v,w) in ∆G do
2 initiate cancellation message ⊥ to be sent from v tow ;
3 propagate messages ⊥ along the paths formed byME and

reset xw to initial state for the receiversw of ⊥;
4 foreach (v,w j) that is evolved or has a reset vertex do
5 M+v←M+v ∪ {U◦G(∗, x

∗
v , P
′
E (v,w j))};

6 restore the computation ofA with messagesM+v (∀v ∈ V);

(2) The vertex-centric algorithmA is endowed with the traceability
property, i.e., it satisfies conditions (C2) and (C3) of Section 4.1.

Intuitively, condition (C4) requires the output ofU only depends
on a single input message. Combining with (C2) and (C3), it implies
a tree structure for the effective messages transferred between
vertices. The traceroutes (or paths) of the effective messages can be
clearly captured in the batch run. If a batch vertex-centric algorithm
A satisfies conditions (C2)-(C4), we say that A isMP-applicable.

Example 8: The SSSP algorithm of Example 1(b) isMP-applicable.
Obviously functionmin (i.e., functionU) selects a single minimum
value from the input sets, hence (C4) is satisfied. It also satisfies
(C2)-(C3) as the computation of minimum distance values can be
postponed until all messages are transmitted and accumulated. □

Deducing messages. Similar to the MF policy, the cancellation
and compensation messages are deduced under the MP policy,
in response to the effects of invalid and missing messages. The
difference is that we explicitly store all the effective messages after
the batch run over G with MP policy, which form a set of paths.

(1) Cancellation messages. Each cancellation message, denoted as⊥,
is initiated in regard to an effective messagemc whose transmitting
route is broken due to the input updates ∆G. Intuitively, if an
effective mc was sent from vertex v to w during the batch run
and edge (v,w) is deleted in ∆G, then it becomes invalid.

(2) Compensation messages. The compensation messages are de-
rived along the same lines as that in the MF policy (Section 4.1),
which will be propagated to enforce the effects of missing messages.
The only difference is the senders of these messages (see below).

Incremental algorithm. The procedure for incrementalizing an
MP-applicable algorithm A is shown as Algorithm 2. It consists of
two phases. In the first phase (lines 1-3), it propagates cancellation
messages ⊥ along the paths that formed by the stored effective
messages of the batch run. This process starts with deleted edges
that have been used to transmit effective messages (lines 1-2), and
cancels the effects of invalid effective messages by resetting states
to initial version (line 3). After that, the second phase initiates
compensation messagesM+v using the same strategy of Algorithm 1
(lines 4-5). Note that compensation messages are also generated
at reset vertices v or those linked to reset verticesw j , i.e., v orw j
has been reset. They will be sent tow j to adjust the states from the
initial version and (v,w j) can be regarded as evolved edge. Finally
the iterative computation of A continues withM+v (line 6).

1619

Algorithm 2 can correctly adjust the previous converged states.

Theorem 2: After propagating cancellation messages⊥, the iterative
computation of anMP-applicable algorithmA restored withmessages
M+v converges to the correct result A(G ⊕ ∆G). □

Proof sketch: We first prove that after all cancellation messages
are communicated, those previous converged states of unreset
vertices coincide with the aggregated results of a subset of the
correct messages w.r.t.G ⊕ ∆G . Hence the unreset vertices induce a
reserved subgraph preserving the result of the batch computation. By
analyzing the initial vertex states X̂0 and compensation messages
M̂0 generated in Algorithm 2 in regards to the reserved subgraph,
we next show that the computation of A restored with X̂0 and M̂0

converges to the same result as running A over G ⊕ ∆G. □

One can verify that the logic of the incremental SSSP algorithm
described in Example 4 exactly coincides with that of Algorithm 2.
There also exist other MP-applicable algortihms, e.g., Connected
Components [8] and Lowest Common Ancestor [40].

4.3 Incrementalization via Memoization-Vertex
We continue with the memoization-vertex (MV) policy. UnlikeMF
and MP policies that record nothing or a small portion of effective
messages, the policyMV records a state (aggregated result) for each
vertex in every iteration. It deduces cancellation and compensation
messages for incremental computation from the recorded states.

Conditions. The sufficient condition for applying memoization-
vertex policy in incrementalizaion consists of two parts.

(1) The aggregation functionH satisfies conditions (C1) and (C2),
i.e.,H has an inverse functionH− and supports partial aggregation.

(2) The messages propagated in the i-th round is determined by
vertex state alone, i.e., the propagation function G can be written as

(C5) mi
v ,w=G(x

i
v , ∗, PE (v,w)), where ∗ is any aggregated result.

An algorithm satisfying the above conditions is MV-applicable.

Example 9: GCN-forward algorithm of Example 1(c) uses sum as
itsH . Thus (C1) and (C2) hold. Condition (C5) also holds since the
output of its propagation function can be written as x iv •Wi . □

Observe that MV policy shares two conditions onH with MF
policy. The main difference is that in anMF-applicable algorithm,
(i) the update function U and aggregation function H share the
same logic; and (ii) the output message is generated based on
the aggregated result only, i.e.,mi

v ,w=G(∗,m
i
v , PE (v,w)). Instead,

U and H of an MV-applicable algorithm can be very different,
e.g., sum and relu of GCN-forward algorithm. The message is
created according to the latest vertex state, i.e., condition (C5). As a
result, an MV-applicable algorithm is required to track the context
when applyingU. Fortunately, with (C1) and (C2), the recorded
states suffice to produce cancellation and compensation messages
in incremental computation. We next show how to incrementalize
an MV-applicable algorithm A by deducing these messages.

Deducing messages. For a given MV-applicable algorithm, in
the i-th round, each vertex v records a state mi

v that represents
the aggregated result after applying H . Then cancellation and
compensation messages are deduced in an iteration-wise manner.

Cancellation message. In the i-th round, suppose that a message
from v to w j is invalid. This can be decided as in MP policy, by
verifying if G(x iv ,mi

v , PE (v,w j))=G(x
′i
v ,m

′i
v , P

′
E (v,w j)), where x iv

and x ′iv are the vertex states of v w.r.t.G andG⊕∆G , respectively. If
such verification fails, we define the cancellation messagesM−v as

M−v = {H
− ◦ H ◦ G(x iv , ∗, PE (v,w j)) | evolved (v,w j) in G}. (3)

As in MP policy, the correctness ofM−v is warranted by (C1)-(C2).

Compensation message. By condition (C5), the compensation
messages transmitted along evolved edges (v,w j) can be generated
directly from x ′iv , i.e., the updated vertex state. That is,

M+v = {G(x
′i
v , ∗, P

′
E (v,w j)) | evolved (v,w j) in G ⊕ ∆G}. (4)

Incremental algorithm. We now outline the incremental
algorithm deduced via the MV policy, which is referred to
as Algorithm 3. Starting from the initial round, it replays the
computation on affected vertices with the recorded states and
updates the results accordingly. Note that a vertexv is called affected
if (i)v has received cancellation or compensation massages, or (ii)v
is involved in the input updates ∆G . In each round i , the incremental
algorithm first computes the new aggregated resultm′iv w.r.t. each
affected vertex v , by aggregating the recorded state (aggregated
result)mi

v with messagesMi−1
v received from v’s neighbors. Here

Mi−1
v , possibly empty, consists of cancellation and/or compensation

messages. It then recovers the old vertex state x iv and derives the
new state x ′iv directly using update function U. With x iv and x ′iv
in place, it generates and sends cancellation and compensation
messages when needed, i.e., applying Equations (3)-(4). It also
replaces the recorded statemi

v bym′iv for future use. The process
terminates when all the previous rounds has been processed.

Intuitively, Algorithm 3 replays the computation to update
affected vertex states, as in incrementalGCN-forward of Example 5.
In addition, many other GNN algorithms, e.g., CommNet [43] are
alsoMV-applicable. It is routine to verify the following by induction
on the rounds of the iterative computation.

Theorem 3: Algorithm 3 correctly outputs the results {xv }v ∈V w.r.t.
G ⊕ ∆G, for MV-applicable vertex-centric algorithms. □

5 INGRESS
As a proof of concept, we design and implement the system Ingress.

5.1 Vertex-centric API
Following the vertex-centric model of Section 2, Ingress provides
the API, shown in in Figure 3, to users for writing batch vertex-
centric algorithms. Here D and W are the template types of vertex
states and edge properties, respectively. In addition, the initial
values of the vertex states andmessages should be set via the init_v
and init_m interfaces, respectively. The aggregation functionH is
implemented using the aggregate interface. Note that aggregate
has only two input parameters, while function H can naturally
take any number of inputs. However, aggregate can be generalized
to support different numbers of input parameters if H has the
associative property (i.e., condition (C2) of Section 4 holds). That
is, H(x0, x1, x2) = H(H(x0, x1), x2). We let aggregate have two
input parameters for the simplicity of operator extraction, which

1620

template <class D, class W>

interface IteratorKernel{

virtual void init_m(Vertex v, D m) = 0;

virtual void init_v(Vertex v, D d) = 0;

virtual D aggregate(D m1, D m2) = 0;

virtual D update(D v, D m) = 0;

virtual D generate(D v, D m, W w) = 0;

}

Figure 3: The Vertex-centric API of Ingerss

will be used in automatic condition checking (see below). Without
loss of generality, we also provide another interface for functionH ,
which can take a vector of elements as input. The update function
U of the vertex-centric model is specified by the update interface,
for adjusting vertex states; and the interface generate in the API
corresponds to propagation function G, for generating messages.

Using this API, the implementation of the batch SSSP algorithm
of Example 1(b) is shown in Figure 4.

5.2 Automatic Memoization Policy Selection
As presented in Section 3, there exist multiple memoization policies
for incrementalization, which lead to different space costs. Though
their formal applicability conditions are provided in Section 4, it is
nontrivial for non-expert users to choose the best-fit one. Ingress
automatically selects the optimal memoization policy with the
help of Satisfiability Modulo Theories (SMT) solver Z3 [11]. SMT
studies the problem of deciding whether a given first-order formula
is satisfiable, i.e., if there is an assignment of proper values to
uninterpreted functions and constant symbols to make the formula
to be true. The SMT solver Z3 asserts a formula and may return
“satisfiable” (sat), “unsatisfiable” (unsat) or “unknown”.

The initial step of policy selection uses a parser in Ingress to
extract the three functionsH ,U and G of the vertex-centric model,
from the implementations of interfaces aggregate, update and
generate, respectively. Then the sufficient conditions on these
functions (see Section 4) are converted into different Z3 formulas
by our predefined Z3 templates. For instance, condition (C1) states
whetherU has a reverse functionU−. Its Z3 assertion template is

(assert (forall ((x1 Real) (x2 Real) (x3 Real))

(= (f x1 x3)) (f x1 (f (f (f1 x2) x2) x3)))).

Here f represents the update function U extracted from user’s
program, and f1 is a declared function (i.e.,U−) to be searched for.
Additionally, the whole set of variables x1, x2 and x3 corresponds
to the input setM in condition (C1), while x2 itself constitutes the
subsetM ′. If the assertion formula gets “sat” in Z3, (C1) is satisfied
and the satisfiable function f1 (i.e.,U−) can be automatically found.
Conditions (C2) and (C3) are the same as the that of monotonic
recursive aggregation defined in [47], sowe reuse their Z3 templates.
The Z3 template for condition (C4) is shown as follows:

(assert (not (forall ((x1 Real) (x2 Real))

(or (= (f x1 x2) x1) (= (f x1 x2) x2))))).

It states that f returns either one of its two inputs. Note that Z3
cannot determine “whether a formula Y is always true?”, but only
answers “whether it is satisfiable?”. To verify a property Y that
should be always true, we convert “Y is always true” into “NOT
Y is not satisfiable”. Therefore, if the above Z3 assertion returns
“unsat”, condition (C4) is verified true. Condition (C5) can be simply
validated by static program analysis (i.e., whether the output of
generate depends on only one of its input parameters).

class SSSPKernel: public IteratorKernel{

void init_m(Vertex v, double m){m = DBL_MAX;}

void init_v(Vertex v, double d){

v.d = ((v.id == source) ? 0 : DBL_MAX);

}

double aggregate(double m1, double m2){return m1 < m2 ? m1 : m2;}

double update(double v, double m){return aggregate(v, m);}

double generate(double v, double m, double w){return v + w;}

}

Figure 4: The implementation of SSSP algorithm

With such automated condition verification mechanism, Ingress
automatically chooses the memoization policy as follows. At first,
if H and U are identical and conditions (C2) and (C3) are both
satisfied, it prefers to selectMF andMP as candidate policies. Next,
if condition (C1) is satisfied, thenMF policy is chosen; otherwise
when condition (C4) holds, MP policy is chosen. If the first two
preferable memoization policies are not feasible, Ingress chooses
theMV policy by checking whether conditions (C1), (C2) and (C5)
hold. For the rest cases, the ME policy is selected by default.

Policy selection can be conducted offline, whose cost depends
on the characteristics of the vertex-centric programs only, i.e.,H ,
U and G, rather than the large-scale graphs. In fact, deciding the
satisfiability of a first-order formula is undecidable in general [18],
e.g., in the presence of integer arithmetic with multiplication [32].
However, as verified in our experiments, for functions of most
common vertex-centric algorithms, e.g., those in Example 1, Z3 can
respond quickly when checking the above formulae (see Section 6).

5.3 Distributed Runtime Engine
The distributed runtime engine of Ingress is developed on top of
libgrape-lite [4] (an open-source version of GRAPE [14]), which
is designed to be a highly efficient, flexible, and scalable platform
for distributed graph computation. The graph structure and the
computation states are stored independently in libgrape-lite, which
is supremely suitable for incremental graph computation since
the state maintenance and the graph structure adjustment have
to be separated in incremental processing. Ingress inherits the
graph storage backend and graph partitioning strategies from
libgrape-lite. Besides, it has the following new modules.

Vertex-centric programming. Following GRAPE, libgrape-lite only
supports block-centric programming. Ingress extends it to achieve
vertex-centric programming. Specifically, Ingress spawns a new
process on each worker to handle the assigned subgraph. It adopts
the CSC/CSR optimized graph storage of libgrape-lite for fast query
processing of the underlying graphs. For each vertex, it invokes
the user-specified vertex-centric API to perform the aggregate,
update, and generate computations. The generated messages are
batched and sent out together after processing the whole subgraph
in each iteration. Ingress relies on the message passing interface of
libgrape-lite for efficient communication with other workers.

Data maintenance. Ingress launches an initial batch run on the
original input graph. It preserves the computation states during the
batch iterative computation, guided by the selected memoization
policy, e.g., preserving the converged vertex states only as in
MF policy or the effective messages with MP policy. After that,
Ingress is ready to accept graph updates and execute the deduced
incremental algorithms to update the states. The graph updates
can include edge insertions and deletions, as well as newly added
vertices and deleted vertices. In particular, the changed vertices with

1621

no incident edges are encoded in “dummy” edges with one endpoint
only. Furthermore, changes to edge proprieties are represented by
deletions of old edges and edge insertions with the new properties.

Incremental processing. Ingress starts the incremental computation
from those vertices involved in the input graph updates, which
are referred to as affected vertices. Using the message deduction
techniques presented in Section 4, for each of these affected vertices,
Ingress will generate the cancellation messages and compensation
messages based on the new edge properties and the preserved states.
These messages are sent to corresponding neighbors. Only the
vertices that receive messages are activated by Ingress to perform
the vertex-centric computation, and only the vertices whose states
are updated can propagate new messages to their neighbors. This
process proceeds until the convergence condition is satisfied.

6 EXPERIMENTAL STUDY
6.1 Experimental Setup
We evaluated Ingress with five incremental algorithms deduced
from (i) twoMP-applicable algorithms PageRank and Penalized Hit-
ting Probability (PHP) [19], (ii) twoMP-applicable algorithms SSSP
and Connected Components (CC) [8], and (iii) one MV-applicable
algorithm GCN-forward. PHP is used to measure the proximity
between a given source s and any other vertex v . In batch PHP
algorithm, U=H=sum and G(x iv ,mi

v , PE (v,w))=βm
i
vPE (v,w),

where 0<β<1 is a fixed parameter and PE (v,w) is edge weight.
It satisfies conditions (C1)-(C3) and is MF-applicable. Batch CC
algorithm finds all connected components, whereU=H=min and
G(x iv ,m

i
v , PE (v,w))=m

i
v . It is MP-applicable, i.e., (C2)-(C4) hold.

In the inference process of GCN-forward, we used K = 3 randomly
generated weight matrices, where the sizes of the matrices are
128 × 64, 64 × 32 and 32 × 16, respectively.

Datasets and updates. Four real-life graphs were used (see Table
3), including social networks Twitter (TW) [39] and Friendster
(FS) [49], web graph UK-2005 (UK) [1], and road networks Euro-
Road (ER) [2] and US-Road (UR) [3]. We also designed a graph
generator for evaluating the performance of the systems on
generated synthetic graphs.

We constructed graph updates ∆G by randomly adding new
edges to G and removing existing edges from G. The number
of added edges and deleted edges are the same, unless stated
otherwise. The updates ∆G refer to topological changes by default.
We also randomly generated changes to edge weights to test the
performance in processing updates of weights.

Competitors. We compared Ingress with three state-of-the-art
vertex-centric incremental systems, Torando [42], GraphBolt [31]
and KickStarter [46]. We also implemented a competitor on top of
libgrape-lite [4], denoted as IngressR, which reperforms the vertex-
centric computation over the updated graph starting from scratch.
It is used to validate the effectiveness of incremental processing.

In fact, KickStarter cannot handle PageRank, PHP and GCN-
forward due to its single-dependency requirement on the vertex
states. Tornado returns erroneous results for SSSP, CC and GCN-
forward because the initial states have impact on the output in these
cases. GraphBolt is supposed to support all, but its implementations

Graph #Vertices #Edges Size
Twitter-2009 (TW) [39] 41,652,230 1,468,365,183 23.99GB

UK-2005 (UK) [1] 39,459,925 936,364,282 16,45GB
Euro-Road (ER) [2] 50,912,018 108,109,320 0.94GB
US-Road (UR) [3] 23,947,347 57,708,624 0.49GB
Friendster (FS) [49] 65,608,366 1,806,067,139 30.14GB

Table 3: Real-life graphs

for SSSP, CC and GCN-forward are nontrivial and not open-
sourced. In light of this, we only tested PageRank and PHP (resp.
SSSP and CC) on GraphBolt and Tornado (resp. KickStarter).

Environments. We used AliCloud ecs.r6.13xlarge instance (52vCPU,
384GB memory) for experiments conducted on single machine. To
evaluate Ingress in a distributed environment, we adopted a cluster
of 32 AliCloud ecs.r6.6xlarge instances (24vCPU, 192GB memory).

6.2 Overall Performance
We first evaluated the overall performance of Ingress, including
both the response time and space cost, by comparing it with
competitors. Note that GraphBolt and KickStarter can only run
on a single machine with multi-core support, hence this set
of experiments and the following ones in Sections 6.3 and 6.4
were conducted on a single machine. We fixed the size of either
topological updates or weight changes as |∆G |=1%|G |, and used all
real-life graphs except the FS dataset. When reporting response
time, we omit the cost for policy selection since it can be done
within 50 milliseconds for all tested algorithms.

Response time. Figure 5 shows the normalized response time of
each algorithm executed in different systems. Here the response
time of IngressR is treated as the baseline, i.e., IngressR finishes
in unit time (i.e., 1). In particular, Figure 5f reports the response
time for processing edge weight updates, while the rest are for
topological updates. We can see that Ingress outperforms others
in all the cases and the improvement in handling weight changes
is consistent with that for processing topological changes. More
specifically, Ingress achieves 4.7×-66.83× (16.31× on average)
speedup over GraphBolt, 1.52×-147.14× (23.95× on average)
speedup over KickStarter, 1.44×-50.47× (11.65× on average)
speedup over Tornado, and 1.07×-47.55× (10.84× on average)
speedup over IngressR. Ingress is indeed very efficient, e.g., taking
only 11.76 seconds for PHP over the TW dataset, as opposed to 139
and 105 seconds by GraphBolt and Tornado, respectively. The MF
policy (for PageRank and PHP) and the MP policy (for SSSP and
CC) exhibit substantial superiority compared with theMV policy
(for GCN-forward). This is under expectation, because MF and
MP require less amount of recomputation and memoized states.

Space cost. We measured the size of the memory for storing
computation states. Figure 6 depicts the space cost of each system,
in which Figure 6f corresponds to the case of edge weight updates.
We find that Ingress benefits greatly from its flexible memoization
strategy. It is much more memory efficient than GraphBolt for
PageRank and PHP, as shown in Figs. 6a-6b. This is because the
MF engine of Ingress does not store any intermediate states, while
GraphBolt maintains states across iterations. Tornado starts from
the previously converged states, which needs no additional memory
either. IngressR also holds no intermediate results. Therefore, one
can find similar space costs for Ingress, IngressR, and Tornado.

1622

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
GraphBolt
IngressR
Tornado

(a) PageRank

 0

 1

 2

 3

 4

 5

 6

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
GraphBolt
IngressR
Tornado

(b) PHP

 0.25

 1

 4

 16

 64

 256

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
KickStarter

IngressR

(c) SSSP

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
KickStarter

IngressR

(d) CC

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
IngressR

(e) GCN-Forward

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

UR UK TW ER

N
o
rm

a
liz

e
d
 T

im
e

Ingress
KickStarter

IngressR

(f) SSSP (weight updates)
Figure 5: Running time comparison

 0.25

 1

 4

 16

 64

 256

UR UK TW ER

M
e
m

o
ry

 (
G

B
)

Ingress
GraphBolt
IngressR
Tornado

(a) PageRank

 0.25

 1

 4

 16

 64

 256

UR UK TW ER

M
e
m

o
ry

 (
G

B
)

Ingress
GraphBolt
IngressR
Tornado

(b) PHP

 0

 0.5

 1

 1.5

 2

 2.5

UR UK TW ER
M

e
m

o
ry

 (
G

B
)

Ingress
KickStarter

IngressR

(c) SSSP

 0

 0.5

 1

 1.5

 2

 2.5

UR UK TW ER

M
e
m

o
ry

 (
G

B
)

Ingress
KickStarter

IngressR

(d) CC

 0

 10

 20

 30

 40

 50

 60

UR UK TW ER

M
e
m

o
ry

 (
G

B
)

Ingress
IngressR

(e) GCN-Forward

 0

 0.5

 1

 1.5

 2

 2.5

UR UK TW ER

M
e
m

o
ry

 (
G

B
)

Ingress
KickStarter

IngressR

(f) SSSP (weight updates)
Figure 6: Space cost comparison

 0

 2

 4

 6

 8

 10

1% 5% 10% 15% 20%

T
im

e
 (

s
)

Ingress
GraphBolt
IngressR
Tornado

(a) PageRank

 0

 10

 20

 30

 40

 50

1% 5% 10% 15% 20%

T
im

e
 (

s
)

Ingress
KickStarter

IngressR

(b) SSSP

 0

 50

 100

 150

 200

1% 5% 10% 15% 20%

T
im

e
 (

s
)

Ingress
IngressR

(c) GCN-Forward

Figure 7: Sensitivity to |∆G |

 0

 2

 4

 6

 8

 10

|G| 2|G| 3|G| 4|G|

T
im

e
 (

s
)

Ingress
GraphBolt
IngressR
Tornado

(a) PageRank

 0

 10

 20

 30

 40

|G| 2|G| 3|G| 4|G|

T
im

e
 (

s
)

Ingress
KickStarter

IngressR

(b) SSSP

 0

 40

 80

 120

 160

|G| 2|G| 3|G| 4|G|

T
im

e
 (

s
)

Ingress
IngressR

(c) GCN-Forward

Figure 8: Sensitivity to |G | (time)

However, Ingress is much faster than the other two (Figs. 5a-5b).
For SSSP andCC, Ingress chooses theMP engine to store a small set
of paths. This incurs more space than IngressR, which is under ex-
pectation. However, Ingress requires less memory than KickStarter
(Figs. 6c-6d and 6f). This is because KickStarter sorts additional
level information for the paths [46]. For GCN-forward, Ingress
adopts the MV engine, recording more intermediate results, hence
takes more space than IngressR, i.e., recomputation (Figure 6e).

6.3 Sensitivity to Updates
We next evaluated the impact of the input updates on the
performance of incremental graph processing. Varying the size |∆G |
of input updates ∆G from 1% to 20% of the size |G | of the original
graph G, Figure 7 shows the running time for the incremental
computation of PageRank, SSSP and GCN-forward in different
systems over the ER graph. We find the following.

(1) Almost all the incremental graph processing systems take longer
to process larger input updates ∆G, as expected.

(2) Since the number of inserted edges and that of deleted edges
are the same in our randomly created input updates ∆G , the size of
the updated graph remains the same, i.e., |G ⊕ ∆G | = |G |. IngressR
reperforms the batch computation on the updated graph with a
fixed size, so it is not sensitive to |∆G |.

 0

 20

 40

 60

 80

|G| 2|G| 3|G| 4|G|
T

im
e
 (

s
)

Ingress
GraphBolt
IngressR
Tornado

(a) PageRank

 0

 2

 4

 6

 8

|G| 2|G| 3|G| 4|G|

T
im

e
 (

s
)

Ingress
KickStarter

IngressR

(b) SSSP

 0

 10

 20

 30

 40

|G| 2|G| 3|G| 4|G|

T
im

e
 (

s
)

Ingress
IngressR

(c) GCN-Forward

Figure 9: Sensitivity to |G | (space)

 0

 20

 40

 60

2 4 8 16 32

T
im

e
 (

s
)

Ingress
IngressR
Tornado

(a) PageRank

 0

 2

 4

 6

2 4 8 16 32

T
im

e
 (

s
)

Ingress
IngressR

(b) SSSP

 0

 80

 160

 240

 320

2 4 8 16 32

T
im

e
 (

s
)

Ingress
IngressR

(c) GCN-Forward

Figure 10: Performance in distributed environment

(3) For PageRank, Ingress consistently outperforms other incre-
mental processing systems. For SSSP, Ingress shows comparable
performance with KickStarter since they rely on similar approach
to achieve incremental computation (i.e., the strategies adopted in
MP policy (Section 4.2)). For GCN-forward, Ingress requires more
running time than IngressR when |∆G | ≥ 10%|G |. Regarding this
result, we analyze the vertex activation log and find that the input
updates affect almost all the vertices, making the cost of incremental
computation close to that of rerun (i.e., IngressR). Due to additional
state maintenance cost, Ingress spends more time than IngressR.

(4) Ingress is very effective in the incremental computation of
PageRank. In fact, it takes less than 2 seconds when |∆G | is up
to 20% of |G |, and is still faster than recomputation (i.e., IngressR).

The space costs of all the systems are almost stable when varying
|∆G |. This is because that the memory usage of these systems only
depends on the size |G | of original graph, rather than |∆G |. We omit
the detailed space costs for the lack of space.

6.4 Sensitivity to Graph Sizes
The performance of incremental graph computation is obviously
expected to be sensitive to |∆G |, but the sensitivity to |G | is not that
clear. To investigate this, we conducted experiments to evaluate
the impact of the size |G | of the original graph. Here we used

1623

synthetic graphs produced by a generator. The graphs have up to
47 million vertices and 115 million edges and follow the node degree
distribution of real-life graphs, e.g., UR. We fixed |∆G | = 0.23M , i.e.,
0.23 million of edge updates. Varying the size of synthetic graphs
from 47million vertices and 115million edges to 191million vertices
and 461 million edges, denoted as |G | to 4|G |, Figures 8 and 9 report
the running time and space cost of different systems, respectively.

(1) Compared with IngressR that conducts recomputation, the
response time of incremental systems Ingress, GraphBolt and
KickStarter are less sensitive to the increase of |G |. This is because
their time complexity mainly depends on |∆G |, rather than |G |.
Tornado updates previous results by directly starting the iterative
computation on the new graph with the converged states, so its
running time also depends on |G | and exhibits fast increasing rate.

(2) Although the increasing rates of response time of Ingress,
GraphBolt and KickStarter are similar for running different
algorithms, their space costs are very different when |G | increases.
Thanks to our memoization-free (MF) technique, Ingress shows
substantial superiority over GraphBolt on space cost. Ingress is
also more space efficient than KickStarter with itsMP policy. We
find that KickStarter uses more space to maintain the dependency
information than Ingress. These are consistent with the results in
Section 6.2. In practice, the user can benefit more from the space
efficiency of Ingresswhen processing larger graphs, not to mention
that Ingress is able to automatically choose the best-fit memoization
engine for different algorithms without users’ intervention.

6.5 Distributed Runtime Performance
We finally evaluated the distributed runtime of Ingress, which
is essential for handling large-scale graphs. As GraphBolt and
KickStarter do not support distributed computation, we compared
Ingress with Tornado and IngressR only in the distributed
environment. We applied PageRank, SSSP and GCN-forward over
the large FS graph, on our Alicloud cluster. Varying the number
of workers from 2 to 32 in the cluster, Figure 10 shows the
response time of different system. One can see that Ingress needs
shorter running time than IngressR and Tornado on different-sized
clusters and shows good scalability. In particular, for SSSP, Ingress
is much faster than the recomputation-based IngressR, say 31×-
88× speedup. This highlights the need of incremental processing
for big graphs. For GCN-forward, Ingress becomes slower when
the workers increase from 16 to 32. This is due to the increased
communication cost, which is larger than the actual computational
cost for incremental processing that is already very small.

7 RELATEDWORK

Incremental graph processing systems. There have been systems
developed for incremental graph processing, e.g., [31, 41, 42, 46].
Tornado [42] is an incremental iterative processing system that is
built on top of Storm. It only focuses on those graph computations
that can converge to the same state from various initial states.
GraphIn [41] incrementally handles dynamic graphs through fixed-
sized batches. KickStarter [46], RisGraph [15] and GraphBolt [31]
are three dependency-driven systems. KickStarter and RisGraph
are able to execute graph algorithms that are monotonic, and

deduce safe approximation results upon edge deletions, to fix
the approximation errors via iterative computation. GraphBolt
keeps track of the dependencies through the memoized aggregated
values among iterations. When input updates arrive, it refines the
dependencies iteration-by-iteration to do incremental computation.
Apart from these, [50] proposes a new message passing policy for
vertex-centric programming, which only exchanges meaningful
results via ∆-messages. Although it helps reduce the transmitted
messages, changes to input graphs are not allowed. Extending
timely dataflow [36], differential dataflow [35] achieves streaming
processing by enforcing a partial order on the versions of
computations. However, it stills needs to maintain a number of
intermediate versions. There has been work on incrementalizing
generic programs, e.g., [6, 9, 28], often at the instruction level. They
are hard to be applied for incremental graph processing directly.

This work differs from the prior work in the following.
(1) We target the incrementalization of generic vertex-centric
algorithms, beyond the scope of specific classes of computations
that satisfy certain conditions [42, 46]. (2) We introduce four types
of memoization policies to facilitate the incrementalization and
provide sufficient conditions for their applicability, which have
not been considered in previous work. (3) We make the process
of incrementalization accessible to non-expert users, rather than
asking nontrivial operators from the users [31].

There have also been systems proposed, e.g., Cavs [48] for
improving the performance of training and inference of dynamic
neural network models. They focus on the changes to models rather
than the updates to data graphs, hence are orthogonal to this work.

Incremental graph algorithms. A number of incremental graph
algorithms have been proposed for, e.g., regular path queries [12],
strongly connected components [22], subgraph isomorphism [25],
k-cores [27], graph partitioning [13] and triangle counting [34].
In contrast to these ad hoc methods, we propose to automatically
deduce incremental algorithms from the batch counterparts by a
generic approach, making incremental graph processing easier.

8 CONCLUSION
We have proposed Ingress, a system to incrementalize vertex-
centric algorithms with optimized memory consumption. Ingress
incorporates a framework with four memoization policies to deal
with various vertex-centric algorithms.We have identified sufficient
conditions for the applicability of thememoization policies.We have
also shown that Ingress can largely automate the incrementalization
based on this framework. Our experimentally study verifies that
Ingress is a promising tool for incremental graph processing.

One topic for future work is to extend Ingress to support the
incrementalization of graph-centric algorithms. Another topic is to
incrementalize neural network training.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China (2018YFB1003404), National Natural Science Foundation
of China (62072082, U1811261), Key R&D Program of Liaoning
Province (2020JH2/10100037), and a research grant from Alibaba
Group through Alibaba Innovative Research (AIR) Program and
CCF-Huawei Database Innovation Research Funding.

1624

REFERENCES
[1] 2005. uk-2005. https://www.cise.ufl.edu/research/sparse/matrices/LAW/uk-

2005.html.
[2] 2010. europe-osm. https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/

europe_osm.html.
[3] 2011. road-usa-graph. https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/

road_usa.html.
[4] 2020. libgrape-lite. https://github.com/alibaba/libgrape-lite.
[5] 2020. Size ofWikipedia. https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia.
[6] Umut A. Acar. 2005. Self-Adjusting Computation. Ph.D. Dissertation. CMU.
[7] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar

Kumar, Deepak Ravichandran, and Mohamed Aly. 2008. Video suggestion and
discovery for youtube: taking random walks through the view graph. In WWW.

[8] Jørgen Bang-Jensen and Gregory Z. Gutin. 2009. Digraphs - Theory, Algorithms
and Applications, Second Edition. Springer.

[9] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. 2014. A
theory of changes for higher-order languages: incrementalizing λ-calculi by
static differentiation. In PLDI.

[10] Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and
Yuan Qi. 2020. Continuous-Time Dynamic Graph Learning via Neural Interaction
Processes. In CIKM.

[11] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS.

[12] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental Graph
Computations: Doable and Undoable. In SIGMOD.

[13] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020.
Incrementalization of Graph Partitioning Algorithms. PVLDB 13, 8 (2020), 1261–
1274.

[14] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,
Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Sequential Graph
Computations. In SIGMOD.

[15] Guanyu Feng, Zixuan Ma, Daixuan Li, Xiaowei Zhu, Yanzheng Cai, Wentao
Han, and Wenguang Chen. 2020. RisGraph: A Real-Time Streaming System for
Evolving Graphs. arXiv preprint arXiv:2004.00803 (2020).

[16] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596–615.

[17] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
OSDI.

[18] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. 1997. On the decision
problem for two-variable first-order logic. Bull. Symb. Log. 3, 1 (1997), 53–69.

[19] Ziyu Guan, Jian Wu, Qing Zhang, Ambuj K. Singh, and Xifeng Yan. 2011.
Assessing and ranking structural correlations in graphs. In SIGMOD.

[20] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In NIPS.

[21] Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. 2014.
Adapton: composable, demand-driven incremental computation. In PLDI.

[22] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723–760.

[23] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In KDD.

[24] Leo Katz. 1953. A new status index derived from sociometric analysis.
Psychometrika 18, 1 (1953), 39–43.

[25] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,
Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. 2018. TurboFlux: A Fast
Continuous Subgraph Matching System for Streaming Graph Data. In SIGMOD.

[26] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[27] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in
Large Dynamic Graphs. TKDE 26, 10 (2014), 2453–2465.

[28] Yanhong A. Liu. 2000. Efficiency by Incrementalization: An Introduction. High.
Order Symb. Comput. 13, 4 (2000), 289–313.

[29] Xusheng Luo, Luxin Liu, Yonghua Yang, Le Bo, Yuanpeng Cao, Jinghang Wu,
Qiang Li, Keping Yang, and Kenny Q. Zhu. 2020. AliCoCo: Alibaba E-commerce
Cognitive Concept Net. In SIGMOD.

[30] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD.

[31] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-driven
synchronous processing of streaming graphs. In EuroSys.

[32] Yu V Matijasevič. 1971. Diophantine representation of recursively enumerable
predicates. In Studies in Logic and the Foundations of Mathematics. Vol. 63. 171–
177.

[33] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking Like
a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing. ACM Comput. Surv. 48, 2 (2015), 1–39.

[34] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. 2016. Better Algorithms
for Counting Triangles in Data Streams. In PODS.

[35] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.
Differential Dataflow. In CIDR.

[36] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system. In SOSP.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[38] Judea Pearl. 1982. Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach. In AAAI.

[39] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualization. In AAAI.
http://networkrepository.com.

[40] Baruch Schieber and Uzi Vishkin. 1988. On Finding Lowest Common Ancestors:
Simplification and Parallelization. SIAM J. Comput. 17, 6 (1988), 1253–1262.

[41] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L Willke, Jeffrey
Young, Matthew Wolf, and Karsten Schwan. 2016. Graphin: An online high
performance incremental graph processing framework. In Euro-Par.

[42] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A system
for real-time iterative analysis over evolving data. In SIGMOD.

[43] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multiagent
Communication with Backpropagation. In NIPS.

[44] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. 2013. From "Think Like a Vertex" to "Think Like a Graph".
PVLDB 7, 3 (2013), 193–204.

[45] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. CACM 33, 8
(1990), 103–111.

[46] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In ASPLOS.

[47] Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee, Xiaodong
Zhang, and Ge Yu. 2020. Automating Incremental and Asynchronous Evaluation
for Recursive Aggregate Data Processing. In SIGMOD.

[48] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng,
Qirong Ho, Guangwen Yang, and Eric P. Xing. 2018. Cavs: An Efficient Runtime
System for Dynamic Neural Networks. In ATC.

[49] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network
communities based on ground-truth. In ICDM.

[50] Timothy A. K. Zakian, Ludovic A. R. Capelli, and Zhenjiang Hu. 2019.
Incrementalization of Vertex-Centric Programs. In IPDPS.

[51] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2011. PrIter: A
distributed framework for prioritized iterative computations. In SOCC.

[52] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2013. Maiter: An
asynchronous graph processing framework for delta-based accumulative iterative
computation. TPDS 25, 8 (2013), 2091–2100.

[53] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. 2019. AddGraph: Anomaly
Detection in Dynamic Graph Using Attention-based Temporal GCN. In IJCAI.

[54] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In OSDI.

1625

